Teacher Guide - Level 11

Page 1


TeacherGuide-RaspberryPiPicoLevel11

Teacher Guide

Copyright©2024

Copyright © 20

Author: DanaAlkhatib

Editors: LindseyOwnandErinGoodwin

ISBN: 978-981-17737-5-4

Publishedby:

SKOOL21PTE.LTD.-Singapore

DUOTower,Level8#831

3FraserStreet,189352,Singapore

Allrightsreserved,firstedition2024. Nopartofthisbookmaybereproduced,distributed,ortransmittedinanyformorby anymeans,includingphotocopying,recording,orotherelectronicormechanical methods,withoutthepriorwrittenpermissionofthepublisher,exceptinthecaseof briefquotationsembodiedincriticalreviewsandcertainothernon-commercialuses permittedbycopyrightlaw.

Forpermissionsorinquiries,pleasecontact:

Email: info@skool21.org

Website: https://skool21.org

Preface

WelcometotheFutureofTeachingandLearning!

Welcome to th

Thank you for joi designed not on meaningful, han young innovato science, technol

BuildingonaStrongFoundation

Each level of the

novators series is teachers to lead es, you will guide challenges using creating a strong

Thankyouforjoiningusonthisexcitingjourney!TheSKOOL21STEMInnovatorsseriesis designednotonlytoignitecuriosityinstudentsbutalsotoempowerteacherstolead meaningful,hands-onSTEMlearningexperiences.Throughthisseries,youwillguide younginnovatorsastheyexplore,design,andsolvereal-worldchallengesusing science,technology,engineering,andmathematics(STEM).

EachleveloftheSKOOL21STEMseriesbuildsuponthepreviousone,creatingastrong continuumoflearning—fromsimplemachinestoadvanced3Dmodeling.Students travelthroughkeytechnologicaleras,fromtheIndustrialRevolutiontothe innovationsshapingourfuture.Nomattertheirstartingpoint,everylearnerwill discovernewskillsanddeeperunderstandingalongtheway.

LearningbyDoing

AtSKOOL21,webelievestudentslearnbestbydoing.Eachbookcomeswitha comprehensiveSTEMkit,enablingstudentstobuild,test,andexploreconcepts throughhands-onchallenges.Asateacher,youwillfacilitateengagingprojects wherestudentsactivelycreate,problem-solve,andapplycriticalthinkingskills—all whilehavingfun.

MakingaReal-WorldImpact

Everyprojectisdesignedtoconnectlearningtoreal-worldissues,inspiredbythe SustainableDevelopmentGoals(SDGs).Throughthesechallenges,studentsseehow theirideascancontributetosolvingproblemslikecleanwateraccess,renewable energy,andenvironmentalconservation—empoweringthemtoenvisionabetter world.

TeachingLikeaPro

TheSKOOL21STEMprogramalignswithinternationalstandardsandbestpractices, ensuringthatbothteachersandstudentsaredevelopingthecollaboration, innovation,anddesignthinkingskillsvaluedintoday’sworld.You’renotjust supportingschoolwork—you’repreparingthenextgenerationofthinkers,leaders, andchangemakers.

Building on a not just leaders, and c

IntroductiontotheKit

TheSKOOL21STEMRaspberryPiPicoLearningKitisahands-onelectronicsand codingkitdesignedforLevel11students.PairedwiththeSTEMInnovators Handbook,itintroduceslearnerstoembeddedsystems,physicalcomputing, andreal-worldautomationthroughengaging,project-basedlearning.

1

AttheheartofthekitistheRaspberryPiPico,acompactyetpowerful microcontrollerpoweredbytheRP2040dual-coreArmCortex-M0+processor. Itenablesstudentstobuildresponsivesystemsthatconnectcodewithrealworldhardware.

LessonStructure

Eachlessoninthehandbookfollowsastructuredformattoensureclarityand effectiveimplementation.Asamplesolutionisalsofoundattheendofeach lesson.Thestructureincludes:

Lessonobjectives

NGSSStandards

CambridgeScienceStandards

ISTEStandardsConnections

CambridgeMathStandards

CommonCoreMathStandards

DefinetheProblem

Studentsareintroducedtothescienceconcept andarelatedrealworldproblemtheyaretasked withsolving.

GettingStarted

Everyprojectbeginswithguidedfirststeps.This helpsthestudenttoconfidentlytacklethe challengewithasolidfoundation.

DesignandPlan

Build-Test-Improve

Studentsbrainstormindividually,thencollaborate withtheirteamtocomeupwiththebestdesign plan.

Studentscollaboratetobuild,test,andimprove models.Then,theypracticegivingandreceiving constructivefeedback.

MathandScienceConnection/Reflect

Studentsconnecttheirlearningbacktothe academicobjectivesandanswerguided reflectionquestions.

TheEngineeringDesignProcess ocess

TheEngineeringDesignProcess(EDP)isasystematicapproachusedby engineersanddesignerstosolveproblemsandcreateinnovativesolutions.It providesastructuredframeworkfordevelopingnewproducts,processes,or systemsbyfollowingaseriesofwell-definedsteps.Thisprocessisnotonly applicableinengineering,butisalsowidelyusedinvariousSTEMdisciplinesto tacklechallengesanddevelopcreativesolutions.

Forstudentsinfirstgradeandabove,thetypicalEngineeringDesignProcess followsmultipleiterativesteps,includingidentifyingaproblem,researching, brainstorming,designing,prototyping,testing,andrefiningsolutions.

Thisstructuredapproachencouragescreativity,criticalthinking,anditeration, formingastrongfoundationforfutureSTEMlearning.

forming a str

FosteringSocialSkills

STEMactivitiesnaturallybuildkeysocialskills.Teacherscanhelpstudents practiceandstrengthentheseskillsbyguidingthemduringgroupwork, discussions,andprojectchallenges.

Keysocialskillsdevelopedinclude:

Encouragestudentstoshareideas andassignrolesduringgroup worktobuildteamworkand respectfordifferentperspectives.

Promptstudentstoask"why"and "whatif"questionswhensolving problemsordesigningsolutions.

Collaboration EmpathyandRespect

Remindstudentstovalue everyone'sideasandsupport peersbyusingkind,respectful language.

Coach studentstotalkthrough disagreementscalmlyandfind solutionsthateveryonecan accept.

Buildreflectionintotheprocessby askingstudentswhatworkedwell, whatwaschallenging,andwhat theywoulddodifferentlynexttime.

Communication

Modelclearcommunicationand askstudentstoexplaintheir thinkingandlistencarefullyto teammates.

Problem-Solving

Challengestudentstotrydifferent strategieswhentheyface obstaclesandpraisepersistence.

TimeManagement

Helpteamssetmini-deadlines andguidethemtobreakprojects intosmaller,manageabletasks.

PresentationSkills

Givestudentsregularchancesto presenttheirworktopeers,using clearspeakingandsupportive feedback.

Teamworking

Celebratestrongteamworkby recognizingwhenstudentsshare leadership,encourageeachother, andsolveproblemstogether.

TeachingSTEMalsoteachesstudentshowtothink,work,andlead.Byactively supportingsocialskillsduringprojects,teacherspreparestudentsnotjustfor academicsuccess,butforfuturecareersandlifechallenges.

academic su

MakerspaceSetup

Amakerspaceisacreative,hands-onareawherestudentsexploreSTEM conceptsthroughbuilding,experimenting,andsolvingproblemstogether.This guideisdesignedforteacherswhoarenewtoSTEMandlookingforclearstepsto setupandmanageamakerspace.

SpaceDesign:

Chooseaclean,well-litspacewithroomtomove. Arrangetables/chairsinclustersof2–4students. Uselow,openshelvesforeasyaccesstomaterials. For30students,750–900sqftisrecommended (25–30sqftperstudenttoallowmovement, collaboration,andtool/machine/materialuse).

MaterialsManagement:

Ensurethatkitsarecompleteandaccessiblebefore eachproject.

Provideracksoropenshelvestoorganizeandstore STEMkitsforeasyaccess.

RefertotheprojectinstructionsintheSKOOL21book toidentifyifadditionalmaterials(e.g.,craftitems, recycledobjects)areneeded—planaheadand preparetheminadvance.

SharedResources:

ProvideoneSTEMkitpersmallgroup. Encourageteamworkbyhavingstudentsco-design andco-buildprojects.

SafetyFirst: Keep a fi

Setsimplesafetyrulesandreviewoften. Supervisealltooluseclosely. Keepafirst-aidkitinthespace.

STEMClassroomManagement

STEMclassesarehands-on,highlyengaging,andoftennoisy—that’sagood thing!Butwithoutclearroutinesandstructures,theycanquicklybecome chaotic.Awell-managedmakerspaceallowsstudentstoexploreandinnovate safely,responsibly,andcollaboratively.

STEMClassSessionRoutine

Setaclearandconsistentstructuretoeachsessionsostudentsknowwhatto expectandstayfocused:

90-minuteproject (Grade3toGrade12)

Grade 3 to Grade 12)

5-minute

45-minuteproject (Pre-KtoGrade2)

o ect Pre-K to Grade 2)

SpaceOrganization:

Provideracksoropenshelvestostorekitsneatlyandaccessibly.

ToolandMaterialsRules:

Usetoolswithcare–noplayingormisusingmaterials.

Returneverythingtoitslabeledplace.

Askbeforetakingextrasupplies.

Handstoyourself—respectothers’creationsandspace.

Assignspecificworkzones:BuildArea,SupplyRack,QuietZone,Cleanup Station.

Keepaprojectmaterialchecklisttomakesurekitsarecompletebefore starting.

Onlyonegroupmember(MaterialManager)maycollectmaterialsatatime.

GroupManagementwithTeamRoles

Groupworkcanbemessywithoutstructure.SKOOL21encouragesstudent collaboration,sorotatingroleshelpsbalanceresponsibilityandensure activeparticipation:

Keepsteamontask,trackstime,encourages collaboration.

Collectskits/materialsfromtheteacher,ensuressupplies arereturnedpost-build.

Sharesoutcomes,challenges,andsolutionswiththeclass.

Evaluatesthemodel,givesfeedback,suggestschanges.

ImplementationGuide

TheSKOOL21STEMInnovatorsHandbookoffersproject-basedSTEMlessonsfor Pre-KthroughGrade12.Teacherscanusethreemainmodelstoimplementthese projects:

IntegratedApproach

EmbedSTEMprojectsintoexistingscienceandmathlessons.Forexample,a scienceunitonplantsmightincludeahands-onengineeringchallengefrom thehandbook.ThisalignsSTEMactivitiesdirectlywithcurriculumstandards andlearningobjectives.ResearchshowsthatteachingSTEM subjectstogether (aswithintegratedlessons)deepensunderstandingandretentionandmakes learningmorerelevantandconnectedtotherealworld.

Advantages:

Reinforcesrequiredscience/mathstandardswithhands-onapplication. Buildsproblem-solvingandcritical-thinkingskillsthroughproject-based learning.

Helpsstudentsseeconnectionsacrosssubjects(an“interconnected viewpoint”).

Usesexistingclasstime(noextraperiodsneeded),soSTEMisn’tanadd-on butpartofthecurriculum.

PracticalTips:

Alignprojectstolessons: ChooseSKOOL21projectsthatmatchyourunit goals(e.g.useasimplemachineprojectduringaforces&motionunit).

Startsmall: BeginwithashortSTEMactivity(one45-minutesession)ina scienceormathlesson,thenbuilduptolongerprojects.

Co-teachifpossible: Collaboratewithascienceormathcolleagueto shareplanningandbringindifferentexpertise.

Usegrade-appropriatepacing: ForPre-K–Grade2,integratea45-min STEMmini-projecteachweek;forGrade3+,youmightsplita90-min scienceperiodintolecture+projecttime.

connect

Emphasizestandards: SKOOL21projectsaredesignedtoalignwithNGSS, CommonCorestandards,Cambridgemathandscience.Highlightthese connectionsinyourlessonplantomeetacademicgoals.

Stand-AloneClassApproach

ScheduleadedicatedSTEMclassormakerspacesession(e.g.aweekly90minutelabperiodorrotatingSTEM special).Inthismodel,studentsworkina makerspaceorlabwithtoolsandmachines(likeroboticskits,3Dprinters,craft materials,etc.).Amakerspaceis“acollaborativeworkspaceinsideaschoolfor making,learning,andexploring”.StudentsinteamstackleSKOOL21projects fromstarttofinish,usinghands-onmaterialsratherthanjusttextbooks.

Advantages:

Focusedhands-onlearning:Studentscantakeabstractconceptsand makethemconcrete(forexample,learningcircuitrybyactuallybuildinga papercircuit).

Resilienceandcreativity:Thetrial-and-errornatureofmakingteaches perseverance;studentslearntoiterateondesignswhenthingsdon’twork andthusdevelopgrit.

Equityandaccess:Awell-stockedSTEMlabgivesallstudents(including girlsandunder-representedgroups)equalaccesstotechandengineering tools.

PracticalTips: g

Scheduleregularly: BlockoutaconsistentSTEMlabperiod(45–90 minutes)eachweekorrotateclassesin/outofthelab.

Preparematerialsinadvance: Keepcommonkits(e.g.robotics,simple circuits,designsets)readysoeachsessionisn’tdelayedbysetupand leavetimeforcleanupduringclass

Trainteachers: ProvidebasictrainingorguidesontheSKOOL21projectsso teachersfeelconfidentusingtheequipmentandmanaginghands-on activities.

Groupstudentsthoughtfully: Mixskilllevelsinteams;olderstudentscan mentoryoungeronesinamakerspaceproject.

Blendwithcurriculum: Eveninastand-aloneclass,tieprojectsto standards(e.g.acodingprojectthatteachesmathlogicoradesign challengethatreinforcesphysicalscienceconcepts).

Extra-CurricularApproach

RunSTEMprojectsasafter-schoolclubs,lunch-timeactivities,orsummer camps.Theseareoptionalprograms(STEMclubs,roboticsteams,coding camps,etc.)whereinterestedstudentscanexploreSKOOL21challengesmore freely.After-schoolSTEM“engagesstudentsinhands-on,real-worldprojects,” makingSTEMfeelexcitingandrelevant.

Advantages:

Extratimetoexplore:Studentsgetmorehourstoquestion,tinker,andlearn beyondthelimitedschoolday.Forexample,aweeklyroboticsclubmight meetforanhourafterschool.

Buildsinterestandidentity:Funclubactivitiessparkmotivationanda positiveattitudetowardSTEM,helpingstudentsdevelopaSTEMidentity.

Flexibleandstudent-driven:Studentsself-select;theyworkattheirown paceoncreativeprojects(e.g.codingagame,buildingamodelbridge).

Reachesdiverselearners:Clubscantargetdifferentagegroupsandskill levels–frombasicscienceforyoungerkidstoadvancedroboticsforteens. Thishelpsbridgeenrichmentgaps(makingSTEMopportunitiesavailableto allstudents).

PracticalTips:

Keepitlow-stakes: Emphasizefunandcuriosityovergrades.Short,handsonprojects(likemini-challenges)keepstudentsengaged.

Advertisewidely: Inviteallstudents,notjusthigh-achievers.Useschool announcements,flyers,andparentnewsletterstoraiseawareness.

Tietocompetitionsorshowcases: Useevents(sciencefairs,robotics tournaments)tomotivatetheextraeffort.

Leveragesummerorcamptime: Ifresourcesallow,runaweek-longSTEM summercampusingseveralSKOOL21projectsfordeeperimmersion.

Collaboratewithcommunity: Inviteguestspeakers(engineers,makers)or partnerwithlocallibraries/museumsformaterialsandinspiration.

HybridApproach (BlendingAllModels)

Inpractice, manyschoolsuseamixofmodels.Ahybridapproachmight integratesimpleSTEMtasksintoregularlessonsandalsoofferadedicated STEMlabplusanafter-schoolclub.Thisway,everystudentgetssomeSTEM exposureandthosewholoveitcandivedeeper.

Whentointegrate:

Usecurriculum-linkedprojectsduringcoreclasses.Forexample,inaGrade4mathclassyou mightuseaSKOOL21projectongearstoteachratios,orinscienceclassstudentsmight buildamodelecosystem.Smallerorsingle-sessionactivitiesfitwellhere.

Reservelonger,open-endedprojectsforSTEMclassorthemakerspace.Complex engineeringchallenges(robotdesign,3Dmodeling,advancedcoding)needlongerblocks, sothesesuita90-minSTEMperiodorseriesoflabsessions.

Offerstudentsaspaceforexplorationthatdoesn’tfitthecurriculumortimeline.These projectscanbedrivenbystudentinterestandcanspanseveralweekswithoutpressureto “coverthecurriculum.”

Usingahybridplanensuresflexibility.Teacherscanadapt:ifasemesteris heavywithtesting,leanonafter-schoolclubsforenrichment;whencovering standards,weaveSTEMintolessons.Alwayscheckthatevenfree-formprojects stilltouchacademicgoals.

(Note:SKOOL21projectsarealreadyalignedtoNGSSandCommonCore standards,CambridgeMathematicsandCambridgeScience,sowhether integratedorstand-alone,theysupportlearningobjectives.)

LessonPlans andAnswerkey

Project1:BotanicalSensor

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

Buildaworkingtemperatureandhumiditysensorsetup. WriteandrunPythoncodetodisplaytemperatureandhumidityvaluesonanLCD. ApplymathematicalformulastoconvertCelsiustoFahrenheitandviceversa. Reflectonhowenvironmentalmonitoringcontributestosustainableagriculture.

Materials

Vocabulary

Avasculartissuethattransportswaterthroughoutaplant.

Plantpores.

Tolosewatervaporthroughthestomata.

Anelectricalcomponentthatmeasuresandreportsavalue.

Preparation(TeacherTo-DoBeforeClass)

Logintoalllaptops.OpenthePythonIDEyouuseforRaspberryPiPico(Thonny)andsignin toeachlaptoponadifferentgroupaccount.LeavetheIDEopentoablankscript. FlashandtestonePicopergroup:install/verifyMicroPython,confirmtheUSBserialport appears,andrunasimple“blink”scripttocheckconnections.

Preparetheclassmaterials

Preloadstarterfiles/librariesoneachlaptopandcreateaprojectfolderforsavingcode. SetupandtestonesampleworkingRaspberryPiPicodemo(Pico+sensor/LED)for projectiontotheclass.

Checktheprojector/speakers,ensurealllaptopshaveinternet(fordocs)andlocalcopies ofdatasheets,andverifyyoucantransferfilestoPicosoneachmachine.

LearningActivities(Session1)

Introduction

1.ReadtheIntroductionaloudorassignastudenttoreadit.

2.Askstudentstosharetheirpriorknowledgeaboutplantgrowthandenvironmental monitoring.

3.Discusswhytemperatureandhumidityareimportantingreenhouses.

DefinetheProblem

1.ReadtheProblemStatement:"Zarawantstodevelopatemperatureandhumiditymeterto ensurehergreenhousemaintainstheoptimalconditionsneededforidealplantgrowth."

2.Askstudents:

a.Whatistheproblem?(Maintainingoptimalplantconditions)

b.Whoistheclient?(Zara,agreenhousegrower)

c.Definetheprojectgoals:

d.Buildaworkingsensorsetup.

e.DisplaytemperatureandhumidityontheLCD.

DesignandPlan

1.HavestudentsbrainstormhowtointegratetheLCDintotheirdesignforbettervisualisation.

2.Askstudentstosketchtheirdesignandlabelconnections,ensuringclarityforthebuild phase.

GettingStarted

Wire

1.GuidestudentstocorrectlyinserttheRaspberryPiPicointothebreadboardandlocatethe GND,3V3,andGP16pins.

2.DirectstudentstoconnecttheDHT11sensortotheappropriatepinsontheRaspberryPi Pico:Signal(S)toGP16,Voltage(V)to3V3,andGround(G)toGND.

Code

1.InstructstudentstoopenThonnyIDE,navigateto Project_1a_Temperature_and_Humidity_Print.py,anduploadittothePico.

2.Askstudentstorunthecodeandobservethetemperatureandhumidityreadingsprinted intheconsole.Providetroubleshootingsupportasneeded.

Share

1.Allowgroupstosharetheirprogresswithanothergroup,andlookforsimilaritiesand differencesinhowtheyarecreatingsofar,recognizingthattheyarenotyetfinished.

EndofSession1

LearningActivities(Session2)

1.Promptstudentstomodifythetime.sleep()valuetoprintthereadingsatdifferentintervals (e.g.,everysecond,everyhour).

2.Discusshowsensorreadingsatspecificintervalshelpmonitorgreenhouseconditions effectively. Challenge

Build&Test

1.GuidestudentstowiretheLCDtotheRaspberryPiPico,connectingSCL,SDA,V,andGpins appropriately.

2.Instructstudentstouploadlcd128_32.pyandlcd128_32_fonts.py,thenrun Project_1b_Temperature_and_Humidity_Meter.pytodisplayreadingsontheLCD.

3.Directstudentstotesttheirsetupbycheckingifthecorrectvaluesaredisplayedonthe LCD.

4.Encouragestudentstoevaluatewhetherthecurrentgreenhouseconditionsaresuitablefor plantgrowthandsuggestadjustmentsifnecessary.

Share&Improve

1.Pairgroupsandhavethemsharetheirprojects,discussingdesignchallengesand solutions.

2.Askstudentstoimprovetheirdesignsbasedonfeedbackorcreateanalternativedesign toachievethesamefunctionality.

1.AssignstudentstoconverttemperaturevaluesbetweenCelsiusandFahrenheitusingthe formulaF=(C×1.8)+32

2.ChallengestudentstographtherelationshipbetweenCelsiusandFahrenheitvalues, highlightingthelinearcorrelation.

1.DiscusshowenvironmentalmonitoringsupportsSustainableDevelopmentGoal15:Lifeon Land.

2.Encouragestudentstowritehowtheirsensorprojectcouldhelpreduceenvironmental impactinagriculture.

IfZarawantsreadingseveryhour,time.sleep()shouldbesetto3600seconds.

Ifhumidityisbelow80%,Zaracanincreasehumiditybywateringplantsor addingahumidifiertothegreenhouse.

TouseGP17insteadofGP16,updatethecodelinedht_pin=machine.Pin(16)to dht_pin=machine.Pin(17).

Conversionexamples:

Project2:PredatorDetector

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

BuildapredatordetectorusingaPIRmotionsensorandRGBLED. WritePythoncodetocontroltheRGBLEDbasedonPIRsensorreadings. Analyzepredator-preyrelationshipstounderstandsurvivaltraits. Solvemathematicalproblemsrelatedtopredatordetectionfrequencies.

Materials

Vocabulary

Word Meaning

Naturalselection

PIR

Input

Output

Survivalofthefittest.

PassiveInfraredSensorwhichdetectsmotion.

Acomponentthatprovidesinformation,e.g.,asensor.

Acomponentthatindicatestheresultoftheinput,e.g.,anLED.

Preparation(TeacherTo-DoBeforeClass)

Logintoalllaptops.OpenthePythonIDEyouuseforRaspberryPiPico(Thonny)andsignin toeachlaptoponadifferentgroupaccount.LeavetheIDEopentoablankscript. FlashandtestonePicopergroup:install/verifyMicroPython,confirmtheUSBserialport appears,andrunasimple“blink”scripttocheckconnections.

Preparetheclassmaterials

Preloadstarterfiles/librariesoneachlaptopandcreateaprojectfolderforsavingcode. SetupandtestonesampleworkingRaspberryPiPicodemo(Pico+sensor/LED)for projectiontotheclass.

Checktheprojector/speakers,ensurealllaptopshaveinternet(fordocs)andlocalcopies ofdatasheets,andverifyyoucantransferfilestoPicosoneachmachine.

LearningActivities(Session1)

Introduction

1.Readtheintroductionaloudoraskastudenttoreadit.

2.Discusshowpredatorsandpreyadaptforsurvivalusingexamplesofpredator-prey dynamics.

3.Highlighttheroleoftechnologyinstudyinganimalbehaviorandbiodiversity conservation.

DefinetheProblem

1.Readtheproblemstatement:"ArshadandMalikwanttocreateapredatordetectorto testifcertainspecieswillsurvivebetterinthewild."

2.Askthestudents:

a.Whatistheproblem?(Testingspecies'abilitytoavoidpredators)

b.Whoistheclient?(ArshadandMalik,researchersstudyingwildlife)

3.Definetheprojectgoals:

a.DetectmotionusingaPIRsensor.

b.ChangeRGBLEDcolourbasedonPIRsensorinputs.

DesignandPlan

1.Encouragestudentstobrainstormideasforenhancingthedetector,suchasintegrating soundoutputfordetection.

2.Havethemsketchtheirdesign,labellingconnectionsforclarity.

GettingStarted

1.GuidestudentstoplacetheRaspberryPiPicofacedownintotheprototypeshield.

2.InstructthemtoconnectthePIRmotionsensorwirestotheappropriatepins:

a.Signal(S)toGP2

b.Voltage(V)to3V3

c.Ground(G)toGND

1.DirectstudentstoopenthefileProject_2a_Predator_Detector.pyinThonny.

2.AskthemtorunthecodeandtestthePIRsensorbywavingtheirhandtotrigger motiondetection.

Share

1.Allowgroupstosharetheirprogresswithanothergroup,andlookforsimilaritiesand differencesinhowtheyarecreatingsofar,recognizingthatthey arenotyetfinished.

EndofSession1

LearningActivities(Session2)

Challenge

1.PromptstudentstomodifythecodetomaketheRGBLED blinkfasterwhendetecting motion.

2.Askthemtoexplainhowmodifyingcodecanhelpbettersimulatepredator-prey scenarios.

Build&Test

1.1.GuidestudentstoconnecttheRGBLEDtothePicoPrototypeShield: a.LonglegtoGNDpin b.OtherlegstoGP3,GP4,andGP5forred,green,andbluecolors.

2.InstructthemtouploadProject_2b_Predator_Detector_RGB_LED.pyandtesttheRGBLED behaviorwithPIRsensorinputs.

1.Directstudentstotesttheirdetectorbysimulatingpredatormotion.

2.EvaluateiftheRGBLEDchangescolorsaccuratelybasedonthePIRsensor'sreadings.

3.Pairgroupsandhavethemsharetheirdesignsandtestresults.

4.Askstudentstoimprovetheirdesignbasedonpeerfeedbackorcreateanalternative mechanismformotiondetection.

1.Assignstudentstosolvetheevaluationproblemsrelatedtopredatordetection frequenciesandexponentialfunctions.

2.Discusshowmathematicshelpsmodelreal-worldscenariosinwildlifeconservation.

1.Discusstheroleofpredatordetectorsinbiodiversityconservationandachieving SustainableDevelopmentGoal15:LifeonLand.

2.Encouragestudentstowriteashortreflectiononhowtechnologycanmitigatehumanwildlifeconflicts.

Housecatstriggerthealarmata×0.25a\times0.25.

Ifhousecatstriggerthealarm10times,coyoteswouldtriggerit10×3=3010 \times3=30times.

Coyotespossesstraitssuchasenhancedspeed,agility,andheightenedsenses, whichareevolutionaryadvantagesforsurvival.

Exponentialfunction:

n(t)=5*2^(0.5*t)

At4hourspastmidnight:n(4)=5*2^2=20

At8hourspastmidnight:n(8)=5*2^4=80

40triggers:

Solve5*2^(0.5*t)=40 t=6hourspastmidnight.

Project3:NutritionTracker

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

BuildanutritiontrackingsystemusingakeypadandLCDdisplay. WriteandrunPythoncodetocalculateanddisplaynutritionalvalues. Applymathematicalconceptstosolvereal-lifenutritionalproblems. Reflectontheroleofnutritioninmaintainingoverallhealthandwell-being.

Materials

Vocabulary

Aunitforfoodenergyequivalenttotheheatneededtoraisethe temperatureof1gofwaterby1°C.

Moleculesofaminoacidswhichthebodyusestobuildandrepair musclesandbones.

Moleculesoffattyacidswhichprovideenergywhenburnedandare storedinfatcellsinthebodytobeusedwhenneeded.

Preparation(TeacherTo-DoBeforeClass)

Logintoalllaptops.OpenthePythonIDEyouuseforRaspberryPiPico(Thonny)andsignin toeachlaptoponadifferentgroupaccount.LeavetheIDEopentoablankscript. FlashandtestonePicopergroup:install/verifyMicroPython,confirmtheUSBserialport appears,andrunasimple“blink”scripttocheckconnections. Preparetheclassmaterials

Preloadstarterfiles/librariesoneachlaptopandcreateaprojectfolderforsavingcode. SetupandtestonesampleworkingRaspberryPiPicodemo(Pico+sensor/LED)for projectiontotheclass.

Checktheprojector/speakers,ensurealllaptopshaveinternet(fordocs)andlocalcopies ofdatasheets,andverifyyoucantransferfilestoPicosoneachmachine.

LearningActivities(Session1)

Introduction

1.ReadtheIntroductionaloudorassignastudenttoreadit.

2.Askstudents:

a.Whyistrackingfoodintakeimportant?

b.Howdoesunderstandingnutritionhelpusmakehealthierchoices?

3.Discussreal-lifeapplicationsofnutritiontrackingsystems,suchasfitnessappsordiet plans.

1.ReadtheProblemStatement:"FazalandDaliawanttoensuretheyareeatingadequate amountsofprotein,carbohydrates,andhealthyfatseachday.Canyouhelpthemcreate anutritiontrackingsystem?"

2.Askthestudents:

a.Whatistheproblem?(Trackingdailynutritionalintakeaccurately.)

b.Whoistheclient?(FazalandDalia.)

3.Definetheprojectgoals:

a.Buildasystemtotracknutrientintake.

b.DisplaythenutritionalbreakdownonanLCD.

DesignandPlan

1.Havestudentssketchtheirdesigns,ensuringallcomponentsarelabeledand connectionsareclear.

2.Discusswaystomakethesystemuser-friendlyfordifferenttypesofusers.

GettingStarted

Wire

1.GuidestudentstoconnectthekeypadpinstothefollowingRaspberryPiPicoports usingM-FDupontwires:26,22,10,11,19,18,17,16.

2.EnsuretheLCDisconnectedasfollows:

a.SCL->GP21

b.SDA->GP20

c.V->VBUS,G->GND.

Code

1.InstructstudentstoopenThonnyIDEandupload Project_3a_Nutrition_Tracker_Keypad.pytotheRaspberryPiPico.

2.Runthecodetoensurethekeypadvaluesarecorrectlyprintedintheshell.

3.GuidestudentstouploadProject_3b_Nutrition_Tracker_Display.pyandverifythat nutritionaldataappearsontheLCDdisplay.

Share

1.Allowgroupstosharetheirprogresswithanothergroup,andlookforsimilaritiesand differencesinhowtheyarecreatingsofar,recognizingthattheyarenotyetfinished.

EndofSession1

LearningActivities(Session2)

1.Askstudentstomodifythecodetotrackcarbohydratesinsteadofproteins.

2.Encouragethemtodiscusshowtrackingspecificnutrientscansupportdifferentdietary goals(e.g.,low-carbdiets).

1.Guidestudentstocompletethewiringandcodingprocess.

2.Testthesystemtoensureitcalculatesanddisplaysnutritionalvaluesaccurately.

3.Directstudentstoinputdifferentmealdataandverifythesystem’scalculations.

4.Encouragethemtoevaluatethesystem’seffectivenessandsuggestimprovements.

5.Pairgroupstosharetheirdesignsanddiscusschallengesfaced.

6.Proposealternativedesignsorfeaturestoenhancethesystem’sfunctionality.

1. Assignstudentstocalculatethepermutationsofpossiblemealcombinationsusingthe providedoptionsforbreakfast,lunch,anddinner.

2.Discusshowthesemathematicalconceptsapplytocreatingdiversemealplans.

1.Discusstheimpactofnutritiontrackingsystemsonoverallhealthandwell-being.

2.Encouragestudentstowriteabouthowsuchsystemscanpromotehealthier communitiesandsupportSustainableDevelopmentGoal3:GoodHealthandWell-being.

Tomodifythecodetotrackcarbohydrates,changethedisplaytextin Project_3b_Nutrition_Tracker_Display.py.

Ifastudentconsumes60gofproteinperdayandtheirrecommendedintakeis 100g,theLCDshoulddisplay:"Stillneed:40g."

Thepermutationsforthreemealswithtwooptionseachare.

Anutritionistdesignedmealplanswithfouroptionseachforbreakfast,lunch, anddinner:

Calculatethetotalpermutations:.

Iftheorderofmealscanvary,calculatethecombinationsforthreemeals

Project4:AdaptiveBrightness

LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

Buildaworkingadaptivebrightnesssystemusingalightsensor. WriteandrunPythoncodetoadjustbrightnesslevelsbasedonambientlight. Modeltherelationshipbetweenlightintensityandphotosynthesisusingmathematical principles.

Reflectontheimportanceofadaptivebrightnesstechnologyinenergyconservation.

Materials

Vocabulary

Word

Photosynthesis

Chloroplast

Photons

Sensor

Meaning

Theprocessbywhichplantsconvertlightenergyintochemicalenergy. Thepartoftheplantcellwherephotosynthesisoccurs.

Particlesoflightthatcarryenergy.

Adevicethatdetectsormeasuresaphysicalpropertyandrecordsor respondstoit.

Preparation(TeacherTo-DoBeforeClass)

Logintoalllaptops.OpenthePythonIDEyouuseforRaspberryPiPico(Thonny)andsignin toeachlaptoponadifferentgroupaccount.LeavetheIDEopentoablankscript. FlashandtestonePicopergroup:install/verifyMicroPython,confirmtheUSBserialport appears,andrunasimple“blink”scripttocheckconnections. Preparetheclassmaterials

Preloadstarterfiles/librariesoneachlaptopandcreateaprojectfolderforsavingcode. SetupandtestonesampleworkingRaspberryPiPicodemo(Pico+sensor/LED)for projectiontotheclass.

Checktheprojector/speakers,ensurealllaptopshaveinternet(fordocs)andlocalcopies ofdatasheets,andverifyyoucantransferfilestoPicosoneachmachine.

LearningActivities(Session1)

Introduction

1.Discusstheconceptofadaptivebrightnessanditsapplicationsindailylife.

2.Explainthesciencebehindphotosynthesisanditsconnectiontoenergyconversionin technology.

RaspberryPi PicoKit Computer
Projector
Cardboard STEMbook
GlueGun
ArtSupplies Tape

1.Introducethetask:“Developanadaptivebrightnesssystemusingaphotoresistorsensor thatadjustsbrightnesslevelsbasedonambientlight.”

2.Defineprojectgoalsandexpectedoutcomes.

DesignandPlan

1.Allowstudentstobrainstormpotentialimprovementstotheiradaptivebrightness system,suchasaddingauserinterfaceormakingthesystemmoreefficient.

1.GuidestudentstoconnecttheRaspberryPiPicotothephotoresistorandLEDona breadboard.

2.Ensureproperplacementofresistorsandwirestocompletethecircuit.

1.InstructstudentstoopenThonnyIDEandupload Project_3a_Nutrition_Tracker_Keypad.pytotheRaspberryPiPico. Wire

1.Allowgroupstosharetheirprogresswithanothergroup,andlookforsimilaritiesand differencesinhowtheyarecreatingsofar,recognizingthattheyarenotyetfinished.

EndofSession1

LearningActivities(Session2)

Challenge

1.Askstudentstomodifythecodetochangethebrightnessdynamicallybasedonvarious ambientlightingscenarios.

1.Guidestudentstoimplementtheirimproveddesignsandtesttheupdatedsystem.

2.Testthesystemunderdifferentlightingconditions.

3.Evaluatethesystem’sresponsivenessandefficiency.

1.Shareprojectoutcomeswithpeers.

2.Discusschallengesandproposepotentialimprovements.

1.ExploretherelationshipbetweenlightintensityandLEDbrightnessthrough mathematicalmodelling.

2.Usetrigonometrytosimulatelightbehaviourthroughouttheday.

1.Reflectontheimpactofadaptivebrightnesstechnologyonenergyconservationandits potentialapplicationsinreal-worldscenarios.

Explainthephysicsbehindphotoresistorfunctionalityanditsuseincontrolling LEDbrightness.

Usemathematicalequationstomodeltherelationshipbetweenlightintensity andresistance.

Discussthesocietalbenefitsofadaptivebrightnesstechnology.

Applytheconceptofcomplexnumberstoanalyzetheelectricalcircuit.

CalculatetheimpedanceandLEDintensityusinggivenmathematicalformulas.

Project5:EnvironmentALAlarm LessonPlan

LearningObjectives

Attheendofthelesson,thelearnerswill:

Duration: 90minutes

Buildaworkingenvironmentalalarmsystemusingathermistorsensor. WriteandexecutePythoncodetomonitortemperatureandactivateanalarmatcritical thresholds.

Modeltherelationshipbetweentemperatureandresistanceusingmathematical equations.

Reflectontheroleoftechnologyinaddressingclimate-relatedchallenges.

Materials

Vocabulary

Extinction

Thermistor

Passivebuzzer

Activebuzzer

Thedeathofaspecies.

Aresistorwhoseresistancechangeswithchangesintemperature.

Abuzzerthatcanproduceamultitudeoffrequenciesbasedonthe input.

Abuzzerthatwaitsforatriggertoproduceasingletone.

Preparation(TeacherTo-DoBeforeClass)

Logintoalllaptops.OpenthePythonIDEyouuseforRaspberryPiPico(Thonny)andsignin toeachlaptoponadifferentgroupaccount.LeavetheIDEopentoablankscript. FlashandtestonePicopergroup:install/verifyMicroPython,confirmtheUSBserialport appears,andrunasimple“blink”scripttocheckconnections. Preparetheclassmaterials

Preloadstarterfiles/librariesoneachlaptopandcreateaprojectfolderforsavingcode. SetupandtestonesampleworkingRaspberryPiPicodemo(Pico+sensor/LED)for projectiontotheclass.

Checktheprojector/speakers,ensurealllaptopshaveinternet(fordocs)andlocalcopies ofdatasheets,andverifyyoucantransferfilestoPicosoneachmachine.

LearningActivities(Session1)

Introduction

1.ReadtheIntroductionaloudorassignastudenttoreadit.

1.Askstudents:

a.Whyistemperaturemonitoringimportantinecosystems?

b.Canyouthinkofexampleswherealarmsareusedtomonitorenvironmental changes?

2.Discusshowtechnologylikethermistorscanhelpdetectcriticalenvironmental conditions.

DefinetheProblem

1.ReadtheProblemStatement:"Createanenvironmentaltemperaturealarmthatwillbuzz whenthebiomeisclosetocriticaldanger."

2.Askstudents:

a.Whatistheproblem?(Monitoringtemperaturetodetectcriticalchanges.)

b.Whoistheclient?(Environmentalscientistsandconservationists.)

DesignandPlan

1.Definetheprojectgoals:

a.Buildasystemthatdetectstemperaturechanges.

b.Activateanalarmwhencriticalthresholdsarereached.

GettingStarted

1.GuidestudentstoplacetheRaspberryPiPicoonthebreadboard. 2.Connectthethermistor,passivebuzzer,and10kΩresistorasspecified.

3.Ensureallconnectionsmatchtheprovideddiagram.

1.InstructstudentstoopenThonnyIDEandnavigateto Project_5_Temperature_Alarm.py.

2.Guidestudentstouploadthecodeandobservetemperaturereadingsintheshell. Wire Code

Share

1.Allowgroupstosharetheirprogresswithanothergroup,andlookforsimilaritiesand differencesinhowtheyarecreatingsofar,recognizingthattheyarenotyetfinished.

EndofSession1

MathandScienceConnection(canbeassignedhomeworkaswell)

Reducingthesleep()valueincreasesthefrequencyofthepassivebuzzertone becausetheactivationcycleoccursmorerapidly.

Biscalculatedusingthegivenresistancesandtemperatures:K. At400K,theresistanceisapproximatelyΩ.

Usethemodulusfunctiontodeterminecriticalpointsandtrendsbasedon environmentaldata.

Suchalarmscouldalertcommunitiestocriticaltemperaturethresholds, enablingpreventivemeasurestomitigateclimaterisksandprotectbiodiversity.

AssessmentGuide

AtSKOOL21,assessmentsareatoolforlearningandgrowth—notjustgrading. FromPre-KtoGrade12,weuseassessmentstoguidestudentsinbuildingskills, confidence,andaloveofSTEMlearning.Wefocusonfeedback,reflection,and continuousimprovementtohelpeverystudentreachtheirfullpotential.

Getasnapshotof students’starting knowledgebefore onboardinginSTEM.

StudentsembarkontheSTEMLearningJourney,consisting ofanIntroductoryLessonfollowedby15hands-onSTEM projectsalignedwithcurriculumobjectives.

Helpstudentsconnectmath andscienceconceptsthrough real-worldSTEMchallenges.

Pre-Assessment(optional)

Encouragestudentstoreflect, takeownershipoftheirlearning, andsetpersonalgoals.

Celebratestudents' learningthroughrealworldprojectsthatapply keyskills.

Pre-assessmentcanbeformal(ashortquiz)orinformal(adiscussionoractivity)–SKOOL21 treatsitasoptionalsoteachersuseitwhenitaddsvalue.Donethoughtfully,pre-assessment honorsDewey’sideathatconnectingtostudents’priorexperienceboostslearning

TeacherTips:

Keepitlow-stakes:Thumbs-up/downpolls. Open-endedquestions:Quickdiscussions. Mini-quizzes:Shortandsimple.

KWLCharts:Capturewhatstudentsknowandwanttolearn. Play-basedobservation:EspeciallyforPre-K/K

Math&ScienceConnection

Byassessinghowstudentsapplymathskillsinscienceactivities(andviceversa),teachers candeepenunderstandingofbothsubjects.Thisunderscoresthereal-worldrelevanceof STEMlearningandreinforcescriticalthinking.

Cross-linkactivities:Measure,graph,orcalculate duringscienceexperiments.

TeacherTips: just grading tools

Userealtools:Rulers,scales,charts,simplecoding tools.

Askmathquestionsinscience:“Howtallisyourplant?” Teamwork:Solvescienceproblemswithmathin groups.

Linktostandards:Alignwithbothmathandscience

Link to sta goals.

Self-AssessmentRubrics

TeacherTips:

Introducerubricsearly:Define"what successlookslike."

Modelreflection:Scoresamplework together.

Selfandpeerreview:Studentsrate anddiscuss.

Askreflectivequestions:“Whatwas yourbiggestchallenge?”

Celebratehonesty:Praiseaccurate self-assessment.

Post-Assessment:CapstoneProject

Self-reflectonyourworkonthisproject.

Icanbreakdown aproblem.

Icandevelopa workingprototype.

Icancodemyprototype todowhatIwant.

Self-assessmenthelpslearnersidentifytheirstrengthsandareastoimprove,reinforcing metacognition.Teachersplayaguidingroleinthisprocess,helpingstudentslearnhowto honestlyandconstructivelyjudgetheirwork.

Thecapstoneprojectdesignedasaculminatingexperienceforstudentstodemonstrate andsharetheirlearningwithanauthenticaudience.Thecapstonecanbeconsideredand usedasanassessmenttask,allowingstudentstosynthesizeknowledgeandskillsdeveloped overthecourseofthe15-projectSTEMseries.

Throughthecapstoneproject,studentsengageinameaningfulapplicationofproblemsolving,criticalthinking,andengineeringdesignprinciples.Theyarechallengedtoaddress real-worldproblems,showcasingtheirabilitytointegrateconceptsacrossscience, technology,engineering,andmathematicsdisciplines.

STEMInnovationFair

Tocelebratestudentachievements,schoolsareencouragedtoorganize eventssuchasaSTEMShowcase,InnovationFair,orOpenHouse.These eventsprovideanauthenticplatformforstudentstopresenttheir capstoneprojectstopeers,educators,families,andcommunitymembers. Studentsarticulatetheirdesignprocess,explaintheirdecisions,and respondtofeedbackfromanengagedandsupportiveaudience.

Possiblepresentationformatsinclude:

Interactivedemonstrations

Postersessions

Digitalportfolios

PitchpresentationsmodeledafterprofessionalSTEMconferences

nforcing rn how to celebrating education w

Organizersmayalsoinviteindustryexperts,localbusinesses,oruniversitypartnerstoserve aspanelistsormentors,furtherenhancingthereal-worldrelevanceofstudentprojects.By celebratingstudentinnovationinapublicforum,theseeventsreinforcethevalueofSTEM educationwhilefosteringconfidence,communicationskills,andcollaboration.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.