Teacher Guide - Level 12

Page 1


TeacherGuide-LaserCuttingLevel12

Teacher Guide

Copyright©2024

Copyright © 20

Author: DanaAlkhatib

Editors: LindseyOwnandErinGoodwin

ISBN: 978-981-17737-6-1

Publishedby:

SKOOL21PTE.LTD.-Singapore

DUOTower,Level8#831

3FraserStreet,189352,Singapore

Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods,withoutthepriorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.

Forpermissionsorinquiries,pleasecontact:

Email: info@skool21.org

Website: https://skool21.org

Preface

WelcometotheFutureofTeachingandLearning!

Welcome to th

Thank you for joi designed not on meaningful, han young innovato science, technol

BuildingonaStrongFoundation

Each level of the

novators series is teachers to lead es, you will guide challenges using creating a strong

Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).

EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.

LearningbyDoing

AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.

MakingaReal-WorldImpact

Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.

TeachingLikeaPro

TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.

Building on a not just leaders, and c

IntroductiontotheKit

TheSTEMInnovatorsHandbookLevel12isdesignedforstudentswhoare readytoexploreprecisionfabricationanddigitalcraftsmanshipthrough laserengravingandcutting.Buildinguponpriorexperiencewith3Dmodeling andelectronics,thislevelintroduceslearnerstotheworldofadvanced design-to-productionworkflowsusingthelatestindesktopfabrication technology.

AttheheartofthislevelistheCrealityFalcon2Pro22W,ahigh-poweredlaser engraverandcutterbuiltforbothspeedandaccuracy.Withitsindustrialgradelaserandintuitivedesignsoftwarecompatibility,studentscan transformtheirdigitalvectordrawingsintopreciseengravingsorcutsona widerangeofmaterials,fromwoodandacrylictoleatherandmetal.

LessonStructure

Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:

Lessonobjectives

NGSSStandards

CambridgeScienceStandards

ISTEStandardsConnections

CambridgeMathStandards

CommonCoreMathStandards

DefinetheProblem

Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.

GettingStarted

Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.

DesignandPlan

Build-Test-Improve

Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.

Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.

MathandScienceConnection/Reflect

Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.

TheEngineeringDesignProcess ocess

TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.

Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.

Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.

forming a str

FosteringSocialSkills

STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.

Keysocialskillsdevelopedinclude:

Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.

Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.

Collaboration EmpathyandRespect

Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.

Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.

Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.

Communication

Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.

Problem-Solving

Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.

TimeManagement

Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.

PresentationSkills

Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.

Teamworking

Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.

TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.

academic su

MakerspaceSetup

Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.

SpaceDesign:

Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).

MaterialsManagement:

Ensurethatkitsarecompleteandaccessiblebefore eachproject.

Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.

RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.

SharedResources:

ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.

SafetyFirst: Keep a fi

Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.

STEMClassroomManagement

STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.

STEMClassSessionRoutine

Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:

90-minuteproject (Grade3toGrade12)

Grade 3 to Grade 12)

5-minute

45-minuteproject (Pre-KtoGrade2)

o ect Pre-K to Grade 2)

SpaceOrganization:

Provideracksoropenshelvestostorekitsneatlyandaccessibly.

ToolandMaterialsRules:

Usetoolswithcare–noplayingormisusingmaterials.

Returneverythingtoitslabeledplace.

Askbeforetakingextrasupplies.

Handstoyourself—respectothers’creationsandspace.

Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.

Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.

Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.

GroupManagementwithTeamRoles

Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:

Keepsteamontask,trackstime,encourages collaboration.

Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.

Sharesoutcomes,challenges,andsolutionswiththeclass. Evaluatesthemodel,givesfeedback,suggestschanges.

ImplementationGuide

TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:

IntegratedApproach

EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.

Advantages:

Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.

Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).

Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.

PracticalTips:

Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).

Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.

Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.

Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.

connect

Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.

Stand-AloneClassApproach

ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.

Advantages:

Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).

Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.

Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.

PracticalTips: g

Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.

Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass

Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.

Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.

Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).

Extra-CurricularApproach

RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.

Advantages:

Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.

Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.

Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).

Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).

PracticalTips:

Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.

Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness.

Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.

Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.

Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.

HybridApproach (BlendingAllModels)

Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.

Whentointegrate:

Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.

Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.

Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”

Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.

(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)

LessonPlans andAnswerkey

Project1:AffordableHousingModel

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

1. Explaintheimportanceofaffordablehousinganddescribehowengineeringanddesigncan addressreal-worldchallengesincommunities.

2. UseCADsoftwaretodesignascaledhousingmodelthatmeetsdefinedsize,joinery,and efficiencyconstraints,andprepareitforlasercutting.

3. Assemble,test,andevaluatealaser-cuthousingmodel,applyingfeedbackandreflection toimproveaccuracy,joineryquality,andmaterialefficiency.

Materials

Themethodofconnectingpiecesofwoodtogetherwith tab-and-slotjoints

AnacronymforComputer-AidedDesign;usedtocreate designofreal-worldobjects

Tolasercutwoodintopiecesthatcanbeassembledinto anobject

Preparation(TeacherTo-DoBeforeClass)

1. Ensurethatalllaptops/computersarechargedandhaveaccesstotheinternet.Logintothe CADsoftware(Onshapeorotherchosendesignplatform)oneachstudentgroupaccountso thatstudentscanstartimmediately.

2. Checkthatthelasercutterissetup,calibrated,andsafety-testedbeforeclass.Makesure thecuttingbediscleanandaligned.

3. Preparetheapprovedmaterialsheets(e.g.,3mmplywood,acrylic,orcardboard)cutto standardsizesthatfitthemachine’sworkingarea.

4. Printanddisplaythelasercuttersafetyrulesintheclassroom.Reviewemergencystop proceduresandensurethatsafetygogglesareavailableforallstudents.

5. UploadorprepareasampleCADfileandlaser-cutmodelfordemonstration,showingboth thedigitaldesignandthephysicalprototype.

5. Havemeasuringtools(rulers,calipers)readyforstudentstochecktheirdesignsbefore cutting.

6. Confirmthatventilationorfumeextractionisworkingproperlyforsafeoperation.

7. Testthefile-to-machineworkflow(exportingfromCADtolasercuttersoftware)toavoid technicalissuesduringclass.

⅛”MDF LaserCutter SmokePurifier

LearningActivities(Session1)

Introduction

1. Beginbydiscussingtheglobalchallengeofaffordablehousingandhowitaffectsbillionsof peoplearoundtheworld.Usethisopportunitytohighlighttheimportanceofsmart,spacesavingdesigninaddressinghousingshortages,especiallyindenselypopulatedorlowincomecommunities.

2. IntroducestudentstotheuseofCADsoftware(Onshape)forcreatingdigitalprototypesand thevalueoflasercuttingforturningthosedesignsintoreal-worldmodels.Emphasizehow precisiondesignandefficientuseofmaterialscanleadtoinnovativeconstructionsolutions thatsavetime,reducewaste,andcutcosts.

3. Askguidingquestionstopromptdiscussion: Whyisaffordablehousingimportantforcommunities? Howcanengineeringanddesignhelpsolvereal-worldproblemslikehousingshortages? WhatarethebenefitsofusingdigitaltoolslikeOnshapeandlasercuttersinconstruction design?

4. Clarifythelearninggoal:Studentswilldesignandassembleascaledmodelofan affordablehousingunitusingcomputer-aideddesign(CAD)toolsandlasercutting techniques.

5. Ensurethatyoureviewkeyvocabularyandconfirmthatallstudentsunderstandthedesign constraintsandprojectexpectations.

1. Readthe“DefinetheProblem”sectiontogetherwithyourstudents.Encouragebrief brainstormingtoexplorehowspace-savingandaffordabledesigncanmeethousingneeds.

2. Clearlyexplaintheconstraints(modelsize,joinerytechniques)andcriteria(efficiency, accuracy,andcommunityfit)theymustfollow.

3. Invitestudentstosuggestwhatfeaturestheybelievemakeahousingmodelbothpractical andcost-effective,supportingcriticalthinkinganddesignawareness.

Createanewsketchanduseacombinationoftherectangletool,linetool,trimtool,and dimensiontooltocreateasideofthefrontofthehouse.Thegoalistocreaterectangular houseprofilesthatsnaptogetherasshownbelow.

Copyandpastethehousesidetocreatethe outlineoftheoppositeside.

Createanothersketchtocreatethe windowsanddoors.

Extrudethesidestogivethem0.1inchesof thickness.

Extrudethewindowsanddoors,butselect “Remove”inordertosubtractratherthan addthematerial.

Inspectyourdesignfrommultipleanglesto ensureithascomeoutthewayyou intended.

Test

Havestudentscheckthe“MeasureYourSuccess”sectiontoconfirmthattheirhousingmodel hasfourinterlockingsides,includeswindowsandadoor,fitswithinthe400x415mmcutting area,andismadeonlyfromlasercutmaterials.Remindthemtoevaluatehowwelltheir modelfitstogetherusingjoinery.

Share&improve

Askstudentstopairupandrevieweachother’smodels.Eachstudentshouldshareone featuretheylikeandoneimprovementsuggestion.Encouragefeedbackfocusedonjoinery quality,clarityofdesignfeatureslikewindowsanddoors,andhowwellthemodeluses materialsefficiently.

LearningActivities(Session2)

Challenge

1. Openthesketchyouhavebeenworkingon.

2. Checkthedimensionsofyourbuiltmodelbyclickingon“Dimensions”toolthenontheside ofyourobject.

3. Whendesigningthesecondwall,makesurebothcanbeassembledtogetherbychecking theirdimensions.

4. Duplicatetheobjectsoyouget4walls.

5. Includethenewwallstoextrude. 6. Finalshape.

Havestudentscheckthatthenewwallsconnectsecurelywiththefirsttwousingthedesigned joinery.Makesurealltabsalignandfitwithoutgaps.Theycantestthelayoutwithcardboard orlaser-cutpiecestoverifyassemblyworksasintended.

Letstudentsexchangewallsketcheswithaclassmateforreview.Askthemtogiveonepiece ofpositivefeedbackandonesuggestionforimprovingthefitorstabilityofthetabs. Encouragediscussionaboutwhatmakesjointsreliableandeasytoassemble.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

a. Yes,theroofpitchwillchangeifitisscaledby1.5/1.2=15/12=4/3=11/3

b. No,shiftingthehouse,alsoknownasmovingthelocation,willnotaffectthepitch.

c. ii.y=f(ax)representsahorizontalscale,whilei.y=f(x)+a,isaverticalshift.

Anaffordablehousingmodelmadewithlasercuttingcanhelpaddresszero povertybyprovidingalow-cost,scalable,andquick-to-producedesign solutionthatsupportsaccesstosafeshelterforunderservedcommunities.

Architectsandurbanplannerscanusetheaffordablehousingmodelto addresszeropovertybydesigningefficient,low-costhousingsolutionsand planninginclusivecommunitiesthatprovideaccesstojobs,transportation, andessentialservices,helpingliftpeopleoutofpoverty.

Project2:PlanterBoxes LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

1. Explaintheroleofplanterboxesinaddressingfoodinsecurityanddescribehowdesigncan maximizegrowingspaceinsmallurbanenvironments.

2. UseCADsoftwaretodesignaplanterboxwithinterlockingjoinerythatfitswithinlasercutter sizelimitsanddemonstratesefficientmaterialuse.

3. Assemble,test,andevaluatealaser-cutplanterbox,givingandreceivingpeerfeedbackto improvestrength,fit,andsuitabilityforplanting.

Materials

Acontainerthatholdssoilandplants,allowingfor gardeninginareaswheregroundplantingisn'tpossible

Anorganizedeffortundertakenbygroupsofindividualsin agivengeographicareatobringaboutchanges

Ageographicareawhereresidentshavelimitedaccessto affordableandhealthyfood

Preparation(TeacherTo-DoBeforeClass)

1. Ensurethatalllaptops/computersarechargedandhaveaccesstotheinternet.Logintothe CADsoftware(Onshapeorotherchosendesignplatform)oneachstudentgroupaccountso thatstudentscanstartimmediately.

2. Checkthatthelasercutterissetup,calibrated,andsafety-testedbeforeclass.Makesure thecuttingbediscleanandaligned.

3. Preparetheapprovedmaterialsheets(e.g.,3mmplywood,acrylic,orcardboard)cutto standardsizesthatfitthemachine’sworkingarea.

4. Printanddisplaythelasercuttersafetyrulesintheclassroom.Reviewemergencystop proceduresandensurethatsafetygogglesareavailableforallstudents.

5. UploadorprepareasampleCADfileandlaser-cutmodelfordemonstration,showingboth thedigitaldesignandthephysicalprototype.

5. Havemeasuringtools(rulers,calipers)readyforstudentstochecktheirdesignsbefore cutting.

6. Confirmthatventilationorfumeextractionisworkingproperlyforsafeoperation.

7. Testthefile-to-machineworkflow(exportingfromCADtolasercuttersoftware)toavoid technicalissuesduringclass.

LearningActivities(Session1)

Introduction

1. Beginbyexplainingtheimportanceofplanterboxesinaddressingfoodinsecurity.

2. Emphasizehowtheycanhelppeoplegrowtheirfoodinsmallurbanspacesorareaswith limitedaccesstofreshproduce.

3. Usetheinfographicstosparkdiscussionaboutfoodsecurity,plantneeds,andhow geometricdesigncanmaximizegrowingspacewhileminimizingmaterialuse.

4. Askguidingquestionssuchas:

Whyislocalfoodproductionimportant?

Howcangeometryanddesignimprovetheplanter’sefficiency?

Whatmakesaplanterboxusefulinacityenvironment?

5. Ensurethatyoureviewkeyvocabularyandconfirmthatallstudentsunderstandthedesign constraintsandprojectexpectations.

1. Readtheproblemstatementwithstudentsandhighlightthegoal:designinganeffective planterboxthatcanbelasercutandusedinurbancommunities.

2. Encouragebrainstormingarounddesignfeaturesthatwouldmaketheplanterpractical, durable,andeasytoship.

3. Reviewcriteriaandconstraintsearlyontohelpstudentsplantheirdesignideaswithinthe givenlimits.

Createarectanglewithonetabstickingout. Then,usethelinearpatterntooltocreatea lineoftabsalongtheedges.

6

Forthelastedge,createalinedownthe centeroftherectangleandmirrorthetabs overtheline.

Test

Havestudentsreviewthe“MeasureYourSuccess”sectiontoensuretheirplanterboxdesign usesinterlockingjoinery,fitswithinthelasercutter'ssizelimits,andmaximizesvolumeusing minimalmaterial.Encouragethemtotesthowthepartsfittogetherandifthestructureis stableenoughtoholdsoilandplants.

Pairstudentstogiveandreceivefeedbackontheirplanterboxdesigns.Eachstudentshould highlightonesuccessfuldesignchoiceandofferonesuggestionforimprovement.Guide themtofocusonjoineryaccuracy,materialefficiency,andwhethertheplantermeetsthe goalofgrowingfoodinsmallorurbanspaces.

LearningActivities(Session2)

Challenge

1. Createtwowallpiecesthatfittogetherusinginterlockingnotches.Thesenotchesshouldbe designedsothattheraisedparts(tabs)ofonewallfitexactlyintothecut-outsections(slots) oftheother.Makesurethepositionsandsizesofthetabsandslotsaremirroredoralignedto allowthepiecestoslideorsnapintoeachother,asshownintheimage.Youcandeterminethe sizeofthesenotchesbymeasuringthedimensionsofthefirstpieceusing“Dimensions”tool.

2. Dothesamefortherestofthepieces.

3. Editextrudeoptiontotheother2Dfacestobecome3D

Askstudentstotesttheircompleteboxbycheckingifallsixsidesfittogetherusingonlythe joinerydesign—noglueortape.Makesurethedesignfitsthelasercutter’ssizelimitsandforms asturdy,sealedcontainersuitableforplanting. Test

Pairstudentsandhavethemsharetheircompleteddesigns.Askthemtoevaluateifthe joineryfitscleanlyandifthestructureholdstogetherwell.Eachstudentshouldgiveone complimentandoneimprovementidea,focusingonfitaccuracy,materialefficiency,and potentialweakspotsinthebox.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

1. C=πd=12πcm ≈38cm

ANSWER2

StudentsmaydrawthecirclebyhandwithaprotractororuseawebsitesuchasDesmosto findthelargestdiameter,whichis6.Theycanalsousetheformula: d=a+b-c=12+9-15=6

ANSWER3

Outdoorfullsunisthebestplacetogrowthetomatoplants,sincetheyieldatboth10,000 lumensand25 ℃ ismuchhigherthantheyieldsatthelightandtemperaturevaluesofthe indoorwindowsillandbasementartificiallight.

Reflection

Planterboxescanhelpaddresstheproblemofzerohungerinfooddesertsby enablingpeopletogrowfreshfruitsandvegetableslocally,eveninlimited spaces,increasingaccesstonutritiousfoodwheregrocerystoresarescarce.

Agriculturalengineersandurbanplannerscanuseplanterboxestohelp addresstheproblemofzerohungerbyintegratingsmall-scalefood productionintourbanspaces,enablinglocalcommunitiestogrowfresh produceandimproveaccesstonutritiousfood.

Project3:StandingDeskConverter

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

1. Explainhowprolongedsittingimpactshealthanddescribehowergonomicdesigncan improveposture,energy,andproductivity.

2. UseCADsoftwaretodesignastandingdeskconverterthatincludesadjustablefeatures, stablejoinery,andfitswithinlasercutterconstraints.

3. Assembleandevaluatealaser-cutdeskconverter,applyingpeerfeedbacktoimprove strength,adjustability,andusercomfort.

Materials

Vocabulary Term

Ergonomic

Sedentary

Meaning

Broductsdesignedtomaketheworkenvironmentmore efficient,safe,andhealthy

Sittingorlyingdownforlongperiodsoftime,withlittletono physicalactivity

Preparation(TeacherTo-DoBeforeClass)

1. Ensurethatalllaptops/computersarechargedandhaveaccesstotheinternet.Logintothe CADsoftware(Onshapeorotherchosendesignplatform)oneachstudentgroupaccountso thatstudentscanstartimmediately.

2. Checkthatthelasercutterissetup,calibrated,andsafety-testedbeforeclass.Makesure thecuttingbediscleanandaligned.

3. Preparetheapprovedmaterialsheets(e.g.,3mmplywood,acrylic,orcardboard)cutto standardsizesthatfitthemachine’sworkingarea.

4. Printanddisplaythelasercuttersafetyrulesintheclassroom.Reviewemergencystop proceduresandensurethatsafetygogglesareavailableforallstudents.

5. UploadorprepareasampleCADfileandlaser-cutmodelfordemonstration,showingboth thedigitaldesignandthephysicalprototype.

5. Havemeasuringtools(rulers,calipers)readyforstudentstochecktheirdesignsbefore cutting.

6. Confirmthatventilationorfumeextractionisworkingproperlyforsafeoperation.

7. Testthefile-to-machineworkflow(exportingfromCADtolasercuttersoftware)toavoid technicalissuesduringclass.

LearningActivities(Session1)

Introduction

1. Beginbydiscussinghowprolongedsittingcanleadtohealthissueslikebackpain,poor posture,andreducedenergy.

2. Explainhowstandingdeskconvertershelpaddresstheseproblemsbyallowingusersto switchbetweensittingandstandingduringtheday.

3. Usethediagramstoexplorehealthrisks,mechanicaldesignforadjustability,andthe performancebenefitsofstandingmoreoften.

4. Askguidingquestionslike: Whyisitimportanttomovemoreduringtheworkday? Whatroledoesengineeringplayindesigningergonomicfurniture? Howcansmallinnovationsleadtobetterhealthandproductivity?

5. Ensurethatyoureviewkeyvocabularyandconfirmthatallstudentsunderstandthedesign constraintsandprojectexpectations.

1. Readtheproblemscenariowithstudentsandclarifytheclient’sneedforaheightadjustabledeskconverter.

2. Reviewthekeydesignconstraints—supportingalaptopatadjustableheights,flexibility,and comfort.Invitestudentstobrainstormwhatfeatureswouldmakethedeskconverterboth user-friendlyandmechanicallyfunctional.

3. Promptthemtoconsiderhowtheywillapproachdesigningastableandadjustable structureusingOnshapeorphysicalmodeling.

Createarectanglewithonetabstickingoutandusethesketchfillettooltoroundthe cornersforasleekaesthetic.Itisuptoyoutodecidehowlargeyourstandshouldbe, dependingonthesizeofyourdevice. 5

Createasketchandthenextrudeittocreateaverticalpanel.Createanothersketchwitha linearpatternofverticalrectangleswithmaterialremovedthatthelaptopstandcanbe placedon. 6

Havestudentsreviewthe“MeasureYourSuccess”sectiontoconfirmthattheirstandingdesk converterallowsforsmoothheightadjustment,supportstheweightofalaptop,andfitswithin anysizeormaterialconstraints.Encouragethemtotesttherangeofmotionandstabilityof theirdesign,checkingwhetherthelaptopstayssecureatdifferentheightsandangles.

Havestudentspairupandtesteachother’sstandingdeskmodels.Eachstudentshould identifyonefeaturethatsupportsergonomicuseandonesuggestiontoimproveadjustability orstrength.Encouragethemtofocusonhingedesign,usercomfort,andeaseofusewhen offeringfeedback.

LearningActivities(Session2)

Challenge

1. Hidepart2byclickingontheeyeiconforabetterobservationoftheobject.

2. Onthetopsideviewdrawtheedgesofthestandwiththesamedimensionsasthefirst piece(thiswillbelikeaholeforittobeattachedtoit).

3. Usetheoffsettooltodrawtheedgesoftheholewhichwillholdthestand,thencomplete therectangle.

4. Extrudethefaceofthepiecewith0.3thickness.

5. Movethepositionofthestandtotheendoftheobjecttosupportit.Thiscanbedoneby using“transform”toolthenselect“translatebyx,y,z”thenmovingtheobjectonthezaxis.

Havestudentscheckwhethertheirbottompiecefitstightlyintothestandandsupportsthe overallstructure.Theyshouldreviewthejoineryforstabilityandensurethebottomprevents wobblingortippingwhenalaptopisplacedontop. Test

Pairstudentstorevieweachother’sdesigns.Eachstudentshouldidentifyonestrength(e.g., stability,goodalignment)andofferonesuggestionforimprovement(e.g.,tabsize,material fit).Encouragefeedbackfocusedonstructuralsupportandhowwellthepieceintegrateswith theoverallstand.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

Withahypotenuseof13”andaratioofleglengthsof16:9,setuptheequation:

ANSWER2

Howmany11.33”x6.37”rectanglesfitina24”x36”sheet?

=2.1->rounddownto2wholelengths

=5.6->rounddownto5wholewidths

2x5 =10rectangles.

Checkhowmanyrectanglesfitiftheyareturnedhorizontally:

=3.7->rounddownto3wholewidths

=3.2->rounddownto3wholelengths

3x3 =9rectangles

10>9,sothemaximumnumberofrectanglesthatcanbefitis10. Studentscanalsocheckmixingandmatchingtheorientations,buttherewillnotbeenough roomtofitmorerectangles.

ANSWER3

1.7mx0.001=0.0017m =0.17cm

Astandingdeskconverterhelpsaddressgoodhealthandwellbeingby

Productdesignersandhealthcoachescanuseastandingdeskconverterto promotegoodhealthandwellbeingbyencouragingmoremovementand reducingsedentarybehavior,whichhelpsimproveposture,energylevels,and long-termphysicalhealth.

LearningObjectives

Project4:CarModel LessonPlan

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

1. Describehowfrictionandsurfacetypeaffectthespeedandmovementofacarmodel, connectingtheseconceptstoreal-worldexamples.

2. UseCADsoftwaretodesignalaser-cutcarwithaccuratewheelplacementandjoinerythat supportssmoothmotion.

3. Assembleandtestacarmodelondifferentsurfaces,analyzeperformanceresults,and suggestdesignimprovementsbasedonfrictionandstability.

Materials

Vocabulary

Frictional

Coefficient

Mechanics

Forcethatresiststhemotionoftwoobjectsrubbing together

Numericalvaluethatrepresentshowmuchresistance thereisbetweentwosurfaceswhentheyslideagainst eachother

Abranchofphysicsthatstudieshowforcesaffectthe motionofobjects

Preparation(TeacherTo-DoBeforeClass)

1. Ensurethatalllaptops/computersarechargedandhaveaccesstotheinternet.Logintothe CADsoftware(Onshapeorotherchosendesignplatform)oneachstudentgroupaccountso thatstudentscanstartimmediately.

2. Checkthatthelasercutterissetup,calibrated,andsafety-testedbeforeclass.Makesure thecuttingbediscleanandaligned.

3. Preparetheapprovedmaterialsheets(e.g.,3mmplywood,acrylic,orcardboard)cutto standardsizesthatfitthemachine’sworkingarea.

4. Printanddisplaythelasercuttersafetyrulesintheclassroom.Reviewemergencystop proceduresandensurethatsafetygogglesareavailableforallstudents.

5. UploadorprepareasampleCADfileandlaser-cutmodelfordemonstration,showingboth thedigitaldesignandthephysicalprototype.

5. Havemeasuringtools(rulers,calipers)readyforstudentstochecktheirdesignsbefore cutting.

6. Confirmthatventilationorfumeextractionisworkingproperlyforsafeoperation.

7. Testthefile-to-machineworkflow(exportingfromCADtolasercuttersoftware)toavoid technicalissuesduringclass.

LearningActivities(Session1)

Introduction

1. Beginbyexplaininghowcarsrelyonphysicstomoveefficiently,especiallytherolesofspeed andfriction.

2. Highlightthatstudentswillexploretheseconceptsbybuildingandtestinglaser-cutmodel cars.

3. Discusshowdifferentsurfaces(likewood,carpet,orplastic)affectperformance,andhow analyzingfrictioncanhelpimprovesafetyandspeed.

4. Usereal-worldexamplessuchascarskiddingorslowingdowntohelpstudentsconnectthe concepttodailylife.

5. Youcanaskquestionslike: Whathappenswhenfrictionistoolowortoohigh? Whyistestingondifferentsurfacesimportant? Howcancardesignaffectperformanceandsafety?

6. Ensurethatyoureviewkeyvocabularyandconfirmthatallstudentsunderstandthedesign constraintsandprojectexpectations.

Readthe“DefinetheProblem”sectionwithyourstudents.Emphasizethattheyarehelpinga physicsclassunderstandfrictionbydesigningcarsthatcanbetestedonvarioussurfaces. Reviewthegoalsofaccuratemodelingandexplaintheimportanceoffiledesignforlaser cutting.Encouragestudentstothinkaboutwhatfeatureswillaffectthecar’sspeedand traction.

Test

Havestudentsrevisitthe"MeasureYourSuccess"sectionandtesttheircarmodelsondifferent surfacessuchaswood,carpet,andplastic.Askthemtoobservehowfrictionaffectsthecar’s speedandmovementoneachsurface.Ensurethatthemodelsarefullyassembled,stable, andcutaccuratelyfromthelaserfiles.Encouragestudentstorecordandcompareresultsto understandwhichdesignperformsbestunderdifferentfrictionconditions.

Share&improve

Pairstudentsuptorevieweachother’scardesigns.Eachstudentshouldpointoutone strengthintheirpartner’smodelandsuggestoneimprovement.Focusthediscussiononhow wellthecarmoves,howthematerialsandwheelplacementaffectperformance,andwhether thedesigncouldbeadjustedtohandlefrictionbetter.Guidestudentstomakethoughtful changesbasedontestresultsandpeerfeedback.

LearningActivities(Session2)

Challenge

1. Openanewsketchonthefaceof oneofthewheels.UsetheDimension tooltodrawanewinnercirclethat matchestheshaftdiameterofyour motororaxle.Then,addasecond circlewithasmallerouterdiameter thantheoriginalwheel.

2. Selectthenewsketchandusethe Extrudetool.Besuretochoose“New” insteadof“Add”sotheextrusion becomesaseparatepart,notan extensionofthewheel.

3. (Optional)Createanotherversionofthepartwithaslightlysmallershaftdiameter.Thiswill giveatighterfit,whichmayhelpthewheelsstaymoresecurelyontheshaftduringtesting.

4. Duplicatetheobject4times.

Test

Havestudentstesttheircompletedcardesignsonvarioussurfacesandrecordhowfarorfast thecarsmove.Guidethemtocompareperformanceandfrictionlevels.Encouragethemto observewhichmaterialsproducethemostandleastresistanceandusethisdatatorank surfacefrictionintheprovidedchart.

Letstudentspairuptoexchangeobservationsandfeedback.Eachstudentshouldidentifyone effectivedesignfeatureandonesuggestionforimprovementintheirpartner’scar.Encourage focusonhowthecarhandlesfriction,wheelstability,andmotionconsistency.Invitestudents tomodifytheirdesignsbasedonfeedbackandsurfacetestingresults. Share&improve

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

Therateofchangeofthecar’spositiononthesmoothfloor,movingfrom0to9cmin6 seconds,ishigherthantherateofchangeofthecar’spositiononthecarpet,whichmoves from0to5cmin6seconds.Mathematically:

ANSWER2

Thecar’saccelerationisthefastestfrom0-1s,sincetheslopeisthesteepest(2cm/s/1s=2 cm/s) 2

Africtioncarmodelcanhelppromotequalityeducationbyofferingahandson,visualwayforstudentstolearnaboutphysicsconceptslikeforce,motion, andenergy,makingabstractscienceandengineeringtopicsmoreaccessible andengaging.

Anautomechanicandmechanicalengineercoulduseafrictioncarmodelfor trainingpurposesoratacareerdaytoteachstudentsortraineesaboutbasic mechanicalprinciples,vehicledynamics,andproblem-solvingskills,sparking interestintechnicalcareersthroughinteractivelearning.

AssessmentGuide

AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.

Getasnapshotof students’starting knowledgebefore onboardinginSTEM.

StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.

Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.

Pre-Assessment(optional)

Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.

Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.

Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning

TeacherTips:

Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.

KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K

Math&ScienceConnection

Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.

Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.

TeacherTips: just grading tools

Userealtools:Rulers,scales,charts,simplecoding tools.

Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.

Linktostandards:Alignwithbothmathandscience

Link to sta goals.

Self-AssessmentRubrics

TeacherTips:

Introducerubricsearly:Define"what successlookslike."

Modelreflection:Scoresamplework together.

Selfandpeerreview:Studentsrate anddiscuss.

Askreflectivequestions:“Whatwas yourbiggestchallenge?”

Celebratehonesty:Praiseaccurate self-assessment.

Post-Assessment:CapstoneProject

Self-reflectonyourworkonthisproject.

Icanbreakdown aproblem.

Icandevelopa workingprototype.

Icancodemyprototype todowhatIwant.

Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.

Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.

Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.

STEMInnovationFair

Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.

Possiblepresentationformatsinclude:

Interactivedemonstrations

Postersessions

Digitalportfolios

PitchpresentationsmodeledafterprofessionalSTEMconferences

nforcing rn how to celebrating education w

Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.