Automotive Electrical & Electronic Systems Classroom Manual

Page 222

ker88839_ch10.qxd

1/9/06

11:31 AM

Page 210

210

vehicles. A technician must have a thorough grasp of the basis of electronics, it has become the single most important subject area, and the days when technicians could avoid working on an electronic circuit throughout an entire career are long past. This course of study will begin with semiconductor components. Chapter 3 examined the atom’s valence ring, the outermost electron shell. We learned that elements whose atoms have three or fewer electrons in their valence rings are good conductors because the free electrons in the valence ring readily join with the valence electrons of other, similar atoms. We also learned that elements whose atoms have five or more electrons in their valence rings are good insulators (poor conductors) because the valence electrons do not readily join with those of other atoms.

Chapter Ten

excellent insulator, because there are no free electrons to carry current flow. Selenium, copper oxide, and gallium arsenide are all semiconductors, but silicon and germanium are the most commonly used. Pure semiconductors have tight electron bonding; there’s no place for electrons to move. In this natural state, the elements aren’t useful for conducting electricity. Other elements can be added to silicon and germanium to change this crystalline structure. This is called doping the semiconductor. The ratio of doping elements to silicon or germanium is about 1 to 10,000,000. The doping elements are often called impurities because their addition to the silicon or germanium makes the semiconductor materials impure.

Semiconductor Doping

SEMICONDUCTORS Elements whose atoms have four electrons in their valence rings are neither good insulators nor good conductors. Their four valence electrons cause special electrical properties, which give them the name semiconductors. Germanium and silicon are two widely used semiconductor elements. Semiconductors are materials with exactly four electrons in their outer shell, so they cannot be classified as insulators or conductors. If an element falls into this group but can be changed into a useful conductor, it is a semiconductor. When semiconductor elements are in the form of a crystal, they bond together so that each atom has eight electrons in its valence ring: It has its own four electrons and shares four with surrounding atoms (Figure 10-1). In this form it is an

Figure 10-1. Crystalline silicon is an excellent insulator. (Delphi Automotive Systems)

Pure silicon has four electrons in the outer orbit, which makes it a semiconductor. However, the silicon must be very pure without any impurities that can affect its electrical properties. Pure silicon is a crystal that can be created by heating silicon in an electric oven called silicon crystal growers. See Figure 10-2. To make this pure silicon useful for electronic devices, a controlled amount of impurities are added to the pure silicon during the growing process. The amount of the impurities is extremely small. The process of adding impurities to pure silicon is called doping. If an element that has only three electrons in the outer orbit, such as boron, is combined with the silicon, the result is a molecule that has an opening, called a hole. While the resulting semiconductor is still electrically neutral, this vacant area is a place where an electron could fill. This type of material is called P-type material. If the pure silicon is doped using an element with five electrons in its outer orbit, such as phosphorus, the resulting semiconductor material is called N-type material. HISTORICAL NOTE: While the properties of semiconductors have been known since the late 1800s, it was not until the 1930s that silicon and germanium could be produced pure enough to allow accurate control of the doping process. An electric oven is used because it does not use any fuel, and there are no impurities from the heating fuel that could affect the process.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Summary

4min
page 363

Cruise Control Systems

3min
pages 357-358

Review Questions

3min
pages 364-366

Radios and Entertainment Systems

6min
pages 337-339

Theft Deterrent Systems

7min
pages 353-356

Heated Seats

6min
pages 343-345

Power Seats

2min
pages 341-342

Power Door Locks, Trunk Latches, and Seat- Back Releases

2min
page 346

Heating and Air-Conditioning Systems

12min
pages 328-334

Class 2 IPM-Controlled HVAC Systems

2min
pages 335-336

Review Questions

1min
page 326

Summary

1min
page 325

Windshield Wipers and Washers

10min
pages 319-324

Summary

1min
page 314

Review Questions

2min
pages 315-316

Head-Up Display (HUD

5min
pages 311-313

Electromagnetic Instrument Circuits

11min
pages 296-300

Review Questions

2min
pages 293-294

Malfunction Indicator Lamp (MIL

5min
pages 301-303

Summary

1min
page 292

Instrument Panel and Interior Lamp Circuits

4min
pages 289-291

Circuits

1min
page 288

Backup Lamp Circuits Side Marker and Clearance Lamp

1min
page 287

Circuits

2min
page 286

Stop Lamp and Turn Signal Circuits Hazard Warning Lamp (Emergency Flasher)

6min
pages 282-285

Taillamp, License Plate Lamp, and Parking Lamp Circuits

1min
page 281

Common Automotive Bulbs

1min
page 280

Headlamp Circuits

16min
pages 270-279

Summary

1min
page 267

Review Questions

1min
page 268

Spark Plug Construction

4min
pages 264-266

Distributor Cap and Rotor

3min
pages 259-261

Primary and Secondary Circuits

1min
page 248

Voltages

4min
pages 246-247

Basic Circuits and Current

1min
page 241

Silicon-Controlled Rectifiers (SCRs

1min
page 233

Review Questions

2min
pages 236-238

Summary

1min
page 235

Transistors

9min
pages 229-232

Rectifier Circuits

2min
page 228

Semiconductors

7min
pages 222-224

Photonic Semiconductors

2min
page 227

Review Questions

3min
pages 218-220

Starter Motor and Drive Types

8min
pages 210-214

DC Starter Motor Operation

5min
pages 206-208

Summary

2min
pages 216-217

Overrunning Clutch

1min
page 215

Specific Starting Systems

6min
pages 200-203

Summary

2min
pages 191-192

Differences

13min
pages 183-190

Review Questions

3min
pages 193-194

Charge/Voltage/Current Indicators

3min
pages 180-181

Solid-state Regulators

9min
pages 175-179

Electromagnetic Regulators

1min
page 174

Voltage Regulation

2min
page 173

Current Production in an AC Generator

9min
pages 168-172

Diode Rectification

3min
pages 162-163

AC Generator (Alternator) Components

7min
pages 164-167

Review Questions

4min
pages 157-158

Battery Installations

4min
pages 150-151

Battery Installation Components

2min
pages 152-153

Summary

2min
page 156

Battery Life and Performance Factors

5min
pages 154-155

State-of-Charge Indicators Wet-Charged and Dry-Charged

2min
page 147

Battery Electrolyte

2min
page 146

Electrochemical Action

8min
pages 142-145

Review Questions

3min
pages 138-140

Wire Color Coding

2min
pages 121-122

Multiplex Circuits

8min
pages 112-114

Ground Paths

2min
page 111

Connectors and Terminals

5min
pages 108-110

Wire Size

6min
pages 105-107

Wire Types and Materials

2min
page 104

Wiring and Harnesses

2min
pages 102-103

Review Questions

4min
pages 97-100

Parallel Circuit Voltage Drops Calculating Series Circuit Total

1min
page 87

Series and Parallel Circuit Faults

3min
pages 94-95

Series-Parallel Circuits

4min
pages 91-93

Review Questions

2min
page 82

Summary

3min
pages 80-81

Electromagnetism

9min
pages 67-71

Electromagnetic Induction

11min
pages 72-76

Magnetism

2min
page 66

Power

2min
page 56

Capacitance

8min
pages 57-60

Review Questions

2min
pages 62-64

Summary

1min
page 61

Complete Electrical Circuit

3min
pages 52-53

Summary

2min
page 43

Historical Figures in Electricity

2min
page 42

Fire Extinguishers

1min
page 31

Safety Tips for Technicians

2min
pages 25-26

Nuts

1min
page 15

Review Questions

2min
pages 44-46

Electrical Cord Safety

1min
pages 29-30

Safety in Lifting (Hoisting) a Vehicle

2min
pages 27-28
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.