Automotive Electrical & Electronic Systems Classroom Manual

Page 108

ker88839_ch06.qxd

1/9/06

11:25 AM

Page 96

96

Chapter Six

Figure 6-11.

Assorted battery cables.

years, however, high-resistance, non-metallic cables have replaced metallic conductor cables as original equipment on cars and light trucks. Although metallicconductor ignition cables are still made, they are sold for special high-performance or industrial applications and are not recommended for highway use. The conductors used in high-resistance, nonmetallic ignition cables are made of carbon, or of linen or fiberglass impregnated with carbon. These cables evolved for the following reasons: • High-voltage ignition pulses emit high-fre-

quency electrical impulses or radio frequency interference (RFI) that interfere with radio and television transmission, as described in Chapter 2. The principal method used to limit this interference is the use of high-resistance ignition cables, often referred to as suppression cables. • The extra resistance in the cable decreases the current flow and thus reduces the burning of spark plug electrodes. The higher resistance also helps take advantage of the high-voltage capabilities of the ignition system, as shown in Part Five of this manual. The high-voltage current carried by ignition cables requires that they have much thicker insulation than low-voltage primary wires. Ignition cables are 7 or 8 millimeters in diameter, but the conductor in the center of the cable is only a small core. The rest of the cable diameter is the heavy insulation used to contain the high voltage and protect the core from oil, dirt, heat, and moisture. One type of cable insulation material is known by its trade name, Hypalon, but the type most commonly used today is silicone rubber. Silicone is generally thought to provide greater high-voltage

insulation while resisting heat and moisture better than other materials. However, silicone insulation is softer and more pliable than other materials and thus more likely to be torn or damaged by rough handling. Cables often have several layers of insulation over the conductor to provide the best insulating qualities with strength and flexibility.

CONNECTORS AND TERMINALS Electrical circuits can be broken by the smallest gap between conductors. The gaps can be caused by corrosion, weathering, or mechanical breaks. One of the most common wear points in an automobile electrical system is where two conductors have been joined. Their insulation coats have been opened and the conductive material exposed. Special connectors are used to provide strong, permanent connections and to protect these points from wear. These simple connectors are usually called wiring terminals. They are metal pieces that can be crimped or soldered onto the end of a wire. Terminals are made in many shapes and sizes for the many different types of connections required. They can be wrapped with plastic electrical tape or covered with special pieces of insulation. The simplest wire terminals join a single wire to a device, to another single wire, or to a few other wires (Figure 6-12). Terminals for connecting to a device often have a lug ring, a spade, or a hook, which can be bolted onto the device. Male and female spade terminals or bullet connectors are often used to connect two individual wires


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Summary

4min
page 363

Cruise Control Systems

3min
pages 357-358

Review Questions

3min
pages 364-366

Radios and Entertainment Systems

6min
pages 337-339

Theft Deterrent Systems

7min
pages 353-356

Heated Seats

6min
pages 343-345

Power Seats

2min
pages 341-342

Power Door Locks, Trunk Latches, and Seat- Back Releases

2min
page 346

Heating and Air-Conditioning Systems

12min
pages 328-334

Class 2 IPM-Controlled HVAC Systems

2min
pages 335-336

Review Questions

1min
page 326

Summary

1min
page 325

Windshield Wipers and Washers

10min
pages 319-324

Summary

1min
page 314

Review Questions

2min
pages 315-316

Head-Up Display (HUD

5min
pages 311-313

Electromagnetic Instrument Circuits

11min
pages 296-300

Review Questions

2min
pages 293-294

Malfunction Indicator Lamp (MIL

5min
pages 301-303

Summary

1min
page 292

Instrument Panel and Interior Lamp Circuits

4min
pages 289-291

Circuits

1min
page 288

Backup Lamp Circuits Side Marker and Clearance Lamp

1min
page 287

Circuits

2min
page 286

Stop Lamp and Turn Signal Circuits Hazard Warning Lamp (Emergency Flasher)

6min
pages 282-285

Taillamp, License Plate Lamp, and Parking Lamp Circuits

1min
page 281

Common Automotive Bulbs

1min
page 280

Headlamp Circuits

16min
pages 270-279

Summary

1min
page 267

Review Questions

1min
page 268

Spark Plug Construction

4min
pages 264-266

Distributor Cap and Rotor

3min
pages 259-261

Primary and Secondary Circuits

1min
page 248

Voltages

4min
pages 246-247

Basic Circuits and Current

1min
page 241

Silicon-Controlled Rectifiers (SCRs

1min
page 233

Review Questions

2min
pages 236-238

Summary

1min
page 235

Transistors

9min
pages 229-232

Rectifier Circuits

2min
page 228

Semiconductors

7min
pages 222-224

Photonic Semiconductors

2min
page 227

Review Questions

3min
pages 218-220

Starter Motor and Drive Types

8min
pages 210-214

DC Starter Motor Operation

5min
pages 206-208

Summary

2min
pages 216-217

Overrunning Clutch

1min
page 215

Specific Starting Systems

6min
pages 200-203

Summary

2min
pages 191-192

Differences

13min
pages 183-190

Review Questions

3min
pages 193-194

Charge/Voltage/Current Indicators

3min
pages 180-181

Solid-state Regulators

9min
pages 175-179

Electromagnetic Regulators

1min
page 174

Voltage Regulation

2min
page 173

Current Production in an AC Generator

9min
pages 168-172

Diode Rectification

3min
pages 162-163

AC Generator (Alternator) Components

7min
pages 164-167

Review Questions

4min
pages 157-158

Battery Installations

4min
pages 150-151

Battery Installation Components

2min
pages 152-153

Summary

2min
page 156

Battery Life and Performance Factors

5min
pages 154-155

State-of-Charge Indicators Wet-Charged and Dry-Charged

2min
page 147

Battery Electrolyte

2min
page 146

Electrochemical Action

8min
pages 142-145

Review Questions

3min
pages 138-140

Wire Color Coding

2min
pages 121-122

Multiplex Circuits

8min
pages 112-114

Ground Paths

2min
page 111

Connectors and Terminals

5min
pages 108-110

Wire Size

6min
pages 105-107

Wire Types and Materials

2min
page 104

Wiring and Harnesses

2min
pages 102-103

Review Questions

4min
pages 97-100

Parallel Circuit Voltage Drops Calculating Series Circuit Total

1min
page 87

Series and Parallel Circuit Faults

3min
pages 94-95

Series-Parallel Circuits

4min
pages 91-93

Review Questions

2min
page 82

Summary

3min
pages 80-81

Electromagnetism

9min
pages 67-71

Electromagnetic Induction

11min
pages 72-76

Magnetism

2min
page 66

Power

2min
page 56

Capacitance

8min
pages 57-60

Review Questions

2min
pages 62-64

Summary

1min
page 61

Complete Electrical Circuit

3min
pages 52-53

Summary

2min
page 43

Historical Figures in Electricity

2min
page 42

Fire Extinguishers

1min
page 31

Safety Tips for Technicians

2min
pages 25-26

Nuts

1min
page 15

Review Questions

2min
pages 44-46

Electrical Cord Safety

1min
pages 29-30

Safety in Lifting (Hoisting) a Vehicle

2min
pages 27-28
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Automotive Electrical & Electronic Systems Classroom Manual by www.heydownloads.com - Issuu