Automotive Electrical & Electronic Systems Classroom Manual

Page 154

ker88839_ch07.qxd

1/9/06

11:27 AM

Page 142

142

Chapter Seven

temperature, overcharging, deep cycling, and recharging all factors in battery gassing and resultant water loss. With vent-cap batteries, and to some extent, low- maintenance batteries, water is lost from the electrolyte during charging in the form of hydrogen and oxygen gases. This causes the electrolyte level to drop. If the level drops below the top of the plates, active material will be exposed to the air. The material will harden and resist electrochemical reaction. Also, the remaining electrolyte will have a high concentration of acid, which can cause the plates to deteriorate quickly. Even the addition of water will not restore such hardened plates to a fully active condition. Figure 7-16. A molded heat shield that fits over the battery is used by Chrysler and some other manufacturers. (DaimlerChrysler Corporation)

Battery Heat Shields Many late-model cars use battery heat shields (Figure 7-16) to protect batteries from high underhood temperatures. Most heat shields are made of plastic, and some are integral with the battery holddown. Integral shields are usually large plastic plates that sit alongside the battery. Heat shields do not require removal for routine battery inspection and testing, but must be removed for battery replacement.

BATTERY LIFE AND PERFORMANCE FACTORS All batteries have a limited life, but certain conditions can shorten that life. The important factors that affect battery life are discussed in the following paragraphs.

Electrolyte Level As we have seen, the design of maintenancefree batteries has minimized the loss of water from electrolyte so that battery cases can be sealed. Given normal use, the addition of water to such batteries is not required during their service life. However, even maintenance-free batteries will lose some of their water to high

Parasitic Losses Parasitic losses are small current drains required to operate electrical systems, such as the clock, that continue to work when the car is parked and the ignition is off. The current demand of a clock is small and not likely to cause a problem. The advent of computer controls, however, has made parasitic losses more serious. Many late-model cars have computers to control such diverse items as engine operation, radio tuning, suspension leveling, climate control, and more. Each of these microprocessors contains random access memory (RAM) that stores information relevant to its job. To “remember,” RAM requires a constant voltage supply, and therefore puts a continuous drain on the car’s electrical system. The combined drain of several computer memories can discharge a battery to the point where there is insufficient cranking power after only a few weeks. Vehicles with these systems that are driven infrequently, put into storage, or awaiting parts for repair will require battery charging more often than older cars with lower parasitic voltage losses. Because of the higher parasitic current drains on late-model cars, the old test of removing a battery cable connection and tapping it against the terminal while looking for a spark is both dangerous and no longer a valid check for excessive current drain. Furthermore, every time the power source to the computer is interrupted, electronically stored information, such as radio station presets, is lost and will have to be reprogrammed when the battery is reconnected.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Summary

4min
page 363

Cruise Control Systems

3min
pages 357-358

Review Questions

3min
pages 364-366

Radios and Entertainment Systems

6min
pages 337-339

Theft Deterrent Systems

7min
pages 353-356

Heated Seats

6min
pages 343-345

Power Seats

2min
pages 341-342

Power Door Locks, Trunk Latches, and Seat- Back Releases

2min
page 346

Heating and Air-Conditioning Systems

12min
pages 328-334

Class 2 IPM-Controlled HVAC Systems

2min
pages 335-336

Review Questions

1min
page 326

Summary

1min
page 325

Windshield Wipers and Washers

10min
pages 319-324

Summary

1min
page 314

Review Questions

2min
pages 315-316

Head-Up Display (HUD

5min
pages 311-313

Electromagnetic Instrument Circuits

11min
pages 296-300

Review Questions

2min
pages 293-294

Malfunction Indicator Lamp (MIL

5min
pages 301-303

Summary

1min
page 292

Instrument Panel and Interior Lamp Circuits

4min
pages 289-291

Circuits

1min
page 288

Backup Lamp Circuits Side Marker and Clearance Lamp

1min
page 287

Circuits

2min
page 286

Stop Lamp and Turn Signal Circuits Hazard Warning Lamp (Emergency Flasher)

6min
pages 282-285

Taillamp, License Plate Lamp, and Parking Lamp Circuits

1min
page 281

Common Automotive Bulbs

1min
page 280

Headlamp Circuits

16min
pages 270-279

Summary

1min
page 267

Review Questions

1min
page 268

Spark Plug Construction

4min
pages 264-266

Distributor Cap and Rotor

3min
pages 259-261

Primary and Secondary Circuits

1min
page 248

Voltages

4min
pages 246-247

Basic Circuits and Current

1min
page 241

Silicon-Controlled Rectifiers (SCRs

1min
page 233

Review Questions

2min
pages 236-238

Summary

1min
page 235

Transistors

9min
pages 229-232

Rectifier Circuits

2min
page 228

Semiconductors

7min
pages 222-224

Photonic Semiconductors

2min
page 227

Review Questions

3min
pages 218-220

Starter Motor and Drive Types

8min
pages 210-214

DC Starter Motor Operation

5min
pages 206-208

Summary

2min
pages 216-217

Overrunning Clutch

1min
page 215

Specific Starting Systems

6min
pages 200-203

Summary

2min
pages 191-192

Differences

13min
pages 183-190

Review Questions

3min
pages 193-194

Charge/Voltage/Current Indicators

3min
pages 180-181

Solid-state Regulators

9min
pages 175-179

Electromagnetic Regulators

1min
page 174

Voltage Regulation

2min
page 173

Current Production in an AC Generator

9min
pages 168-172

Diode Rectification

3min
pages 162-163

AC Generator (Alternator) Components

7min
pages 164-167

Review Questions

4min
pages 157-158

Battery Installations

4min
pages 150-151

Battery Installation Components

2min
pages 152-153

Summary

2min
page 156

Battery Life and Performance Factors

5min
pages 154-155

State-of-Charge Indicators Wet-Charged and Dry-Charged

2min
page 147

Battery Electrolyte

2min
page 146

Electrochemical Action

8min
pages 142-145

Review Questions

3min
pages 138-140

Wire Color Coding

2min
pages 121-122

Multiplex Circuits

8min
pages 112-114

Ground Paths

2min
page 111

Connectors and Terminals

5min
pages 108-110

Wire Size

6min
pages 105-107

Wire Types and Materials

2min
page 104

Wiring and Harnesses

2min
pages 102-103

Review Questions

4min
pages 97-100

Parallel Circuit Voltage Drops Calculating Series Circuit Total

1min
page 87

Series and Parallel Circuit Faults

3min
pages 94-95

Series-Parallel Circuits

4min
pages 91-93

Review Questions

2min
page 82

Summary

3min
pages 80-81

Electromagnetism

9min
pages 67-71

Electromagnetic Induction

11min
pages 72-76

Magnetism

2min
page 66

Power

2min
page 56

Capacitance

8min
pages 57-60

Review Questions

2min
pages 62-64

Summary

1min
page 61

Complete Electrical Circuit

3min
pages 52-53

Summary

2min
page 43

Historical Figures in Electricity

2min
page 42

Fire Extinguishers

1min
page 31

Safety Tips for Technicians

2min
pages 25-26

Nuts

1min
page 15

Review Questions

2min
pages 44-46

Electrical Cord Safety

1min
pages 29-30

Safety in Lifting (Hoisting) a Vehicle

2min
pages 27-28
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Automotive Electrical & Electronic Systems Classroom Manual by www.heydownloads.com - Issuu