Teacher Guide - Level 10

Page 1


TeacherGuide-3DModellingandPrintingLevel10

Teacher Guide

Copyright©2024

Copyright © 20

Author: DanaAlkhatib

Editors: LindseyOwnandErinGoodwin

ISBN: 978-981-17737-4-7

Publishedby:

SKOOL21PTE.LTD.-Singapore

DUOTower,Level8#831

3FraserStreet,189352,Singapore

Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods, withoutthepriorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.

Forpermissionsorinquiries,pleasecontact:

Email: info@skool21.org

Website: https://skool21.org

Preface

WelcometotheFutureofTeachingandLearning!

Welcome to th

Thank you for joi designed not on meaningful, han young innovato science, technol

BuildingonaStrongFoundation

Each level of the

novators series is teachers to lead es, you will guide challenges using creating a strong

Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).

EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.

LearningbyDoing

AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.

MakingaReal-WorldImpact

Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.

TeachingLikeaPro

TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.

Building on a not just leaders, and c

IntroductiontotheKit

TheSTEMInnovatorsHandbookLevel10isdesignedforstudentslookingto advancetheir3Ddesignskills.Expandingonfoundationalconcepts,thislevel introducesmoreadvanced3Dmodelingtechniquesandchallengesstudents toapplytheirknowledgetoreal-worlddesignproblemsusingprofessionalgradesoftwareandtools.

AtthecoreofthekitistheCrealityEnder-3V3SE—ahigh-performanceFDM (FusedDepositionModeling)3Dprinterrenownedforitsprecision,speed,and reliability.TheEnder-3V3SEenablesstudentstotransformtheirdigital creationsintohigh-qualityphysicalmodels,bringingtheirideastolifewith impressivedetailandconsistency.

TechnicalFeatures

LessonStructure

Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:

Lessonobjectives

NGSSStandards

CambridgeScienceStandards

ISTEStandardsConnections

CambridgeMathStandards

CommonCoreMathStandards

DefinetheProblem

Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.

GettingStarted

Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.

DesignandPlan

Build-Test-Improve

Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.

Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.

MathandScienceConnection/Reflect

Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.

SampleSolution

Thesamplesolutionisavailableforgroupswhoare strugglingevenaftertryingtodeveloptheirown solution.

TheEngineeringDesignProcess ocess

TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.

Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.

Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.

forming a str

FosteringSocialSkills

STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.

Keysocialskillsdevelopedinclude:

Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.

Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.

Collaboration EmpathyandRespect

Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.

Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.

Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.

Communication

Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.

Problem-Solving

Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.

TimeManagement

Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.

PresentationSkills

Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.

Teamworking

Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.

TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.

academic su

MakerspaceSetup

Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.

SpaceDesign:

Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).

MaterialsManagement:

Ensurethatkitsarecompleteandaccessiblebefore eachproject.

Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.

RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.

SharedResources:

ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.

SafetyFirst: Keep a fi

Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.

STEMClassroomManagement

STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.

STEMClassSessionRoutine

Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:

90-minuteproject (Grade3toGrade12)

Grade 3 to Grade 12)

5-minute

45-minuteproject (Pre-KtoGrade2)

o ect Pre-K to Grade 2)

SpaceOrganization:

Provideracksoropenshelvestostorekitsneatlyandaccessibly.

ToolandMaterialsRules:

Usetoolswithcare–noplayingormisusingmaterials.

Returneverythingtoitslabeledplace.

Askbeforetakingextrasupplies.

Handstoyourself—respectothers’creationsandspace.

Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.

Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.

Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.

GroupManagementwithTeamRoles

Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:

Keepsteamontask,trackstime,encourages collaboration.

Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.

Sharesoutcomes,challenges,andsolutionswiththeclass. Evaluatesthemodel,givesfeedback,suggestschanges.

ImplementationGuide

TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:

IntegratedApproach

EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.

Advantages:

Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.

Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).

Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.

PracticalTips:

Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).

Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.

Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.

Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.

connect

Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.

Stand-AloneClassApproach

ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.

Advantages:

Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).

Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.

Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.

PracticalTips: g

Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.

Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass

Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.

Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.

Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).

Extra-CurricularApproach

RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.

Advantages:

Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.

Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.

Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).

Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).

PracticalTips:

Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.

Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness. Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.

Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.

Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.

HybridApproach (BlendingAllModels)

Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.

Whentointegrate:

Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.

Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.

Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”

Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.

(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)

StandardsAlignment

1Cellmodel 60-90minutesHS-LS1-1

2Heartmodel60-90minutesHS-LS1-2

3Digestivesystem60-90minutesHS-LS1-2

4Lungmodel 60-90minutesHS-ETS1-211.1.2

5Centrifuge 60-90minutesHS-ETS1-39.4.1/9.4.3MP4

6DNAmodel 60-90minutesHS-LS3-1

7Punnetsquaresimul a 60-90minutesHS-LS3-3

8Foodchainmodel60-90minutesLS2.B

9Watercollector60-90minutesHS-ETS1-24.2

10Carboncyclecompo s 60-90minutesHS-ETS1-319.3.1

11Windanemometer60-90minutesHS-ESS3-42.2

HSG-MG.AC3.1

12Habitatrehabilation60-90minutesETS1.B

HSG-MG.A.3E1.11/E5.3

HSG-GMD.B.4E1.12.3 / E 5 . 3 3

HSA-SSE.AC1.6

13Soundamplifier60-90minutesHS-ETS1-33.4.7

14Levers 60-90minutesHS-PS3-3 1.7.2

15Multi-stagerocket60-90minutesHS-ETS1-21.2

CambridgeScienceAlignment

LearningObjective

1.2

• Definespeedasdistancetravelledperunittime

• Definevelocityasspeedinagivendirection

• Recallandusetheequation

• averagespeed=totaldistancetravelled/totaltimetaken

• Sketch,plotandinterpretdistance–timeandspeed–timegraphs

• Determine,qualitatively,fromgivendataortheshapeofa distance–timegraphorspeed–timegraph

• Calculatespeedfromthegradientofastraightlinesectionofa distance–timegraph

• Calculatetheareaunderaspeed–timegraphtodeterminethe distancetravelledformotionwithconstantspeedorconstant acceleration

• Statethattheaccelerationoffreefallgforanobjectneartothe surfaceoftheEarthisapproximatelyconstantandisapproximately 9.8m/s2

• Defineaccelerationaschangeinvelocityperunittime

• Determinefromgivendataortheshapeofaspeed–timegraph whenanobjectismoving

• Calculateaccelerationfromthegradientofaspeed–timegraph

• Knowthatadecelerationisanegativeaccelerationandusethisin calculations

• Describethemotionofobjectsfallinginauniformgravitationalfield withandwithoutair/liquidresistance,includingreferencetoterminal velocity

1.7.2 Understand

Energyandtheenvironment

2.2

Candidatesshouldbeableto:

• classifythefollowingenergyresourcesasnonrenewableor renewable:

• fossilfuels,nuclearpower,biofuels,geothermalpower,hydroelectricpower,tidalpower,wavepower,solarpower,windpower

• describehoweachoftheseenergyresourcesisusedtogenerate electricity

• describetheenvironmental,economicandsocialadvantagesand disadvantagesofeachoftheseenergyresources

• non-renewable:fossilfuels,nuclearpowerusinguranium

• renewable:biofuels(bioethanol,biogasandwood),geothermal power,hydro-electricpower,tidalpower,wavepower,solarpower, windpower

Wateranditsmanagement

4.2

Candidatesshouldbeableto:

• describeandinterpretthewatercycle Furtherguidanceandexemplification:

• precipitation,surfacerun-off,interception,infiltration,through-flow, groundwaterflow,transpiration,evaporationandcondensation

9.1

Transportinanimals

Describethecirculatorysystemasasystemofbloodvesselswith a pump andvalvestoensureone-wayflowofblood

9.4.1

Listthecomponentsofbloodas:redbloodcells,whitebloodcells, plateletsandplasma

9.4.3

Statethefunctionsofthefollowingcomponentsofblood:

(a)redbloodcellsintransportingoxygen,includingtheroleof haemoglobin (b)whitebloodcellsinphagocytosisandantibodyproduction (c)plateletsinclotting(detailsarenotrequired) (d)plasmainthetransportofbloodcells,ions,nutrients,urea, hormonesandcarbondioxide

Gasexchangeinhumans

11.1.2

Identifyindiagramsandimagesthefollowingpartsofthebreathing system:lungs,diaphragm,ribs,intercostalmuscles,larynx,trachea, bronchi,bronchioles,alveoliandassociatedcapillaries

Inheritance

17.1.1 StatethatchromosomesaremadeofDNA,whichcontains geneticinformationintheformofgenes

17.4.11 Usegeneticdiagramstopredicttheresultsofmonohybrid crossesandcalculatephenotypicratios,limitedto1:1and3:1ratios

Organismsandtheirenvironment

19.2.3 Describeafoodwebasanetworkofinterconnectedfood chainsandinterpretfoodwebs

19.3.1 Describethecarboncycle,limitedto:photosynthesis, respiration,feeding,decomposition,formationoffossilfuelsand combustion

Organizationoftheorganism

2.1.1 Describeandcomparethestructureofaplantcellwithan animalcell,limitedto:cellwall,cellmembrane,nucleus,cytoplasm, chloroplasts,ribosomes,mitochondria,vacuoles

Habitatdestruction

20.2.2 Describethereasonsforhabitatdestruction,including:

(a)increasedareaforhousing,cropplantproductionandlivestock production

(b)extractionofnaturalresources

(c)freshwaterandmarinepollution

Waves

3.4.7 Describehowchangesinamplitudeandfrequencyaffectthe loudnessandpitchofsoundwaves

Humannutrition

7.2.1

Identify in diagrams and images the main organs of the digestive system, limited to:

(a) alimentary canal: mouth, oesophagus, stomach, small intestine (duodenum and ileum) and large intestine (colon, rectum, anus)

(b) associated organs: salivary glands, pancreas, liver and gall bladder

7.3.1

Describe physical digestion as the breakdown of food into smaller pieces without chemical change to the food molecules

NGSSAlignment

LearningObjective

FromMoleculestoOrganisms:StructuresandProcesses

HS-LS1-1

ofDNAdeterminesthestructureofproteins,whichcarryoutthe essentialfunctionsoflifethroughsystemsofspecializedcells

EngineeringDesign

HS-ETS1-2 Designasolutiontoacomplexreal-worldproblemby breakingitdownintosmaller,moremanageableproblemsthatcan besolvedthroughengineering

HS-ETS1-3 Evaluateasolutiontoacomplexreal-worldproblem basedonprioritizedcriteriaandtrade-offsthataccountforarange ofconstraints,includingcost,safety,reliability,andaestheticsaswell aspossiblesocial,cultural,andenvironmentalimpacts.

Heredity:InheritanceandVariationofTraits

HS-LS3-1 AskquestionstoclarifyrelationshipsabouttheroleofDNA andchromosomesincodingtheinstructionsforcharacteristictraits passedfromparentstooffspring

HS-LS3-3 Applyconceptsofstatisticsandprobabilitytoexplainthe variationanddistributionofexpressedtraitsinapopulation

Ecosystems:Interactions,Energy,andDynamics

EarthandHumanActivity

HS-ESS3-4 Evaluateorrefineatechnologicalsolutionthatreduces impactsofhumanactivitiesonnaturalsystems

HS-PS3-3 Design,build,andrefineadevicethatworkswithingiven constraintstoconvertoneformofenergyintoanotherformofenergy

CambridgeMathematics Alignment

LearningObjective

C1.1

Typesofnumber.Identifyanduse:

•naturalnumbers

•integers(positive,zeroandnegative)

•primenumbers

•squarenumbers

•cubenumbers

•commonfactors

•commonmultiples

•rationalandirrationalnumbers

•reciprocals.

C1.11

Understandanduseratioandproportionto:

•giveratiosintheirsimplestform

•divideaquantityinagivenratio

•useproportionalreasoningandratiosincontext.

C1.2 Understandandusesetlanguage,notationandVenn diagramstodescribesets.

C1.5 Orderquantitiesbymagnitudeanddemonstratefamiliarity withthesymbols=,≠,>,<, ⩾ and ⩽

C1.6 Usethefouroperationsforcalculationswithintegers, fractionsanddecimals,includingcorrectorderingofoperations anduseofbrackets

E1.11 Understandanduseratioandproportionto:

•giveratiosintheirsimplestform

•divideaquantityinagivenratio

•useproportionalreasoningandratiosincontext.

E1.12.3 Solveproblemsinvolvingaveragespeed

cs

Algebraandgraphs

C2.10 Constructtablesofvalues,anddraw,recogniseandinterpret graphsforfunctions.Solveassociatedequationsgraphically, includingfindingandinterpretingrootsbygraphicalmethods.

C2.7 Continueagivennumbersequenceorpattern.Recognise patternsinsequences,includingtheterm-to-termrule,and relationshipsbetweendifferentsequences.

Findandusethenthtermofthefollowingsequences: (a)linear (b)simplequadratic (c)simplecubic.

Coordinategeometry

C3.1 UseandinterpretCartesiancoordinatesintwodimensions.

Geometry

C4.6

Calculateunknownanglesandgivesimpleexplanations

Calculateunknownanglesandgivegeometricexplanationsfor angles

Knowanduseanglepropertiesofregularpolygons.

Mensuration

C5.2 Carryoutcalculationsinvolvingtheperimeterandareaofa rectangle,triangle,parallelogramandtrapezium.

C5.4 Carryoutcalculationsandsolveproblemsinvolvingthe surfaceareaandvolumeofa:

•cuboid

•prism

•cylinder

•sphere

E5.3

Carryoutcalculationsinvolvingthecircumferenceandareaof a circle.

Carryoutcalculationsinvolvingarclengthandsectorareaas fractionsofthecircumferenceandareaofacircle.

SeeingStructureInExpression

Interpretthestructureofexpressions

Linear,Quadratic,andExponentialModels

HSF-LE-A Constructandcomparelinear,quadratic,and exponentialmodelsandsolveproblems

GeometricMeasurementandDimension

HSG-GMD.B.4 Identifytheshapesoftwo-dimensionalcrosssectionsofthree-dimensionalobjects,andidentifythreedimensionalobjectsgeneratedbyrotationsoftwodimensional objects

ModelingwithGeometry

HSG-MG.A Applygeometricconceptsinmodelingsituations

HSG-MG.A.3 Applygeometricmethodstosolvedesignproblems (e.g.,designinganobjectorstructuretosatisfyphysical constraintsorminimizecost;workingwithtypographicgrid systemsbasedonratios)

Similarity,RightTriangles,andTrigonometry

HSG-SRT-C Definetrigonometricratiosandsolveproblems involvingrighttriangles

HSS-ID-A Summarize,represent,andinterpretdataonasingle countormeasurementvariable

Reasonabstractlyandquantitatively

MP2 Mathematicallyproficientstudentsmakesenseofquantities andtheirrelationshipsinproblemsituations.Theybringtwo complementaryabilitiestobearonproblemsinvolving quantitativerelationships:theabilitytodecontextualize—to abstractagivensituationandrepresentitsymbolicallyand manipulatetherepresentingsymbolsasiftheyhavealifeoftheir own,withoutnecessarilyattendingtotheirreferents—andthe abilitytocontextualize,topauseasneededduringtheanipulation processinordertoprobeintothereferentsforthesymbols involved.Quantitativereasoningentailshabitsofcreatinga coherentrepresentationoftheproblemathand;consideringthe unitsinvolved;attendingtothemeaningofquantities,notjusthow tocomputethem;andknowingandflexiblyusingdifferent propertiesofoperationsandobjects

Modelwithmathematics

MP4 Mathematicallyproficientstudentscanapplythe mathematicstheyknowtosolveproblemsarisingineverydaylife…. Inearlygrades,thismightbeassimpleaswritinganaddition equationtodescribeasituation.…

Mathematicallyproficientstudentswhocanapplywhattheyknow arecomfortablemakingassumptionsandapproximationsto simplifyacomplicatedsituation….Theyareabletoidentify importantquantitiesinapracticalsituationandmaptheir relationshipsusingsuchtoolsasdiagrams,two-waytables, graphs….They…reflectonwhethertheresultsmakesense

Lookforandexpressregularityinrepeatedreasoning

MP8 Mathematicallyproficientstudentsnoticeifcalculationsare repeated,andlookbothforgeneralmethodsandforshortcuts. Upperelementarystudentsmightnoticewhendividing25by11 thattheyarerepeatingthesamecalculationsoverandoveragain, andconcludetheyhavearepeatingdecimal….Astheyworkto solveaproblem,mathematicallyproficientstudentsmaintain oversightoftheprocess,whileattendingtothedetails.They continuallyevaluatethereasonablenessoftheirintermediate results

SchemeofWork

SessionObjectivesMaterials

1 (45mins)

Createandverify anOnshape education accounttoaccess 3Dmodelingtools. Designasimple 3Dboxby sketching,closing shapes,andusing theextrudetoolto adddepth.

Computerwith internetaccess OnShape account 3Dprinterwith filament

Curasoftware STEMbook

2 (45mins)

Createahollow 3Dcylinderby sketching Concentriccircles andusingthe extrudetoolon theouterringonly. Modifythe appearanceofa 3Dobjectanduse differentview anglestoinspect theirdesignfor accuracy.

Computerwith internetaccess OnShape account 3Dprinterwith filament Curasoftware STEMbook

systems

3 (45mins)

Createa3D sphereusingthe Revolvetoolona half-circlesketch inOnshape. Duplicateand modifythesphere withthe Transformand Scaletoolsto createanEllipsoid

Computerwith internetaccess OnShape account 3Dprinterwith filament Curasoftware STEMbook

and

Thisschemeofworkcomprises37sessions:5introductorylessons(each45 minutes),15projectssplitinto30sessions(each90-minuteprojectisdelivered astwo45-minutesessions),and1capstoneproject(90minutes,splitintotwo 45-minutesessions).Itcanworkforweekly45-minuteclassesorbiweekly90minuteclasses(twosessionscombined).

s (each 45

Lesson4:Curvedpipe

Createand positionsketches onmultipleplanes usingtheOffset andDimension tools.

4 (45mins)

Constructa curvedpipeby usingtheSpline tooltodefinea pathandtheLoft tooltoconnect profiles

Computerwith internetaccess OnShape account 3Dprinterwith filament Curasoftware STEMbook

Computing systems Geometry and measure

Lesson5:Introductionto3DPrinting

Exporta3Dmodel asanSTLfileand prepareitfor printingusing slicingsoftware likeCura.

5 (45mins)

Understandhow theCrealityEnder 3operatesand troubleshoot commonissues, includingwarping, clogs,andfeeder problems.

Computerwith internetaccess OnShape account

3Dprinterwith filament Curasoftware STEMbook

Computing systems Geometry and measure

Project1:CellModels

6 (45mins)

7 (45mins)

Introduction to plant and animal cell structures and their respective functions. Exploring mathematical concepts through surface area and volume ratio calculations.

Create accurate 3D models of plant and animal cells using OnShape. Calculate and analyze the surface area-to-volume ratio for each cell model.

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Cellstructure Typesofnumbe

Project2:HeartModelKeychain

8 (45mins)

9 (45mins)

Understand the basic structure and function of the human heart.

Build a 3D model of the heart's keychain using OnShape.

Explore how 3D modeling assists in medical education and research. Reflect on the role of anatomical models in healthcare and bioengineering

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Project3:DigestiveSystemPuzzle

10 (45mins)

Introductiontothe humandigestive system. Buildadigestive systempuzzle usingOnShape

11 (45mins) Exploring mathematical conceptssuchas anglesand measurements. Reflectonthe importanceof visualmodelsin medicaltraining.

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Circulatory Systems Thefour operations

Digestivesystem Angles

Project4:LungModel

12 (45mins)

13 (45mins)

Understand the structure of lungs Explain gas exchange in the human respiratory system. Develop a 3D model to simulate lungs

Understandthe relationbetween Oxygenand CarbonDioxide

PressureVSTime Reflectonhow can3Dlung modelssupport well-being

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Gasexchangein humans Graphsand functions

Project5:Centrifuge

14 (45mins)

15 (45mins)

Understandthe circulatorysystem andbloodtypes Designa centrifuge machineto separateblood cellsfromplasma

Compare between WBC and RBC

Reflect on the importance of centrifuge machine

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Blood

Numberand Mensuration

Project6:DNAModel

16 (45mins)

17 (45mins)

Understand DNA structure andreplication, including the role ofcomplementary base pairs. Build a 3D DNA double helix model withcomplementary base pairs.

Calculateand analyzethe patternsofDNA model

Reflectontherole ofDNAmodeling forbetterhealth outcomes.

Computer with internet access OnShape account

3D printer with filament Cura software

STEM book

Project7:PunnetSquareSimulator

18 (45mins)

19 (45mins)

Understandthe Punnetsquare anditsrolein inheritance CreateaPunnett squareto understandthe pattern

Calculateand analyzethe probabilityof producingplants withcertain features

Reflectonhow canthePunnet squaresimulator helpothers

Computer with internet access OnShape account 3D printer with filament Cura software

STEM book Monohybrid Inheritance

Project8:FoodChainModel

Understandfood chain,foodwebs, andhowtheyare connected

20 (45mins)

21 (45mins)

Buildamodelthat representsfood chainusing availablemodels onThingverse

Calculating volume of the trophic levels and the weight of filament used

Reflect on how could using these models help in understanding energy transfer

Project9:WaterCollector

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Foodchainsand foodwebs

Ratioand proportion

22 (45mins)

23 (45mins)

Understand water cycle, water collection, and water shortages causes Design a water collection system to capture and store rainwater

Calculatethe volumeofthe watercollector systemandhow muchwateritcan collect

Reflectonhow coulddesigninga watercollector canhelpinwater management

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Environmental Management: Water and Its Management

Ratioand proportion

Project10:CarbonCycleCompostBin

24 (45mins)

25 (45mins)

Understand the carbon cycle and the importance of carbon decomposition for soil

Design a vermicompost bin to speed up decomposition

Calculate and analyze the best volume for the designed composition bin to ensure design criateria

Reflect on the importance of designing a vermicompst bin

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Project11:WindAnemometer

26 (45mins)

Understandthe importanceof windturbineand anemometerfor cleanenergy production

Designandbuild ananemometer tounderstandthe relationbetween itsshapeand spinningspeed

Calculate how much does the turbine decrease pollution

27 (45mins)

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Environmental Management: Energy and the Environment

Reflect on how creating anemometer help in developing efficient wind turbines

Nutrient Cycles Thefour operation

Project12:HabitatRehabilitation

28 (45mins)

29 (45mins)

Understandthe importanceof habitatsfor animals Designahabitat forananimalto protectit

Analyzethe volumeofthe designandtestits safety Reflectonhow3D printingcan reducewasted materialfor habitat rehabilitation solutions

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Human Influenceson Ecosystems

Coordinate Geometry

Project13:SoundAmplifier

30 (45mins)

31 (45mins)

Understandhow physical amplifierscan saveenergy Designaphysical soundamplifier

Understandthe relationbetween thevoiceandthe shapeofthe physicalamplifier Reflectonhowa soundamplifier canensure sustainability

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Physics:Waves Coordinate Geometry

Project14:Levers

32 (45mins)

33 (45mins)

Understandhow leverworks Designandbuild aleverwith minimumeffort

Calculatethe mechanical advantagefor differentarm designs Reflectonhow optimizinglever designscan improvelifting efficiency

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Physics:Energy, work,andpower Thefour operations

Project15:Multi-StageRocket

34 (45mins)

35 (45mins)

Understand how multi-stage rockets reduce costs for space companies like NASA and SpaceX Design and build a multi stage rocket

Use motion equations (velocity, acceleration, and time) to calculate rocket's time to reach a certain speed Reflect on how to achieve high levels of economic productivity

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Equationsof motion Speed/distance /timeformula.

CapstoneProject

Look for a cleaning problem you need to solve

36 (45mins)

37 (45mins)

Create your own prototype based on what you learned in the book

Test,evaluate, andimproveyour design Reflectonhow couldyour solutionensure healthylives

Computer with internet access OnShape account

3D printer with filament Cura software STEM book

Dependsonthe project Dependsonthe project

LessonPlans andAnswerkey

Project1:CellModels LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

1. Introductiontoplantandanimalcellstructuresandtheirrespectivefunctions.

2. Exploringmathematicalconceptsthroughsurfaceareaandvolumeratiocalculations.

3. Createaccurate3DmodelsofplantandanimalcellsusingOnShape.

4. Calculateandanalyzethesurfacearea-to-volumeratioforeachcellmodel.

Materials

Vocabulary

Thecontrolcenterofthecellthatholdsthecell'sDNA

Amembrane-boundstoragesacinacell Atoolusedtoroundoffthecornersofarectangle

3. Setupapre-printedsampleofthemodel Preparation(TeacherTo-DoBeforeClass)

1. LogintoyourOnShapeaccount.

2. Prepareallnecessarymaterials.

LearningActivities(Session1)

Introduction

1. Beginbyreviewingthebasicstructuresofplantandanimalcells,highlightingboththeir similaritiesanddifferences.Focusonkeyfeaturessuchascellwalls,chloroplasts,and membranestohelpstudentsunderstandhowstructurerelatestofunction.

2. IntroduceOnShapeasadigitaldesigntoolforcreating3Dmodels.Explainitsrolein enhancingbiologyeducationbyallowingstudentstovisualizeandconstructaccurate representationsofcellsinthreedimensions.

3. Explainthekeydifferencesbetweenplantandanimalcells,includingcellwalls,chloroplasts, andmembranes

4. Usethefollowingguidingquestionstosparkclassdiscussion: Whatarethemaindifferencesbetweenplantandanimalcells,andhowcanyourepresent theminyour3Dmodel?

Whydoplantcellshavecellwalls,andhowdoesthisaffecttheirshapecomparedto animalcells?

HowdoesusingOnShapehelpyoubetterunderstandcellstructurescomparedtodrawing themonpaper?

5. Introduceandclarifyanynewvocabularypresentedinthelessontoensurestudentshavea solidfoundationbeforestartingtheactivity.

DefinetheProblem

1. Readthe“DefinetheProblem”sectiontogetherwithyourstudents.Encouragebrief brainstormingtoexplorepossibleapproachesanddesignideas.

2. Clearlyexplaintheconstraints(limitations)andcriteria(successmeasures)theymust considerduringthemodelingprocess.

3. Invitestudentstosuggestwhatfactorstheybelievewillmakeasuccessful3Dcellmodel, supportingcriticalthinkingandengagementwiththedesignprocess.

Buildthemodel

1,2,3

LogintoyourOnshapeaccount. ClickCreate->Document Namethefile”Project1:PlantCellModels".

Insertanimageofthecellmodelintoa separatesketchforreference.Youcanhide andunhidethissketchasneededforbetter visibility.

Extrudethebaseofthecell

4 5

Createanewsketchonaplaneanddraw theoutlineofthecellbodyusingthe“Sline” tool.

Createanewsketchonthefaceofthecell anddrawtheinternalpartsofthecell. 6 7

Noticethattheroundedcomponentsaredrawnashalfacurveorhalfacircle,that’s becausewewilluse“Revolve”tooltomodelthem

Createanoffsetplaneabovethetopplane tosketchtheNucleus.Anddrawahalfcirclealongwithastraightlinetoserveas theaxisfortherevolveoperation.

UsetheRevolvetooltoformtheNucleus. Selectthehalf-circleastheprofileandthe straightlineastheaxis.

Drawtheremainingorganellesasshowninthesamplesolution.Usethe"Transform"toolto copyandpositionrepetitiveshapesintheirrequiredlocations.

Havestudentsrevisitthe"MeasureYourSuccess"sectiontoevaluatewhethertheirplantcell modelmeetsthedefinedcriteriaandconstraints.Encouragethemtoreflectontheirdesign choicesandverifyifallrequiredfeaturesarepresentandaccuratelyrepresented.

Letstudentslookateachother’splantcellmodels.Encouragethemtotalkaboutwhatparts ofthedesignareworkingwellandwhatcouldbebetter.Askthemtogivekindandhelpful suggestionstomakeeachother’sworkstronger.

LearningActivities(Session2)

Challenge

Readthe"Challenge"sectiontogetherasaclass.Then,leadadiscussionaboutthestructural andfunctionaldifferencesbetweenplantandanimalcells.Askstudentshowtheycan incorporatethesedifferencesintotheir3DdesignsusingOnShape,reinforcingbothbiological understandinganddesignthinking.

Buildthemodel

1,2,3

LogintoyourOnshapeaccount. ClickCreate->Document Namethefile”Project1:PlantandAnimalCellModels".

4

Insertanimageofthecellmodelintoa separatesketchforreference.Youcanhide andunhidethissketchasneededforbetter visibility.

Createanoffsetplanetodefinethebaseof thecell,thenusetheLofttooltoconnect thetwosketches. 6

5

Createanewsketchonaplaneanddraw theoutlineofthecellbodyusingthe“Sline” tool.

Createanewsketchtodrawthe EndoplasmicReticulum. 7

UsetheExtrudetheEndoplasmicReticulum asshown.

Drawahalf-circlealongwithastraightline toserveastheaxisfortherevolveoperation.

Similarly,sketchandrevolvetheNucleolus.

UsetheLofttooltoconnectthetwoellipses andformtheLysosome.

Createanoffsetplaneabovethetopplane tosketchtheNucleus.

UsetheRevolvetooltoformtheNucleus. Selectthehalf-circleastheprofileandthe straightlineastheaxis.

TodrawtheLysosome,createanewsketch anddrawanellipseonthepreviously createdoffsetplane.Then,createanother sketchonthesurfaceofthecellanddrawa secondellipse.

ApplytheShelltooltohollowoutthemodel fromtheinside.

Drawtheremainingorganellesasshowninthesamplesolution.Usethe"Transform"tool tocopyandpositionrepetitiveshapesintheirrequiredlocations.

Test

Havestudentsrevisitthe"MeasureYourSuccess"sectiontoevaluatewhethertheiranimalcell modelmeetsthedefinedcriteriaandconstraints.Encouragethemtoreflectontheirdesign choicesandverifyifallrequiredfeaturesarepresentandaccuratelyrepresented.

Letstudentslookateachother’splantcellmodels.Encouragethemtotalkaboutwhatparts ofthedesignareworkingwellandwhatcouldbebetter.Askthemtogivekindandhelpful suggestionstomakeeachother’sworkstronger. Share&Improve --EndofSession2--

MATHANDSCIENCECONNECTION

ANSWER1&2

ANSWER4

Theplantcellhasahighersurfacearearelativetoitsvolumecomparedtotheanimalcell. Thismeanstheplantcellmodelallowsformoresurfaceexposureforthesamevolume, whichcouldaffecthowmaterialsmoveinandoutofthecellinreallife.

ANSWER5

1. {l,r},becausebothl=8andr=6arenaturalnumbers.

2. {SA,V},becausesurfaceareaandvolumearecalculatedexpressionsordecimals,not naturalnumbers.

Askstudentshowdesigningandanalyzingmulti-stagerocketshelpsthem understandhowinnovationdrivestechnologicaladvancementand productivity,supportingSDG8:DecentWorkandEconomicGrowth.Discuss howimprovingrocketefficiencycanreducecosts,createnewcareer opportunities,andinspireeconomicdevelopmentthroughspacetechnology.

Encouragestudentstoconnectthisprojecttoreal-worldcareerssuchas aerospaceengineers,industrialdesigners,orrockettechnicians,andexplore howtheseprofessionalscontributetoinnovationandglobalindustrygrowth.

Guidestudentsthroughtheself-reflectionsectionbypromptingthemto assesstheirengineeringdesignprocess,CADmodelingaccuracy,teamwork, andhoweffectivelytheirrocketmetthedesignconstraints.Invitethemtogive honestinsightsintowhatworkedwellandwhattheywouldimprovenexttime.

Project2:HeartModelKeychain LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

1. Understandthebasicstructureandfunctionofthehumanheart.

2. Builda3Dmodeloftheheart'skeychainusingOnShape.

3. Explorehow3Dmodelingassistsinmedicaleducationandresearch.

Duration: 90minutes

4. Reflectontheroleofanatomicalmodelsinhealthcareandbioengineering

A2DvectorfilecommonlyusedinCAD. Materials

Themajorbloodvesselthatcarriesoxygenatedbloodfromtheheartto therestofthebody.

Bloodvesselsthatcarrydeoxygenatedbloodfromthebodybacktothe heart.

Atoolusedtoscale,rotate,andmoveasketch.

Preparation(TeacherTo-DoBeforeClass)

1. LogintoyourOnShapeaccount.

2. Prepareallnecessarymaterials.

3. Setupapre-printedsampleofthemodel

LearningActivities(Session1)

1. Beginbyreviewingthebasicstructureandfunctionofthehumanheart.Highlighthowit playsakeyroleinthecirculatorysystembypumpingbloodtodeliveroxygenandnutrients throughoutthebody.Introduceimportanttermssuchasarteries,veins,andcapillaries,and explainhowtheyworktogethertokeepthebodyhealthy.

2. Explainhowthehearthastwosides:therightsidesendsoxygen-poorbloodtothelungs, whiletheleftsidepumpsoxygen-richbloodtotherestofthebody.Helpstudentsunderstand howtheheartsupportsthebody’sneedsbycirculatingbloodefficiently.

3. Explainhow3DmodelingsupportsSTEMlearningbyhelpingstudentsvisualizecomplex organsandmakereal-worldconnectionstohealthandbiology.

4. Usethefollowingguidingquestionstosupportclassdiscussion: Howdoesthehearthelpthebodystayaliveandhealthy? Whyisitimportanttolearnabouthowtheheartworks? Howcandesigninga3Dheartmodelhelpyoubetterunderstandyourownhealth? Inwhatwayscanakeychainmodelserveasadailyremindertotakecareofyourheart?

5. Introduceandexplainanynewvocabularyinthelesson,suchas“aorta,”“circulatory system,”or“veins,”tomakesurestudentsarereadytostarttheactivitywithconfidence.

DefinetheProblem

1. Readthe“DefinetheProblem”sectiontogetherwithyourstudents.Encouragebrief brainstormingtoexplorepossibleapproachesanddesignideas.

2. Clearlyexplaintheconstraints(limitations)andcriteria(successmeasures)theymust considerduringthemodelingprocess.

3. Invitestudentstosuggestwhatfactorstheybelievewillmakeasuccessful3Dheartmodel, supportingcriticalthinkingandengagementwiththedesignprocess.

GettingStarted

Clickonthe“Top”planeuntilitturnsyellow, thenselect“Sketch”intheupperleftcorner tocreateanewsketchonthatplane.

ImporttheDXFfilefortheanatomicalheart outlinebysearchingfor“InsertDXForDWG”. Then,Click"Import",uploadthe Heart_outline.dxffile.Clickthefile,then selectitandclickthegreencheckmarkto addittothesketch.

Extrudetheheartoutlinetoa12.5" thickness.Thiswillbeadjustedwhen scaling.

Usethe"Transform"tooltoscaletheheartdownto0.02x. IftheTransformtoolisnotvisibleinthetoolbar,search foritusing"Searchtools..."inthetoprightcorner. 7 8

9

ApplyanotherTransformtomovethehearttotheoriginusingthe“TranslatebyXYZ”arrows.

Createanewsketchonthetopplaneand drawa4”by3”ellipsearoundtheheart design.UsetheDimensiontooltosetthesize byselectingtheellipse'srightandtopedges.

Extrudetheellipsetoa0.3”thickness,ensuring itmakesconnectswiththeheartdesign.This ensurethe3Dprintwillbeasinglepiece. Whenreadytoprint,exportthemodelasan STLfile. 10 11

Test

Havestudentsrevisitthe"MeasureYourSuccess"sectiontoevaluatewhethertheirheart modelmeetsthedefinedcriteriaandconstraints.Encouragethemtoreflectontheirdesign choicesandverifyifallrequiredfeaturesarepresentandaccuratelyrepresented.

Letstudentslookateachother’sheartkeychainmodels.Encouragethemtotalkaboutwhat partsofthedesignareworkingwellandwhatcouldbebetter.Askthemtogivekindand helpfulsuggestionstomakeeachother’sworkstronger.

Share&improve --EndofSession1--

LearningActivities(Session2)

Challenge

Guidestudentsastheyaddaholethroughtheaortatoturntheirmodelintoakeychain. RemindthemtorotateandinspectthemodelfromdifferentanglesinOnShapetomakesure theholeiswell-placedandthedesignisfunctional.

Test

Havestudentsrevisitthe"MeasureYourSuccess"sectiontoevaluatewhethertheirheart modelmeetsthedefinedcriteriaandconstraints.Encouragethemtoreflectontheirdesign choicesandverifyifallrequiredfeaturesarepresentandaccuratelyrepresented.

Share&improve

Letstudentslookateachother’sheartmodels.Encouragethemtotalkaboutwhatpartsof thedesignareworkingwellandwhatcouldbebetter.Askthemtogivekindandhelpful suggestionstomakeeachother’sworkstronger.

AnswerKey

ANSWER2

a. Findthenewvolumeoftheellipsoidswitha10%increase. Originalvolumeformula:

Let’ssaytheoriginalmajoraxisa=5andminoraxisb=2:

b. Ifthemajoraxis(a)remainsconstant,solveforthenewminoraxis(b): Given:

Encouragestudentstothinkabouthowtheir3Dheartkeychaincanserveasa dailyremindertostayactive,eathealthy,andtakecareoftheirheart.Discuss howawarenesstoolslikethiscanpromotehealthyhabitsandsupportSDG3: GoodHealthandWell-Being.

Encouragestudentstoconnectthisprojecttoreal-worldcareerssuchas aerospaceengineers,industrialdesigners,orrockettechnicians,andexplore howtheseprofessionalscontributetoinnovationandglobalindustrygrowth.

Project3:DigestiveSystemMaze

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

1. Introductiontothehumandigestivesystem.

2. BuildadigestivesystempuzzleusingOnShape

Duration: 90minutes

3. Exploringmathematicalconceptssuchasanglesandmeasurements.

4. Reflectontheimportanceofvisualmodelsinmedicaltraining..

Materials

Vocabulary

Esophagus Digestive Export Amusculartubethatmovesfoodfromthethroattothestomach. Theprocessofbreakingdownfoodsothatthebodycanabsorband useitforenergy,growth,andtissuerepair.

ToprepareaCADmodelforlasercutting.

Preparation(TeacherTo-DoBeforeClass)

1. LogintoyourOnShapeaccount.

2. Prepareallnecessarymaterials.

3. Setupapre-printedsampleofthemodel

LearningActivities(Session1)

Introduction

1. Startbyexploringthestructureandfunctionofthedigestivesystem.Describehowfood travelsfromthemouththroughtheesophagustothestomach,whereit’sbrokendown,and thenmovestotheintestineswherenutrientsareabsorbedandwasteisremoved.Highlight theroleofkeyorgansliketheliver,stomach,smallintestine,andlargeintestine.

2. Introducetermssuchasesophagus,gallbladder,pancreas,andanus,andexplainhow eachpartcontributestothebody’sabilitytoprocessandabsorbnutrients.

3. Explainhowbuildingapuzzlemodelofthedigestivesystemhelpsstudentsmakesenseof howorgansareconnectedandhowfoodmovesthroughthem.Thishands-onactivity supportsdeeperunderstandingbylinkingstructuretofunctioninavisualandinteractiveway.

4. Usetheseguidingquestionstopromptdiscussion: Whathappenstofoodafterweeatit? Whyisthedigestivesystemimportantforourhealth? Howcanbuildingapuzzlehelpyourememberthepartsofthedigestivesystem? Whatcangowrongifpartofthedigestivesystemdoesn’tworkproperly?

5. Gooveranyneworunfamiliarvocabularywiththeclasstoensuretheyfeelpreparedand confidenttobegintheproject.

1. Readthe“DefinetheProblem”sectionwithyourstudents.Encouragethemtothinkabout howapuzzlemodelcouldhelpexplainthestructureandfunctionofthedigestivesystem.

2. Guideashortbrainstormingsessionwherestudentscanshareideasaboutwhatfeatures themodelshouldinclude—suchasthecorrectorderoforgans,accurateshapes,orhoweach partconnectstothenext.

3. Clarifytheconstraints(e.g.,thepuzzlemustbeeasytoassembleandclearlylabeled)and thecriteriaforsuccess(e.g.,themodelmustaccuratelyrepresentthesystemandhelpothers understanddigestion).

4. Askstudentswhatwouldmaketheirdigestivesystempuzzlebotheducationalandfunto use,helpingthemthinkcreativelyandcriticallyabouttheirdesign.

UseExtrudeRemovetocutouttheorgan shapes,creatingemptyspacesforthem.

Createanewsketchonthefacewherethe organoutlinesweredrawn,andbegin sketchingeachorganseparately(e.g.,liver, stomach,etc.).Makesuretoleavesome spacebetweeneachorganandthe surroundingedges.

Dothesamefortheremainingorgans. Makesuretoleaveenoughspacebetween themsotheycanbelayeredontopofeach otherwhenprintedwithoutoverlappingor merging.

Test

Askstudentstoreturntothe"MeasureYourSuccess"section.Havethemcheckiftheir digestivesystempuzzlemeetsthecriteriaandconstraintsoutlinedearlier.Encouragethemto reflectonwhetherallmajordigestiveorgansareincluded,labeledclearly,andplacedinthe correctorder.Remindthemtocheckthattheirmodelisbothaccurateandeasytouse.

Pairupstudentsandhavethemsharetheirdigestivesystemmodelswithapartner.Askeach studenttodescribetheirdesignchoicesandhowtheirmodelhelpsexplaindigestion.Guide studentstogivepositive,helpfulfeedback—pointingoutwhattheirpartnerdidwelland suggestingoneortwoareasforimprovement.Encouragethemtorecordthefeedbackthey receiveinthechartprovided.

LearningActivities(Session2)

Challenge

GuidestudentsastheybeginsketchingeachdigestiveorganseparatelyinOnShape(e.g., liver,stomach,intestines).Remindthemtoleaveenoughspacebetweentheorganstoavoid overlapswhenprinting.Supporttheminusingtheextrudetooltoaddvolumeandbringeach partofthedigestivesystemtolife.Thistaskhelpsreinforcespatialawareness,organstructure, andpracticaldesignskills

Test

Testtheupdateddesignafterworkingonthechallenge.Ensureitmeetsthecriteriaand constraintsoutlinedearlier.Checkiftheyleftenoughspacebetweentheorganstoavoid overlaps.

Share&improve

Havethestudentspairupandchecktheirprojectagain.Encouragethemtogiveconstructive feedbackbyidentifyingwhatworkswellandsuggestingspecificwaystoimprovethedesign.

AnswerKey

MATHANDSCIENCECONNECTION

ANSWER1

Oppositeand

Thisoneisbetterbecauseithasa smallerangle,whichprovidesa moredirectpathforfoodtotravel

Encouragestudentstothinkabouthowadigestivesystemmazecanteach othersthepathfoodtakesinthebody.Askhowvisualandinteractivemodels likethissupportSDG3:GoodHealthandWell-Beingbypromoting understandingofhowourbodiesworkandhowtotakecareofthem. Discusshowprofessionalssuchasdoctors,dietitians,andbiomedical engineersusetheirknowledgeofthedigestivesystemtoimprovehealth.Help studentsconnectthistocareerpathsthatsupportwell-beinganddisease prevention.

Project4:Thelungmodel LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

1. Understandthestructureofthelungs

2. Explaingasexchangeinthehumanrespiratorysystem.

3. Developa3Dmodeltosimulatelungs

Duration: 90minutes

4. UnderstandtherelationbetweenOxygenandCarbonDioxidePressurevs.time

5. Reflectonhowcan3Dlungmodelssupportwell-being.

Materials

Tinyairsacsattheendsofthebronchiolesinthelungs,wheregas exchangeoccurs

Acalculationusedtodetermineinternalforces(stresses)inamaterial orstructureunderexternalloads.

Acompressedfileformatusedtostoreandtransfermultiplefiles efficiently

Prepareallnecessarymaterials. 3. Setupapre-printedsampleofthemodel Preparation(TeacherTo-DoBeforeClass)

LogintoyourOnShapeaccount.

1. Beginbyreviewingthefunctionandimportanceoftherespiratorysystem,focusingonhow thelungsandalveoliworktogethertoallowgasexchange.Explainthatoxygenfrominhaled airmovesintothebloodthroughthealveoli,whilecarbondioxidemovesoutofthebloodto beexhaled.

2. Introducekeytermssuchaslungs,alveoli,trachea,bronchi,andgasexchange,anddiscuss theirrolesinhelpingthebodybreatheandstayhealthy.

3. Explainthatcreatinga3Dlungmodelhelpsstudentsvisualizethestructureofthe respiratorysystemandunderstandhowoxygenandcarbondioxidemovethroughit.This hands-onactivitybuildsconnectionsbetweenanatomyandreal-worldhealthchallengeslike asthmaandlungdisease. LearningActivities(Session1)

4. Usethefollowingquestionstoguideclassroomdiscussion: Whathappenstotheairwebreathewhenitentersthelungs? Whyisthealveolistructuresoimportant? Howdoesbreathingaffecttherestofthebody? Howcanalungmodelhelpsomeoneunderstandrespiratoryhealth?

5. Reviewanynewvocabularytermssostudentsareconfidentbeforebeginningthedesign phase.

DefinetheProblem

1. Readthe"DefinetheProblem"sectiontogether.Askstudentstoimaginetheyarehelpinga lungdoctor(pulmonologist)explainhowbreathingworkstopatients.

2. Encourageashortbrainstormingsession:Whatfeaturesshouldagoodlungmodelinclude? Whatwouldmakeitclearandeasytounderstand?Shoulditshowairflowpaths,lungshape,or howthealveoliwork?

3. Clarifytheconstraints(e.g.,mustbeprintableandsimpletounderstand)andcriteria(e.g., mustincludekeypartsofthesystemandsupportpatienteducation).

4. Promptstudentstothinkcriticallyandsuggesttheirownideasabouthowtomakeahelpful andaccurate3Dlungmodel.

GettingStarted

1,2,3

LogintoyourOnshapeaccount. ClickCreate->Document Namethefile”Project4:LungModel”.

DownloadtheprovidedZIPfilecontaining theSTLmodelfromthegivenlink.Unzip thefilebyright-clickingitandselecting “ExtractAll”.Thisfilewassourcedfrom this pageonThingiverse.com.Auseful websiteforsharing3Dmodels. InOnshape,clickthe"+"signinthe bottomleft,select"Import,"andthen choosetheCross_section_lung.stlfile. Note:Duetothelargefilesize,theupload maytakeafewminutes. 4,5

Viewthelungcross-sectionfromdifferent anglestoexamineitsgeometry.Whatare somestrengthsofthemodel?Whatcouldbe improved?

Thislungisveryfilledin.Theotheroptionistolookata3Dmodelwithverylittlefilledin. However,thiskindofprintwouldhavelotsofoverhang,meaningitwouldneedtoprint withsupportorwithveryhighinfill.ThesesettingscanbealteredinCura.However,when removingsupport,evenathinmodelwithhighinfillcanbreak.

Havestudentsreturntothe"MeasureYourSuccess"sectionandcheckiftheirlungmodel meetsalltheprojectrequirements.Encouragestudentstoreflectonboththeaccuracyand clarityoftheirwork.

Askstudentstopairupandpresenttheirlungmodelstooneanother.Guidethemtogivekind, helpful,andspecificfeedbackonthestrengthsofthedesignandareasforimprovement. Share&improve

LearningActivities(Session2)

1. Askstudentstocarefullycomparethetwolungmodelsshown.Encouragethemtoconsider whichmodelmightbemoreusefulforexplaininglungfunctiontopatients,focusingonclarity, anatomicaldetail,easeofunderstanding,andprintability.

2. Guideadiscussionaboutthepurposeofthemodel(e.g.,educationvs.decoration),andlet studentsjustifytheirchoicebasedonhowwelleachmodelshowsimportantparts.

3. Youcanalsoinvitestudentstosketchordescribeathirdmodelthatcombinesthestrengths ofboth,encouragingcreativethinkinganddesignimprovement.

Test

Havestudentstestbothlungmodels—orathirdoneiftheycreatedtheirown—andevaluate whichdesignbestmeetsthechallengerequirements.Askthemtoconsiderfactorssuchas clarity,detail,usability,andhowwellthemodelcommunicateshowthelungswork.

Share&improve

Encouragestudentstocometogetherinsmallgroupstodiscussthestrengthsand weaknessesofeachdesign.Promptthemtoshareobservations,negotiatedifferentopinions, andprovideconstructivefeedbacktohelpimprovethemodels.Thisprocesspromotes collaborationanddeeperunderstanding.

AnswerKey

MATHANDSCIENCECONNECTION

Thevaluesrepeatinacyclicalpattern. Therefore,thevalueswillbe:

O₂ peaksatt=2(inhalation),decreasestot=4,andstartsanewcycleatt=5. CO₂ dropsfrom50to0duringinhalation,thenrisesbackupduringexhalation.

Answer1:

Itrepresentsinhalationbecauseoxygenpressureisincreasing(from40to150mmHg)while carbondioxidepressureisdecreasing(from50to0mmHg),whichindicatesfreshairisbeing drawninandCO₂ isbeingclearedout.

Answer2:

Itrepresentsexhalation.Duringthistime,oxygenpressuredecreaseswhilecarbondioxide pressureincreases,showingthatoxygenisleavingthealveoliandcarbondioxideisentering forremoval.

Answer3:

Graph2showsdeeperandslowerbreathscomparedtoGraph1.Theoxygenpeaksarehigher andoccuroverlongertimeintervals,andthecarbondioxidedropsaremorepronounced, indicatingimprovedgasexchangeefficiencywithslowerbreathing.

Answer4:

Youwouldadjustthevolume(ordiameter)ofthealveoliinOnShapetomakethemlarger. Thismodelshowalveoliexpandtotakeinmoreoxygenduringdeepbreaths.

Reflection

Question#

Answerkey 1 2

Encouragestudentstothinkabouthow3Dlungmodelscanhelppeopleofall agesbetterunderstandhowtheirlungswork.Guidethemtoconsiderhow visualtoolslikethiscansupporthealtheducation,helppatientsmanage breathingconditions,andpromotegoodhabitslikedeepbreathingand avoidingsmoking—supportingSDG3:GoodHealthandWell-Being.

Leadadiscussionabouthowprofessionalssuchasdoctors,respiratory therapists,biomedicalengineers,andhealtheducatorsusemodelstoteach, treat,andinnovateinhealthcare.Helpstudentsconnectthesecareersto effortsthatimprovelunghealthandpreventdiseaseincommunities.

LearningObjectives

Project5:centrifuge

LessonPlan

Attheendofthelesson,thelearnerswill:

1. Understandthecirculatorysystemandbloodtypes

2. Designacentrifugemachinetoseparatebloodcellsfromplasma

3. ComparebetweenWBCandRBC

4. Reflectontheimportanceofcentrifugemachine

Materials

Vocabulary

Duration: 90minutes

Producedinthebonemarrowandfoundintheblood.

Helpsthebodyfightinfectionsanddiseases

Centrifuge

Adevicethatspinstoseparatecomponentsofamixture

Atoolthatsubtractsgeometricvolumes

Preparation(TeacherTo-DoBeforeClass)

1. LogintoyourOnShapeaccount.

2. Prepareallnecessarymaterials.

3. Setupapre-printedsampleofthemodel

LearningActivities(Session1)

Introduction

1. Beginbyreviewingtheroleofthecirculatorysystemintransportingoxygenandnutrients throughoutthebody,poweredbytheheartandoxygenatedbythelungs.Explainthatbloodis madeupofthreemaincomponents:redbloodcells(RBCs),whitebloodcells(WBCs),and platelets—eachwithauniqueshapeandfunction.

2. Discussthestructureandfunctionofeachtype: Redbloodcellscarryoxygenandhaveadisc-likeshape. Whitebloodcellsfightinfectionandvaryinshapeandsize. Plateletshelpwithbloodclottingtopreventbleeding.

3. Introducetheconceptofacentrifugeasascientifictoolthatseparatestheseblood componentsbyspinning.Explainthatstudentswillbecreatinga3Dmodelofacentrifugeto explorehowthisseparationworksandhowithelpsscientistsanddoctorsstudyblood.

4. Usetheseguidingquestionstosupportclassroomdiscussion: Whatarethedifferentpartsofblood,andwhatdotheydo? Whyisithelpfultoseparatebloodintoitscomponents? Howdoesacentrifugehelpinscienceandmedicine?

Howcana3Dmodelhelpusunderstandthisprocessbetter?

5. Introduceandexplainanynewvocabulary,suchascentrifuge,platelet,andhemoglobin,to ensurestudentsarereadytoengagewiththeproject.

Presenttheproblemtothestudentsandaskthemtothinkaboutthepossiblechallengesor limitationstheymightfacewhileworkingonthisproject.Encouragethemtosuggestways theycouldovercomeorpreventtheseissues.Refertothe"MeasureYourSuccess"sectionto helpstudentsidentifyspecificcriteriaandconstraintsrelatedtotheirdesign.

GettingStarted

1,2,3

LogintoyourOnshapeaccount. ClickCreate->Document Namethefile”Project5:BloodCellIdentificationTool".

4

Forthetoppart(therotatingsection),sketch twoconcentriccircles(oneinsidetheother) andextrudetheareabetweenthemtoform aring.

5

Toaddtheholes,sketchasinglecircleon thering,thenusetheCircularPatterntoolto repeatitaroundthecenter.

UseExtrudeRemovetocutoutthe repeatedcirclesandcreateholesforthe medicaltubes.

CreateanOffsetPlanebelowthetoppart,thensketchthebasewithacenterpoint foralignment. 8

Designastoppertopreventthecylinderfromslidingdownthebasebyaddinga smallextrusionorridgebeneaththerotatingpart.

Test

Havestudentscheckthe"MeasureYourSuccess"sectionandreviewiftheircentrifugemodel meetsalldesigngoals.Remindthemtoconfirmifthemodelclearlyshowshowblood componentsareseparated.

Askstudentstopairupandgiveeachotherquickfeedback.Letthemshareonestrengthand onesuggestionforimprovementtohelprefinetheircentrifugemodels.

LearningActivities(Session2)

Guidestudentsastheytesttheirprintedcentrifugemodeltoseeifitcanspinproperly. Encouragethemtoobservehowwellitfunctionsandidentifyanypartsthatmayneedresizing oradjustingforbetterbalanceandrotation.Promptstudentstothinkabouthowdesign affectsperformance.

Test

Aftercompletingthechallenge,havestudentstestiftheircentrifugespinssmoothlyand functionsasintended.Askthemtoevaluatewhetherthemodelmeetstheperformancegoals andifanypartsneedadjustment.

Share&improve

Havestudentsreflectontheirresultsandwritedownthestrengthsandweaknessesoftheir design.Encouragethemtosharewithapartner,comparefindings,andsuggestspecific improvementstomakethemodelworkmoreefficiently.

AnswerKey

AskstudentstomeasureorcalculatethevolumeofeachWBCmodelandlisttheminorder fromsmallesttolargest.

Askstudentshowacentrifugemachinecanhelpdetectinfectionsandsupport diseasecontrolbyseparatingbloodcomponentsforanalysis.Discusshow professionalslikedoctors,labtechnicians,andbiomedicalengineersuse centrifugesindiagnosingandtreatinghealthconditions.Encouragestudents toreflectonwhattheylearnedandhowtheyapplieddesignandproblemsolvingskillsintheproject.

AssessmentGuide

AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.

Getasnapshotof students’starting knowledgebefore onboardinginSTEM.

StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.

Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.

Pre-Assessment(optional)

Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.

Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.

Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning

TeacherTips:

Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.

KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K

Math&ScienceConnection

Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.

Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.

TeacherTips: just grading tools

Userealtools:Rulers,scales,charts,simplecoding tools.

Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.

Linktostandards:Alignwithbothmathandscience

Link to sta goals.

Self-AssessmentRubrics

TeacherTips:

Introducerubricsearly:Define"what successlookslike."

Modelreflection:Scoresamplework together.

Selfandpeerreview:Studentsrate anddiscuss.

Askreflectivequestions:“Whatwas yourbiggestchallenge?”

Celebratehonesty:Praiseaccurate self-assessment.

Post-Assessment:CapstoneProject

Self-reflectonyourworkonthisproject.

Icanbreakdown aproblem.

Icandevelopa workingprototype.

Icancodemyprototype todowhatIwant.

Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.

Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.

Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.

STEMInnovationFair

Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.

Possiblepresentationformatsinclude:

Interactivedemonstrations

Postersessions

Digitalportfolios

PitchpresentationsmodeledafterprofessionalSTEMconferences

nforcing rn how to celebrating education w

Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.