Teacher Guide - Level 9

Page 1


TeacherGuide-STEMUNOLevel9

Teacher Guide

Copyright©2024

Copyright © 20

Author: NatashaKarampela

Editors: LindseyOwnandErinGoodwin

ISBN: 978-981-17737-3-0

Publishedby:

SKOOL21PTE.LTD.-Singapore

DUOTower,Level8#831

3FraserStreet,189352,Singapore

Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods,withoutthepriorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.

Forpermissionsorinquiries,pleasecontact:

Email: info@skool21.org

Website: https://skool21.org

Preface

WelcometotheFutureofTeachingandLearning!

Welcome to th

Thank you for joi designed not on meaningful, han young innovato science, technol

BuildingonaStrongFoundation

Each level of the

novators series is teachers to lead es, you will guide challenges using creating a strong

Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).

EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.

LearningbyDoing

AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.

MakingaReal-WorldImpact

Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.

TeachingLikeaPro

TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.

Building on a not just leaders, and c

IntroductiontotheKit

TheSKOOL21STEMUNOLearningKitisahands-onelectronicsandcodingkit designedforstudentsinLevel9.UsedalongsidetheSTEMInnovators Handbook,thiskitintroducesstudentstoprogramming,electronics,and automationthroughreal-worldprojects.

AttheheartofthekitistheATmega328Pmicrocontroller,programmedusing theC++languagethroughtheArduinoplatform.Learnersexplorehow hardwareandsoftwareworktogetherbybuildingprojectslikemotorcontrol systems,sensor-basedinputs,andmore.

TechnicalFeatures

LessonStructure

Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:

Lessonobjectives

NGSSStandards

CambridgeScienceStandards

ISTEStandardsConnections

CambridgeMathStandards

CommonCoreMathStandards

DefinetheProblem

Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.

GettingStarted

Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.

DesignandPlan

Build-Test-Improve

Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.

Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.

MathandScienceConnection/Reflect

Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.

TheEngineeringDesignProcess ocess

TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.

Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.

Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.

forming a str

FosteringSocialSkills

STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.

Keysocialskillsdevelopedinclude:

Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.

Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.

Collaboration EmpathyandRespect

Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.

Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.

Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.

Communication

Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.

Problem-Solving

Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.

TimeManagement

Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.

PresentationSkills

Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.

Teamworking

Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.

TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.

academic su

MakerspaceSetup

Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.

SpaceDesign:

Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).

MaterialsManagement:

Ensurethatkitsarecompleteandaccessiblebefore eachproject.

Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.

RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.

SharedResources:

ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.

SafetyFirst: Keep a fi

Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.

STEMClassroomManagement

STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.

STEMClassSessionRoutine

Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:

90-minuteproject (Grade3toGrade12)

Grade 3 to Grade 12)

5-minute

45-minuteproject (Pre-KtoGrade2)

o ect Pre-K to Grade 2)

SpaceOrganization:

Provideracksoropenshelvestostorekitsneatlyandaccessibly.

ToolandMaterialsRules:

Usetoolswithcare–noplayingormisusingmaterials.

Returneverythingtoitslabeledplace.

Askbeforetakingextrasupplies.

Handstoyourself—respectothers’creationsandspace.

Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.

Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.

Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.

GroupManagementwithTeamRoles

Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:

Keepsteamontask,trackstime,encourages collaboration.

Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.

Sharesoutcomes,challenges,andsolutionswiththeclass.

Evaluatesthemodel,givesfeedback,suggestschanges.

ImplementationGuide

TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:

IntegratedApproach

EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.

Advantages:

Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.

Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).

Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.

PracticalTips:

Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).

Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.

Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.

Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.

connect

Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.

Stand-AloneClassApproach

ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.

Advantages:

Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).

Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.

Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.

PracticalTips: g

Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.

Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass

Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.

Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.

Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).

Extra-CurricularApproach

RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.

Advantages:

Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.

Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.

Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).

Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).

PracticalTips:

Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.

Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness. Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.

Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.

Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.

HybridApproach (BlendingAllModels)

Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.

Whentointegrate:

Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.

Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.

Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”

Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.

(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)

StandardsAlignment

L e s s o

9Ss.05

1Joints

2WeightMachine

7SolubilityPredictor

9Gg.10

8Moments

60-90minSDG9HS-PS4-5 8Ps.01 1.4.a.,1.4.c.,HSG-SRT.C.8 9Gp.02

60-90minSDG8HS-PS2-5 8Pe.01

9PartcleModel

10Reflection

HSG.CO.A.2 9Gp.06

9As.04

60-90minSDG7HS-PS3-3 8ESp.02

60-90minSDG13HS-ESS2-4 8ESc.01

11Magnetometer

9Gp.03 1 2WindTurbines

13WeatherSeesaw

14Asteroids 60-90minSDG13HS-ESS1-4 9ESs.01,9ESs.02

15GlobalScienceImpact60-90minSDG16HS-PS4-5

LessonPlans andAnswerkey

LearningContent

Project1:Joints LessonPlan

Duration: 60-90minutes

Studentswillexplorethefunctionalityofhingeandball-and-socketjointsthroughcodingand buildingmodels.Theywilluseservomotorsandphysicalmaterialstosimulatejoint movementsandconnecttheirlearningtoreal-worldapplicationsinbiomechanicsand engineering.

LearningContent

Bytheendofthelesson,studentswill:

1. Identifyanddifferentiatebetweenhingeandball-and-socketjointsinthehumanbodyand mechanicalsystems.

2. Programaservomotortomimicjointmovements.

3. Buildfunctionaljointmodelstodemonstratemovement.

4. Reflectonthereal-worldapplicationsofjointmodelsinphysicaltherapyandrobotics.

Vocabulary

Thepointwheretwobonesconnect,allowingmovement.

Ajointallowingmovementalongoneaxis,likeadoororelbow.

Ball-and-SocketJoint

Ajointallowingmulti-directionalmovement,likeashoulderorhip.

Materials

LearningActivities(Session1)

Introduction

1. Askstudentstoobservehowtheirarmandlegjointsmove.Discusswhichjointsallow circularmotion(ball-and-socket)andwhichallowlinearmotion(hinge).

2. Showexamplesofhowthesebiologicaljointsinspireengineeringdesigns,likecarsteering mechanisms(ball-and-socket)anddoorhinges(hinge).

Khali,aphysicaltherapist,needsmodelstoteachherpatientsaboutjointmovements. Studentswillhelpbydesigningandprogrammingmodelsofhingeandball-and-socket jointsusingservomotorsandbuildingmaterials.

1. DistributeKidsUnomicrocontrollersandservomotors.

2. GuidestudentstoconnecttheKidsUnototheircomputersusingaUSBcable.

3. Assiststudentsinpluggingtheservomotorintoport13ontheKidsUno: Brownwire GND Redwire V Orangewire D13 Wire

Code

1. OpentheArduinoIDEanddemonstrate: Selecting"ArduinoUno"astheboardandensuringthecorrectUSBportisselected. Openingthe“ServoSweep”example.

2. Walkstudentsthroughmodifyingthecodetouseport13anduploadittotheKidsUno.

Build

1. Guidestudentsincreatingahingejointmodel: Usebuildingblocksandaservomotortoreplicatethe movementofahingejoint. Ensuretheservomotorissecurelyattachedand functional.

2. Askthemtointegratetheservomotorintothemodelsoit moveswhenpoweredbythecode.

1. Askstudentstotesttheirhingejointmodels.

2. Discusshowchangingthecodeorstructureaffectsthemovement.

3. Promptquestionslike:“Howdoesreducingthedelayaffectthejoint’sspeed?” Discover

Challenge

1. GuideStudentstoBuildaBall-and-SocketJoint.

2. Movearoundtheclassroomtoobservestudentsastheycut,assemble,andattachtheir components.

3. Provideindividualizedsupportforstudentswhoarestrugglingwithspecificsteps,suchas cuttingorstabilizingthestructure.

ShareandImprove(10minutes)

1. Havestudentspresenttheirjointmodelstotheclass,explainingthedesignprocessand functionality.

2. Useafeedbacktabletohighlightdesignstrengthsandsuggestimprovements.

3. Allowstudentstimetorefinetheirmodelsbasedonpeerandteacherfeedback.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

Theformulaforthecircumferenceofacircleis: C=2πr

Substituter=1andπ=3.14

C=2×3.14×1=6.28units

A3/4circleis75%ofthefullcircle'scircumference:

3 ×6.28=4.71units

Theformulatoconvertdegreestoradiansis: 4

Radians=Degrees×

Radians=270×

Radians=270×0.01744=4.71radians

Answer:Thevalueof270degreesis4.71radians.

ANSWER2

2. Helpstudentstolabelthevalueonthenumberline.

3. Radians=Degrees×

Radians=−270×

Radians=−270×0.01744

Radians=−4.71radians

Answer:−270-270−270degreesisequivalentto-4.71radians.

ForPhysicalTherapists:Jointmodelshelppatientsunderstandtheirinjuries andrecovery,improvingrehabilitationoutcomes.

ForBiomedicalEngineers:Theyaidindesigningprostheticsandjoint replacementsthatenhancemobilityandqualityoflife.

PhysicalTherapists:Usejointmodelstoteachpropermovementand preventfutureinjuries.

BiomedicalEngineers:Createcost-effectiveprostheticsanddevicesthat improveaccesstohealthcaresolutions.

LearningContent

Project2:Weightmachine LessonPlan

Duration: 60-90minutes

Studentswillexplorethemechanicsofpulleysandweight-liftingmachines.Theywilldesign andbuildaweight-liftingmechanismusingaservomotorandevaluatehowpulleysreduce theeffortrequiredtoliftaload.Studentswillconnecttheirlearningtotheimportanceofweight machinesinpromotinghealthandstrength,especiallyfortheyoungandelderly.

LearningContent

Bytheendofthelesson,studentswill:

1. Understandthefunctionofpulleysandhowtheyreduceeffort.

2. Programaservomotortosimulateweight-liftingmotions.

3. Buildaweight-liftingmachineusingtheKidsUnomicrocontrollerandevaluateits performance.

4. Relateweightmachinestohealthbenefitsandtheimportanceofexercise.

Vocabulary

Word Meaning

Congenital

Aconditionortraitpresentfrombirth.

Diet

Thefoodanddrinkregularlyconsumed.

Muscle

Weightmachine

Materials

Bodytissuesthatcontractandrelaxtoenablemovement. Equipmentusedtobuildstrengthbyliftingorpushingweights.

LearningActivities(Session1)

Introduction

1. Beginbydiscussinghowlifestylechoicesinfluencehealth,highlightingtheimportanceof exerciseformuscleandbonestrength.

2. Explainthatweightmachinesarecrucialforimprovingstrength,mobility,andinjury prevention,particularlyforelderlyindividuals.

Problem

Ham,afitnesstrainer,wantstodesignaweight-liftingmachinetohelphisclientsbuild muscleandstrengthentheirbones.Studentsaretaskedwithcreatingamechanicalweightliftingmachinetosimulatethisfunction.

Predict

1. Showtheimagesofthefixedpulleyandthesystemoftwopulleys.

2. Askstudents:Whichpulleysystemdoyouthinkreducestheeffortrequiredtolifttheload? Why?

3. Encouragestudentstoreasonhowthearrangementofpulleysaffectstheforceneededto liftaweight.

Challenge

1. Guidestudentstoinspectthelargecranedesignandidentifythepulleysection.

2. Askthemtomodifythecraneintoamechanicalweight-liftingmachine: Thedesignshouldliftthesuspendedweightwhenpullingdownononeside. Focusonlyonthemechanicaldesign,excludingsensorsorbricksfornow.

DesignandPlan

1. Providestudentswithaspacetodrawanddescribetheirplan.

2. Encouragecollaboration: Ensureeveryteammembercontributesideastothefinalplan. Discusshowtheywillimplementpulleysandservomotorstoliftweightsefficiently.

BuildandCode

1. Helpstudentstowrapthewirearoundthe270°servomotortocreatetheweight-lifting mechanismandassemblethepulleysystemusingbuildingblocks.

2. Helpstudentstomodifythecodetoprogramtheservomotorforup-and-downmotions.

3. HelpthemtoinstalltheOLEDdisplaylibrariesandprogramthescreentoshow“Weight Machine.”

TestandEvaluate

1. Doesthepulleysystemreducetheeffortrequiredtolifttheweight?

2. Howdoesthedesignmimicreal-lifeweightmachines?

ShareandImprove

1. Guidepresentationsbyensuringallstudentssharetheirdesignsandpeersprovide constructivefeedback.

2. Monitorengagementduringfeedback,encouragingactionableandrespectfulsuggestions.

3. Supportrefinementbyhelpingstudentsimplementkeyfeedbackandimprovetheir designs.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

a. The“2”likelyrepresentsthebaseweightofthehandle.

b. srepresentsthecontributionofthecube'ssidelengthtotheweight.

c. s+2=29 s=29–2=27 s=27≈5.2 2 2

d. Sidelengthisirrationalvalue.

a.

b. Radiusrisanirrationalvalue.

Reflect Question# Answerkey

Ithelpstheelderlyimprovebonestrength,preventinginjury.Itpromotes physicalfitnessamongyoungerindividuals,reducingtheriskoflifestylerelateddiseases.

FitnessTrainersuseweightmachinestodesignpersonalizedstrength-building programs.BiomedicalEngineerscreateinnovativeweightmachinestailored forrehabilitationandelderlycare.

LearningContent

Project3:Energywheel LessonPlan

Duration: 60-90minutes

Studentswillexplorehowenergyflowsthroughanecosystembybuildingandprogramming anenergywheel.Theywilllearnhowecosystemsinteractthroughdecomposers,producers, herbivores,andcarnivoresandwillrelatetheseconceptstoreal-worldecosystem management.

LearningContent

Bytheendofthelesson,studentswill:

1. Understandhowenergyandmatterflowthroughanecosystem.

2. BuildandprogramaFerriswheelmodeltosimulateenergyflowinanecosystem.

3. Identifytheimpactoftoxinsandbioaccumulationonecosystems.

4. Analyzeecosystemtransformationsusingmathematicalandscientificterms.

Vocabulary

Bioaccumulation

Invasive Acommunityoflivingorganismsinteractingwiththeirenvironment. Thebuildupofharmfulsubstancesinorganismsovertime. Aspeciesthatspreadsquicklyandharmsitsnewenvironment.

Materials

LearningActivities(Session1)

Introduction

1. Explainhowenergyflowsthroughecosystemsusingexamples(e.g.,producers herbivores carnivores decomposers).

2. Discusshowtoxins,suchasmercuryorDDT,canaccumulateinecosystems,harming organismsathigherlevelsofthefoodchain.

Problem

Sashawantstocreateanenergywheeltomodeltheflowofenergythroughanecosystem. Studentsaretaskedwithdesigningandbuildingthismodelusinga360°servomotor.

Wire

Instructstudentstoconnectthe360°servomotortodigitalport13ontheKidsUnoand connectthebuttonmoduletodigitalport2.

Code

1. Guidestudentstocommentoneachlineofcode,explainingitsfunction,andencourage themtoreferenceProjects1and2forclarity.

2. Supporttestingbyhelpingstudentsuploadthecode,observetheservo'smovement,and troubleshootanyissueswiththefunctionality.

1. Challengestudentstoadjustthevaluesinmyservo.writeMicroseconds()toseehowit affectsthespeedoftheenergywheel.

2. Askreflectivequestions:Whathappenstotheenergywheelasthespeedincreasesor decreases? Discover

Build

1. InstructstudentstobuildtheFerriswheelmodelusingbuildingblock,andreplacethesteam sensorwithabuttonsensortocontrolthemovementofthewheel.

2. EncouragestudentstocreateabackdropfortheirFerriswheel,labelingbinstorepresent decomposers,producers,herbivores,andcarnivores.

Challenge

1. GuidestudentsinlocatingtheexamplebuttonsketchunderFile Examples Digital Buttonandcombiningitwiththeservocodetostopthemotorfor5seconds.

2. DemonstrateOLEDsetup,helpingstudentsinstallthenecessarylibrariesandensuringthey canaddthe"Energycircle!"displaycodecorrectly.

3. Assistwithdebugging,observingthewheel'sbehavior,troubleshootingbuttonfunctionality, andverifyingtheOLEDdisplayoutput.

ShareandImprove

1. Encouragepresentationsbyaskingeachgrouptoexplaintheirdesignanddemonstrate howtheirenergywheelworks.

2. Guidefeedbackbyprovidingastructuredtemplateforpeerstohighlightstrengthsand suggestspecificimprovementsforthedesign.

3. Supportrefinementbyhelpingstudentsprioritizefeedbackandimplementchangesto improvetheirenergywheel.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

1. Translation:Thecenterofthebiomeisshiftedverticallyfrom(0,5)to(0,3)whichisa translation.Dilation:Theradiusincreasesfrom3to6units,whichisadilation(achangein sizewhilemaintainingtheshape).

ANSWER2

2. Theenergywheeltransformations: Iftheenergywheelspins,itundergoesarotationarounditscenteraxis. Iftheenergywheelismovedfromonelocationtoanother,itexperiencesatranslation. Ifthesizeoftheenergywheelchanges,itundergoesadilation. Iftheenergywheelflipsormirrors,itundergoesareflection

1 2

Modelsliketheenergywheelcandemonstratetheflowofenergyandthe impactoftoxins,helpingpolicymakersmakeinformeddecisionstoprotect ecosystems.

Biologists:

ResearchandMonitoring:Studyecosystemstounderstandenergyflow, speciesinteractions,andtheimpactoftoxinslikebioaccumulation.

ConservationStrategies:Developplanstoprotectendangeredspeciesand restoreecosystemsaffectedbyinvasivespeciesorpollutants.

EnvironmentalEngineers:

SustainableSolutions:Designtechnologiestoreducepollutionandmitigate humanimpactonecosystems.

EcosystemRestoration:Developsystemstorehabilitatedegradedlands andimprovehabitatconditionsforwildlife.

Project4:GoldFoilExperiment

LessonPlan

LearningContent

Duration: 60-90minutes

StudentswillexplorethestructureoftheatomusingaconveyorbeltmodelofRutherford’s GoldFoilExperiment.Thishands-onactivitywillhelpstudentsunderstandtheconceptsof atomicstructure,thenucleus,andemptyspacewithinatoms,linkingthesetomacroscopic modelingandparticleacceleration.

LearningContent

Bytheendofthelesson,studentswill:

1. Understandthenucleus,theconceptofemptyspaceinatoms,andRutherford’s discoveries.

2. BuildandprogramaconveyorbeltmodeltosimulatetheGoldFoilExperiment.

3. Visualizeandexplainthebehaviorofparticlesinrelationtothestructureoftheatom.

4. Reflectonhowmacroscopicmodelingcontributestounderstandingatomictheories.

Vocabulary Word

Nucleus

Thepositivelychargedcenterofanatomcontainingprotonsand neutrons.

Thesmallestunitofmatterthatformsallsubstances.

ParticleAccelerator

Adevicethatspeedsupparticlestostudytheirbehavior.

Macroscopic

Materials

Largeenoughtobeseenwithoutamicroscope.

LearningActivities(Session1)

Introduction

1. DiscussthehistoricalsignificanceofRutherford’sGoldFoilExperimentindiscoveringthe nucleusanddisprovingthe“plumpudding”model.

2. Explainhowtheexperimentshowedthatmostoftheatomisemptyspacewithadense, positivelychargedcenter.

Problem

GregorywantstobuildaconveyorbeltmodeltodemonstratehowRutherford’sexperiment provedtheexistenceofadensenucleus.Studentswilldesignandbuildthemodeltosimulate theexperiment.

Wire

1. Allowstudentstoattemptthewiringindependentlyfirstandprovidehintsorguiding questionsiftheyencounterissues.

2. Circulatearoundtheclassroomtocheckprogress,ensuringconnectionsaresecureand troubleshootingerrorsasneeded.

Code

1. Remindstudentstousetheinitialservo-turningcodefromProject3asastartingpoint.

2. Helpthemmodifythecodetomaketheservomotorruncontinuously.

3. Uploadthecodeandensuretheconveyorbeltmovesobjectsconsistently.

Build

Guidestudentstobuildtheconveyorbeltmodelusingtheimageprovidedortheirown innovativedesigns.

Discover

1. Askstudents: Wheredothealphaparticlespassthroughthe“goldfoil”? Wheredotheygetstopped,andwhatdoesthisrepresent?

2. Discusshowthisdemonstratesthatmostoftheatomsareemptyspacewithadense nucleus.

Challenge

1. Clearlydescribethe10,000:1ratio,emphasizingthatthenucleusrepresentsaverysmall portionoftheatomwhilemostofitisemptyspace.

2. Encouragestudentstodesigntheircardboardwithsmallsolidareas(nucleus)andlarge openspaces(emptyspace)toreflecttheratio.Suggestusingarulerorgridtoproportionthe holesaccurately.

3. AskReflectiveQuestions:Promptstudentswithquestionslike,“Howdoesthesizeofthe holesandsolidareasdemonstratethe10,000:1ratio?”and“Whatadjustmentswouldmake themodelmoreaccurate?”

ShareandImprove

1. Guidestudentstoexplaintheirmodels,focusingonhowtheirdesignsrepresentRutherford's findingsandthe10,000:1ratio.

2. Provideasimplefeedbackframeworkwithcategorieslike"Strengths"and"Suggestionsfor Improvement,"andmodelhowtogiveconstructivefeedback.

3. Circulateduringrevisiontime,helpingstudentsimplementfeedbackandimprovetheir modelseffectively.

AnswerKey

MATHANDSCIENCECONNECTION

1.Expressiona.10:1ab

Tomaintaintheratio10,000:1,weequate 10=10,000 a 10=10,000 ⟹ a=4(since10=10,000) a 4

2.Expressionb. c c 1 1 1 ( ( ) )= ⟹ 10,000 10,00010,000 c=1

3.Expressionc.dc

Theratiorequiresd=10,000 c

Assumec=4(basedonthepowerof10): d=10,000 4

For1anypowerof1equals1 b 1=1 ⟹ b=anyrealnumber b a=4 b=anyrealnumber

Amacroscopic,slow-motiongoldfoilexperimentmodelcancontributetoSDG 8-DecentWorkandEconomicGrowthinthefollowingways:

PromotingInnovationinManufacturing:Themodelcaninspireindustriesto developadvancedmaterialsandtechnologies,creatingjobsinresearch, design,andmanufacturing.

EnhancingSTEMEducation:Itcanbeusedineducationalsettingstoteach fundamentalatomicprinciples,encouragingstudentstopursueSTEM careers,whichdriveeconomicgrowth.

SupportingResearchandDevelopment:Byprovidingahands-ontoolfor visualizingatomicprinciples,themodelaidsresearchersincreating practicalapplications(e.g.,materialsscience,nanotechnology)that stimulateeconomicgrowth.

ParticlePhysicists

Developsensorstomonitorsoilhealthandpollution. Advancecleanenergytechnologieslikenuclearfusion. Researchsafedisposalofradioactivematerials. ManufacturingEngineers

Designeco-friendlymanufacturingprocesses. Innovaterecyclingandreusablematerialsystems. Developsustainable,non-toxicmaterialstoprotectecosystems.

Project5:Chromatography

LessonPlan

LearningContent

Duration: 60-90minutes

Studentswillexploretheconceptofchromatographyasamethodforseparatingand analyzingsubstancesinamixture.Throughahands-onexperimentandcodingactivity, studentswillmodelchromatographyusingtheOLEDscreenandchromatographypaper.

LearningContent

Bytheendofthelesson,studentswill:

1. Understandhowchromatographyseparatessubstancesinamixture.

2. Conductachromatographyexperimentusingmarkersandwater.

3. UsecodetosimulatechromatographyonanOLEDscreen.

4. Analyzetheexperiment'sresultsandrelatethemtoreal-worldapplications.

Vocabulary

Chromatography

Atechniqueusedtoseparateandanalyzecomponentsofamixture.

OLED(OrganicLightEmittingDiode)

Materials

Atypeofscreenthatlightsuptodisplayinformation.

LearningActivities(Session1)

Introduction

1. Explaintheconceptofchromatographyusingeverydayexamples,suchasseparating colorsinamarker.

2. Highlighthowscientistsusechromatographytoanalyzeinks,food,andbloodsamples.

Problem

Dagnewantstocreateachromatographymodeltobetterunderstandhowsubstancesin mixturesseparate.Studentsaretaskedwithconductingachromatographyexperimentand creatingadigitalmodelusingtheKidsUno.

Experiment

1. Showstudentshowtomarkthechromatographypaper,tapeittothepen,andpositionitin thecupwithwatercorrectly.

2. Encouragestudentstomonitorthemovementofthewaterandcolors,askingquestions like,"Whatdoyounoticeabouthowthecolorsseparate?"

3. Ifinksdon’tseparate,suggesttryingdifferentmarkersoradjustingtheamountofwater, ensuringeverygroupcanobservesuccessfulresults.

Wire

HelpstudentsifneededtoAttachtheKidsUnotothecomputerusingtheUSBcable.

Code

GuidestudentstouploadtheprovidedcodetotheKidsUnodevice.

Discover

1. Askstudents:

“HowdoestheOLEDdisplaysimulatechromatography?”

“Whatdoeseachparameterinthecoderepresent?”

2. Parameters:

x:Horizontalpositionofthetop-leftcorneroftherectangle. y:Verticalpositionofthetop-leftcorneroftherectangle. width:Thewidthoftherectangleinpixels. height:Theheightoftherectangleinpixels. color:Thecoloroftherectangle(e.g.,WHITEforvisibleorBLACKforinvisible).

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

Themodelmaynotaccuratelyrepresenttheexactchemicalormolecularinteractionsduring chromatography.Helpthestudentstoenhancethemodelbyusingadditionalvariables,such astimeorsolventtype,tomorecloselysimulaterealchromatographyexperiments.

a. Letrrepresentthedistancetraveledbytheredinkandbthedistancetraveledbytheblue ink:r=b+2

Givenb=5cm

r=5+2=7cm

Answer:Theredinktraveled7cm

ANSWER4

ANSWER2 Given ANSWER3 Pinkinktraveled1cm

ANSWER5

Orangeinktraveled3timesfartherthanpink,so3cm

ANSWER6

Blueinktraveled2timesfartherthanorange:Bluedistance=2×3=6cm

Answer:Pink:1cm,Orange:3cmandBlue:6cm

Itdemonstrateshowseparatingsubstancesbenefitsindustrieslike pharmaceuticals,foodsafety,andforensics,fosteringinnovationandjob creation.

ChemicalEngineer

SustainableProcesses:Designeco-friendlymanufacturingprocessesto minimizeharmfulbyproductsthatcouldpollutesoilandecosystems.

WasteManagement:Developsystemstosafelytreatandrecycleindustrial waste,reducingitsimpactonterrestrialecosystems. Chemist

PollutionAnalysis:Analyzesoilandwatersamplestodetectandmitigate harmfulsubstances,protectingbiodiversityonland.

GreenChemistry:Innovatenon-toxicchemicalsandbiodegradable productstoreplacehazardousmaterials,reducingenvironmentalharm.

Project6:Endothermicorexothermic?

LearningContent

LessonPlan

Duration: 60-90minutes

Studentswillexplorehowtemperaturechangesduringchemicalreactionscanindicate whetherareactionisendothermicorexothermic.TheywillusetheKidsUnodevicewitha temperaturesensorandbuzzermoduletoclassifyreactionsbasedonheatabsorptionor release.

LearningContent

Bytheendofthelesson,studentswill:

1. Differentiatebetweenendothermicandexothermicreactionsbasedontemperature changes.

2. Usecodingtocategorizereactionsusingan“if-then”logicloop.

3. Analyzetemperaturedatatodrawconclusionsaboutthetypeofreaction.

4. Reflectonhowchemicalreactionscontributetoenergyproductionandsustainable solutions.

Vocabulary Word Meaning

Endothermic

Areactionthatabsorbsheat(e.g.,meltingice).

Exothermic

Areactionthatreleasesheat(e.g.,burningwood).

Combustion

SerialMonitor

Materials

Theprocessofburningasubstancetoproduceheatandlight. AtooltodisplaydatasentfromtheKidsUnotothecomputer.

LearningActivities(Session1)

Introduction

1. Discusshowtemperaturechangescanhelpdetermineifareactionisendothermicor exothermic.

2. Showreal-lifeexamplesofendothermicandexothermicreactions,likemeltingice (endothermic)andcombustion(exothermic).

Problem

Samuelneedstocreateadevicetoclassifychemicalreactionsasendothermic,exothermic, orneither.StudentswillprogramtheKidsUnotoidentifythesereactionsusingatemperature sensorandbuzzer.

Wire

Allowstudentstoattemptthewiringthemselveswhilecirculatingtheroomtomonitor progressandprovideassistancewhenneeded.

Code

1. Explainhowthetone(buzzer,___);functionworksandwhatchangesinthefrequencyvalue (e.g.,500,1000)affectthesound'spitch.

2. Highlighttherelationshipbetweenfrequencyandtone:highervaluesproducehigher-pitched sounds.

3. ShowstudentshowtolocateandinstalltheDHTlibraryintheArduinoLibraryManager.

4. AssisttheminmodifyingthecodetomatchtheDHT11sensortype.

Discover

1. Encouragestudentstohypothesizewhethereachreactionisendothermicorexothermicbased onpriorknowledge,promotingcriticalthinkingbeforetesting.

2. Providesafetyinstructionsandmonitorstudentsastheyconductthereactionstoensureproper handlingofmaterialsandaccurateobservationoftemperaturechanges.

3. Supportstudentsinanalyzingtheirtemperaturedata,explaininghowtoadjustif-thenloop thresholdsinthecodetomatchtheobservedreactioncharacteristicsaccurately.

1. Beginbyreviewingthedifferencesbetweenexothermicandendothermicreactions.Emphasize thatanincreasingtemperatureslopeindicatesheatrelease(exothermic),whileadecreasing slopeindicatesheatabsorption(endothermic).

2. Helpstudentsinterprettheslopeofthegraphandrelateittothetypeofreaction.Encourage themtojustifytheiranswersbyconnectingthetemperaturechangestoenergyflowinthe reaction.

EfficientReactionIdentification:Bycategorizingreactionsasexothermicor endothermic,thedevicecanidentifyhighlyefficientenergy-producing reactionslikecombustion,nuclearfusion,orfission,enablingbetterenergy utilization.

ImprovedEnergySystems:Itcanaidindesigningcleanerandmoreefficient energysystemsbyanalyzingchemicalprocessesforminimalenergylossand reducedenvironmentalimpact.

ChemicalEngineer:

SustainableEnergyInnovations:Thedevicecanassistresearchersand engineersinexploringalternativeenergysources,optimizingchemical reactionstoproducesustainableandaffordableenergysolutions.

Designandoptimizeprocessesforsustainableenergyproduction,suchas biofuels,hydrogenfuelcells,andrenewableenergystoragesystems. Developefficientreactionsystemsforcleanenergytechnologieslike nuclearfusionandcatalyticconverterstoreduceemissions.

Chemist:

Researchandinnovatenewmaterialsandcatalyststoenhancethe efficiencyofenergy-producingreactions,suchasthoseusedinbatteries andsolarpanels.

Analyzeandclassifychemicalreactionstoidentifygreenerandmorecosteffectiveenergysources.

Project15:GlobalScienceImpact

LessonPlan

LearningContent

Duration: 60-90minutes

Studentswillexplorethereal-worldapplicationsofsensorsinvariousindustriesand understandhowsensorscontributetosolvingglobalproblems.TheywillprogramtheKidsUno todisplaythemostcommonusesofdifferentsensors,emphasizingtheirimpactonscience, technology,andinnovation.

LearningContent

Bytheendofthelesson,studentswill:

1. Identifythekeyapplicationsofvarioussensorsinbothprojectsandindustries.

2. LearntoprogramtheKidsUnotomatchinputsensorswiththeirmostcommonuses.

3. Discussthesocietalandtechnologicalimpactsofsensorsonglobalchallenges.

4. ReflectonhowsensorresearchadvancesSDG16:Peace,Justice,andStrongInstitutions.

Vocabulary

Materials

AsmallrockyobjectorbitingtheSun,typicallyfoundbetweenMarsand Jupiter.

Theforcethatpullsobjectstowardeachother. Amassivesystemofstars,planets,gas,anddustboundbygravity.

LearningActivities(Session1)

Introduction

1. Discusshowsensorsareusedineverydaylife,fromhomeautomationtospaceexploration.

2. Highlightexamplesofindustriesbenefitingfromsensors,suchashealthcare(temperature monitoring),agriculture(humiditycontrol),andsecurity(motiondetection).

3. RelatethelessontoSDG16,explaininghowsensorsenhancetransparency,security,and justicesystems.

Problem

BernicewantstocreateaprogramthatprintsthemostcommonusesofsensorstotheSerial Monitor.StudentswillprogramtheKidsUnotoidentifysensorsanddisplaytheirapplications.

Wire

1. GuidestudentstoconnecttheKidsUnotothecomputerusingtheUSBcable.

2. EnsuretheArduinoisproperlyconnectedandrecognizedbytheIDE.

1. Beginbyclearlyexplainingtostudentsthattheywillcreateaprogramthatidentifies sensorsbasedonuserinputandprintsthecorrespondingnametotheSerialMonitor.

2. Walkstudentsthroughtheprovidedcodestructure,explainingeachfunction: Setup:InitializestheSerialcommunication. Loop:Continuouslyreadsinputandprocessesdata. recWithEndMarker:Readsandstoresinputdatauntilamarker(e.g.,newlinecharacter)is reached.

showNewData:DisplaystheinputontheSerialMonitor.

3. Clarifyhoweachlinecontributestoachievingtheprogram'sgoal.

Monitoringweather conditionsinDIYsetups

Controllingdeviceswith remoteinputs

Automatinglightswitches

Detectingmagneticfields inexperiments

Developingweight measurementsystems

Greenhousemonitoring

Infrared-basedsecurity systems

Smartphoneand touchscreeninterfaces

Navigationsystemsin smartphones

Automotiveindustryfor airbagdeploymentsensing

Challenge

TaskstudentstoprogramtheKidsUnoto:

Displaysensorapplicationsbasedonuserinput. Includeatleastoneuniqueapplicationforeachsensor. Ensureinputsarecase-insensitiveforuserconvenience.

ShareandImprove

1. Pairstudentstosharetheirprogramsandtesteachother'ssolutions.

2. Encouragefeedbackbyidentifyingonesupporteddesigndecisionandoneimprovement suggestion.

3. Facilitateaclassdiscussiononhowthefeedbackwasincorporated.

AnswerKey

MATHANDSCIENCECONNECTION

0.16+f+0.52+0.28+g=1

0.16+0.06+0.52+0.28+g=1

1.02+g=1

g=1−1.02

g=−0.02thetotalrelativefrequencyexceeds1

a. Yes,thereisevidencethata3-axismagnetometerisusedmostlyfornavigation.Thebar labeled"Navigation"clearlyhasthehighestrelativefrequency(approximately50%), significantlyexceedingthefrequenciesfor"BrainImaging"and"AltitudeTracking."

b. Yes,itisreasonabletothinkthatuserswhoprimarilyusethesensorfornavigationmight alsouseittotrackaltitude.Navigationofteninvolvesdeterminingpositionandmovementin threedimensions,whichcanincludealtitude.Forexample,inaviationordronetechnology, altitudetrackingisacriticalpartofnavigation.

EnhancingSurveillanceandSecurity:SensorslikeIRreceiversand3-axis magnetometerscanbeusedforsurveillancesystems,motiondetection,and securityalarms.Forexample,theycanbeemployedinbordercontrol,building security,andmonitoringrestrictedareastoensuresafetyandpreventillegal activities.

SupportingJudicialProcesses:Sensorsusedinforensictoolscanhelpgather accurateandreliableevidenceincriminalinvestigations.Forexample, temperatureandhumiditysensorscanpreserveevidenceincontrolled environments.

Researcher:

StrengtheningInstitutions:Digitalcapacitivesensorsandthin-filmpressure sensorscanbeutilizedinsecureaccesssystemsforgovernmentand institutionalbuildings,ensuringthatsensitiveareasareaccessedonlyby authorizedpersonnel.

Developinnovativesensorapplicationstoenhancepublicsafetysystems, suchasearthquakedetectionorfirealarms.

Conductstudiestoimprovetheaccuracyandreliabilityofsensorsusedin forensicinvestigations,helpingtodeliverjusticemoreeffectively.

ElectricalEngineer:

Designadvancedsensorsystemsforsurveillance,biometrics,andaccess controltostrengtheninstitutionalsecurity.

ImprovetheintegrationofsensorswithAIsystemstoanalyzedatainrealtime,enablingfasterdecision-makinginsecurityandgovernancecontexts.

AssessmentGuide

AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.

Getasnapshotof students’starting knowledgebefore onboardinginSTEM.

StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.

Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.

Pre-Assessment(optional)

Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.

Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.

Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning

TeacherTips:

Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.

KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K

Math&ScienceConnection

Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.

Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.

TeacherTips: just grading tools

Userealtools:Rulers,scales,charts,simplecoding tools.

Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.

Linktostandards:Alignwithbothmathandscience

Link to sta goals.

Self-AssessmentRubrics

TeacherTips:

Introducerubricsearly:Define"what successlookslike."

Modelreflection:Scoresamplework together.

Selfandpeerreview:Studentsrate anddiscuss.

Askreflectivequestions:“Whatwas yourbiggestchallenge?”

Celebratehonesty:Praiseaccurate self-assessment.

Post-Assessment:CapstoneProject

Self-reflectonyourworkonthisproject.

Icanbreakdown aproblem.

Icandevelopa workingprototype.

Icancodemyprototype todowhatIwant.

Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.

Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.

Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.

STEMInnovationFair

Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.

Possiblepresentationformatsinclude:

Interactivedemonstrations

Postersessions

Digitalportfolios

PitchpresentationsmodeledafterprofessionalSTEMconferences

nforcing rn how to celebrating education w

Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.