Teacher Guide - Level 8

Page 1


TeacherGuide-DataScienceLevel8

Teacher Guide

Copyright©2024

Copyright © 20

Author: NatashaKarampela

Editors: LindseyOwnandErinGoodwin

ISBN: 978-981-17737-2-3

Publishedby:

SKOOL21PTE.LTD.-Singapore

DUOTower,Level8#831

3FraserStreet,189352,Singapore

Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods,withoutthe priorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.

Forpermissionsorinquiries,pleasecontact:

Email: info@skool21.org

Website: https://skool21.org

Preface

WelcometotheFutureofTeachingandLearning!

Welcome to th

Thank you for joi designed not on meaningful, han young innovato science, technol

BuildingonaStrongFoundation

Each level of the

novators series is teachers to lead es, you will guide challenges using creating a strong

Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).

EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.

LearningbyDoing

AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.

MakingaReal-WorldImpact

Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.

TeachingLikeaPro

TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.

Building on a not just leaders, and c

IntroductiontotheKit

ABOUTDATABOTS

TheDatabotsKitisaninteractivelearningsolution thatcombinesprogrammablemini-robotswith real-worlddataanalysis.Itprovidesstudentswith thetoolstoexplorefundamentalconceptsindata collection,visualization,andAI-drivendecisionmaking.Whetherintheclassroom,STEMlabs,or extracurricularprograms,thiskitfosterscritical thinking,problem-solving,andcomputationalskills.

SETUPYOURDATABOT

Databotisacuboidwith16sensorsthatcansenddatatoafreeapplication calledVizeeyforvisualization.

Takeyourdatabotoutofthepackageandlocatethechargingport,which isthesidewithasingleportandhasthe“<-X->”axis.Italsowillsay “Power”insmalllettersontheprintedcircuitboard(PCB).Plugitintoa standard5Vsourcetochargeforanhourtocharge.Thebatterywilllastfor 4-6hours.

on the “<B Th d

Whileitischarging,youcanturnitonwiththe“on”switchthatisonthe“<Y->”axisside.TheswitchisverysmallandembeddedinthePCB.Thered andblueLEDs(labelledLED1andLED2onthePCB)shouldturnonwhileitis charging.Notethatthedevicecanbeusedwhileitischarging.

Lookatthedatabotandidentifywherethedifferentsensorsarelocatedon thecuboid.

TheDatabotsKitismorethanjustacodingtool—it’sagatewaytotheworldof datascience,preparingstudentsforcareersinAI,machinelearning,andbeyond.

Letthejourneybegin!

LessonStructure

Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:

Lessonobjectives

NGSSStandards

CambridgeScienceStandards

ISTEStandardsConnections

CambridgeMathStandards

CommonCoreMathStandards

DefinetheProblem

Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.

GettingStarted

Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.

DesignandPlan

Build-Test-Improve

Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.

Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.

MathandScienceConnection/Reflect

Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.

TheEngineeringDesignProcess ocess

TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.

Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.

Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.

forming a str

FosteringSocialSkills

STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.

Keysocialskillsdevelopedinclude:

Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.

Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.

Collaboration EmpathyandRespect

Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.

Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.

Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.

Communication

Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.

Problem-Solving

Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.

TimeManagement

Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.

PresentationSkills

Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.

Teamworking

Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.

TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.

academic su

MakerspaceSetup

Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.

SpaceDesign:

Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).

MaterialsManagement:

Ensurethatkitsarecompleteandaccessiblebefore eachproject.

Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.

RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.

SharedResources:

ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.

SafetyFirst: Keep a fi

Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.

STEMClassroomManagement

STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.

STEMClassSessionRoutine

Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:

90-minuteproject (Grade3toGrade12)

Grade 3 to Grade 12)

5-minute

45-minuteproject (Pre-KtoGrade2)

o ect Pre-K to Grade 2)

SpaceOrganization:

Provideracksoropenshelvestostorekitsneatlyandaccessibly.

ToolandMaterialsRules:

Usetoolswithcare–noplayingormisusingmaterials.

Returneverythingtoitslabeledplace.

Askbeforetakingextrasupplies.

Handstoyourself—respectothers’creationsandspace.

Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.

Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.

Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.

GroupManagementwithTeamRoles

Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:

Leader

MaterialManager Reporter

TestingSupervisor

Keepsteamontask,trackstime,encourages collaboration.

Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.

Sharesoutcomes,challenges,andsolutionswiththeclass.

Evaluatesthemodel,givesfeedback,suggestschanges.

ImplementationGuide

TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:

IntegratedApproach

EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.

Advantages:

Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.

Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).

Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.

PracticalTips:

Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).

Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.

Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.

Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.

connect

Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.

Stand-AloneClassApproach

ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.

Advantages:

Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).

Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.

Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.

PracticalTips: g

Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.

Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass

Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.

Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.

Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).

Extra-CurricularApproach

RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.

Advantages:

Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.

Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.

Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).

Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).

PracticalTips:

Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.

Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness. Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.

Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.

Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.

HybridApproach (BlendingAllModels)

Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.

Whentointegrate:

Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.

Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.

Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”

Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.

(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)

StandardsAlignment

DataCollection8.NS.A.1 8Ss.04

8.EE.C.7 8Ae.04

8.F.B.5 8As.07

Analyze

Interpretand communicate

MS-PS1-38Cp.01

MS-PS4-28Ps.04

MS-LS1-58Bp.03

MS-PS4-28TWSc.07DataCollection8.F.B.4 8As.04

8.F.A.3 8Ae.04

8.G.A.5 8Gg.11

8.SP.A.1 8Ss.05

8.EE.C.8.c8Ae.06

Testand interpret

Statistical investigation

Statistical investigation

MS-ESS3-58ESc.02

MS-ESS3-28SIC.02

MS-PS4-28Ps.04

MS-PS2-28Pf.03 Statistical investigation

1 AirQuality Analysis 60-90minSDG3

2 UV-Protection ProductTesting 60-90minSDG12

3JumpCounter60-90minSDG3

4SoundproofWalls60-90minSDG1

5 Greenhouse Effect 60-90minSD G1 3

6 Landslide prevention 60-90minSDG9

7BlackoutCurtains60-90minSDG5

8 Package Parachute 60-90minSDG2

Collect/Consider Data

MS-PS3-38TWSa.04

8.EE.B.5 8As.03 9 SplitThermal Lunchbox 60-90minSDG4

8.EE.C.7 8As.04

Interpretand Communicate

MS-PS3-28Pe.01

MS-ETS1-18SIC.02 AnalyzeData8.SP.A.4 8Ss.05

MS-PS4-38TWSa.02AnalyzeData8.F.B.5 8As.07

8.F.B.4 8As.04

Collect/Consider Data

8.F.B.4 8As.04

Interpretand communicate

8.G.B.8 8Gp.01

Interpretand Communicate

MS-ETS1-18Pf.05

10MaglevTrains60-90m inS DG7

11BlindSpotSensor60-90minSDG9

12 Conductor Converter 60-90minSDG10

13BalanceBallChair60-90minSDG8

MS-ETS1-18Bp.03. A s . 0 4 G p 0 1

MS-LS1-78Bs.04

MS-PS2-28Pf.03

AltitudeSickness Alarm 60-90minSDG15

14

15 BikeStability Monitor 60-90minSDG11

16CapstoneProject60-90minSDG3

CambridgeScienceAlignment

LearningObjective

ThinkingandWorkingScientifically

8TWSc.07 Collectandrecordsufficientobservationsand/or measurementsinanappropriateform.

8TWSa.02 Describetrendsandpatternsinresults,including identifyinganyanomalousresults.

8TWSa.04 Evaluateexperimentsandinvestigations,andsuggest improvements,explaininganyproposedchanges.

Structureandfunction

8Bs.04 Describethediffusionofoxygenandcarbondioxidebetween bloodandtheairinthelungs.

Lifeprocesses

8Bp.03 Discusshowhumangrowth,developmentandhealthcanbe affectedbylifestyle,includingdietandsmoking.

Propertiesofmaterials

8Cp.01 Understandthattheconcentrationofasolutionrelatestohow manyparticlesofthesolutearepresentinavolumeofthesolvent.

Forcesandenergy

8Pf.03 Describetheeffectsofbalancedandunbalancedforceson motion.

8Pf.05 Explainthatpressureiscausedbytheactionofaforce,exerted byasubstance,onanarea(pressure=force/area).

Lightandsound

8Ps.04 Describehowcoloursoflightcanbeadded,subtracted, absorbedandreflected.

Electricityandmagnetism

8Pe.01 Describeamagneticfield,andunderstandthatitsurroundsa magnetandexertsaforceonothermagneticfields.

CyclesonEarth

8ESc.02 UnderstandthattheEarth'sclimatecanchangedueto atmosphericchange.

ScienceinContext

8SIC.02 Describehowscienceisappliedacrosssocietiesand industries,andinresearch.

8SIC 02 Describe h industries, and in r

NGSSAlignment

LearningObjective

EarthandHumanActivity

MS-ESS3-5. Askquestionstoclarifyevidenceofthefactorsthathave causedtheriseinglobaltemperaturesoverthepastcentury.

MS-ESS3-2 Analyzeandinterpretdataonnaturalhazardstoforecast futurecatastrophiceventsandinformthedevelopmentof technologiestomitigatetheireffects.

EngineeringDesign

MS-ETS1-1 Definethecriteriaandconstraintsofadesignproblem withsufficientprecisiontoensureasuccessfulsolution,takinginto accountrelevantscientificprinciplesandpotentialimpactson peopleandthenaturalenvironmentthatmaylimitpossiblesolutions.

FromMoleculestoOrganisms:StructuresandProcesses

MS-LS1-5 Constructascientificexplanationbasedonevidencefor howenvironmentalandgeneticfactorsinfluencethegrowthof organisms.

MS-LS1-7 Developamodeltodescribehowfoodisrearranged throughchemicalreactionsformingnewmoleculesthatsupport growthand/orreleaseenergyasthismattermovesthroughan organism.

MatteranditsInteractions

MS-PS1-3 Gatherandmakesenseofinformationtodescribethat syntheticmaterialscomefromnaturalresourcesandimpactsociety.

WavesandtheirApplications

MS-PS4-2 Developanduseamodeltodescribethatwavesare reflected,absorbed,ortransmittedthroughvariousmaterials.

MS-PS4-3 Integratequalitativescientificandtechnicalinformationto supporttheclaimthatdigitizedsignalsareamorereliablewayto encodeandtransmitinformationthananalogsignals.

MotionandStability

MS-PS2-2 Plananinvestigationtoprovideevidencethatthechange inanobject’smotiondependsonthesumoftheforcesontheobject andthemassoftheobject.

Energy

MS-PS3-3 Applyscientificprinciplestodesign,construct,andtesta devicethateitherminimizesormaximizesthermalenergytransfer.

Develop of objects interact

MS-PS3-2 Developamodeltodescribethatwhenthearrangement ofobjectsinteractingatadistancechanges,differentamountsof potentialenergyarestoredinthesystem.

CambridgeMathematics Alignment

Algebra

8Ae.04 Understandthatasituationcanberepresentedeitherin wordsorasanalgebraicexpression,andmovebetweenthetwo representations(linearwithintegerorfractionalcoefficients).

8Ae.06 Understandthatasituationcanberepresentedeitherin wordsorasanequation.Movebetweenthetworepresentations andsolvetheequation(integerorfractionalcoefficients,unknown oneitherorbothsides).

8As.03 Understandthatafunctionisarelationshipwhereeach inputhasasingleoutput.Generateoutputsfromagivenfunction andidentifyinputsfromagivenoutputbyconsideringinverse operations(includingfractions).

8As.04 Understandthatasituationcanberepresentedeitherin wordsorasalinearfunctionintwovariables(oftheformy=mx + c),andmovebetweenthetworepresentations.

GeometryandMeasure

8Gg.11 Recogniseanddescribethepropertiesofanglesonparallel andintersectinglines,usinggeometricvocabularysuchas alternate,correspondingandverticallyopposite.

8Gp.01 Understandandusebearingsasameasureofdirection.

StatisticsandProbability

8Ss.04 Useknowledgeofmode,median,meanandrangeto comparetwodistributions,consideringtheinterrelationship betweencentralityandspread.

8Ss.05 Interpretdata,identifyingpatterns,trendsandrelationships, withinandbetweendatasets,toanswerstatisticalquestions. Discussconclusions,consideringthesourcesofvariation,including sampling,andcheckpredictions.

CCSSMathematicsAlignment

LearningObjective

8.NS.A.1 Knowthatnumbersthatarenotrationalarecalled irrational.Understandinformallythateverynumberhasadecimal expansion;forrationalnumbersshowthatthedecimalexpansion repeatseventually,andconvertadecimalexpansionwhich repeatseventuallyintoarationalnumber.

ExpressionsandEquations

8.EE.B.5 Graphproportionalrelationships,interpretingtheunitrate astheslopeofthegraph.Comparetwodifferentproportional relationshipsrepresentedindifferentways.Forexample,compare a distance-timegraphtoadistance-timeequationtodetermine whichoftwomovingobjectshasgreaterspeed.

8.EE.C.7 Solvelinearequationsinonevariable.

8.EE.C.8.c Solvereal-worldandmathematicalproblemsleadingto twolinearequationsintwovariables.Forexample,given coordinatesfortwopairsofpoints,determinewhethertheline throughthefirstpairofpointsintersectsthelinethroughthe secondpair.

Functions

8.F.A.3 Interprettheequationy=mx+basdefiningalinear function,whosegraphisastraightline;giveexamplesoffunctions thatarenotlinear.Forexample,thefunctionA=s2givingthearea ofasquareasafunctionofitssidelengthisnotlinearbecauseits graphcontainsthepoints(1,1),(2,4)and(3,9),whicharenotona straightline.

8.F.B.4 Constructafunctiontomodelalinearrelationshipbetween twoquantities.Determinetherateofchangeandinitialvalueof thefunctionfromadescriptionofarelationshiporfromtwo(x,y) values,includingreadingthesefromatableorfromagraph. Interprettherateofchangeandinitialvalueofalinearfunctionin termsofthesituationitmodels,andintermsofitsgraphoratable ofvalues.

8.F.B.5 Describequalitativelythefunctionalrelationshipbetween twoquantitiesbyanalyzingagraph(e.g.,wherethefunctionis increasingordecreasing,linearornonlinear).Sketchagraphthat exhibitsthequalitativefeaturesofafunctionthathasbeen describedverbally.

Geometry

8.G.A.5 Useinformalargumentstoestablishfactsabouttheangle sumandexteriorangleoftriangles,abouttheanglescreated whenparallellinesarecutbyatransversal,andtheangle-angle criterionforsimilarityoftriangles.Forexample,arrangethree copiesofthesametrianglesothatthesumofthethreeangles appearstoformaline,andgiveanargumentintermsof transversalswhythisisso.

8.G.B.8 ApplythePythagoreanTheoremtofindthedistance betweentwopointsinacoordinatesystem.

StatisticsandProbability

8.SP.A.1 Constructandinterpretscatterplotsforbivariate measurementdatatoinvestigatepatternsofassociationbetween twoquantities.Describepatternssuchasclustering,outliers, positiveornegativeassociation,linearassociation,andnonlinear association.

8.SP.A.4 Understandthatpatternsofassociationcanalsobeseen inbivariatecategoricaldatabydisplayingfrequenciesand relativefrequenciesinatwo-waytable.Constructandinterpreta two-waytablesummarizingdataontwocategoricalvariables collectedfromthesamesubjects.Userelativefrequencies calculatedforrowsorcolumnstodescribepossibleassociation betweenthetwovariables.

SchemeofWork

SessionObjectivesMaterials

Lesson1:LEDTest

1 (45mins)

Setupandprogram a Databotusing Microblocks.

InnovatorsBook

Databotkit Computer

Lesson2:UsingtheTiltSensor

2 (45mins)

UseMicroblocksto readandgraphtilt sensordata.

Innovators Book

Databotkit Computer

Lesson3:Savingdatatoa.csvfile

3 (45mins)

Storeandsave sensordatainCSV filesusing Microblocks.

Innovators Book

Databotkit Computer

Describethe functionsand usesofa Databot.

Explainhowatilt sensordetects motionor position.

Explainhow soundsensors collectand record environmental data.

Lesson4:ControlOutputsWithanInput

4 (45mins)

Programsensorsto controlDatabot outputsusing Microblocks.

Innovators Book

Databotkit Computer

Project1:AirQualityAnalysis

5 (45mins)

6 (45mins)

IdentifyVOCsources andmeasurelevels

Designandprogram aVOCalarm

Innovators Book

Databotkit Computer Lighter

Fan

Related Science Related Math Sustainability Themes

Applyblockbasedcoding logictocontrol DatabotLEDs.

Interprettilt sensorvalues usinggraphical representations

Organizesensor readingswith timestampsfor dataanalysis.

tainability

Explainhow sensors influence outputslikelight andsound.

Analyzesensor valuechanges andresulting output behaviors.

Explainhow VOCsaffect humanhealth andindoorair quality.

Project2:UV-ProtectionProductTesting

7 (45mins)

8 (45mins)

MeasureUVindex andtestmaterials usingthedatabot sensor.

Programadatabot systemtosignalUV exposurelevels.

Project3:JumpCounter

9 (45mins)

10 (45mins)

Innovators Book

Databotkit Computer Polarized Sunglasses Non-polarized Sunglasses

Useaccelerometer datatodetectand recordjumps.

Innovators Book

ExplainUV radiationandits effectsoneyes andskin.

Recordand analyzeVOC readingsin ppmacross environments.

Recordand compareUV readingsto evaluate product effectiveness.

Programasystemto countandsavetotal jumps.

co jum

Databotkit Computer JumpRope

Explainhow accelerometers measure movementand support cardiovascular health.

Analyzeand storejump countsusing thresholdsand CSVfiles.

Project4:SoundproofWalls

11 (45mins)

12 (45mins)

Measuresoundlevelsin decibelsusingthe databotsensor.

Testfabricsandidentify themosteffective soundproofingmaterial.

Project5:GreenhouseEffect

13 (45mins)

14 (45mins)

MeasureCO₂ and temperaturechanges usingdatabot sensors.

Recordandcalculate averageCO₂ and temperatureduring combustion.

Innovators Book

Databotkit

Computer Shoebox withlid

Innovators Book

Databotkit

Computer Airtight container

Project6:Landslideprevention

15 (45mins)

16 (45mins)

Measureslopeangles withdatabotto identifycriticalsoil movement.

Programanalarm systemtowarnof unstableslopes.

Innovators Book

Databotkit

Computer Plasticbin

Project7:BlackoutCurtains

17 (45mins)

18 (45mins)

Measurelightlevels withdatabottotest fabriccoverings.

Recordandcompare fabricdatatofind bestblackout material.

Innovators Book

Databotkit

Computer Spraybottle

Project8:PackageParachute

19 (45mins)

20 (45mins)

Measureacceleration withdatabottostudy fallingmotion.

Designandtest parachutestoreduce package acceleration.

Innovators Book

Databotkit

Computer Flashlight Assorted fabrics

Project9:SplitThermalLunchbox

21 (45mins)

22 (45mins)

Measuretemperature changesusingthe databotsensor.

Explainhow materialsblock orabsorbsound waves.

Recordand comparesound datausingCSV files.

Innovators Book

Databotkit

Explainhow greenhouse gasestrapheat andaffect climate.

Analyzesensor dataand compute averagesfrom CSVfiles.

Explainhow gravity,friction, andsoil conditionsaffect landslides.

Recordand analyzetilt sensordatato determine criticalangles.

Explainhowlight affects melatoninand sleepquality.

Collectand analyze brightnessdata usingCSVfiles.

Explainhow gravityandair resistanceaffect fallingobjects.

Recordand analyze acceleration datausingCSV files.

Explainhowheat transferaffects foodsafety.

Recordand compare temperature datausingCSV files.

ma be

Testinsulating materialstoidentify bestheatbarrier.

Computer Lunchbox

Project10:MaglevTrains

23 (45mins)

24 (45mins)

Measuremagneticfield strengthusingthe databotsensor.

Recordandcompare magnetsetupsfor stablelevitation.

Project11:BlindSpotSensor

25 (45mins)

26 (45mins)

Measureproximity valueswithdatabotto simulateblindspots.

Programanalert systemforblindspot detection.

Innovators Book

Databotkit

Computer

Innovators Book

Databotkit

Computer

Cardboard

Project12:ConductorConverter

27 (45mins)

28 (45mins)

Detectanddisplay handgesturesusing thedatabotsensor.

Programgesturesto triggermetronome beepsforrhythm.

Innovators Book

Databotkit

Computer

Blindfold

Project13:BalanceBallChair

29 (45mins)

30 (45mins)

Exploreballpressure& AIposturedetection.

Testinflationlevels, recordcomfort,and analyzeresults.

Innovators Book

Databotkit

Computer Airpump

Project14:AltitudeSicknessAlarm

31 (45mins)

32 (45mins)

Measurealtitude changeswithdatabot inscalemodel.

ProgramalarmwithLED colorsandlogaltitude data.

Innovators Book

Databotkit

Computer

Project15:BikeStabilityMonitor

33 (45mins)

34 (45mins)

Measurebiketiltvalues toexplorestabilityand wobbling.

Testbikestability, programalerts,and calculateminimum safespeed.

Innovators Book

Databotkit

Computer

Meterstick Timer

Explainhow balancedforces enablemagnetic levitation.

Collectand analyze magneticfield datainCSV files.

Explainhowblind spotscreate risksfordrivers andpedestrians.

Recordand analyze proximitydata usingCSVfiles.

Explainhow gesturesensors translatemotion intosignals.

Recordand analyzegesture datausingCSV files.

Explainhow inflationaffects postureand ergonomic support.

Recordand analyze pressurevalues withcomfort ratings.

Explainhow reducedair pressurecauses altitudesickness.

Recordand analyzealtitude thresholddata using.csvfiles.

Explain relationship betweenspeed, tilt,andbicycle stability.

Measure distance,time, andcalculate bikingspeed.

CapstoneProject

35 (45mins)

36 (45mins)

Brainstormfitness problemsanddesign a databot-based prototype.

Innovators Book

Databotkit

Explainhow sensorsmeasure bodymovement orfitnessactivity.

Collect,record, andanalyze numerical fitnessdata.

Testprototype,record results,andsuggest improvements.

Te res im

Computer

LessonPlans andAnswerkey

Project1:AirQualityAnalysis LessonPlan

LearningObjectives Duration: 90minutes

Bytheendofthislesson,studentswillbeableto:

1. Explainwhatvolatileorganiccompounds(VOCs)are,identifywheretheycomefromin everydayenvironmentsanddescribewhytheymaybeharmfultohumanhealth.

2. Usethedatabot’sSGP30sensortoaccuratelymeasureVOClevelsindifferentindoorand outdoorconditions.

3. Designandprogramafunctionalsystemthatusesthedatabottoalertuserswithanaudio orvisualsignalwhenVOClevelsriseaboveathresholdthat indicatespoorairquality.

4. Proposepracticalsolutionsforimprovingindoorairqualityandreducinghumanexposure toharmfulcompounds,whileconnectingthislearningtoreal-worldworkplaces.

Materials

Vocabulary

VOCs(VolatileOrganic Compounds)

PPM(PartsPerMillion)

Gasesemittedintotheairfromproductsorprocessessuchassprays, paints,orcleaningsolutions,whichmaybeharmfulwheninhaled.

Aunitofmeasurementthatexpressestheconcentrationofagasinthe air,usedtoevaluatewhetherlevelsaresafeorunhealthy.

AtypeofVOCthatdissolvesothersubstancesandcancontributeto indoorandoutdoorairpollution.

Achemicalcompoundcommonlyfoundinnailpolishremoverthat evaporatesquickly,isclassifiedasaVOC,andcancauseirritationto theeyes,skin,andlungs.

Preparation(TeacherTo-DoBeforeClass)

1. Ensurethatalldatabotdevicesarefullychargedandfunctioningbeforethelessonbegins.

2. Open microblocks.fun/run/microblocks.htmloneachstudentcomputerandverifythatthe USBconnectionsareworkingproperly.

3. Pre-loadthedatabotlibraryandtestasimpleprogramthatreadsanddisplaysVOCvalues, soyoucandemonstratehowthegraphingsystemworks.

4. Prepareasafedemonstrationenvironment.Keepwindowsopenorfansrunningand remindstudentsaboutsafetywhentestingwithhairspray,nailpolishremover,orcandles. Providemasksifpossibletoreduceexposureduringtesting.

5. BuildandtestanexampleprogramthatgraphsVOClevelsinpartspermillionandusesa conditionalblocktotriggeranalert(suchasasoundorflashingLED)whentheVOCssurpass anunhealthylevel.Thiswillserveasareferenceforstudentswhomayneedextraguidance.

Grade8 InnovatorsBook Databotwith SGP30sensor
USBCableand Computer
Hairspray
NailPolish Remover Candleand Lighter Fan

LearningActivities(Session1)

Introduction

1. Beginwithadiscussionbyaskingstudents:“Whatdoyounoticewhensomeoneusesnail polishremover,lightsacandle,orsprayshairsprayinaroom?”Guidethemtothinkabout strongsmellsandinvisiblefumes.

2. Explainthattheseproductsreleasegasescalledvolatileorganiccompounds(VOCs). EmphasizethatVOCscannotbeseen,buttheycanaccumulateintheairandaffecthuman health.

3. Shareexamplesofworkplacessuchasbeautysalonswhereemployeesareregularly exposedtoVOCsandexplainthatlong-termexposurecanleadtorespiratoryillnessesor worsenasthma.

4. Highlighthowscientistsandengineersusedatacollectiontools,likesensorsandgraphs,to measureVOClevelsintheairanddetermineifaspaceissafetobreathein.

DefinetheProblem

1. Readthe“DefinetheProblem”sectionaloudwiththeclass.Thescenariostates:Abeauty salonownerwantstotesthersalon’sventilationtoensurethatitissafetousehairspray,nail polishremover,andcandlesinside.Canyouprogramthedatabottotesttheairqualityand alerttheclientwithanalarmiftheairqualityisunhealthy?

2. Encouragestudentstodiscusswhyitisimportantforasalonownertomonitorairquality andaskthemtobrainstormpotentialrisksofpoorventilation.

3. Emphasizethattheirchallengeistodesignasystemthatdetectsharmfulairconditions andprovidesaclearwarningtoprotectpeople’shealth.

MeasureYourSuccess

1. Together,reviewthecriteriaandconstraintsfortheproject:

ThesystemshouldmeasureandreportVOClevelsintheenvironment.

ThesystemshouldnotifytheuserwithaclearsignaliftheVOCsriseaboveanunhealthy level.

Theprojectmustuseonlythematerialsprovided.

Theprogramshouldbeabletosaveorlogthedataforlaterreviewandcomparison.

2. Askguidingquestionssuchas:“Whatshouldoursystembeabletodoinordertosolvethe salonowner’sproblem?”and“Howwillweknowifthesystemisworkingcorrectly?”

GettingStarted

1. DividethestudentsintotheirteamsandhelpthemassignprojectrolessuchasProject Manager,ResourceManager,Communicator,andTester.

2. Reviewthevocabularytermsaloudandaskstudentstoprovideexamplesfromtheirdaily liveswherethesetermsmightapply.

3. AssiststudentsinconnectingthedatabottothecomputerusingtheUSBcable.Verifythat thedatabotisrecognizedbytheMicroblocksprogram.

WireandCode

1. GuidestudentstoaddthedatabotlibraryinMicroblocksandsetuptheSGP30sensor.

2. ExplainhowtocreateavariablecalledVOCtostoresensorreadingsandshowhowthe SGP30producestwovalues(CO₂ andVOC).Studentsshouldselectthesecondvalue,which representsVOClevels.

3. Demonstratehowtoruntheprogram,viewVOCdataonthegraphandinterpretthe changingvalues.

4. Posethequestion:“AtwhatppmlevelsdoVOCsbecomeunsafeindoors?”Guidestudents toexploresourcessuchastheCDCforreferencelevelsandbeginconsideringthresholdsfor theiralarmsystem.

EndofSession1

LearningActivities(Session2)

Introduction

1. BeginwitharecapofSession1byaskingstudentswhattheydiscoveredaboutVOC readingsduringtheirinitialtests.

2. RemindthemwhymonitoringVOClevelsmattersforprotectingbothworkersand customersinindoorspaces.

3. Introducethegoalofthissession:buildingandtestingaworkingVOCalarmsystem.

Challenge

1. Supportstudentsinenhancingtheircodebyaddinganotificationfeaturethatactivates whenVOClevelsexceedasetthreshold.Thisnotificationcouldbeasound,aflashingLED,ora combinationofboth.

2. DemonstratehowtouseanifstatementinMicroblockstocreatetheconditionthattriggers thealert.

3. Encouragestudentstoexperimentwithdifferentwaystomakethealertnoticeable,suchas varyingthepitchordurationofatone,orflashingpatternsonthedatabotLEDs.

4. Ifagroupstruggles,allowthemtoreviewthesamplesolutionandthenadaptittotheirown project.

DesignandPlan

1. Askeachteamtocreateasketchoftheirsystembeforetheybeginbuildingandtesting. Theirsketchesshouldincludethedatabot,thevariableforVOCreadings,thealert mechanismandtheenvironmentalconditionstheyplantotest.

2. Promptteamstoexplaintheirdesignchoices,includingwhatppmleveltheysetasthe thresholdforunhealthyairandwhytheychosetheiralertstyle.

EvaluateandTest

1. Allowstudentstotesttheiralarmsystemsunderdifferentrealconditions,whilemaintaining safetyprecautions(ventilation,teachersupervision).

2. Suggesttestingwiththefollowingscenarios: Indoorswithwindowsclosed Indoorswithwindowsopenbutnofan Indoorswithwindowsopenandafanrunning Indoorswithwindowsclosedbutafanrunning Outdoors

3. HavestudentsrecordtheVOCreadingsinppmforeachconditionandnotewhetherthe systemtriggeredthealarmcorrectly.

4. Askreflectivequestionssuchas:“Didyouralarmactivatewhentheairqualitywaspoor?” and“Whatcouldyouchangeinyourprogramtomakethesystemmorereliable?”

ShareandDiscuss

1. HaveeachgrouppresenttheirVOCalarmsystemtotheclassandsharetheirtestresults.

2. Supportconstructivepeerfeedbackandremindstudentsthatfeedbackisnotonlyabout evaluationbutalsoabouthelpingeachotherimproveideas.

3. Iftimeallows,havestudentsrevisetheirdesignsbasedonthefeedbackreceived.

MathandScienceConnection

SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.

Reflection

1. ReviewtheSustainableDevelopmentGoals(GoodHealthandWell-beingandDecentWork andEconomicGrowth),andbrainstormwithstudentshowthisprojectmightrelatetothese SDGs.(Seeanswerkeyforsuggestions.)

2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.

Clean-Up

1. Remindstudentstodisconnecttheirdatabotdevices,closetheirprograms,andstoretheir equipmentsafely.

2. Collectalltestmaterials,suchasspraysandcandles,andreturnthemtoasafestorage location.

3. Ifpossible,takephotosofeachteam’ssystemtodocumenttheirworkforfuturereflectionor forsharingwithparents.

EndofSession2

Project2:UV-ProtectionProductTesting

LessonPlan

LearningObjectives

Bytheendofthislesson,studentswillbeableto:

Duration: 90minutes

1. Explainwhatultraviolet(UV)radiationisanddescribehowoverexposurecanharmhuman health,particularlytheeyesandskin.

2. UsethedatabotUVsensortomeasuretheUVindexindifferentconditionsandwithdifferent protectiveproducts.

3. DesignandprogramadatabotsystemthatsignalsUVindexvaluesdirectlythroughsound orlightpatterns,withoutrelyingonacomputerdisplay.

4. Comparetheeffectivenessofdifferentprotectivematerials(suchaspolarizedsunglasses, eyeglasses,andwindows)inblockingUVraysandusedatatodrawconclusionsabout productsafety.

Materials

Vocabulary Word Meaning

UV(Ultraviolet)

ElectromagneticWave

Wavelength

Grade8 Innovators Book Databotwith

Atypeofelectromagneticradiationthathasshorterwavelengthsthan visiblelightandisinvisibletothehumaneye.

Awavethattransfersenergythroughelectricandmagneticfields,such aslight,UV,orradiowaves.

Thedistancebetweentwoidenticalpointsonconsecutivewaves,used tomeasurethepropertiesofelectromagneticradiation.

Preparation(TeacherTo-DoBeforeClass)

1. Makesurealldatabotdevicesarechargedandreadyfortestingoutdoors.

2. Open microblocks.fun/run/microblocks.htmlonstudentcomputersandtesttheUSB connection.

3. AddthedatabotlibraryandrunabasicprogramthatreadstheUVindex.

4. PrepareanexampleprogramthatshowshowtodisplayUVindexvaluesandsignalthem withlightorsound.Thiswillserveasamodelforstudentswhoneedextrahelpduringthe codingchallenge.

5. ReviewtheUVindexscaleandpreparetoexplainwhatlevelsaresafe,moderate,high,or extreme.

LearningActivities(Session1)

Introduction

1. Beginthesessionbyasking:“Whathappenswhenwegooutsideonasunnydaywithout sunglassesorsunscreen?”Letstudentssharepersonalexperiences.

2. ExplainthatsunlightcontainsinvisibleUVraysthatcandamageoureyesandskinifweare notprotected.StressthatUVexposureisresponsibleforconditionslikecataractsand sunburnoftheeye(photokeratitis).

3. Highlightthatnotallsunglassesprotectequally.SomemayblockglarebutnotUV radiation,this iswhyscientifictestingofmaterialsisimportantforconsumersafety.

4. ShowstudentstheinfographiconUV-relatedeyedamageandask:“Whydoyouthink scientistsandengineersneedtomeasureUVexposurewhendesigningsafetyproducts?”

DefinetheProblem

1. Readaloudtheproblem:TheproductreviewboardwouldliketocomparehowmuchUV lightpolarizedsunglassesblockcomparedtoothermaterialstoensuretheyprovidesufficient protectionfromharmfulUVrays.Canyouhelpbydesigningasystemtomeasureand comparedifferentproducts?

2. Encourageaclassdiscussionaboutwhytestingisimportantbeforerecommending productstoconsumers.

3. EmphasizethattheirchallengeistocreateasystemthatmeasuresUVexposureand signalsthelevelinawaythatiseasytounderstand.

MeasureYourSuccess

1. Reviewtheproject’scriteriaandconstraints: MustmeasureandreporttheUVlevelsdetectedbythesensor. MustnotifytheuserwhenUVlevelsareaboveanunhealthythreshold. Mustuseonlytheprovidedmaterials. Mustsaveorrecorddataforlateranalysis.

2. Askguidingquestions:“Howwillyouknowifyourprogramisworkingcorrectly?”and“What kindofalertwouldbeclearenoughforsomeoneusingsunglassesoutdoors?”

GettingStarted

1. Havestudentsformteamsandassignroles(ProjectManager,ResourceManager, Communicator,Tester).

2. Reviewvocabularytermsanddiscussexamplesofelectromagneticwavesthatstudents alreadyknow(suchasradio,microwaves,orvisiblelight).

3. Supportstudentsastheyconnectthedatabottotheircomputerandverifythatitis communicatingwithMicroblocks.

WireandCode

1. GuidestudentstoopenMicroblocks,addthedatabotlibrary, andsetuptheUVindexsensor.

2. ShowhowtoruntheprogramandviewtheUVindexvaluesby holdingthedatabotuptothesun.

3. Ask:“WhatlevelsofUVareconsideredunsafeforpeopleif exposedwithoutprotection?”Encouragestudentstoresearch theUVindexscaleandrecorditintheirworkbooks.

EndofSession1

LearningActivities(Session2)

Introduction

1. BeginwitharecapofSession1byaskingstudentswhattheynoticedwhenmeasuringUV levelsdirectlyinsunlight.

2. RemindthemoftherisksofUVexposureandhowsunglassesandwindowscanblockor reduceharmfulrays.

3. Introducetheday’sgoal:tobuildandtestasystemthatsignalsUVlevelsthroughlightsor soundssouserscaneasilyunderstandwhenUVexposureisdangerous.

Challenge

1. Guidestudentstoimprovetheircodesothatthedatabotproducesdifferentsignalsbased ontheUVindexrange.

2. ExplainhowtouseifandelseifblocksinMicroblockstocreateconditionalrules.For example:

IfUV=0 turnLEDsgreen.

IfUVisbetween1–3 beeponceandturnLEDsyellow. IfUVishigh(6+) beeprepeatedlyandflashLEDsred.

3. Encourageteamstodesignuniquepatternsofsoundandlightthatcommunicatethelevel clearlytotheuser.

DesignandPlan

1. AskstudentstosketchhowtheirsystemwilldisplaytheUVindex(lightpatterns,sound sequences)beforeprogrammingit.

2. Promptthemtojustifytheirdesignchoices,suchas:“Whydidyoudecidethatthreebeeps shouldmeanhighUV?”

EvaluateandTest

1. Oncetheprogramsaredownloadedtothedatabot,takestudentsoutsidetotesttheir systems.

2. First,measuredirectsunlighttoestablishthecontrolvalue.Thentestdifferentmaterials suchas:

Non-polarizedsunglasses

Polarizedsunglasses

Normaleyeglassesorreadingglasses

Classroomwindow

Carwindow(tinted)

3. HavestudentsrecordtheUVindexreadingsforeachmaterialinatable.Askreflection questionssuchas:“WhichmaterialsprovidedthestrongestUVprotection?”and“Didyour databotsignalclearlywhenUVwashigh?”

ShareandDiscuss

1. Alloweachteamtopresenttheirsystem,sharetheirresults,andexplainhowwelltheiralerts worked.

2. Supportpeerfeedbackandencourageteamstorefinetheirsystemsbasedonthe feedbacktheyreceive,evenmakingsmallimprovementsiftimepermits.

SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.

Reflection

1. ReviewtheSustainableDevelopmentGoal(ResponsibleConsumptionandProduction),and brainstormwithstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyfor suggestions.)

2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.

1. Havestudentsdisconnectandsafelystoretheirdatabots.

2. Collectallsunglassesandmaterialsandreturnthemtotheirproperplaces.

3. Ifpossible,takeagroupphotoofstudentstestingtheirproductsoutdoorsas documentationoftheactivity. Clean-Up

EndofSession2

Project3:JumpCounter LessonPlan

LearningObjectives

Bytheendofthislesson,studentswillbeableto:

Duration: 90minutes

1. Explainhowanaccelerometermeasureschangesinspeedanddirectionanddescribehow itcanbeusedtotrackhumanmovement.

2. Usethedatabot’saccelerometertodetectjumpsandstoretheresultsinafileforlater review.

3. Designandprogramasystemthatcountsthenumberofjumpsperformedandreportsthe totaltotheuserattheendofthesession.

4. Understandhowjumptrackingcontributestoimprovingcardiovascularhealthand supportshealthierlifestyles.

Materials Grade8 Innovators Book

Vocabulary

Word

Cardiovascular

Accelerometer

CSVfile

and Computer JumpRope

Meaning

Referstoactivitythatincreasesyourheartrate,breathing,sweating, andoverallbloodflow,improvingheartandlunghealth.

Atext-basedfileformat(Comma-SeparatedValues)usedtostore tabulardata,suchasjumpcounts,soresultscanbereviewedlater. Adevicethatmeasuresacceleration,meaningtherateofchangein speedanddirection,bydetectingvibrationsandmotion.

1. Ensurethatalldatabotsarechargedandfunctionalbeforeclassbegins.

2. Open microblocks.fun/run/microblocks.htmlonstudentdevicesandcheckthatUSB connectionsareworkingcorrectly.

3. Addthedatabotlibraryandrunasampleprogramthatdisplaysaccelerometervaluesin realtime,soyoucanshowstudentshowthedevicerespondstomovement.

4. Prepareanexamplejump-countingprogramandtestittomakesurethedatabotcan detectconsistentjumpreadings.

5. Ensureasafetestingenvironmentforstudentstojumpwiththeirropes(enoughopen space,noobstacles,andproperfootwear). Preparation(TeacherTo-DoBeforeClass)

LearningActivities(Session1)

Introduction

1. Beginwithashortdiscussion:“Howcanwemeasurehowactiveweareduringexercise?”Let studentsshareideassuchascountingsteps,heartratemonitors,orfitnesstrackers.

2. Explainthatanaccelerometer,liketheoneinsidethedatabot,measuresaccelerationand canbeusedtotrackmovementssuchasjumps.

3. Connectthistoreal-worldhealthbyexplaininghowjumpcountingcanhelppeoplestay motivatedinworkouts,tracktheirprogress,andimprovecardiovascularhealth.Mentionthe WHOstatisticthatinsufficientphysicalactivityisoneoftheleadingriskfactorsfordeath worldwide.

4. Showstudentsthevelocity–timegraphandexplainhowscientistsusethesegraphsto analyzemovementanddetermineacceleration.

DefinetheProblem

1. Readthechallengealoud:Agroupworkoutinstructorwantseachpersonintheclassto havearopejumpingtrackerthatrecordsindividualstatisticsovertimetoencourage improvementandfriendlycompetition.Canyoudesignasystemthatcancountandrecord jumps?

2. Encouragestudentstothinkaboutwhyaworkoutinstructorwouldwantsuchdata.Discuss howitcouldencouragehealthycompetitionandpersonalimprovement.

3. Emphasizethattheirtaskistodesignajumpcounterthatissimple,accurate,andeasyfor userstoreview.

MeasureYourSuccess

1. Reviewtheprojectcriteriaandconstraintstogether:

Thesystemshouldusethedatabot’saccelerometertocountjumps.

Thesystemshouldkeeptrackofjumpswithavariable.

Theprojectmustuseonlythedatabot(noexternalsensors).

TheprojectshouldsaveresultstoaCSVfileforlaterreview.

2. Askstudentsguidingquestionssuchas:“Whatshouldourprogrambeabletotelluswhen wearefinishedjumping?”and“Whyissavingdatainafileusefulforlong-termtracking?”

GettingStarted

1. Formstudentteamsandassignprojectroles(ProjectManager,ResourceManager, Communicator,Tester).

2. Reviewvocabularyandaskstudentstoprovidereal-lifeexamples(e.g.,“Whatareother devicesthatuseaccelerometers?Smartphones,Fitbits,etc.”).

3. Supportstudentsinconnectingtheirdatabotstothecomputerandverifying communicationwithMicroblocks.

WireandCode

1. Guidestudentstocreateaprogramthatreadsaccelerationvaluesfromthedatabot.

2. DemonstratehowtotrackchangesintheZ-directiontodetectjumps,sinceacceleration spikesoccurwhenthebodyleavestheground.Ask:“WhatZ-valuesmightindicatethata jumphasoccurred?”andencourageexperimentation.

EndofSession1

LearningActivities(Session2)

Introduction

1. BeginwitharecapofSession1,asking:“WhatZ-valuesdidyouobservewhentestingjumps yesterday?”

2. Discusshowscientistsusethresholdsindatatoidentifyevents,likesteps,falls,orjumps, fromaccelerometersignals.

3. Introducetoday’stask:buildingafulljumpcounterthatnotonlydetectsjumpsbutalso reportsthetotalnumberbacktotheuser.

Challenge

1. Guidestudentstoextendtheirprogramsoitcountsjumpsandstorestheresultinavariable (e.g.,count).

2. Showhowtouseifstatementstoincrementthecountwheneveraccelerationvaluespassa definedthreshold.

3. IntroducetheuseofCSVfilessoresultscanbesavedforlater.Explain:“Thisallowsusto compareourworkoutresultsovertime.”

4. Encouragestudentstoaddfeedbacktotheirsystem,suchashavingthedatabotsaythe totalcountordisplayitgraphically.

DesignandPlan

1. Askeachteamtosketchtheirplannedprogram,includingthevariablecount,thecondition fordetectingajump,andhowthetotalwillbereported.

2. Promptstudentstoexplaintheirdesigndecisions:“Whydidyousetyourthresholdatthat value?”and“Howwillyourprogramavoidover-countingwhenthedatabotshakes?”

EvaluateandTest

1. Havestudentstesttheirjumpcountersbyperformingashortsetofjumpswhileholdingthe databotorkeepingitinapocket.

2. Aftertesting,guidethemtoreconnectthedatabotandretrievetheCSVfilewithjumpdata (File GetFilefromBoard count.csv).

3. Askreflectionquestions:

“Didyourcountermatchtheactualnumberofjumpsyouperformed?”

“Ifitover-counted,whydoyouthinkthathappened?”

“Whatchangescanmakethesystemmoreaccurate?”

ShareandDiscuss

1. Havestudentspresenttheirsystemsandresultstotheclass,showingboththeircodeand theirjumpdata.

2. Guidepeerfeedbackwithpromptssuchas:“Whatworkedwellaboutthissystem?”and “Howmightthecodeberefinedtoimproveaccuracy?”

3. Encourageteamstorevisetheirprogramsbasedonclassfeedbackandretestiftime allows.

SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.

Reflection

1. ReviewtheSustainableDevelopmentGoal(GoodHealthandWellbeing),andbrainstorm withstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)

2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.

1. Remindstudentstosafelydisconnecttheirdatabotsandstorethemwithallcables.

2. Ensurethatjumpropesarecollectedandreturnedtostorage.

3. Ifpossible,takeapictureofeachteam’sprogramandgraphresultstodocumentprogress. Clean-Up

EndofSession2

Project4:SoundproofWalls LessonPlan

LearningObjectives

Bytheendofthislesson,studentswillbeableto:

Duration: 90minutes

1. Explainhowsoundtravelsinwavesandhowmaterialscanblockorabsorbsoundenergy.

2. Usethedatabot’smicrophonesensortomeasuresoundintensityindecibels(dB).

3. Designandcarryoutasoundproofingexperimentbytestingdifferentfabricsinsideaboxto determinewhichreducesnoisethemost.

4. CollectandanalyzesounddatausingaCSVfileandrankmaterialsbasedontheir effectivenessatdampeningsound.

5. Connecttheirfindingstoreal-worldchallengesofimprovingsleepqualityandhealth outcomesinnoisyurbanenvironments.

Materials

Vocabulary

Asurfaceorstructuremadeofdenseorabsorbentmaterialthat preventssoundwavesfrompassingthroughit. Aunitusedtomeasuretheloudnessorintensityofsound.

1. Ensurealldatabotsarechargedandfunctioning.

2. Open microblocks.fun/run/microblocks.htmlonstudentdevicesandchecktheUSB connections.

3. Testanexampleprogramthatrecordssoundlevelsandsavestheresultstoa.csvfilefor laterreview.

4. Prepareademonstrationshoeboxwithonesamplefabrictoshowhowthedatabotwillbe tested.

5. Identifyaconsistentsoundsourcethatstudentscanuseduringtesting(e.g.,clapping, tappingthebox,oraphonetone).

LearningActivities(Session1)

Introduction

1. Beginwithadiscussion:“Whatsoundskeepyouawakeatnightormakeithardto concentrate?”Letstudentssharerealexamplesfromtheirneighborhoods.

2. Explainthatnoisepollutionespeciallyfromtraffic,construction,orairportsaffectssleepand health.HighlightWHOfindingsthatlong-termnoiseexposurecanleadtoheartdiseaseand reducedproductivity.

3. Introducetheconceptofsoundproofingandexplainhowfabricsandmaterialscanblock orabsorbsoundenergy.

4. Askstudents:“Whydoyouthinksoundproofingmightbeespeciallyimportantinlowincomeareasnearfactoriesorhighways?”

DefinetheProblem

1. Readaloudtheproblem:Thedepartmentofhousingisresearchingtofindthebestfabricto usetodecreasenoiselevelsinlow-incomeapartments.Canyourteamtestmaterialstofind thebestoptionforsoundproofingwalls?

2. Encouragestudentstothinkabouthowdatacanhelphousingdepartmentsmakefairand evidence-baseddecisions.

3. Emphasizethattheirchallengeistomeasureandcomparesoundlevelsfordifferent fabrics,thenrecommendthemosteffectiveone.

MeasureYourSuccess

1. Reviewtheproject’scriteriaandconstraints: Thetestshouldmeasurethedecibellevelrecordedinsidethebox. Thetestshouldidentifywhichfabrictrialdampenssoundthemost. Onlytheprovidedmaterialscanbeused. Datamustbesavedina.csvfileforlaterreview.

2. Ask:“Howwillweknowwhichfabricworkedthebest?”and“Whyisitimportanttostoreour resultsforlater?”

GettingStarted

1. Havestudentsformtheirteamsandassignprojectroles:ProjectManager,Resource Manager,Communicator,Tester.

2. Reviewthevocabularytogetherandask:“Wherehaveyouseensoundproofinginyourown life?”(Examples:recordingstudios,curtainsintheaters,ordouble-glasswindows.)

3. Supportstudentsinconnectingthedatabottothecomputerandaddingthenecessary libraries.

1. Guidestudentstocreatecodethatrecordssoundlevelswhilethedatabotisinsideaclosed box.

2. Demonstratehowtostorethesoundvaluesina.csvfileusingtheFileslibrary.

3. Havestudentsperformatestbycoveringthelightsensor,producinganoise,andthen checkingifthereadingsarestored.

4. Posethequestion:“Whichfabricdoyoupredictwillreducesoundthemost?Why?”andlet studentsrecordtheirpredictions. WireandCode

EndofSession1

LearningActivities(Session2)

Introduction

1. BeginwithareviewofSession1:askstudentswhatpredictionstheymadeaboutwhich fabricwouldworkbest.

2. Discusshowscientistsdesignfairtestsbykeepingallconditionsthesameexceptforone variable(inthiscase,thetypeoffabric).

3. Introducetoday’sgoal:totesteachfabricsystematically,recordsoundlevels,and determinewhichfabricabsorbssoundmosteffectively.

Challenge

1. Guidestudentstoimprovetheircodesothedatabotnotonlyrecordssoundbutalso identifieswhichtestnumberhadthelowestsoundlevel.

2. EncourageteamstousevariablessuchasTestNumberandSoundLeveltoorganizetheir data.

3. Showhowtouseifblockstocomparesoundlevelsandkeeptrackofthefabricthat producedthequietestresult.

DesignandPlan

1. Askeachteamtosketchtheirtestingprotocol,including: Howtheywillwrapthedatabotinfabric, Howtheywillplaceitinthebox, Whatsoundtheywillmake, Howlongtheywillwaitforreadings.

2. Promptthemtoexplainhowtheywillkeepthetestfair,forexample:“Whyisitimportantto makethesametypeofnoiseeachtime?”

EvaluateandTest

1. Supportstudentsintestingfabricsoneatatime,followingaconsistentroutine: Wrapdatabotinthefabric. Placeitintheshoeboxandclosethelid. Makeaconsistentsound(e.g.,taporclap). Waitthesameamountoftimebeforerecording. Saveresultstothe.csvfile.

2. Havestudentsfillintheirresultsinatable.

3. Askreflectivequestions:“Didthefabricyoupredictedperformthebest?”and“Howmuchof adifferencewastherebetweenthebestandworstfabrics?”

ShareandDiscuss

1. Haveteamssharetheirresultsandrecommendationswiththeclass.

2. Encourageconstructivepeerfeedbackbyasking: “Wouldthismaterialworkinrealapartments?” “Howmightcostoravailabilityaffectthechoice?”

3. Allowstudentstorevisetheirrecommendationsbasedondiscussion.

SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.

Reflection

1. ReviewtheSustainableDevelopmentGoal(NoPoverty),andbrainstormwithstudentshow thisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)

2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.

Clean-Up

1. Remindstudentstodisconnectandstoredatabotsproperly.

2. Collectandfoldfabrics,returningthemtotheirdesignatedplaces.Storeshoeboxesand othertestequipment.

3. Ifpossible,photographeachteam’stestingsetuptodocumenttheirexperiments.

EndofSession2

Project15:BikeStabilityMonitor LessonPlan

LearningObjectives

Bytheendofthislesson,studentswillbeableto:

Duration: 90minutes

1. Explainwhybicyclesbecomeunstableatverylowspeedsanddescribehowspeed,tilt,and stabilityarerelated.

2. Usethedatabot’stiltsensortomeasurestabilitybydetectingchangesinthez-axistiltwhile thebikeismoving.

3. Designandprogramasystemthatalertstheriderwithlightsorsoundswhenthebikeisnot movingfastenoughtoremainstable.

4. Relatetheirfindingstoreal-worldurbanplanningbydiscussinghowsafeminimumbiking speedsinfluencecityinfrastructure,suchasbikelanesandintersections.

Materials

Chalk(tomark distancesfor speedtests)

Vocabulary

Bicycle(orasaferolling cartifbikesarenot availableindoors) Meterstick Timer

USBCable and Computer

Grade8 Innovators Book Databotwith SGP30sensor

Asensorthatdetectschangesinorientationorinclinationrelativeto gravity,oftenusedtomeasurebalanceortilt.

Aregularbicyclewithanaddedelectricmotorandbatterythatassists theriderwhilepedaling.

Theconditionofbeingsteadyandbalanced;forbicycles,stability dependsonmaintainingaminimumspeedthatkeepsthewheelsfrom wobbling.

Aquantitythathasbothdirectionandmagnitude,usefulfordescribing howabikemovesthroughspace.

1. Fullychargealldatabotdevicesbeforeclass.

2. Open https://microblocks.fun/run/microblocks.htmlonallstudentcomputersandconfirm thatUSBconnectionswork.

3. Prepareademonstrationshowinghowtoattachthedatabotsecurelytoabicycle(or simulatethisonacartifbikesarenotavailableindoors).

4. Markoutashortridingareawithchalkandmeasureitslengthusingameterstick.Prepare astopwatchortimertocalculatespeeds.

5. BuildandtestasampleprogramthatchangesLEDcolorsdependingonwhetherthebikeis stable(tiltwithinasaferange)orunstable(tiltoutsidetherange).

LearningActivities(Session1)

Introduction

1. Beginwithaclassdiscussion:“Whathappenswhenyoutrytorideabikeveryslowly?Why dobikeswobbleortipoverifyoudon’tkeepmoving?”

2. Explainthatbicyclesneedaminimumspeed(around5–6km/h)tostaystablewithout constantcorrections.Belowthisspeed,thewheelslosebalanceandthebikecantip.

3. Connectthistothereal-worldproblem:Cityplannersneedtoknowthesafeminimum bikingspeedwhenbuildingbikelanes,especiallywhereridersmayhavetostopandstart often.

4. Emphasizethatinthisproject,studentswillusethedatabot’stiltsensortodeterminewhen abikeisstableandcreateasystemtoalertriderswhentheyneedtogofaster.

DefinetheProblem

1. Readthe“DefinetheProblem”sectionwiththeclass:Citieswanttobuildsafebikelanes,but theyneedtoknowtheminimumstablespeedofabicycle.Canyourteamdesignasensorto detectwhenthebikeisstable?

2. Facilitatediscussion:Whyisknowingtheminimumstabilityspeedimportantforbothsafety andcityplanning?

3. Highlightthatthechallengeistodesignaprototypethatmeasurestiltandwarnstherider whenstabilityisatrisk.

MeasureYourSuccess

1. Reviewthesuccesscriteriatogether:

Thesystemshouldmeasurethetilt(z-axis)ofthedatabot. ThesystemshouldalerttheriderwithLEDchanges(orsound)whenthebikeisunstable. Thesystemmustuseonlythematerialsprovided.

Thesystemshouldsavethedatainafileforlaterreview.

2. Askstudentsguidingquestions:

“Howwillweknowifthebikeisunstable?” “Whatsignalwouldbeclearenoughtoalertarider?”

GettingStarted

1. Dividethestudentsintotheirprojectteams.Assignroles:ProjectManager,Resource Manager,ProjectCommunicator,andProjectTester.

2. Reviewthevocabularytermsandaskstudentstogiveexamplesfromeverydaylife(e.g.,tilt sensorsinphonesore-bikes,vectorsinphysics).

3. Guidestudentstoconnectthedatabottotheircomputersandconfirmthatthetiltsensor valuesaredisplayed.

WireandCode

1. HelpstudentsaddthedatabotlibraryinMicroblocks.

2. Guidethemtowriteasimpleprogramthatdisplaysthez-axistiltvalues.Demonstratetilting thedatabotandshowhowthevalueschange.

3. Explainthattiltvaluesnearzeroindicatestability,whilelargepositiveornegativevalues suggestwobblingorinstability.

EndofSession1

LearningActivities(Session2)

Introduction

1. RecapSession1byasking:“Whattiltvaluesdidyouobservewhenthedatabotwasstable versusunstable?”

2. Remindstudentsthattoday’sgoalistomountthedatabottoabicycle(orcart)and measuretheactualminimumspeedrequiredforstability.

Challenge

1. Supportstudentsinrefiningtheircodesothatitalertsthebikertospeedupwhenthetilt valuesshowinstability.

2. Discusssafeattachmentmethodsforthedatabottothebike.Emphasizesafety—databot shouldbesecureandnotinterferewiththewheelsorrider.

3. EncouragestudentstoexperimentwithLEDcolors,beepingtones,orbothtomakethealert clear.

DesignandPlan

1. Haveeachteamsketchtheirsetup:wherethedatabotwillbemounted,howthetiltsensor willdetectwobbling,andwhatkindofalertwillbeused.

2. Promptthemtoexplainhowtheywillcalculatebikespeed: Measurethechalkeddistance.

Useatimertorecordthetimetakentocrossthedistance. Dividedistancebytimetocalculatespeed.

3. Encourageteamstosetatiltthresholdfor“unstable”andexplainwhytheychoseit.

EvaluateandTest

1. Allowteamstoattachthedatabottothebikeandperformtestrides(orsimulatebyrolling cartsindoorsifneeded).

2. Havethemrecordtiltvalues,LEDcolorchanges,andthecalculatedspeedatwhichstability isachieved.

3. Askreflectivequestions:

“Didthesystemwarnyouaccuratelywhenthebikewasunstable?” “Whatchangescouldmakethealertsmorereliable?”

ShareandDiscuss

1. Haveeachteampresenttheirstabilitymonitorsystemandsharetheirrecordedminimum stablebikespeeds.

2. Encouragepeerfeedback:Werethealertsystemseffective?Weresomemorenoticeable thanothers?

3. Allowteamstorevisetheircodeoralertmechanismbasedonfeedback.

SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.

Reflection

1. ReviewtheSustainableDevelopmentGoal(SustainableCitiesandCommunities)keyfor suggestions.)

2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks

3. Havestudentswritetheirreflectionsintheirworkbooksanddiscussasaclass.

Clean-Up

1. HavestudentsdisconnecttheirdatabotdevicesandclosetheirMicroblocksprograms.

2. Collecttimers,chalk,andothertestingmaterials.

3. Remindteamstostoretheirbikesorcartssafely.

4. Takephotosofeachteam’ssetupandgraphsfordocumentation.

EndofSession2

AssessmentGuide

AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.

Getasnapshotof students’starting knowledgebefore onboardinginSTEM.

StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.

Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.

Pre-Assessment(optional)

Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.

Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.

Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning

TeacherTips:

Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.

KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K

Math&ScienceConnection

Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.

Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.

TeacherTips: just grading tools

Userealtools:Rulers,scales,charts,simplecoding tools.

Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.

Linktostandards:Alignwithbothmathandscience

Link to sta goals.

Self-AssessmentRubrics

TeacherTips:

Introducerubricsearly:Define"what successlookslike."

Modelreflection:Scoresamplework together.

Selfandpeerreview:Studentsrate anddiscuss.

Askreflectivequestions:“Whatwas yourbiggestchallenge?”

Celebratehonesty:Praiseaccurate self-assessment.

Post-Assessment:CapstoneProject

Self-reflectonyourworkonthisproject.

Icanbreakdown aproblem.

Icandevelopa workingprototype.

Icancodemyprototype todowhatIwant.

Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.

Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.

Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.

STEMInnovationFair

Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.

Possiblepresentationformatsinclude:

Interactivedemonstrations

Postersessions

Digitalportfolios

PitchpresentationsmodeledafterprofessionalSTEMconferences

nforcing rn how to celebrating education w

Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.