TeacherGuide-STEMMicrobitLevel7
Teacher Guide
Copyright©2024
Copyright © 20
Author: NatashaKarampela
Editors: ErinGoodwinandLindseyOwn
ISBN: 978-981-17737-1-6
Publishedby:
SKOOL21PTE.LTD.-Singapore
DUOTower,Level8#831
3FraserStreet,189352,Singapore
Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods,without thepriorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.
Forpermissionsorinquiries,pleasecontact:
Email: info@skool21.org
Website: https://skool21.org
Preface
WelcometotheFutureofTeachingandLearning!
Welcome to th
Thank you for joi designed not on meaningful, han young innovato science, technol
BuildingonaStrongFoundation
Each level of the
Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).
LearningbyDoing
MakingaReal-WorldImpact
creating a strong
EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.
AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.
TeachingLikeaPro novators series is teachers to lead es, you will guide challenges using
Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.
TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.
Building on a not just leaders, and c
IntroductiontotheKit
TheSKOOL21STEMMicro:bitLearningKitisahands-onelectronicsandcodingkit designedspecificallyforstudentsinLevel6and7.PairedwiththeSTEM InnovatorsHandbook,thiskitintroducesyounglearnerstothefundamentalsof programming,electronics,andautomationthroughinteractiveandageappropriatereal-worldprojects.
AttheheartofthekitistheBBCMicro:bitmicrocontroller, whichisprogrammedusingblock-basedcoding(via MicrosoftMakeCode)ortext-basedPython.Studentsexplore howhardwareandsoftwareinteractbybuildingprojectssuch assensor-basedalarms,smartfans,LEDcontrols,andmore.
LessonStructure
Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:
Lessonobjectives
NGSSStandards
CambridgeScienceStandards
ISTEStandardsConnections
CambridgeMathStandards
CommonCoreMathStandards
DefinetheProblem
Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.
GettingStarted
Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.
DesignandPlan
Build-Test-Improve
Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.
Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.
MathandScienceConnection/Reflect
Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.
TheEngineeringDesignProcess ocess
TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.
Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.
Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.
forming a str
FosteringSocialSkills
STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.
Keysocialskillsdevelopedinclude:
Collaboration
Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.
Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.
Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.
Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.
Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.
Communication
Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.
Problem-Solving
Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.
TimeManagement
Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.
PresentationSkills
Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.
Teamworking
Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.
TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.
academic su
MakerspaceSetup
Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.
SpaceDesign:
Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).
MaterialsManagement:
Ensurethatkitsarecompleteandaccessiblebefore eachproject.
Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.
RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.
SharedResources:
ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.
SafetyFirst: Keep a fi
Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.
STEMClassroomManagement
STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.
STEMClassSessionRoutine
Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:
90-minuteproject (Grade3toGrade12)
Grade 3 to Grade 12)
5-minute
45-minuteproject (Pre-KtoGrade2)
o ect Pre-K to Grade 2)
SpaceOrganization:
Provideracksoropenshelvestostorekitsneatlyandaccessibly.
ToolandMaterialsRules:
Usetoolswithcare–noplayingormisusingmaterials.
Returneverythingtoitslabeledplace.
Askbeforetakingextrasupplies.
Handstoyourself—respectothers’creationsandspace.
Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.
Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.
Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.
GroupManagementwithTeamRoles
Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:
Leader
MaterialManager Reporter
TestingSupervisor
Keepsteamontask,trackstime,encourages collaboration.
Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.
Sharesoutcomes,challenges,andsolutionswiththeclass.
Evaluatesthemodel,givesfeedback,suggestschanges.
ImplementationGuide
TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:
IntegratedApproach
EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.
Advantages:
Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.
Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).
Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.
PracticalTips:
Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).
Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.
Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.
Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.
connect
Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.
Stand-AloneClassApproach
ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.
Advantages:
Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).
Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.
Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.
PracticalTips: g
Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.
Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass
Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.
Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.
Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).
Extra-CurricularApproach
RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.
Advantages:
Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.
Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.
Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).
Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).
PracticalTips:
Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.
Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness.
Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.
Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.
Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.
HybridApproach (BlendingAllModels)
Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.
Whentointegrate:
Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.
Whentodostand-alone:
Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.
Whentouseclubs:
Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”
Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.
(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)
StandardsAlignment
LessonPlans andAnswerkey
Project1:SunlightFinder LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
Duration: 90minutes
1. Understandhowlightintensityaffectstheenergyproductioninplantsthrough photosynthesis.
2. UsetheMicro:bit'slightsensortoidentifyareaswithhighsunlightexposure.
3. Designandtestalightdetectionsystemthatalertsusersusingpitch,volume,and frequencywhenlightlevelsareoptimalforplantgrowth.
Materials
Apartofaplantcellthatcapturessunlighttomakefoodthrough photosynthesis.
Theprocesswhereplantsusesunlight,water,andcarbondioxideto makefoodandoxygen.
Adevicethatdetectsandmeasurestheamountoflight.
Partsofcellsthatgenerateenergybybreakingdownfood.
Asmallmoleculethatcombinestoformproteins,whichareessential forthestructureandfunctionoflivingthings.
Preparation(TeacherTo-DoBeforeClass)
1. Openmakecode.microbit.orgonalldevicesandensureeachgrouphasaccesstoa Micro:bitworkspace.
2. Prepareandorganizeallclassroommaterialsneededfortheactivity.
3. BuildanddemonstrateanexamplesetupusingtheMicro:bitlightsensoranda programmedalertsystemtoprovidestudentsavisualreferenceofhowlightdetectionand audiosignalingworks.
LearningActivities(Session1)
Introduction
1. Beginwithadiscussionabouthowplantsandanimalsgenerateenergy.Askstudents:“What doesaplantneedtogrow?”and“Whyissunlightimportantforplants?”
2. Highlighttheroleofchloroplastsincapturingsunlightandtheprocessofphotosynthesis. Contrastthiswithhowanimalcellsusemitochondriatobreakdownfood.
3. Guidestudentstoexplorewhysomeplantsneedfullsunlightandhowthisisessentialfor photosynthesis.
4. Askstudentstorefertotheinfographicanddiscusshowlightintensitysupportsplant growthandsustainability.
DefinetheProblem
1. Readthe"DefinetheProblem"sectiontogether.Askstudents:“Whatchallengeisthe gardenerfacing?”and“Howcanwehelpthemsolveit?”
2. Emphasizethatthegoalistocreateasystemthatidentifiesareaswiththehighestsunlight forplacingfull-sunplantseffectively.
3. Encouragestudentstothinkabouthowtechnologycansupportsustainablegardening practices.
MeasureYourSuccess
1. Reviewthecriteriaandconstraintswiththeclass.Ask:“Whatshouldoursystembeableto do?”and“Howwillweknowifitworks?”
2. Highlightthattheprojectshouldmeasurelightintensityandalerttheuserthroughsoundif thelightlevelishigh.
3. Emphasizethatthesolutionshouldbedesignedcollaborativelyanduseonlytheprovided materials.
1. Havestudentsformtheirteamsandassignprojectroles.Reviewvocabularyaloudandask studentstoidentifyorprovideexamples.
2. SupportstudentsastheyconnecttheMicro:bittotheircomputerusingaUSBcable. GettingStarted
Code
1. Ensureeachgroupopensmakecode.microbit.organdcreatesabasicprogramtomeasure anddisplaylightlevelsusingthebuilt-inlightsensor.
2. Demonstratehowtodisplaythelightvaluesontheserialmonitorandhowtousethedata viewtointerpretthelightreadings.
3. Guidestudentsinenhancingtheirlightmeasurementsystemwithasoundalert.Explain thatthegoalistocreateaprogramthattriggersanaudiosignalwhenthelightintensity surpassesadefinedthreshold.
LearningActivities(Session2)
Introduction
1. BeginbyreviewingwhatstudentslearnedinSession1,particularlytheirobservationsoflight levelsandhowtheyrelatetoplantneeds.
2. Revisittheinfographicandre-emphasizetheenvironmentalimpactofusingnaturallight effectively.
3. Introducetoday’sgoal:buildingandtestingthealertsystemthathelpsfindthesunniest spots.
Challenge
1. GuidestudentstobuildaportablesensorsystemusingtheMicro:bitandbatterypack. Supporttheminsettingupasystemthatwillalerttheuserwithasoundwhenthelightlevelis highenoughforfull-sunplants.
2. Encourageexperimentationwithpitch,frequency,andvolumetosignalhigherlightlevels moreclearly.
3. Ifstudentshaddifficultydevelopingtheiralertsystemduringthelesson,theycanadvisethe samplesolutionattheendofthelesson.
4. Havestudentscarrytheirdevicesaroundtheroomoroutsideandrecordwhichlocations producedthestrongestalerts.
DesignandPlan
1. Askeachteamtosketchtheirsystembeforetheybeginbuilding.Thesketchshouldinclude theMicro:bit,thelightsensor,thealertmechanism,andthelocationswheremeasurements willbetaken.
2. Promptstudentstoexplaintheirdesigndecisions,includinghowtheydeterminedthelight thresholdandhowtheiralertsystemfunctions.
Test
1. Allowstudentstotesttheiralertsystemsinvariouslocations.Encouragethemtoobserve andnotethedifferencesinlightlevelresponse.Ask:“Didyoursystemalertyoucorrectlyin high-lightareas?”and“Whatchangescanmakethealertsmoreaccurateormore noticeable?”
2. Haveeachteamrevisitthecriteriaandconstraintstoensuretheirsolutionmeetsthegoals oftheproject.
Share&Improve
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase.
MathandScienceConnection
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(AffordableandCleanEnergy),andbrainstorm withstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace.
EndofSession2
AnswerKey
MathandScienceConnectionAnswers
1. LightProblem:
Multiplytheincreaseratebythetime:
Addthistothecurrentbrightness:
2+3=5lumens
1. WaterProblem:
Multiplythewaterperplantperdaybythenumberofplants:
15x==7.5cupsperday Answer: 5lumens x4==3lumens
Multiplythedailywateramountbythenumberofdays:
7.5cups/day×14days=105cups Answer: 105cups
1. Thedevicehelpsfarmersgrowcropsmoreefficientlybyidentifyingareaswithoptimal sunlight,reducingwasteinresourceslikewaterandfertilizer.Engineerscouldadaptsimilar technologiesforoptimizingsolarpanelplacement.
2. Agriculturalscientistscanuselightsensorstoenhancecropyields,whilerenewableenergy engineerscanoptimizesolarpanelinstallationanddevelopmoreefficientenergysystems.
Project2:AIFitnesstimer LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
Duration: 90minutes
1. UnderstandhowsensorsandAIcandetectandclassifyphysicalactivity.
2. TrainanAImodeltodistinguishbetweenexerciseandrestusingmovementdata.
3. Buildandprogramawearablefitnesstimerthattrackstimespentexercisingandresting.
Materials
Vocabulary
Preparation(TeacherTo-DoBeforeClass)
1. Ensurestudentshaveaccesstocreateai.microbit.organdmakecode.microbit.orgontheir devices.
2. Prepareandorganizeallmaterialsforbuildingasimplewriststrap.
3. TestasampleAImodelandconnectionbetweenBluetoothandMicro:bittoensuresmooth operation.
LearningActivities(Session1)
Introduction
1. Beginwithadiscussionaboutphysicalactivityanditsbenefitsforhealthandwellbeing.Ask students:“Whathappensinourbodywhenweexercise?”and“Howcanweusetechnologyto trackmovement?”
2. Introducetheconceptofaccelerometersinfitnesstrackersandhowtheyhelpdetect changesinmotion.
3. ExplainhowAIcanclassifypatternsinmovementdatatotellwhensomeoneisexercising versusresting.
4. Askstudentstoconsiderhowthistypeofsystemcouldhelpolderadults,athletes,oranyone tryingtoimprovetheirfitness.
1. Readthe"DefinetheProblem"sectiontogether.Askstudents:“Whatistheelderlycarefacility askingustobuild?”
2. Emphasizethatthegoalistodesignawearablefitnesstimerthattrackshowlongsomeone isexercising.
3. Discusswhereandhowthiskindofsolutioncouldbehelpfulindailylife.
MeasureYourSuccess
1. Reviewtheprojectcriteria.Ask:“Whatshouldthissystemdoautomatically?”and“Howdo weknowit’sworkingwell?”
2. Emphasizethatthedeviceshouldbewearable,functional,andaccurate.
3. Highlighttheimportanceofusingonlytheprovidedmaterialsandmakingsurethedesign issafeandcomfortable.
1. Havestudentsformtheirteamsandassignprojectroles.Reviewthevocabularytermaloud andaskforexamples.
2. GuidestudentstoconnecttheMicro:bittotheirdeviceusingtheUSBcable. GettingStarted
CollectData
1. Askstudentstoopencreateai.microbit.organdselect"GetStarted"followedby"New Session."
2. SupportstudentsastheyconnecttheMicro:bitviaBluetoothandcollectmovement samplesforeachaction.
3. Remindteamstoremoveanyobviousoutliersamplesandrepeatifnecessarytoimprove modelquality.
TraintheAIModel
1. Afterrecordingenoughsamples,askstudentstoclick"TrainModel"andbeginthetraining process.
2. Encouragestudentstotesttheirmodelandreviewitsaccuracy.Ifthemodelmisclassifies actions,studentsshouldaddnewtrainingsamplesandretrain.
3. Oncesatisfiedwiththeresults,studentsshouldclick"EditinMakeCode"tobegin programming.
Code
1. SupportstudentsastheyexplorethestartercodeblocksforMLactionrecognition.
2. GuidestudentstouseMLblockstoincreasethevariablecounteachtimeoneofthe actionsstops.
3. DemonstratehowtousethebuttonpressblockstodisplaythevaluesontheMicro:bit screen.
EndofFirstSession
LearningActivities(Session2)
Introduction
1. BeginbyreviewingwhatstudentslearnedaboutmotiontrackingandAIrecognitionin Session1.
2. Askstudentstosharehowaccuratetheirmodelswereandwhatchallengesthey encounteredwhiletraining.
3. Revisittheprojectgoals:designingandcodingawearablefitnesstimerforreal-worlduse.
Challenge
1. Guidestudentsastheydesignawearablestrapusingchenillestemsorelasticmaterialsto securetheMicro:bitandbatterypack.
2. Encouragestudentstopersonalizetheirdesigntomakeitsecure,comfortable,and functional.
3. Supportstudentsinchoosingoneadditionalchallenge:addingsoundorLEDfeedback, displayinga'?'whentheAIisunsure,ortrainingthemodeltodetectspecificexercises.
4. Allowteamstotesttheirmodificationsanddiscusshowtheseenhanceusabilityand feedback.
DesignandPlan
1. AskstudentstosketchtheirwearabledesignandindicatewheretheMicro:bitandbattery willbeplaced.
2. Studentsshouldalsooutlinehowtheirchosenchallengewillbeimplementedinthecodeor structure.
3. Encouragestudentstoexplainhowthedesignsupportssafetyandaccuratemotion detection.
Test
1. Allowstudentstotesttheirwearabletimerbysimulatingexerciseandnormalactivity.Ask: “Doesyourmodelcorrectlyrecognizewhenyou'reexercising?”and“Doyourtimersdisplaythe correctvalues?”
2. Promptteamstomakeadjustmentsforanyerrorsorunexpectedresults.
Share&Improve
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase.
MathandScienceConnection
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(GoodHealthandWell-Being),andbrainstorm withstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace.
EndofSession2
AnswerKey
1. Itisimportanttolookfortrendsinthedataandidentifyoutliersto removeimagesthatmay confusemodel andcauseittogiveinaccurateresults.
2. Totalworkouttime=Segment1+Segment2+Segment3=2x+1.5+3x–0.5+x+2.25=2x +3x+x+1.5-0.5+2.25= 6x+3.25
1. Thefitnesstimercanhelptheelderlycarefacilityprovideessentialhealthcareservicesby trackingandmotivatingtheresident’sactivity.Thisrelatestohelpingcreatequalityhealth careservices.
2. Medicalpractitionersandnursescanrecommendthattheirpatientsusethetrackerto motivatetheelderlytoexercise.Fitnessinstructorscanusethedevicesintheirsessionsto timeeveryone’stimespentdoingcertainactivities.
Reflection
Project3:KeyClassification LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
Duration: 90minutes
1. Understandhowdichotomouskeyshelpscientistsclassifyorganismsbasedonobservable traits.
2. UsetheMicro:bittocreateaninteractiveclassificationtoolthatguidesusersthrougha decisiontree.
3. Applyproportionalreasoningtoidentifypatternsinanimalgroupsandbuildaprogramthat classifiesspeciesusingLEDsandbuttoninputs.
Materials
Vocabulary
DichotomousKey
Palaeontologist Fossil Species
Extraterrestrial
Atoolthathelpsidentifythingsbyansweringaseriesofyes/no questions.
Ascientistwhostudiesfossilstolearnaboutlifeinthepast.
Thepreservedremainsortracesofaplantoranimalthatlivedlong ago.
Agroupoflivingthingsthatcanreproduceandhavesimilar characteristics.
SomethingthatcomesfromoutsideEarth,likealiens.
Preparation(TeacherTo-DoBeforeClass)
1. Openmakecode.microbit.orgonallstudentdevicesandprepareexamplecodetotestLED output.
2. CreateaworkingsampleoftheMicro:bitwiredtothreeLEDsandloadedwithabasic classificationprogram.
3. Printordisplaythedichotomouskeyforvertebrateclassification.
LearningActivities(Session1)
1. Beginwithadiscussionabouthowscientistsclassifylifeforms.Askstudents:“Whydo scientistsneedtoclassifyspecies?”and“Whatkindsoftraitshelpustellspeciesapart?”
2. Showtheinfographicofthedichotomouskeyforvertebrateclassification.Explainhow dichotomouskeysworkbypresentingtwooptionsatatimetohelpidentifyspecies.
3. Discussreal-worldapplicationsofclassification,suchasexploringfossilsorsearchingfor signsoflifebeyondEarth.
DefinetheProblem
1. Readthe"DefinetheProblem"sectionasaclass.Ask:“Whatdoesthemuseumwantusto build?”
2. Emphasizethattheprojectrequiresadigitalversionofadichotomouskeythatguidesusers throughsimpleclassificationquestions.
3. Highlighthowthefinaloutputshouldincludevisualindicators(LEDs)andtext-based guidance.
1. Reviewthesuccesscriteriaasagroup.Ask:“Whatshouldtheprogramdowhenwepress buttonAorB?”and“Howdoweknowit’sworkingcorrectly?”
2. Emphasizetheneedtodisplaywhichcategorytheanimalbelongsto.
3. Reiteratethatalldesignideasmustcomefromthegroupandonlytheprovidedmaterials shouldbeused.
GettingStarted
1. Havestudentsformtheirteamsandassignprojectroles.Reviewthevocabularyterms aloudandhavestudentsgiveexamples.
2. AssiststudentswithwiringthreedifferentlycoloredLEDstopins0,1,and2oftheMicro:bit usingalligatorclipsandabreadboard.
3. EnsuretheshortlegofeachLEDisconnectedtoGNDviathebreadboard’snegative column.
Code
1. AskstudentstouploadabasicprogramthatturnsoneachLEDonebyone.Thischecksthe wiringandUSBconnection.
2. Guidestudentstowriteaclassificationprogramusingserialmessagesandbuttoninputs. Supportstudentsinaddingbranchinglogicusing"if/else"blockstocontinueclassifying basedonobservablefeatureslikefeathersorskintype.
EndofFirstSession
LearningActivities(Session2)
Introduction
1. Beginbyreviewingwhatstudentslearnedabouthowdichotomouskeysworkin classification.
2. AskstudentstosharehowtheyusedbuttoninputsandLEDstorepresentdifferentspecies.
3. Revisitthemuseum’srequestforaninteractivedisplayandconnectthistohowreal scientistscommunicateclassificationresults.
Challenge
1. Challengestudentstocreateaseconddichotomouskey,thistimeforidentifyingplanttypes.
2. GuidethemtoreusetheirMicro:bitandLEDsetupwhilewritinganewclassification sequence.
3. Promptthemtoincludedifferenttypesoffeatures(e.g.,leafshape,floweringvs.nonflowering)inthenewkey.
DesignandPlan
1. Askeachgrouptocreateasketchoftheirupdatedkeyandthelogicstructureforbutton inputs.
2. StudentsshouldmapoutwhichLEDcombinationswillrepresenteachplantcategory.
3. Havestudentsexplainhowtheirdecisiontreeflowslogicallyandwhetheritmeetsthe successcriteria.
Test
1. Allowstudentstotesttheirplantclassifierusingasetofplantphotosormodels.Ask:“Doyour questionsleaduserstothecorrectplanttype?”and“DoestheLEDlightupasexpected?”
2. Encouragestudentstoreviseanyunclearlogicorfixhardwareissues.
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase.
MathandScienceConnection
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(LifeonLand),andbrainstormwithstudentshow thisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace. EndofSession2
1.
2. Therewere7poriferaoutof77specieslogged.P== 29oftheanimalsarebirds,andthereare72animalsintotal.Thus,×72= 16birds
1. Akeyclassificationsystemcanhelpdiscovernewspeciesinremoteareas,contributingto biodiversitydata.Itcanhelpidentifyfossils,providinginsightsintoextinctspeciesand ecosystemsandassistmonitoringspeciesatriskofextinction.
2. Akeyclassificationsystemcanhelppaleontologistsusefossilstounderstandpast ecosystemsandpredictbiodiversitytrends.Itcanhelpecologistsmonitorspecies populationsanddevelopconservationstrategies.
Project4:DecomposerPopulationAnalysis
LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
1. Understandtheroleofdecomposersinecosystemsandfoodwebs.
Duration: 90minutes
2. SimulatechangesinpopulationlevelsusingvariablesandMicro:bitprogramming.
3. Predictandanalyzeproportionalchangesinotherspecieswhendecomposersareadded orremoved.
Materials
Atinylivingthing,likebacteria,thatcanonlybeseenwitha microscope.
Anorganism,likefungiorbacteria,thatbreaksdowndeadplantsand animals.
Adiagramshowinghowenergyandnutrientsmovethroughaseriesof organisms.
Acommunityoflivingthingsandtheirenvironment.
Toaddnutrientstosoilorplantstohelpthemgrow.
Anetworkofinterconnectedfoodchainsinanecosystem.
Preparation(TeacherTo-DoBeforeClass)
1. Openmakecode.microbit.orgonalldevicesandensureeachgrouphasaccesstoa Micro:bitworkspace.
2. Prepareandorganizeallclassroommaterialsneededfortheactivity.
3. Reviewtheconceptoffoodchainsandhowdecomposerssupportproducersand consumers.
LearningActivities(Session1)
1. Beginbydiscussingfoodchainsandfoodwebs.Ask:“Whatroledodecomposersplayin nature?”.Highlighthowdecomposersrecyclenutrientsthatareessentialforproducers(like plants).
2. Introducetheproblem:Whatifdecomposersdisappearedorrapidlyincreased?Whatwould happentotherestofthefoodweb?Connectthisideatooceanhealthandbiodiversity preservation.
1. Readthe"DefinetheProblem"sectiontogether.Askstudents:“Whatkindofsimulationdoes thescienceteacherneed?”
2. ExplainthatthegoalistobuildaMicro:bitprogramthatmodelspopulationchangeswhen decomposersareaddedorremoved. DefinetheProblem
1. Reviewthecriteriaandconstraints.Ask:“Howwillweknowoursimulationisworking?”
2. Emphasizethatpopulationvaluesshouldnotfallbelowzeroandmustadjustaccurately basedoninputs.
3. Reiteratethatonlytheprovidedmaterialsshouldbeused. MeasureYourSuccess
1. Havestudentsformtheirteamsandassignprojectroles.Reviewthevocabularyterms aloudandhavestudentsgiveexamples.
2. AskstudentstoopenMakeCodeandnametheirproject"DecomposerPopulationAnalysis." GettingStarted
1. Guidestudentstocreatethefollowingvariables:"decomposerpop,""producerpop," "herbivorepop,"and"carnivorepop."
2. Encouragestudentstotesttheircodetoseereal-timeupdatesinthesimulatorordata logger. Code
EndofFirstSession
LearningActivities(Session2)
Introduction
1. RecapwhatstudentsbuiltinSession1andaskwhatpatternstheynoticed.
2. Invitestudentstoconsiderhowdifferentchangeratesmightaffectecosystems.
Challenge
1. Readthechallengealoudwithyourstudents,thenask:"Canyoupredictwhatmighthappen ifthedecomposerpopulationincreasesordecreasesby10units?"
2. Askstudentstomodifytheirprogramusingnewrates.Forexample:
ButtonA:+10decomposers,+8producers,+5herbivores,+3carnivores
ButtonB:-10decomposers,-8producers,-5herbivores,-3carnivores
3. Emphasizeaccuracyandlogicalrelationshipsbetweentrophiclevels.Useanalogiesto explainthatmoredecomposersmeansmorenutrients moreplants moreherbivores morecarnivores.Emphasizethecause-and-effectchain.
DesignandPlan
1. Havestudentssketchapyramidordiagramoftheirfoodweb,showingtherelationships.
2. Askthemtoannotatetheirdiagramswithexpectedchangeswhenpopulationsshift. Supportstudentsinwritingpseudocodetoplantheirprogramlogic.
Test
1. StudentstestpopulationincreasesanddecreasesusingtheAandBbuttons.Ask:“Doyour outputsmakesenseforeachchange?”and“Arepopulationsstayingabovezero?”
2. Supportteamsincorrectingerrorsoradjustingpopulationratios.
Share&Improve
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase
MathandScienceConnection
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(LifeBelowWater),andbrainstormwithstudents howthisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace.
EndofSession2
AnswerKey
MathandScienceConnectionAnswers
1. No,populationscannotbecomelowerthan0.
2. Thefollowingprogramshowsanexampleofhowtomultiplythedecomposer,producer, herbivore,andcarnivorebyascalarinsteadofaddingorsubtractingvalues.
3. First,findthepercentincreaseofherbivores:66/60=1.1.Thismeansthattheherbivore populationhasincreasedby10%.Thus,thecarnivorepopulationwillincreaseby4%.
Carnivores:25x1.04= 26carnivores.
5. Ifoneecosystemisaffectedinagroupof8,thereare7othersthatcouldbeaffected.If75% oftheremainderareaffected,then:7x0.75=5.25ecosystemswouldbeaffected.Roundingto thenearestwholenumber, 5 otherecosystemsinthenetworkof8wouldbeaffected.
1. Localgovernmentscanusetheresultstoimposefishinglimits,protectingaquatic decomposersandmaintaininghealthymarinefoodwebs.
2. Ecologistscanstudydecomposerpopulationstoensurebalancedecosystems.Policy makerscanimplementconservationmeasuresbasedonecosystemanalyses.
Reflection
Project5:MetalorNonmetal? LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
Duration: 90minutes
1. Distinguishbetweentheelectricalpropertiesofconductorsandinsulatorsbyexamining howtheyinfluencecurrentflow.
2. Designandconductacircuit-basedinvestigationusingaMicro:bittoevaluatethe conductivityofvariousmaterials.
3. Interprettestresultstoclassifymaterialsasmetalsornonmetals,basedontheirabilityto completeanelectricalcircuit..
Materials
Micro:bitKit
Vocabulary
Ashiny,strongmaterialthatconductsheatandelectricity.
Amaterialthatallowselectricityorheattofloweasily.
Amaterialthatisusuallynotshinyanddoesnotconductelectricityor heatwell.
Amaterialthatdoesnotletelectricityorheatpassthrougheasily.
Asmalldevicethatemitslightefficientlywhenanelectriccurrent passesthroughit.
Preparation(TeacherTo-DoBeforeClass)
1. Open makecode.microbit.orgonalldevicesandensureeachgrouphasaccesstoa Micro:bitworkspace.
2. Prepareandorganizeallmaterialsrequiredfortheactivityandvariousmaterialstotest (metallicandnonmetallicitems).Labelmaterialsclearlytosupportstudent-led experimentationandclassification.
3. BuildanddemonstrateanexampleLEDcircuitwiththeMicro:bitusingaknownconductorto showhowelectricalcurrentcompletestheloop.
LearningActivities(Session1)
Introduction
1. Beginbydiscussingmetalsandnonmetalsandtheirusesindailylife.Ask:“Whyisit importanttoknowwhichmaterialsconductelectricity?”
2. Explainthatover95%ofmetalsareconductorsandthatconductivityisakeytraitthathelps classifymaterials.ChallengethentocreateatoolusingtheMicro:bittotestifamaterialisa metaloranonmetal.
1. Readthe"DefinetheProblem"sectionasaclass.Emphasizetheneedtocreateaworking circuitthatcantestforconductivity.
2. Askstudentstoidentifywhatascientistmightneedthistoolforinreal-worldapplications.
1. Reviewthesuccesscriteria.Promptstudents:"Howwillweknowifamaterialconducts electricity?"
2. Emphasizetheneedforaccuratetestingandforstudentstorecordwhetheramaterialisa conductororinsulator.
GettingStarted
1. Assignteamrolesandreviewvocabulary.Userealmaterialstodemonstrateexamplesof conductorsandinsulators.
2. GuidestudentsinwiringanLEDcircuitontheMicro:bitusingalligatorclipsandatest materialinplaceofaresistor.
3. EnsurestudentsunderstandhowtoconnecttheLED:longerlegtoport0throughatest materialandshorterlegtoGND.
1. AskthemtowritecodethatturnsontheLEDwhenaclosedcircuitisformed.Ifstudents struggle,providethemodelcode.
2. OncestudentswiretheirLEDwitharesistororknownconductor,askthem: “DidtheLEDturnon?”
“Howcanyoutellthatyourcodeisworkingasintended?”
“Whatdoesthistellusaboutthematerialusedinthecircuit?”
3. Instructstudentstoreplacetheresistorwithvarioustestmaterials(e.g.,spoon,scissor blade,fabric,potato,etc.)andobservewhethertheLEDlightsup.
LearningActivities(Session2)
Introduction
1. Recaptheprevioussession.Askstudents:"Whatmaterialswereconductors?Whichwere insulators?Werethereanysurprises?"
2. Connectthefindingstoreal-worldusesofmetalsandinsulatorsininfrastructureand devices.
Challenge
1. Presentthechallengeandask:Canyourteamcreateaprogramthatidentifiesifamaterial isametalornonmetalbasedonwhetheritconductselectricity?
2. Guidestudentstowireasensororcreatealoopthatonlycompletesifthetestmaterial allowselectricitytopass.
DesignandPlan
1. Askstudentstosketchtheircircuitandlabelhowthecurrentflowswhenusingaconductor vs.aninsulator.
2. Encouragethemtoplanthecodeusingpseudocodefirst:"Ifcurrentflows,thendisplay 'metal'ontheserialmonitor."
Test
1. HavestudentstesteachmaterialandrecordwhethertheLEDlituporamessageprinted.
2. Guidetheminclassifyingeachmaterialasaconductor(likelymetal)orinsulator(likely nonmetal).Ask:“Doyourresultsmatchyourpredictions?”Ifnot,whatmightexplainthe differences?
Share&Improve
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(Industry,Innovation,Infrastructure),and brainstormwithstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyfor suggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace.
EndofSession2
AnswerKey
MathandScienceConnectionAnswers
1. Wirelengthneeded=5+3–6–0.5=1½cm
2. Letxrepresentthetestmateriallength.First,writeanequationmakingthewiresoutfrom powerandthewiresbacktoGNDequal.
5+x=6+0.5+2½
x=9–5= 4cm
Reflection
1. Suchadetectorcanhelpidentifyefficientconductiveorinsulativematerialsforindustrial andinfrastructuraluse.Thissupportsthedevelopmentofinnovativetechnologies,suchas energy-efficientwiringandrobustbuildingmaterials.
2. Electricalengineersuseconductivematerialstoconnectcircuitsandinsulativematerialsto protectpeoplearoundhighvoltagecurrents.Materialscientistscandevelopinsulatorsto improvetheefficiencyofelectricitytransfer.
Project6:ThermalParticleModel LessonPlan
LearningObjectives
Bytheendofthislesson,studentswillbeableto:
Duration: 90minutes
1. Explaintherelationshipbetweentemperatureandparticlebehaviorindifferentstatesof matter,includingsolid,liquid,andgas.
2. DesignandbuildaMicro:bitmodelthatusesLEDanimationstorepresentparticle movementatvarioustemperatures.
3. Analyzeandadjusttheircodeusingreal-timetemperaturereadingstosimulaterealistic thermalbehaviorinasafe,repeatableexperiment.
Materials
Vocabulary
Astateofmatterwheregasischargedwithenergy,likeinstars.
Astateofmatteratextremelylowtemperatureswhereatomsactas one.
Averysmallpieceofmatter.
Anythingthathasmassandtakesupspace.
Preparation(TeacherTo-DoBeforeClass)
1. Openmakecode.orgonalldevicesandensureeachgrouphasaccesstoaMicro:bit workspace.
2. Prepareandorganizeallclassroommaterialsneededfortheactivity.
3. BuildanddemonstrateanexamplesetupusingtheMicro:bitlightsensoranda programmedalertsystemtoprovidestudentsavisualreferenceofhowtemperaturesensing andLEDsignalingwork.
LearningActivities(Session1)
Introduction
1. Beginwithadiscussionaboutmatteranditsdifferentstates.Askstudents:“Whathappens toparticleswhenmatterheatsup?”
2. Explainhowtemperatureimpactsparticlespeedandspacing,causingchangesinphysical state.
3. Sharereal-worldapplications—whyshippingandstoringmaterialsatpropertemperatures matters.
Micro:bitKit Computer USBCable Grade7 InnovatorsBook
DefinetheProblem
1. Readthe“DefinetheProblem”sectiontogether.Askstudents:“Whatexactlydoesthe professorneedhelpmodeling?”
2. Explainthattheprojectsimulatesparticlebehaviorinrealtimeusingtemperaturedata.
MeasureYourSuccess
1. Reviewthesuccesscriteria.Ask:“Howcanwemakesureourparticlemodelrespondsto temperature?”
2. Clarifythatboththetemperaturereadingandthespeedoftheparticleanimationmustbe accurate.
3. Remindstudentstouseonlytheprovidedmaterials.
GettingStarted
1. Assignteamrolesandreviewkeyvocabulary.Guidestudentstoconnectthejoystickshield totheMicro:bitandtestanalogreadingviaserialoutput.
2. InstructstudentstoopenMakeCodeandnametheirprogram“ThermalParticleModel.”
Code
1. Demonstratehowtoreadvaluesfromthejoystick’sX-axisandconvertthemintoa “temperature”variable.
2. SupportstudentsinwritingcodethatusesLEDpatternstosimulateparticlebehavior— fasterblinkingpatternsforhighertemperatures.
3. Explainhowtomodeldifferentstatesusingconditionallogicbasedontemperature thresholds.
4. Encouragethemtotestcodeandchecktheserialmonitorfortemperatureandparticle speed.
EndofFirstSession
LearningActivities(Session2)
Introduction
1. Recapthepriorsessionanddiscusswhatworkedandwhatcouldbeimproved.
2. IntroducethechallengeofreplacingthejoystickwiththeMicro:bit’sbuilt-intemperature sensor.
Challenge
1. Presentthechallenge:Canyourteamupdateyourmodeltouserealtemperaturedata insteadofsimulatedjoystickinput?
2. Askstudentstorevisetheircodetouseinput.temperature()andtestbehaviorindifferent environmentalconditions.Guidethemtoupdate“while”loopsandanimationsaccordingly.
DesignandPlan
1. Askstudentstosketchdiagramsoftheirmodellogic(e.g.,howtemperatureinputtriggers differentanimations).
2. Supporttheminwritingpseudocodeandlogicflowcharts.
3. Encourageteamworkinidentifyingchangesneededinthe“if”statements.
Test
1. AskstudentstotesttheirmodelsbyapplyingwarmorcoolairneartheMicro:bitsensor.
2. Posequestionslike:“Doestheanimationspeedincreasewithwarmth?”and“Isthecorrect statedisplayed?”
3. Helpthemtroubleshootandverifythateachconditionworksasintended.
Share&Improve
1. Readthe“ShareandImprove”sectionwithyourstudentsandexplainthatthey’llbesharing theirprojectstogetfeedbackfrompeers.Remindthemthatfeedbackhelpsimproveideas, notjustevaluatethem.
2. Supportstudentsingivingandreceivingconstructivefeedback.Useguidingquestionssuch as“Whatworkedwellinthisdesign?”and“Whatimprovementscouldbemade?”.
3. Encourageteamstoreflectonthefeedbackandrevisetheirdesignsiftimeallows.Remind themthatinnovationcomesthroughtestingandimproving,andeveryvoiceinthegroup mattersduringthisphase
MathandScienceConnection
SupportstudentsinworkingontheMathandScienceConnectionpage.Dependingonyour studentsneeds,youmayhavethemcompletethisindependently,intheirgroups,ortogether asawholeclass.
Reflection
1. ReviewtheSustainableDevelopmentGoal(WorkandEconomicGrowth),andbrainstorm withstudentshowthisprojectmightrelatetothatSDG.(Seeanswerkeyforsuggestions.)
2. Discussthefinal“reflection”questionswithstudents,andhavethemrecordtheirown answersintheirworkbooks.
Cleanup
1. Aftersharingandreflecting,considertakingaphotographofeachprojectforyourown recordsand/ortosharewithparents!
2. Havestudentsdisassembletheirprojectsandreturnmaterialstotheappropriateplace.
EndofSession2
AnswerKey
MathandScienceConnectionAnswers
1. 25.5×
2. Letxrepresentthemaximumvalueofthejoystick. = 38°C 3 1 2 5 x=10°C
x=50°C
Now,findhowfar-20isonthewayto–50: -20/-50=2/5.
Theuserwouldneedtomovethejoystick2/5ofthewaytowardstheminimumxpositionfor thetemperaturetoreach-20°C
1. Themodelcansimulatehowtemperatureaffectsmaterialproperties,helpingindustries optimizeprocesseslikestorage,transportation,andmanufacturing.Thisensuresproduct qualityandreduceseconomiclosses.
2. Scientistscandeveloptemperature-sensitivematerials,engineerscandesignsystemsto stabilizetemperatureduringtransport,andpolicymakerscanenforceregulationstoensure safeandefficienthandlingofgoods.
Reflection
AssessmentGuide
AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.
Getasnapshotof students’starting knowledgebefore onboardinginSTEM.
StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.
Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.
Pre-Assessment(optional)
Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.
Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.
Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning
TeacherTips:
Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.
KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K
Math&ScienceConnection
Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.
Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.
TeacherTips: just grading tools
Userealtools:Rulers,scales,charts,simplecoding tools.
Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.
Linktostandards:Alignwithbothmathandscience
Link to sta goals.
Self-AssessmentRubrics
TeacherTips:
Introducerubricsearly:Define"what successlookslike."
Modelreflection:Scoresamplework together.
Selfandpeerreview:Studentsrate anddiscuss.
Askreflectivequestions:“Whatwas yourbiggestchallenge?”
Celebratehonesty:Praiseaccurate self-assessment.
Post-Assessment:CapstoneProject
Self-reflectonyourworkonthisproject.
Icanbreakdown aproblem.
Icandevelopa workingprototype.
Icancodemyprototype todowhatIwant.
Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.
Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.
Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.
STEMInnovationFair
Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.
Possiblepresentationformatsinclude:
Interactivedemonstrations
Postersessions
Digitalportfolios
PitchpresentationsmodeledafterprofessionalSTEMconferences
nforcing rn how to celebrating education w
Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.