GENERALIZED FRACTIONAL DERIVATIVE OPERATORS OF THE PRODUCT OF MULTI-INDEX BESSEL FUNCTION AND MULTI-

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

GENERALIZED FRACTIONAL DERIVATIVE

OPERATORS OF THE PRODUCT OF MULTI-INDEX BESSEL FUNCTION AND MULTI-INDEX MITTAG LEFFLER FUNCTION WITH APPLICATIONS

Krishna Gopal Bhadana1 and Sunil Kumar2 1, 2 Department of Mathematics, S. P. C. Government College, Ajmer Maharshi Dayanand Saraswati University, Ajmer, Rajasthan-305009, India

Abstract

Inthepresentpaper wehave introduced multi-index Bessel functionandmulti-indexMittagLeffler functionand established the generalized fractional derivative operators of the product of generalized multi-index Bessel function and multi-index MittagLefflerfunction Further,theRiemann-Liouville, fractionalderivativeoperatorsofgivenfunctionsareobtained. 2020 Mathematics Subject Classification: 26A33,33E12,33C10.

Keywords and Phrases: generalizedfractionalderivativeoperators,multi-indexBesselfunction,multi-indexMittagLeffler function.

Definitions

1 Generalized Multi-Index Bessel Function

For ����,����,��,∈ℂ,µ>0,ℛ��(��) >0 the generalized multi-index Bessel function is defined by Choi and Agarwal ,1- in the followingsummationform:

where ℛ��(����)> 1and∑ ℛ��(����) �� ��=1

2 Generalized Multi-Index Mittag Leffler Function

For ����,����,��,��∈ℂ, the generalized multi-index Mittag Leffler function is defined by Saxena and Nishimoto ,13- in the followingsummationform

and∑ ℛ��(����) �� ��=1 >������{0; ℛ��(��)–1;0}.

For�� =1thegeneralizedmulti-indexMittagLefflerfunction (2.1)reduceintothegeneralizedMittag-Lefflerfunctiongiven byShuklaandPrajapati,16-anddefinedas

where��,��,��∈ℂ; ℛ��(��) >0,ℛ��(��) > 0,ℛ��(��) > 0and��∈(0,1) ∪ ℕ

For �� =1and��=1, the generalized multi-index Mittag Leffler function (2.1) reduce into the generalized Mittag-Leffler functiongivenbyPrabhakar,10-definedas

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072 © 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page223

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072

where��,��,�� ∈ℂ; ℛ��(��) >0, ℛ��(��) > 0, ℛ��(��) > 0,�� ∈ℂ and(��)��

is

wellknown Pochhammersymbol. 3 Generalized Fractional Derivative Operators

For µ = [Re(γ)+1] and �� > 0, where

ℂ with Re(γ)> 0, the generalizedfractionalderivativeoperatorsaredefined[12,15]asfollows:

,

Wheregeneralizedfractionalintegraloperatorsaredefinedas

Thefollowingimageformulaforapowerfunctionunderthegeneralizedfractionalintegraloperatorsisgiven[15]asfollows:

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072

The generalized fractional derivative operators reduce into the saigo fractional derivative operators due to the following relations:

Wheresaigofractionalintegraloperatorsintroducedbysaigo´ ��[11]anddefinedasfollows:

Thefollowingimageformulaforapowerfunctionunderthe saigo´ ��fractionalintegraloperatorsisgiven[12]asfollows:

be two analytic fuctions with their radii of convergence ��

and

, respectively.ThentheirHadamardproduct[9]isgivenbythefollowingpowerseries:

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Where���� ≥����1 ����2 istheradiusofconvergenceofthecompositeseries.

4. Main Results

Theorem 1. Let 1, 2 , 1, 2, γ∈ ℂ besuchthat �� >0,Re(γ)> 0 andthe conditionsgivenin (1.1),(2.1)and (3.1)besatisfied Thentheleftsided generalized fractional derivative of the product of generalized multi-index Bessel function ��

(��) and multi-index Mittag Leffler function��

(��) isgivenby

Where⨂standsforconvolutionproductoftwofunctions

Proof. Werefertothelefthandsideofequation(4.1)bythesymbol��1.

Thenmakingtheuseofequation(1.1),(2.1)and(3.1)in(4.1),wehave

Afterchangingtheorderofsummationsandderivativeoperatorundertheconditionsof theorem,weobtaintheaboveas

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072 © 2025, IRJET | Impact Factor value: 8.315 |

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072

Usingtheimageformulaforpowerfunctionundergeneralizedoperator(3.3),weget

Further,applyingthedefinition(1.1)and(2.1)andconvolutionproductontwoseries, weobtain

Where⨂standsforconvolutionproductoftwofunctions

Theorem 2 Let 1, 2 , 1, 2, γ∈ ℂ besuchthat�� >0,Re(γ)> 0 andthe Conditions givenin (1.1),(2.1) and (3.2) besatisfied.Thentherightsided generalized fractionalderivativeoftheproductofgeneralizedmulti-indexBesselfunction

(��) andmulti-indexMittagLefflerfunction

isgivenby

Where⨂standsforconvolutionproductoftwofunctions

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072

Proof Werefertothelefthandsideofequation(4.2)bythesymbol��2

Thenmakingtheuseofequation(1.1),(2.1)and(3.2)in(4.2),wehave ��2 ≡

Afterchangingtheorderofsummationsandderivativeoperatorundertheconditionsof theorem,weobtaintheaboveas

Usingtheimageformulaforpowerfunctionundergeneralizedoperator(3.4),weget

Further,applyingthedefinition(1.1)and(2.1)andconvolutionproductontwoseries, weobtain

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page228

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072

Where⨂standsforconvolutionproductoftwofunctions

5 . Special cases of the main results.

Corollary 1. LettheconditionsofTheorem1besatisfiedand 1 =0, 1 = 1 thenthe Theorem1reducedinthefollowingform:

Where⨂standsforconvolutionproductoftwofunctions

Corollary 2. LettheconditionsofTheorem2besatisfiedand 2 =0, 2 =1 thenthe Theorem2reducedinthefollowingform:

Where⨂standsforconvolutionproductoftwofunctions

| Page229

International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056

REFERENCES

[1] Choi, J. and Agarwal, P. : A note on fractional integral operator associated with multi-index Mittag-leffler functions, Filomat,Vol.30(7)(2016):1931-1939.

[2] Choi, J. Kumar, D. and Purohit, S. D.: Integral formulas involving a product of generalized Bessel functions of the first kind,KyungpookMath.J.Vol.56(1)(2016):131-136

[3] Erdelye, A. et al.: HigherTranscendentalFucntions,Vol.I,McGraw-Hill,NewYorkLondon(1953).

[4] Kilbas, A. A. and Sebastian, N.: Generalized fractional integration of Bessel Function of first kind, Integral Transform SpecialFunction,Vol.19(2008):869-883.

[5] Kataria, K. K. and Vellaisamy, P.: The k-Wright function and Marichev-saigo-Maeda fractional operators, J. Anal. Vol. 23(2015):75-87.

[6] Lavoie, J. L. and Trottier, G.: OnthesumofcertainAppell’sseries,Ganita(1969):2043-46

[7] Mishra, V. N. Suthar, D. L. and Purohit, S.D.: Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomialsandgeneralizedmittag-Lefflerfunction,Cogentmathematics4(2017)

[8] Oberhettinger, F.:TablesofMellinTransforms,Springer,NewYork(1947).

[9] Pohlen, T.: TheHadamardproductanduniversalpowerseries,Ph.D.Thesis,UniversitatTrier,Trier,Germany(2009).

[10] Prabhakar, T. R.: AsingularintegralequationwithageneralizedMittagLefflerfunctionin thekernel,YokohamaMath. J.Vol.19(1971):7-15.

[11] Saigo, M.: AremarkonintegraloperatorsinvolvingtheGausshypergeometricfunctions.Math. Rep.CollegeGeneralEd Kyushuuniv.,Vol.11(1978):135-143

[12] Saigo, M. and Maeda, N.: More generalization of fractional calculus, transform Method and Special Functions., BulgarianAcadmeyofSciences,SofiaVol.96(1998):386-400.

[13] Saxena, R.K. and Nishimoto, K.: N-Fractional calculus of generalized Mittag-Leffler functions, J. Frac. Calc., Vol. 37(2010):43-52.

[14] Saxena, R.K. and Saigo, M.: Generalized fractional calculus of the H-function associated with the Appell function ��3, Journal of Fractionalcalculus,Vol.19(2001):89-104.

[15] Saxena, R.K. and Parmar, R.K.: Fractional intergration and differention of the generalized Mathieu series, axioms 6(2017):18.

[16] Shukla, A. K. and Prajapati, J.C.: OnageneralizationofMittagLefflerfunctionanditsproperties,J.Math.Ann.Appl.,Vol. 336(2)(2007):797-811.

[17] Srivastava, H.M.: AcontourintegralinvolvingFox’sH-function,IndiaJ.Math.Vol.14(1972):1-6

[18] Wright, E. M.: The asymptotic expansion of the generalized hypergeometric function ll, Proc. London Math. Soc. Vol. 46(2)(1940):389-408

Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN:2395-0072 © 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page230

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.