Advancements in the Use of Blast Furnace Slag and Industrial By- products in Sustainable Concrete Te

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

Advancements in the Use of Blast Furnace Slag and Industrial Byproducts in Sustainable Concrete Technologies: A Comprehensive Review

Assistant Professor, Department of civil Engineering, UIET MDU, Haryana, India

Student, Department of civil Engineering, UIET MDU, Haryana, India

Abstract - Thisreviewpresentsacomprehensiveanalysisofrecentresearchontheintegrationofgroundgranulatedblast furnace slag (GGBFS) and related industrial by-products in sustainable concrete technologies. Studies reveal that GGBFS significantlyenhancesmechanicalstrength,durability,microstructuralproperties,andthermalperformanceofbothnormal andrecycledaggregateconcretes.Whencombinedwithmaterialssuchasrecycledclaybrickpowder,metkaolin,flyash, recycledconcreteaggregates,orsilicafume,GGBFScontributestoporerefinement,improvedhydration,crackresistance,and reducedcarbonemissions.Applicationsincludeultra-high-performanceconcrete,alkali-activatedconcrete,porousconcrete, andfoamconcretewithnotableadvancementsindamping,thermalresilience,andCO₂sequestration.Predictivemodellingand machinelearningtoolsfurtheroptimizemixdesignandperformanceforecasting.ThesefindingsaffirmGGBFSasacritical componentineco-friendlyconcrete,aligningwithglobalsustainabilitygoals.

Key Words: Blast furnace slag, GGBFS, sustainable concrete, recycled aggregates, alkali-activated concrete, hydration, microstructure,durability,compressivestrength

1. INTRODUCTION

1.1 General

Concrete remains oneof the most essential construction materialsworldwideduetoitsadaptability, durability, andcost effectiveness.However,itswidespreadusagecomeswithasignificantenvironmentalcost,particularlyduetotheproductionof cement akeyingredientinconcrete.Cementmanufacturingcontributestohighlevelsofcarbondioxide(CO₂)emissions, accountingforapproximately8%ofglobalgreenhousegasemissions.Inlightoftheseenvironmentalchallenges,therehas beenagrowingemphasisonfindingsustainablealternativesthatreducetherelianceontraditionalcementandaggregates.

Onepromisingapproachinvolvestheincorporationofindustrialbyproducts,suchaswasteblastfurnaceslag(BFS),into concrete production. BFS, a byproduct of the iron and steel industry, offers substantial potential for improving the sustainability of concrete, particularly in low strength applications. This chapter explores the properties, sources, and applicationsofBFS,aswellasitsroleinaddressingenvironmentalconcernsintheconstructionindustry1.2 whatisBlast FurnaceSlag?

Blastfurnaceslagisabyproductgeneratedduringtheextractionofironfromitsoreinablastfurnace.Duringthesmelting process, impurities from the ore and flux materials (e.g., limestone) separate from the molten iron, forming slag. This nonmetallicresidue,primarilycomposedofsilicatesandaluminosilicates,hashistoricallybeenconsideredwaste.However, with advancements in construction technology, BFS is increasingly being recognized for its potential as a supplementary materialinconcreteproduction.

2 Literature Review

Baietal.(2024),investigatedtheeffectsofblastfurnaceslag(BFS)onthemechanicalandmicrostructuralpropertiesofnatural aggregateconcrete(NAC)andrecycledaggregateconcrete(RAC).Theresearchemploysnuclearmagneticresonance(NMR) and scanning electron microscopy (SEM) to analyze changes in internal pores and hydration products. BFS significantly enhancescompressivestrength,modulusofelasticity,andporestructure,particularlyafter56days.Peakstressesreach62.67 MPaforNACand58.24MPaforRACat150days,withNACconsistentlyoutperformingRAC

Boudjehmetal.(2022)investigatedthemechanicalanddurabilitypropertiesofprecrackedconcretemodifiedwithmetakaolin (MK)andgroundgranulatedblastfurnaceslag(GBFS).Thestudyevaluatedtheperformanceofthreeconcreteformulations

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

undersulfuricacidattack,focusingoncompressivestrength,massloss,openporosity,waterpenetration,capillarywater absorption,anddryingshrinkage.ThefindingsdemonstratedthatincorporatingMKandGBFSsignificantlyenhancedthelong term compressive strength of concrete, particularly in the F10 formulation, which replaced 10% of cement with these materials

Chenetal.(2023)exploredthehydrationandmicrostructureevolutionofanovellowcarbonconcreteincorporatingrecycled claybrickpowder(RCBP)andgroundgranulatedblastfurnaceslag(GGBFS).Thestudyaimedtooptimizetheuseofthese materialstomitigatestrengthloss,improvehydrationprocesses,andreduceCO₂emissionsandproductioncosts.Thefindings indicatedthatthecombinationofRCBPandGGBFSsignificantlyenhancedhydrationperformanceandmicrostructure.The inclusionofRCBPandGGBFSreducedcumulativehydrationheat andincreasedhydrationdegree,particularlyat90days, resultinginlowerportlanditecontent

Shamsietal.(2023),investigatedmethodstoenhancethemechanicalpropertiesofexpansiveclaysubgrades.Expansiveclays posesignificantchallengesinroadconstructionduetotheirswellingwhenwetandshrinkagewhendry.Thestudyevaluates theeffectivenessofrecycledconcreteaggregates(RCA)andgranulatedblastfurnaceslag(GBS)asstabilizers.Laboratory resultsdemonstratethatRCAreducesAtterberglimits,optimumwatercontent(OWC),andswellingpotential,whileincreasing maximumdrydensity(MDD),uniaxialcompressionstrength(UCS),Californiabearingratio(CBR),andresilientmodulus(Mr.).

Leeetal.exploredtheinfluenceofliquidcrystaldisplayglasspowder(LCDGP)andblastfurnaceslag(BFS)ratiosonthe microstructureandmechanicalpropertiesofultra-highperformancealkaliactivatedconcrete(UHPAAC).Thestudyaimedto identifyoptimalmaterialcombinationsforenhancingperformancewhilepromotingsustainabilityinconstructionmaterials. Theresearchrevealedthatthehighestcompressivestrengthof164.5MPawasachievedatanLCDGP/BFSratioof8%,while tensileperformancepeakedbetweenratiosof8–16%

Lietal.(2024), intheirpaperSubstitutionofBlastFurnaceSlagbyMeltingFurnaceSlaginGreenConcreteApplications, investigatethefeasibilityofreplacingblastfurnaceslag(BFS)withmeltingfurnaceslag(MFS)toenhancesustainabilityin concrete production. Supported by the National Key Research and Development Program of China, the study focuses on reducing carbon emissions associated with traditional cement while improving concrete's mechanical properties and durability.TheresearchfindingshighlightthatMFSsignificantlyimprovescompressivestrength,witha15.15%increaseat28 dayscomparedtoBFS.Specifically,MFSachievesacompressivestrengthof37.24MPaversus32.34MPaforBFS.

Mardmomen and Chen (2023), presented a multi component hydration model to estimate the thermal and mechanical propertiesofconcretecontainingGGBFS.ThismodelwasdevelopedtoaddressvariationsinGGBFSchemicalcompositionsand theireffectsonconcreteperformance.ThestudyinvolvedhydrationexperimentsusingdifferentGGBFStypesmixedwith limewater,measuringheatgenerationwithanisothermalcalorimeter.Resultsshowedthatthemodelaccuratelypredictsheat ofhydrationandcompressivestrength,withmaximumaverageerrorsof6.8%and11%,respectively.Themodelalsoestimates adiabatictemperaturerise(ATR),offeringinsightsintothethermalbehaviorofGGBFSblendedconcrete

Moetal.(2024)investigatedthedampingcapacityofcrumbrubberconcrete(CRC)cantileverbeams,focusingontheeffectsof flyash(FA)andgroundgranulatedblastfurnaceslag(GGBFS)asfillersatvaryingsubstitutionrates.Thestudyexploredcrack development, energy dissipation, and damping characteristics under repeated loading conditions. Results indicated that replacingcementwith30%FAsignificantlyimprovedthedampingratioandenergydissipationacrossallstagesoftesting. GGBFS also enhanced damping capacity but only at the same substitution rate. The damping ratio exhibited a peak at a displacementangleof0.02,followedbyadeclineasdisplacementincreased.

Mohammed et al. (2023), introduced a novel application of Artificial Neural Networks (ANN) to predict the compressive strengthofNormalStrengthConcrete(NSC)andHighStrengthConcrete(HSC).Thisapproachemphasizesprecisestrength predictions,whicharecriticalforoptimizingconcretemixdesignsandadvancingconstructionefficiency.Thestudyanalyzes parameterssuchascementcontent,watercementratio,aggregatetypes,andcuringtime.ForNSC,theoptimalwatercement ratiois0.5,whileHSCrequiresaratioof0.6.Statisticalanalysisandsensitivitytestshighlightcuringtimeasthemostcritical factorforHSCstrengthandsandcontentasthekeyparameterforNSC.

Moulaetal.(2023)explorethedevelopmentofsustainableUltraHighPerformanceConcrete(UHPC)byincorporatingground granulatedblastfurnaceslag(GGBS)asapartialcementreplacement.Thestudyaddresseschallengesposedbyhighcement contentinUHPC,suchasincreasedcarbonfootprintandearlyageautogenousshrinkage.TheirfindingsindicatethatGGBS enhances workability, accelerates hydration, and reduces shrinkage, particularly with finer slag. Specifically, a 30% substitutionwithGGBS(SL1orSL2)reducessuperplasticizerdosagewhilemaintainingworkabilityandaccelerateshydration duetothenucleationsiteeffect.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

Oluwafemietal.(2023),evaluatedthemechanicalpropertiesandlongtermreliabilityofgeopolymerconcrete(GPC)madewith groundgranulatedblastfurnaceslag(GGBS)andcowboneash(CBA).Usinganalkalineactivatorcomprisingsodiumsilicate andsodiumhydroxideinaspecificratio,thestudyinvestigatestheoptimalmixforenhancedperformance.Thefindingsreveal thatamixcontaining≥60%GGBSand≤40%CBAachievessuperiormechanicalpropertiescomparedtoconventionalconcrete, withacompressivestrengthof40.13MPaat28daysversus33.14MPaforconventionalconcrete.ThedensityofGPCislower thanconventionalconcrete,buthigherGGBScontentincreasesbothdensityandstrength

Nedunuri&Muhammad,(2024a)investigatedmethodstoenhancetheworkabilityandworkabletimeofsodiumhydroxide activatedgroundgranulatedblastfurnaceslag(GGBFS)concrete.Theresearchfocusedonincorporatinganinorganicretarder andasynthesizeddispersantbasedonpolycarboxylateether(PCE)toachievepumpableconcretemixtureswithprolonged workabletimes.Thestudysuccessfullydevelopedmixtureswithworkabletimesof90to120minutes,achievingpumpable propertieswithoutcompromisingcompressivestrength.TheadditionofZnSO₄·7H₂Oasaretarderextendedtheworkabletime from15minutesto180minutes,significantlyimprovingslumpretention.Dispersantswithhigheranionicchargedensities enhancedworkabilitybyreducingtheinitialstoragemodulusbyupto99.8%

Nedunuri&Muhammad,(2024b).exploredthedevelopmentofalkaliactivatedconcrete(AAC)usinggroundgranulatedblast furnaceslag(GGBFS)asaprecursor,withsodiumgluconateasaretardertoenhanceworkabilityandpumpability.Thestudy evaluatedtheeffectsofsodiumgluconateonsettingtimes,yieldstress,andviscositywhileassessingthemixtures'pumpability throughfieldtrials.Theadditionofsodiumgluconateeffectivelyprolongedtheinitialandfinalsettingtimes,reachingupto480 and1020minutes,respectively,forNaOHactivatedGGBFSmixtureswitha0.5%retardercontent.

Saraetal.(2023)investigatedthefeasibilityofdevelopingecologicalself-compactingmortarsbysubstitutingnaturalsand(NS) withrecycledconcretesand(RCS)andordinarycementwithgroundgranulatedblastfurnaceslag(GGBFS).Fifteenmortar formulations were prepared with varying percentages of RCS and GGBFS to evaluate their mechanical and durability properties.Thefindingsrevealedthatself-compactingmortarscouldbeeffectivelyproducedwithupto50%RCSsubstitution, whichimprovedcompressivestrengthbutincreasedporosityandwaterabsorptionbeyond25%replacement

Shamassetal.(2023)assessedtheenvironmental andmechanical performanceof concretemixesincorporatingrecycled concreteaggregates(RCA),groundgranulatedblastfurnaceslag(GGBS),andsilicafume(SF).Theresearchaimedtoaddress theenvironmentalimpactoftraditionalconcretebyevaluatingmechanicalpropertiesandglobalwarmingpotential(GWP) throughlifecycleanalysis.ThefindingsindicatedthatRCAdidnotsignificantlyaffectcompressivestrength,tensilestrength,or modulus of rupture, except in mixes with 100% RCA, which exhibited a 13.5% reduction in compressive strength due to weakeraggregateproperties.However,theinclusionof25%GGBSand5%SFoffsetthesereductions,enhancingstrength throughsecondaryreactionsandporerefinement.

Simetal.(2023)investigatedtheuseofgroundgranulatedblastfurnaceslag(GGBFS)andflyashtoimprovethedurabilityof concreteexposedtoelevatedtemperatures.Thestudyreplacedcementwith20wt.%flyashand40wt.%GGBFStoevaluate theireffectsonmitigatingmicrocrackingandenhancingdurabilityunderthermalstress.Experimentsincludednonlinear impactresonanceacousticspectroscopy(NIRAS),compressivestrengthtesting,xraydiffraction,andthermosgravimetric analysis

Sunetal.(2023),explainedpredictivemodelsforthecompressivestrengthandothermechanicalpropertiesofalkaliactivated concrete(AAC)madefromblastfurnaceslag(BFS)andflyash(FA).Usingadatasetof871datapointscollectedfromexisting literature,thestudyevaluatesfourmachinelearningmethods:GradientBoostingRegressionTrees(GBRT),ArtificialNeural Networks(ANN),RandomForest(RF),andRegressionTrees(RT).TheGBRTmodelemergedasthemostaccurate,achieving anR²valueof0.94,RMSEof5.58MPa,andMAPEof14.2%.TheANNmodelfollowedwithanR²of0.90,whileRFandRT showedcomparativelylowerperformancemetrics

Tung, Babalola,&Le (2023) explored the residual mechanical properties of ground granulated blastfurnace slag(GGBS) blended recycled aggregate concrete (RAC) after exposure to elevated temperatures. The study evaluated compressive strength, splitting tensile strength, elastic modulus, and stress strain behavior, using laboratory experiments to assess performanceatroomtemperatureandafterexposureto200°C,400°C,600°C,and800°C.

Weietal.(2024)investigatedtheCO₂sequestrationpotentialofalkaliactivatedfoamconcrete(AAFC)madefromflyash(FA) and ground granulated blast furnace slag (GGBFS). The study examined its fluidity, dry density, compressive strength, microsporestructure,carbonationproducts,andCO₂sequestrationcapacity.ThefindingsrevealedthatthefluidityofAAFC wasminimallyaffectedbythehydrogenperoxide(H₂O₂)content,withamaximumfluidityof209mmobservedat1.5%H₂O₂. Thedrydensityofun-carbonatedAAFCdecreasedsignificantly,from752.3kg/m³to365.2kg/m³,asH₂O₂contentincreased

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

from1%to3%.Acceleratedcarbonationtransformedlargeporesintocapillarypores,enhancingthecompressivestrengthof AAFCwhenH₂O₂contentexceeded1.5%

Yavuzetal.(2024),investigatedtheeffectsofincorporatingsilicafume(SF)andgroundgranulatedblastfurnaceslag(GBFS) onthepropertiesofporousconcrete(PC)undernormalconditionsandafterfreezethaw(FT)cycles.Thestudyevaluates hardeneddensity(HD),waterpermeability,apparentporosity(AP),andmechanicalstrengthsovervariouscuringperiods.

Yoonetal.(2023)investigatedthedurabilitycharacteristicsofblastfurnaceslag(BFS)concretecombinedwithexpansion materialsandswellingadmixtures,addressingthecriticalneedforcrackcontrolinconcreteapplications.Thestudyfoundthat theincorporationofexpansivematerialssignificantlyreduceddryingshrinkagebyover40%,contributingtoeffectivecrack mitigation.Initialexpansionincreasedby30–50%comparedtostandardPortlandcementmixtures,demonstratingenhanced earlystagecrackresistance

Zengetal.(2023),intheirpaperSynergisticUseofBlastFurnaceSlagandSteelSlaginCementBasedCementitiousMaterials, investigatethecombinedeffectsofgranulatedblastfurnaceslag(GBFS)andvariousindustrialsolidwastessuchassteelslag, flyash,andredmud.Thestudyhighlightsthepotentialofoptimizingthesecombinationstoenhancehydrationreactions, improve compressive strength, and reduce porosity in cementitious materials. The authors identify four synergistic mechanismsthatenabletheseenhancements,emphasizingtheimportanceofpropermaterialratiosforachievingoptimal performance.

Zhangetal.(2023),examinedthemechanicalproperties,durability,andsustainabilityofalkaliactivatedgranulatedblast furnaceslagcoalgangue(GBFSCG)concrete.Theresearchhighlightsthesuperiorperformanceoftheoptimalmix(S50M13), whichdemonstratesenhancedstrength,freezethawresistance,andchloridepenetrationresistance.Thestudyrevealsthat increasing GBFS content improves freeze thaw resistance and reduces harmful pore volumes while enhancing chloride resistance.TheoptimalmixachievescompressiveandsplittingtensilestrengthpeaksatS50,butexcessivealkaliactivator modulusreducesthesestrengths

Zhangetal.(2024)examinedtheeffectsofgroundgranulatedblastfurnaceslag(GGBS)onthepropertiesofrecycledconcrete powder(RCP)basedgeopolymercuredatambienttemperature.Thestudyassessedrheology,workability,strength,hydration reactionkinetics,microstructure,andairvoidcharacteristicstodeterminetheimpactofvaryingslagcontent.Theresults revealedthattheinclusionofGGBSsignificantlyenhancedthemechanicalandphysicalpropertiesofthegeopolymer.AGGBS contentexceeding30%acceleratedthehydrationreaction,increasedtotalheatrelease,andimprovedcompressiveandflexural strengths,achieving61.2MPaand5.17MPa,respectively,at28days.

3. CONCLUSIONS

Thereviewedliteraturefirmlyestablishesgroundgranulatedblastfurnaceslag(GGBFS)andrelatedbyproductsaspivotal materials in the development of sustainable, high-performance concretes. GGBFS consistently enhances the mechanical, thermal,anddurabilitycharacteristicsofconcrete,particularlywhenusedincombination with industrial wastessuchas recycledclaybrick powder, flyash, metkaolin,and recycledaggregates.Thesecombinationsleadtoimproved hydration reactions,reducedporosity,greatercrackresistance,andhighercompressiveandflexuralstrengths,evenunderaggressive environmental conditions.GGBFS-blendedconcretesalsoexhibitsuperior performanceinultra-high-performance,alkaliactivated,andporousconcreteapplications,showingpromiseinfreeze-thawresistance,sulfateattackdurability,andelevated temperature exposure. Additionally, studies confirm GGBFS's role in reducing carbon footprints through partial cement replacementandimprovedCO₂sequestrationcapabilitiesinfoamconcretes.Novelapproachessuchashybridreinforcement, predictivemodelingusingartificialintelligence,andthermalbehaviorpredictionmodelsfurthersupportGGBFS'sadaptability inmodernconstructionpractices.ThisevidencecollectivelyhighlightstheimportanceofoptimizingGGBFSuseforbettermix design,long-termperformance,andenvironmentalbenefit.Consequently,GGBFSandsynergisticindustrialbyproductspresent asustainablepathforwardforreducingtheenvironmentalimpactofconcreteproductionwhilemaintainingorenhancing structuralintegrityandservicelife.

REFERENCES

[1] W.Bai,H.Hu,C.Yuan,J.Guan,C.Xie,andY.Lv,“Theinfluenceofblastfurnaceslagonthemechanicalpropertiesand mesoscopicdamagemechanismsofrecycledaggregateconcretecomparedtonaturalaggregateconcreteatdifferent ages,” J. Build. Eng ,vol.94,no.March,p.109926,2024,doi:10.1016/j.jobe.2024.109926.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

[2] H.Boudjehm,F.Bouteldja,Z.Nafa,andR.Bendjaiche,“Hardenedpropertiesofpre-crackedconcreteincorporating metakaolinandcrushedblastfurnaceslagasanadditionalblendmaterial,” Constr. Build.Mater.,vol.352,no.August,p. 129009,2022,doi:10.1016/j.conbuildmat.2022.129009.

[3] G.Chen,S.Li,Y.Zhao,Z.Xu,X.Luo,andJ.Gao,“Hydrationandmicrostructureevolutionofanovellow-carbonconcrete containingrecycledclaybrickpowderandgroundgranulatedblastfurnaceslag,” Constr. Build. Mater.,vol.386,no. December2022,p.131596,2023,doi:10.1016/j.conbuildmat.2023.131596.

[4] J. Shamsi Sosahab, A. Ardakani, and M. Hassanlourad, “Resilient response and strength of highly expansive clay subgradestabilizedwithrecycledconcreteaggregateandgranulatedblastfurnaceslag,” Constr.Build.Mater.,vol.408, no.July,p.133816,2023,doi:10.1016/j.conbuildmat.2023.133816.

[5] S.W.Lee,I.You,T.Oh,G.W.Kim,N.Banthia,andD.Y.Yoo,“Effectofliquidcrystaldisplayglasspowdertoblastfurnace slagratioonthemicrostructureandmechanicalpropertiesofultra-high-performancealkali-activatedconcrete,” Constr. Build. Mater.,vol.444,no.August,p.137755,2024,doi:10.1016/j.conbuildmat.2024.137755.

[6] Y.Li,X.Mu,Y.Li,S.Zhang,andW.Ni,“Substitutionofblastfurnaceslagbymeltingfurnaceslagasactivecomponentin green concrete application,” Constr. Build. Mater., vol. 449, no. August, p. 138509, 2024, doi: 10.1016/j.conbuildmat.2024.138509.

[7] S. Mardmomen and H. L. (Roger) Chen, “Modeling the thermal and mechanical properties of early age concrete containing ground granulated blast furnace slag,” Constr. Build. Mater., vol. 401, no. August, p. 132902, 2023, doi: 10.1016/j.conbuildmat.2023.132902.

[8] J.Mo et al.,“Enhancingofdampingcapacityincrumbrubberconcreteatvariousdamagelevels:Effectsofflyashand groundgranulatedblastfurnaceslag,” J.Build.Eng.,vol.92,no.April,p.109739,2024,doi:10.1016/j.jobe.2024.109739.

[9] H.X.Mohammed,A.S.Mohammed,andA.M.T.Hassan,“Softcomputingmodelstoevaluatetheeffectofflyashand groundgranulatedblastfurnaceslag(GGBS)onthecompressivestrengthofconcreteinnormalandhighstrength ranges,” Structures,vol.58,no.May,p.105459,2023,doi:10.1016/j.istruc.2023.105459.

[10] S. Moula, A. Ben Fraj, T. Wattez, M. Bouasker, and N. Bel Hadj Ali, “The very early-age behaviour of Ultra-High PerformanceConcretecontaininggroundgranulatedblastfurnaceslag,” Constr. Build. Mater.,vol.400,no.March,p. 132630,2023,doi:10.1016/j.conbuildmat.2023.132630.

[11] J.Oluwafemi, O. Ofuyatan,A.Adedeji,D. Bankole,andL. Justin,“Reliabilityassessment of ground granulated blast furnaceslag/cowboneash-basedgeopolymerconcrete,” J. Build. Eng.,vol.64,no.August2022,p.105620,2023,doi: 10.1016/j.jobe.2022.105620.

[12] A.S.S.S.NedunuriandS.Muhammad,“Improvingtheworkabilityandworkabletimeofsodiumhydroxide-activated ground granulated blast furnace slag binder-based concrete,” Cement, vol. 16, no. May, p. 100106, 2024, doi: 10.1016/j.cement.2024.100106.

[13] A. S. S. S. Nedunuri and S. Muhammad, “Development and field validation of pumpable alkali-activated ground granulatedblastfurnaceslagbinder-basedconcreteusingsodiumgluconateasaretarder,” J. Build. Eng.,vol.98,no. November,p.111295,2024,doi:10.1016/j.jobe.2024.111295.

[14] B.Sara,A.Mhamed,B.Otmane,andE.Karim,“ElaborationofaSelf-Compactingmortarbasedonconcretedemolition waste incorporating blast furnace slag,” Constr. Build. Mater., vol. 366, no. December 2022, p. 130165, 2023, doi: 10.1016/j.conbuildmat.2022.130165.

[15] R.Shamass,O.Rispoli,V.Limbachiya,andR.Kovacs,“MechanicalandGWPassessmentofconcreteusingBlastFurnace Slag, Silica Fume and recycled aggregate,” Case Stud. Constr. Mater., vol. 18, no. March, p. e02164, 2023, doi: 10.1016/j.cscm.2023.e02164.

[16] S.Sim,J.H.Rhee,J.-E.Oh,andG.Kim,“Enhancingthedurabilityperformanceofthermallydamagedconcretewith ground-granulated blast furnace slag and fly ash,” Constr. Build. Mater., vol. 407, 2023, doi: 10.1016/j.conbuildmat.2023.133538.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 12 Issue: 07 | Jul 2025 www.irjet.net p-ISSN: 2395-0072

[17] B.SUN,L.DING,G.YE,andG.DeSCHUTTER,“Mechanicalpropertiespredictionofblastfurnaceslagandflyash-based alkali-activatedconcretebymachinelearningmethods,” Constr.Build.Mater.,vol.409,no.August,p.133933,2023,doi: 10.1016/j.conbuildmat.2023.133933.

[18] T.M.Tung,O.E.Babalola,andD.-H.Le,“Experimentalinvestigationoftheperformanceofgroundgranulatedblast furnace slag blended recycled aggregate concrete exposed to elevated temperatures,” Clean. Waste Syst., vol. 4, p. 100069,2023,doi:https://doi.org/10.1016/j.clwas.2022.100069.

[19] X.Wei,J.Li,H.Shi,Y.Cao,andG.Liu,“ExperimentalstudyonCO2sequestrationperformanceofalkaliactivatedflyash andgroundgranulatedblastfurnaceslagbasedfoamconcrete,” Constr. Build. Mater.,vol.447,no.April,p.138043, 2024,doi:10.1016/j.conbuildmat.2024.138043.

[20] D.Yavuz,Z.F.Akbulut,andS.Guler,“Porousconcretemodificationwithsilicafumeandgroundgranulatedblastfurnace slag:Hydraulicandmechanicalpropertiesbeforeandafterfreeze-thawexposure,” Constr. Build. Mater.,vol.447,no. July,p.138099,2024,doi:10.1016/j.conbuildmat.2024.138099.

[21] S.Yoon,C.Jeon,andW.Choi,“Durabilityofblast-furnaceslagconcretemixedwithexpansiveandswellingadmixtures,” Case Stud. Constr. Mater.,vol.18,no.May,p.e02179,2023,doi:10.1016/j.cscm.2023.e02179.

[22] Q.Zeng,X.Liu,Z.Zhang,C.Wei,andC.(Charles)Xu,“Synergisticutilizationofblastfurnaceslagwithotherindustrial solidwastesincementandconcreteindustry:Synergisticmechanisms,applications,andchallenges,” Green Energy Resour.,vol.1,no.2,p.100012,2023,doi:10.1016/j.gerr.2023.100012.

[23] B.Zhang,B.Yan,andY.Li,“Studyonmechanicalproperties,freeze–thawandchloridespenetrationresistanceofalkali activatedgranulatedblastfurnaceslag-coalgangueconcreteanditsmechanism,” Constr. Build. Mater.,vol.366,no. December2022,p.130218,2023,doi:10.1016/j.conbuildmat.2022.130218.

[24] D.Zhang, T.Zhu, Q. Yang, V. Vandeginste, and J. Li,“Influenceof ground granulated blastfurnaceslagon recycled concretepowder-basedgeopolymercuredatambienttemperature:Rheology,mechanicalproperties,reactionkinetics and air-void characteristics,” Constr. Build. Mater., vol. 438, no. April, p. 137190, 2024, doi: 10.1016/j.conbuildmat.2024.137190.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Advancements in the Use of Blast Furnace Slag and Industrial By- products in Sustainable Concrete Te by IRJET Journal - Issuu