

making!
The e-magazine for the Fibrous Forest Products Sector


Produced by: The Paper Industry Technical Association
Publishers of:

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


CONTENTS:
FEATURE ARTICLES:
1. Coatings: Functional surfaces, films and coatings with lignin – a review.
2. Nanocellulose: Fit-for-use nanofibrillated cellulose from recovered paper.
3. Chemistry: Boosting inorganic filler retention.
4. Tissue: Evaluation of special pulps for greener tissue paper.
5. Water Treatment: Degradation of lignin-containing wastewaters with bacteria.
6. Sustainability: Which wastepaper should not be processed?
7. Wood Panel: Wood-based panels from recycled wood – a review.
8. Packaging: Recent advances in fibre-based packaging for food applications.
9. Food Contact: Critical review of test methods.
10. Heart Health: Heart-heathy diet – 8 steps to prevent heart disease.
11. Negotiation: Ten simple tips to improve negotiating skills.
12. Computers: Keyboard shortcuts.
SUPPLIERS NEWS SECTION:
News / Products / Services:
Section 1 – PITA CORPORATE MEMBERS
AFT / PILZ / VALMET
Section 2 – PITA NON-CORPORATE MEMBERS ANDRITZ / VOITH
Section 3 – NON-PITA SUPPLIER MEMBERS
BTG / POWER ADHESIVES / SIEGWERK / VISION ENGINEERING
Advertisers: ABB / FINBOW / VAKUO
DATA COMPILATION:
Events: PITA Courses & International Conferences / Exhibitions & Gold Medal Awards
Installations: Overview of equipment orders and installations between Jul. and Nov.
Research Articles: Recent peer-reviewed articles from the technical paper press.
Technical Abstracts: Recent peer-reviewed articles from the general scientific press.
Career Opportunity: Production Engineer at Holmen, Workington Mill
The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry. Formed in 1960, it serves the Industry, both manufacturers and suppliers, by providing a forum for members to meet and network; it organises visits, conferences and training seminars that cover all aspects of papermaking science. It also publishes the prestigious journal Paper Technology International® and the PITA Annual Review , both sent free to members, and a range of other technical publications which include conference proceedings and the acclaimed Essential Guide to Aqueous Coating.

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Functional surfaces, films, and coatings with lignin – a critical review
Paper Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
RSCAdvances
REVIEW
Citethis: RSCAdv.,2023, 13,12529
Received22ndDecember2022
Accepted3rdMarch2023
DOI:10.1039/d2ra08179b
rsc.li/rsc-advances
1.Introduction
View Article Online View Journal | View Issue
Functionalsurfaces, films,andcoatingswithlignin
JostRuwoldt,* FredrikHeenBlindheimandGaryChinga-Carrasco
Ligninisthemostabundantpolyaromaticbiopolymer.Duetoitsrichandversatilechemistry,many applicationshavebeenproposed,whichincludetheformulationoffunctionalcoatingsand films.In additiontoreplacingfossil-basedpolymers,theligninbiopolymercanbepartofnewmaterialsolutions. Functionalitiesmaybeadded,suchasUV-blocking,oxygenscavenging,antimicrobial,andbarrier properties,whichdrawonlignin'sintrinsicanduniquefeatures.Asaresult,variousapplicationshave beenproposed,includingpolymercoatings,adsorbents,paper-sizingadditives,woodveneers,food packaging,biomaterials,fertilizers,corrosioninhibitors,andantifoulingmembranes.Today,technical ligninisproducedinlargevolumesinthepulpandpaperindustry,whereasevenmorediverseproducts areprospectedtobeavailablefromfuturebiorefineries.Developingnewapplicationsforligninishence paramount – bothfromatechnologicalandeconomicpointofview.Thisreviewarticleistherefore summarizinganddiscussingthecurrentresearch-stateoffunctionalsurfaces, films,andcoatingswith lignin,whereemphasisisputontheformulationandapplicationofsuchsolutions.
Ligninisthesecondmostabundantbiopolymeronearth,aer cellulose.Naturalligninissynthesizedfromthethreemonolignolprecursors,namely p-hydroxyphenyl(Hunit),guaiacyl(G unit),andsyringyl(Sunit)phenylpropanoid.1 Ligninfrom sowoodconsistsprimarilyofGunits,whereashardwood lignincontainsbothGandSunits.2 Moreover,ligninfrom annualplants,suchasgrassorstraw,cancontainallthree monolignolunits.
RISEPFIAS,Høgskoleringen6B,Trondheim7491,Norway.E-mail:jostru.chemeng@ gmail.com

DrJostRuwoldtisaresearch scientistatRISEPFI,Norway. HegraduatedwithaPhDin ChemicalEngineeringfromthe NorwegianUniversityofScience andTechnology(NTNU)in 2018,andanMScinChemical andBioprocessEngineering fromHamburgUniversityof Technology(TUHH)in2015.His currentworkincludeslignin technology,thermoformingof woodpulp,andbiomass conversionandutilization.InadditiontohisworkatRISEPFI,he isavisitingresearcherandlectureratTUBerlin,Germany.
Technicalligninistheproductofbiomassseparation processesandhencediffersfromnaturalorpristinelignin,asit isfoundinlignocellulosebiomass.3 Thecompositionand propertiesoftechnicalligninarelargelydeterminedbytheir botanicalorigin,extractionprocess,purication,andpotential chemicalmodication.4 Presently,therearesome50–70million tonstechnicalligninavailablefrompulpingorbiorenery operations.Mostisburnedtoproduceenergyinbiorenery processesandonlyapprox.2%issoldcommercially.5 Technical ligninisolatedfrompulpingprocessesincludesKra andsoda ligninfromalkalipulping,lignosulfonatesfromsultepulping, andorganosolvligninfromsolventpulping.6 Thetwomain typesoftechnicalligninarelignosulfonates(approx.1million

DrFredrikHeenBlindheimis aPostdoctoralresearcherat RISEPFI.HereceivedaPhDin OrganicChemistryatthe NorwegianUniversityofScience andTechnology,specializingin medicinalchemistryandthe developmentofsmall-molecule bacterialkinaseinhibitors.In hiscurrentposition,heworks withchemicalmodication, quantication,andcharacterizationoftechnicalligninsfor greenapplicationsinindustry.Hismaininterestsareinorganic synthesisandspectroscopicanalysis.
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12529
tonsperyear)andkra lignin(<100000tonsperyear).In addition,theadventofhydrolysisandsteam-explosionlignin havecreatednewtypesoftechnicallignin.7,8 Theuseofionicliquidsorsupercriticalsolventshavefurthermoreyieldedthe productsionosolvligninandaquasolvlignin,respectively,with newandinterestingfeatures.9,10
Ligninispolyaromaticandduetothisstructure,itisless hydrophilicthanpolysaccharidicbiopolymers, e.g.,cellulose, hemicellulose,starch,alginateorchitosan.11 Itishence apromisingcandidateinvariousapplications,including:(i) reductionofwettabilityofhydrophilicmaterials,(ii)additionof functionalities,suchasprotectionfromUVlight,antioxidant andantimicrobialproperties,and(iii)tailoringofmaterialsand formulations, e.g.,forcontrolledsubstancerelease,adsorption, orantifoulingmechanisms.12–16 However,chemicalmodicationisrequiredformostapplicationsoflignin.Suchmodicationsfrequentlymakeuseoflignin'shydroxylgroups,for example,bygraingreactionsduringphosphorylation,sulfomethylation,esterication,oramination.17 Thearomatic moietiesinlignincanfurthermorebetargetedfor, e.g.,replacingphenolinformaldehyderesins.18 Atlast,thecarboxylgroups inligninmayalsoserveasreactivesitesforpolyesters.19
Interesthasalsobeenstrongfortheuseoftechnicalligninin polymericmaterials, e.g.,forthermoplasticsorthermosets.20 Processabilityoflignininthermoplasticscanbedonewithout modication,asligninisaninherentlythermoplasticmaterial.21,22 Lignin'sglasstransitiontemperaturecanrangefrom about60–190°Candmaydependonmanyfactors,including thebotanicaloriginandpulpingtype,moisturecontent,and chemicalmodication.23,24 Lignincanalsobechemically modiedtoimprovetheapplicationofligninasspecialty chemicalsorinpolymericmaterials.25–27 Additionally,the utilizationofligninasmacromonomer, i.e.,thermoset precursor,canbedoneaspartofpolyurethanes,polyesters, epoxideresins,andphenolicresins.11 End-usesincludethe productionofrigidorelasticfoams,rigidandself-healing materials,adhesives,biocomposites,andcoatings.19,28–33

DrGaryChingaCarrascowas borninChileandmovedtoNorwayin1987.Hegraduatedwith aCand.scient.degreeincell biology(1997)andDringin chemicalengineering(2002).He wasoneoftworecipientsofthe NorwegianWoodProcessing AssociationAward2019for nanocelluloseresearchand winnerofthe2021 – TAPPI's InternationalNanotechnology DivisionMid-CareerAward.Heis AssociateEditoroftheBioengineeringJournal,andEditor-in-Chief oftheSection – NanotechnologyApplicationsinBioengineering. Currently,heisleadscientistatRISEPFIintheBiopolymersand Biocompositesarea.
Onelong-heldbeliefisthatligninprovideswater-proongin thewoodcellwalltosupportwater-transport.34 Despiteyielding acontactanglebelow90°,whichwouldberequiredtoposeas ahydrophobicmaterial,variousresearchershaveshownthat lignincanreducethewettabilityandwater-uptakeofwoodand pulpproducts.18,35–37 Hence,bothtechnicalandchemically modiedligninhavebeenproposedasadditivesforpackaging materials.38 Reductionofwettabilityof ber-basedpackingis aparticularlyinterestingapplication,consideringenvironmentalandsocietaldriversregardingreductionofsingle-use plasticsandenvironmentalpollution.Lignincouldthusform thebasisofcoatingsorimpregnationblends,providedthatthe lignin-coatingcomplieswithfoodcontactrequirements.One exampleforlignin-blendsisthecombinationwithstarch duringsurface-sizingofpaper,whichcanimproveextensibility andreducewettingofthestarch-matrix.35,39 Layer-by-layer assemblywithmultivalentcationsorpolycationicpolymers hasalsobeendone,whichcanimprovethestrengthand hydrophobicityofcellulose.40,41
Otherapplicationsoflignin,itsderivativesandmixtures includetheuseforcontrolled-releasefertilizers,antifouling membranes, reretardancy,dyesorption,wastewatertreatment,andcorrosioninhibitors.14–16,42–44 Onepublicationeven reportedanunintentionalbutyetadvantageouscoatingofcoir bers,wherethelignindelayedoxidationandthermaldegradationofthe bersinapolypropylenecomposite.45
Majordriversforusingligninareeconomicalaspectsby attributingvaluetoaby-productfrompulpingorbiorenery operations,andsustainabilitybyreplacingfossil-basedmaterialswithbiopolymers.Manyapplicationscanthusbenetfrom theinclusionoflignininfunctionalsurfaces, lms,andcoatings.Themechanismofactionandapplicationmodecan herebydiffergreatly.Thisreviewthereforerepresentsaneffort tostructureandsummarizerecentprogress,whereemphasisis putonboththeprocessand naluseforlignininsurfacesand coatings.
2.Fundamentals
2.1.Structureandcompositionofnaturallignin Ligninispartofthelignin-carbohydratecomplexes(LCC)that arefoundincellwallsofplantsandwoodymaterials,asillustratedinFig.1.Thecellulose bersaretightlyboundto acomplexnetworkofhemicelluloseandlignin,andthethree biopolymersprovidestrengthandstabilitytothecellwalls.In additiontoprovidingstructuralintegrity,ligninhelpsbuilding hydrophobicsurfaceswhichareimportantintransportchannelsforwaterandnutrients.46
Thecomplexligninnetworkconsistsofthethree4-hydroxyphenylpropyleneunits,ormonolignols,formedfromthe parentcompounds p-coumaryl-(p-hydroxyphenyl,H-unit), coniferyl-(guaiacyl,G-unit)andsinapylalcohol(syringyl,Sunit),seeFig.2.47 Themonolignolsdifferonlyinthepresence orabsenceofoneortwoaromaticmethoxygroups ortho tothe hydroxylgroup.Thesearesynthesized invivo fromthearomatic aminoacidphenylalanine,formedintheshikimicacidpathway inplants.48 Theresultantmonolignolsundergoavarietyof
12530 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Fig.1 Compositionoflignocellulosicbiomassandthestructuralrolesofcellulose,hemicellulose,andlignin.46

Fig.2 Monolignolstructureandpositionsindicatedbybluenumbersandletters.
radicalcross-couplingreactionswhichresultsinthecomplex, andvaried,ligninnetwork.Theratiosofthethreemonolignols inligninfromdifferentsourcescanvaryquitesignicantly, hardwoodligninscontainG-(25–50%)andS-units(50–70%), sowoodligninscontainmostlyG-units(80–90%),whilegrass lignincontainsmixturesofS-(25–50%),G-(25–50%)andHunits(10–25%).49
Themonolignolcomposition(H:G:Sratio)canalsovary betweentissuetypesinthesameorganism,whichhasbeen illustratedinthecorkoak, Quercussuber.Ligninfromthexylem (1:45:55)andphloem(1:58:41)differlessincomposition thanthetwocomparedtothephellem(cork-part,2:85:13).
Thesedifferencesaffecttheoccurrenceofspecicinterunit linkages,whereanincreaseinS-unitsleadtoanincreasein alkyl–arylether(b-O-4)bonds:68%incork,71%inphloem, 77%inxylem.50
Thedifferenceinabundanceofthethreemonolignolslead tomanydifferenttypesofinterunitlinkagesinlignin,specicallybetweenangiosperm(hardwoodandgrass)andgymnosperm(sowood)lignin.51 Themostcommoninterunitlinkage isthe b-O-4alkyl–aryletherbond(Fig.3),whichoccursbetween 45–50%or60–62%ofphenylpropyleneunit(C9 units)in
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
sowoodsandhardwoods,respectively.Asthisisthemost commonlinkage,manydelignicationprocessestargetthis speciclinkage.Forsowoods,the5–5linkageisalsoimportant,andhasanabundanceof18–25%per100C9 units,while thislinkageoccursonlyaround3–9%inhardwoods.52
Intheprocessofisolatingtechnicallignins,boththelabile aryl-alkyland b-O-4bondsaremostpronetocleavage.53 This resultsintechnicalligninshavingmorecondensedandvariable structuresthannativelignin,andawidevarietyinmolecular weight(Mw).Massaveragevalues(Mw)of1000–15000gmol 1 forsodalignin,1500–25000gmol 1 forKra lignin,and1000–150000gmol 1 forlignosulfonateshavebeenreported, dependingonbotanicaloriginandprocessconditions.54 Native ligninisavirtuallyinnitemacromerthatisbothrandomlyandpoly-branched.55 Thebondsbetweentheligninand surroundinghemicelluloseandcellulosefoundinLCChave recentlybeenreviewed.56 Allsowoodlignin,and47–66%of hardwoodlignin,isreportedlyboundcovalentlytocarbohydrates,andmainlytohemicellulose.Themostcommontypesof linkagesfoundinLCCsarebenzylether-,benzylester-,ferulate ester-,phenylglycosidic-anddiferulateesterbonds.57 Notethat duetothehighdegreeofvariabilityininter-unitandLCC

Fig.3 Commonlinkagesbetweenmonolignolsidentifiedinlignins.51,52
linkages,Fig.4shouldonlybetakenasanillustrativeexample. Theligninmacromoleculeispolydisperseandmayexhibit variouslinkagesandfunctionalgroups.4 Inotherwords,lignin shouldbeconsideredasstatisticalentitiesratherthandistinct polymers.
2.2.Isolationoftechnicallignin
Lignocellulosicbiomassconsistsofcellulose(30–50%),hemicellulose(20–35%)andlignin(15–30%),wheretheligninactsas a “glue” withintheLCCs.58,59 Theactuallignincontentofthe biomassishighlyinuencedbyitsbotanicalorigin e.g.,28–32%

Fig.4 AdaptationofAdler'srepresentationofsoftwood(spruce)ligninwithcolor-codedmonolignols: p-hydroxyphenyl(H-unit)inblack, guaiacyl(G-unit)inblueandsyringyl(S-unit)inred.55
12532 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

isfoundinpineandeucalyptuswood,whileswitchgrass containsonly17–18%lignin,60 andlessthan15%istypically foundinannualplants.61 The rststepinligninvalorizationis biomassfractionation,wherethecellulose,hemicellulose,and ligninareseparatedfromeachother.Severaltechniqueshave beendeveloped,whichcanbegroupedintosulfurandsulfurfreepulpingfromthepaperandpulpindustry,andbioreneryprocessesthataimtoproduceofmaterials,chemicals, andenergyfrombiomass.59 Thelattermayspecicallybe designedtoisolateligninofhighpurityandreactivity,whereas pulpingoriginallyproducedligninasaby-orwaste-product.An overviewisgiveninFig.5.
Thethreeindustrialextractionmethodsforligninarekra, sulteandsodapulping.Inaddition,organosolvpulpinghas beendevelopedtoextractligninandseparatethepulp bers. Commercializationofthisprocesshasnotyetbeendone,but interesthasrisenrecentlyinthistechnology,asorganosolv pulpingproducesatechnicalligninofhighpurityandreactivity.Severalothermethodsalsoexist,butthesearemainly usedinlab-scaleandarereferredtoasbioreneryconcepts,or “pretreatments” 62 IntheKra pulpingprocess,thelignocellulosicbiomassismixedwithahighlyalkalinecookingliquid containingsodiumhydroxide(NaOH)andsodiumsulte (Na2S),atelevatedtemperaturesof150–180°C.Fromthe resultingblackliquor,kra lignincanbeprecipitatedoutby loweringthepHtoaround5–7.5.46 IntheLignoBoostprocess, thisprecipitationisdonebyadding rstCO2 andthensulfuric acid.Kra ligninhasasulfurcontentof1–3%,ishighly condensed,containslowamountsof b-O-4linkages,andis frequentlyburnedforenergyandchemicalrecoveryatthe mills.63–65 IntheKra process,ligninisfragmentedthrough aaryletheror b-aryletherbonds,whichresultsinincreased phenolicOHcontentintheresultantlignin.66 Thesulte processisanotherspecializedpulpingtechnique,whichutilizes acookingliquorcontainingsodium,calcium,magnesiumor ammoniumsulteandbisultesalts.65 Treatmentsaretypically conductedat120–180°Cunderhighpressures,whichgives lignosulfonatesthatcontain2.1–9.4%sulfur,mostlyinthe benzylicposition.67 Lignosulfonatesarecleavedmainlythrough
sulfonationatthe a-carbon,whichleadstocleavageofaryletherbondsandsubsequentcrosslinking.68 BothKra and sulteblackliquortypicallycontainsignicantamountsof carbohydrateandinorganicimpurities.64 Thesodaanthraquinoneprocessismostlyappliedinthepaperindustry onnon-woodymaterialslikesugarcanebagasseorstraw.64 The materialistreatedwithanNaOHsolution(13–16wt%)athigh pressuresandtemperaturesof140–170°C,whereanthraquinoneisaddedtostabilizehydrocelluloses.64,69 Theresulting sodaligninissulfur-freeandcontainslittlehemicelluloseor oxidizedmoieties.Organosolvligninisproducedinanextractionprocessusingorganicsolventsandresultsinseparationof dissolvedanddepolymerizedhemicellulose,celluloseas residualsolids,andligninthatcanbeprecipitatedfromthe cookingliquor.65 Varioussolventcombinationsarepossible, suchasethanol/water(Alcellprocess)ormethanolfollowedby methanolandNaOHandantraquinone(Organocellprocess), whichwillaffectstructureoftheresultantmaterials.51 Common forallorganosolvligninsisthattheirstructuresarecloserto thatofnaturallignins,inparticularcomparedtoKra ligninor lignosulfonates.Theyareadditionallysulfur-freeandtendto containlessthan1%carbohydrates.65
Severalothermethodsofbiomassprocessinghavebeen developedthataretargetedatligninextraction,ratherthan producingcellulose bers,whereligninisasabyproduct.64 Milledwoodlignin(MWL)canbeproducedtocloselyemulate nativelignin,butattheexpenseofprocessyields.70 Thismethod isconsideredgentlebuttimeconsuming,oenrequiringweeks ofprocessing,makingitviableonlyinalaboratorysetting.58 Othertechniquesthataimtoproducenativeligninanalogues includecellulolyticenzymaticlignin(CEL)andenzymaticmild acidolysislignin(EMAL).TheCELprocedurewasdevelopedas animprovementoftheMWLprocess,wherehigheryieldswere obtainedwithoutincreasingmillingduration.46 Byaddingan additionalacidolysisstep,Guerra etal. wereabletoagain improveontheyield,whilestillproducingligninthatclosely resembledthenativestructure.70 Thephysicochemical pretreatmentsaimtoreduceligninparticlesizethrough mechanicalforce,extrusion,orother.Thesetechniquesinclude
Fig.5 Ligninextractionprocessesandtheirproducts.3
steamexplosion,CO2 explosion,ammonia berexpansion (AFEX)andliquidhotwater(LHW)pretreatments.46 Ionic liquidshavealsobeensuccessfullyusedforligninisolation. Fivecationswithgoodsolubilizingabilitieswereidentied:the imidazolium,pyridinium,ammoniumandphosphonium cations,whilethetwolargeandnon-coordinatinganions[BF4] and[PF6] werefoundtodisruptdissolutionofthelignin.46 The chosenextractivemethodwillnotonlyaffectthecharacteristics oftheresultinglignin,butalsotheamountthatisextracted. Severalmethodshavebeendevelopedforthedelignicationof sugarcanebagasse, e.g.,milling,alkalineorionicliquid extraction,whereyieldsof17–32%wereobtaineddependingon themethodofchoice.71
2.3.Chemicalmodication
Chemicalmodicationoftechnicalligninsiswellexploredand includeahugevarietyoftechniques(seeFig.6forillustrative examples).Technicalligninshavebeenmodiedbyamyriadof techniques,suchasesterication,phenolationandetherication.6 Urethanizationwithisocyanateshasbeenexplored towardspolyurethanproduction,72 andallylationofphenolic OHgroupsenabledClaisenrearrangementintothe ortho-allyl regioisomerwhichisofinterestforitsthermoplasticproperties.73 Thesolubilityandchargedensityoftechnicalligninscan beaffectedbysulfomethylationorsulfonation,17,74 andmethylationofthephenolicOHgroupshaveledtoligninwithan increasedresistancetoself-polymerization17 Thethermal stabilityofligninshasalsobeenimprovedbysilylatingthe
hydroxylgroupswithTBDMS-Cl,andtheresultingmaterial couldbeincorporatedintolow-densitypolyethylene(LDPE) blendsformingahydrophobicpolymermatrix.75 Ligninis aversatilescaffoldfordifferentmodicationsdependingonthe desiredapplication.Fortheproductionofepoxyresins,epoxidationwithepichlorohydrinisacommontechnique.This approachhasalsobeencombinedwithCO2 xationresultingin cycliccarbonatesbeingincorporatedinthelignin.76
2.4.Analysistechniques
Techniquestoassessligninsandlignocellulosicbiomasshave longbeenatopicofgreatinterest,bothforquantitativeand qualitativecharacterization.Suchtechniquesarealsocriticalto probeandassesschemicalmodications.Asummaryof commonmethodsisgiveninTable1.
Differenttechniquesareoencombinedtoprovideabetter overallpicture.Forexample,chemicalmodicationoflignin maybeprobedintermsofmolecularweight, i.e.,byusingsizeexclusionchromatography,andabundanceoffunctional groups,asdeterminedbyFTIRor2DNMRanalysis.Thetechniqueofchoicecandependonfactorssuchasthetargetgroups ofinterest,butalsoonavailabilityandcost.Thepolydisperse natureoftechnicallignincansometimesmakeaccurate measurementsdifficult.Thisismanifested,forexample,inthe incompleteionizationofphenolicmoietiesduringtitrationor UVspectrophotometry,asthecongurationandsidechainsof phenolicmoietiesinducevaryingdegreesofresonance stabilization.

Fig.6 Examplesofchemicalmodificationsoftechnicallignin. 12534 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
Table1 Characterizationtechniquestoassessligninsquantitativelyandqualitatively
MethodDescriptionLimitationsRef.
FTIRspectroscopyPopulartechniquetocombinewith chemometricmethodssuchas principalcomponentregression (PCR)orpartialleastsquares(PLS) regression.Havebeenusedfor successfullydetermininglignin contentinbiomasssamples
1H/13C2DNMRExtremelydetailedinformation aboutinter-unitlinkagescanbe obtained.Hasallowedforthe assignmentandquanticationof over80%oflinkagesinligninoil fromreductivecatalytic fractionationofpinewood
31PNMRDifferentiationofthephenolicOH contentofthethreemonolignolsis possiblefromexperimentsaer derivatizationoftheOHgroups
UV-visspectroscopyCruderdeterminationofphenolic OHcontentispossibleby comparingthedifferencesin absorptionatspecicmaxima betweenneutralandalkaline solutions
Simultaneousconductometricand acid–basetitrations
Sizeexclusionchromatography (SEC)
Gaschromatography – pyrolysis (GC-Py)
Coherentanti-StokesRaman scattering(CARS)microscopy
Time-of-ightsecondaryionmass spectrometry(ToF-SIMS)
Afastandcheapalternativetowetchemicalmethodsfordetermining bothphenolicOHgroupand carboxylicacidcontents
Populartechniqueforobtaining weightandnumberaverage molecularweights, Mw and Mn,and forfurthercalculatingthe polydispersityindex(PI)ofsamples
Analysisofbiomasscomposition, quanticationofvolatiles,bio-oil andbiochar.Canbecoupledwith TGAandFTIR.
Label-freemethodwithhigh sensitivityandchemicalselectivity forimagingofligninin e.g. plant cellwalls
Visualizationofmonolignol distributiononplantsamplecrosssections
3.Formulationsandapplicationsof lignin-basedsurfacesandcoatings
Thecoatingsandsurfacemodicationsinthisreviewmost oenfullloneoftwopurposes.Firstly,theymayseekto protecttheunderlyingsubstrate, e.g.,frommechanicalwear, chemicalattack(corrosion),orUVradiation.Secondly,theyadd functionalitysuchasantioxidant,controlledsubstancerelease, orantimicrobialproperties.Reducedwettingand
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
Calibrationrequiredwithsamples ofknownconcentrations.Large dataset(trainingandtestsets) neededforreliablequantication. Trainingsamplesandprediction samplescannotdiffergreatly.
Analysesaresensitivetosample preparationtechniques
NMRexperimentsareexpensive, instrumentsfoundatspecialized institutionsanduniversities.Both experimentsanddataprocessing canbehighlytime-consuming
FullderivatizationofOH-groupsis essentialforproperquantication. Inversegateddecouplingpulse sequenceneededforquantication: reducedsensitivityandincreases relaxationtimeofanalysis
Lessaccuratethan 31PNMR. Affectedbyincompleteionizationof functionalgroups.Presenceofother ionizablegroupscanaffectresults
HeterogeneityofCOOH-andOHgroupsdistortsinectionpoint. LimitedtoquanticationofCOOHandOH-groups(andpossiblyother ionizablegroups)
Timeconsumingcalibration required.Samplesmustbewithin linearrange.Acetylationisoen usedforincreasedsolubilitypriorto analysis
78and79
78
78and80
81and82
78and83
Variationsininherentmetal contentsgreatlyaffectsthepyrolysis reactionofthebiomass 84and85
Interferencefromotheraromatic compounds(phenylalanine, tyrosine)candistortimage.Not suitedforimagingalltissuetypes 58and86
Pronetoartefact-generationarising fromsamplepreparation.
Fragmentationofligninduring imagingduetohigh-energyion bombardment
hydrophobizationarefrequentlymentionedforlignin,34,77,78 whichwouldnormallyfallintothesecondcategory,unlessthe purposeistoprotecttheunderlyingsubstratefromdegradation bywater.Thedifferentapplicationswillbediscussedmorein detailinthischapter.
Theend-useusuallydeterminesthemanner,inwhich mixturesandcoatingsmustbeformulated.Inprinciple,four differentapproachescanbedistinguished,whichare(1) applicationofneatlignin,(2)blendsofligninwithotheractive

Overviewofdifferentapplicationmodesforproducingfunctionalsurfacesandcoatingswithlignin.
orinertmaterials,(3)theblendingoflignininthermoplastic materials,and(4)theuseofligninasaprecursorforsynthesizingthermosetpolymers.Anoverviewofthedifferent approachesforformulationandapplicationisgiveninFig.7. Thesewillbediscussedinmoredetailfurtheron.
Whilesurfacelayerorcoatingareusuallyappliedonto anothermaterial,therearealsoimplementationsthatinclude ligninaspartoftheoverallbase-matrix.Examplesforthelatter includelignin-derivedbiocarbonparticlesforCO2 captureor wastewatertreatment,polyurethanefoams,andligninasan internalsizingagentinpulpproducts.36,43,79,80 Thepredominant wayofusinglignininfunctionalsurfacesisbyblendingwith othersubstances.Suchformulationsoenincludeagents, whichareestablishedforaparticularapplication, e.g.,starch forpapersizingorclayforcontrolled-releaseureafertilizers.81,82
Formulationsinpolymersynthesisusuallydrawonspecic functionalgroupsthatarefoundinlignin,forexample,the hydroxylgroupsaspolyolreplacementinpolyurethaneorthe aromaticmoietiesasphenolreplacementinphenolformaldehyderesins.18,33
3.1.Surfacesandcoatingswithneatlignin
Applyingtechnicalligninbyitselfisasimpleapproach,asno co-agentsarerequired.Whilesomedegreeofadhesiontothe substrateisoengiven,pressureandheatmaybeappliedin addition.Publicationspertainingtothistopiccanbegrouped intotwocategories, i.e.,fundamentalresearchstudyingthe formationandpropertiesoflignin-based lmsandcoatings,as wellasappliedresearch,whichisusuallyfocusedonaspecic end-use.
3.1.1.Fundamentalresearch. Afundamentalstudywas performedbyBorrega etal.,whopreparedthinspin-coated lmsfromsixdifferentligninsamplesinaqueousammoniummedia.83 The lmsexhibitedhydrophilicitywithcontact
anglesrangingfrom40–60°.Despitewidelydiversecompositions,thesolubilityinwaterwasfoundtobetheparameter governingthepropertiesofthethin lms.Similarresultswere obtainedbyNotleyandNorgren,whofoundthatlignincoatings preparedfromdiiomethaneorformamideyieldedevenlower contactanglesatabout20–30°.34 Theapproachwasfurther renedbySouza etal.,whotreatedthespin-coatedlignin lms via UVradiationorSF6plasmatreatmentinaddition.84 While theUVtreatmentreducedthecontactanglefromabout90°to 40°,theplasmatreatmentproducedsuperhydrophobicsurfaces withcontactanglesexceeding160°.Thelatterwasalsoshownto inducemajorsurfacerestructuringwithastrongincorporation ofCFx andCHx groups,whichwouldaccountforthelarge increaseincontactangle.Coatingswithlignin-basednanoparticlescanalsobemadebyevaporation-inducedselfassembly,whosepropertiesandmorphologyarestronglygovernedbythedryingconditionsandevaporationrate.85 An exampleoftheobtainedmorphologiesisshowninFig.8.Based onthesereports,researchisgenerallyconcurringonthefact thatligninbyitselfisnotahydrophobicsubstance.Harsh treatments,chemicalmodications,or ne-tuningofsurface morphologyarenecessarytoinvokehydrophobicity.
Spin-coated lmsofmilled-woodligninhavefurthermore beeninvestigatedforenzymeadsorption.86 Similarly,the adsorptionofproteinsoncolloidalligninhasbeenstudiedby Leskinen etal.,whoproducedproteincoronasonthelignin particles via self-assembly.87 Theauthorsfurthershowedthat thisdepositionwasgovernedbytheaminoacidcompositionof theprotein,aswellasenvironmentalparameterssuchasthepH andionicstrength.Theuseofligninforprotein-adsorptionis aninterestingimplementation,asitcanprovidedifferent surfacechemistriesthanitslignocellulosiccounterparts.Still, thecompatibilitywith invivo environmentsisquestionable,as biodegradationisnotgivenhere.
Fig.7

3.1.2.Appliedresearch. Anexampleforappliedresearch wouldbepaperandpulpproducts,whichcanberenderedless hydrophilicbysurface-sizing.Applicationofthelignincanbe done via anaqueousdispersionoralternativelybyimpregnationaerdissolutioninasolvent.35,88 Asimilarapproachwas usedtotreatbeechwoodwithligninnanoparticle via dipcoating,whichimprovedtheweatheringresistanceofthe wood.89 Suchdip-coatingmaypreservebreathabilityofthe substrateduetotheporousstructure.Inthiscontext,thepatent applicationWO2015054736A1shouldbementioned,which disclosesawaterproofcoatingonarangeofsubstrates includingpaper.90 Inthisinvention,theligniniscoatedonto thesubstrateaeratleastpartialdissolution,followedbyheat oracidtreatment.However,asdiscussedabove,theligninby itselfisnotahydrophobicmaterial.Whilelignin-nanoparticles mayalterthesurfacemorphologyofpulpproducts,an improvementinlong-termwater-resistancemaybemostly determinedbyaffectingmass-transferkinetics.
Depositionoflignosulfonatesonnylonhasbeendemonstrated,whichimprovedtheultravioletprotectionabilityofthe fabric.91 Thisdepositiontookplacefromaqueoussolutionand underheating,reportedlyyieldingachemicalbondingof lignin'sOHgroupstotheNHgroupsofnylon6.Suchbonding wouldindeedbenecessary,asthelignosulfonatewouldotherwisebeeasilywashedaway.
Zheng etal. coatedmicrobrillatedcellulosewithKra ligninandsulfonateKra lignin,whichpromoted reretardancyofthematerial.42 Atlast,iron-phosphatedsteelwas renderedmoreresistanttocorrosionaerspraycoatingwith lignin,whichwas rstdissolvedinDMSOandothercommerciallignin-solvents.92 Whileproveninthelab,thesetwoapplicationsmustbeconsideredwithcare,asunmodiedligninis abrittlematerial,whichcanlimitthelong-termdurabilityof suchproducts.
3.2.Theuseofchemicallymodiedlignin
Chemicalmodicationofligninisfrequentlydonetoimprove orenabletheprocessabilityinblendswithmaterials.Inaddition,chemicalmodicationmayaddoralterfunctionalitiesas requiredinspecicapplications.
3.2.1.Lignin-esterderivatives. Estericationofligninwith fattyacidshasbeeninvestigatedbyseveralauthors.This approachbearspotential,asitcombinedtwobio-derived (macro-)molecules.Thelignincontributesabackbonefor graingandmayimprovedispersibilityandadhesionofthe fattyacidsonlipophobicsurfaces.Thefattyacidscaninturn rendertheligninmorehydrophobic,improvingthewater barrier, e.g.,onpapersubstrates.Toimprovethereactionyield, reactiveintermediatesarefrequentlyused.Severalpublications havestudiedtheuseofligninesteriedwithfattyacid-chlorides ashydrophobizationagentsforpaperandpulpproducts.78,93 Thecoatingaffectedboththesurfacechemistryand morphology,asillustratedinFig.9.Theresultisusually adecreaseinwater-vaportransmissionrate(WVTR),oxygen transmissionrate(OTR),andanincreaseinaqueouscontact angle.Oxypropylationwithpropylenecarbonatehasbeenused asanalternativeestericationapproach,whichyielded asimilarhydrophobizationandbarriereffectonrecycled paper.94 Adownsideofoxypropylationistheuseoftoxicreactants, i.e.,propyleneoxide,andtherequirementforhighpressureduringthereaction.Whilefattyacidchloridesdonotneed highpressures,thesechemicalsarehighlycorrosiveandrequire theabsenceofwater.Allmentionedaspectscanstandinthe wayofcommercialimplementation.
Hua etal. reactedsowoodKra ligninwithethylene carbonatetoconvertphenolichydroxylunitstoaliphaticones,95 astheseareconsideredmorereactive.Thesampleswerefurther esteriedwitholeicacidandspin-orspray-coatedontoglass, wood,andKra pulpsheets.Theauthorsshowedthathydrophobicsurfaceswithcontactanglesrangingfrom95–147°were possible.Thepulpboardsfurthermoreshowedamoreuniform surfaceaerthecoating.Estericationwithlauroylchloride wasalsousedbyGordobil etal.,whostudiedtheirapplication aswoodveneerbypress-moldinganddip-coating.96
Whilethefeasibilitytotreatwoodandwood-basedproducts wasdemonstratedonatechnologicallevel,thecomparisonto establishedtreatmentagentsisfrequentlylacking.Forexample, linseedoilisanestablishedwood-treatmentagent,which undergoesself-polymerizationinthepresenceofair.Papersizingagentscanbebasedoncompoundsthataresimilarin
Coatingscomprisingligninparticlesproducedbyevaporation-inducedself-assembly(a)andverticalcross-sectionoftheobtainedlayers (b).85 ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
Fig.8

functiontofattyacids,suchasresinacidsoralkenylsuccinic anhydride.Consideringtheseexamples,thequestionsarises whethermodifyingligninbearsanadvantageoverusing establishedcoatingsorsizingagents.Inthelightofthis discussion,theacid-catalyzedtransestericationofligninwith linseedoilshouldbementioned.77 Accordingtotheauthors, asuberin-likelignin-derivativewasproduced,whichintroduced hydrophobicityonmechanicalpulpsheets,whilebeingmore compatiblewiththe bersthanlinseedoilalone.Theproposed processissimpleinsetupandreactants,whichfacilitatesease ofimplementation.Inaddition,theligninisprescribedakey function, i.e.,actingasacompatibilizerbetweenthe bersand thetriglycerides.
Atlast,controlled-releasefertilizerswithlignin-fattyacid gra polymershavebeenproposed.Wei etal. crosslinked sodiumlignosulfonatewithepichlorohydrin,followedby estericationwithlauroylchloride.97 Sadehi etal. reacted lignosulfonatewithoxalicacid,proprionicacid,adipicacid, oleicacid,andstearicacid.98 Themodiedligninwasfurther usedtospray-coatureagranules.Bothimplementations showedenhancedhydrophobicityandtheabilitytocoaturea forslowerreleaseofnitrogen.Still,itwouldbeimportantto comparesuchapproacheswithestablishedcoatingorblendsof ligninandnaturalwaxesortriglycerides,whichdonotrequire anelaboratedsynthesis.
3.2.2.Enzymaticmodication. Enzymaticmodicationof ligninhastheadvantageofcomparablymildreactionsconditions,whichcanhaveapositiveimpactonprocesseconomics. Onthedownside,enzymesarecomparablyexpensiveand imposeshighertechnologicaldemands.Inaddition,thevariety oflignin-compatibleenzymesissomewhatlimited.Enzymatic treatmentcaninduceanumberofchangestolignin,suchas oxidation,depolymerization,polymerization,andgraingwith othercomponents.99 Forexample,Mayr etal. coupledlignosulfonateswith4-[4-(triuoromethyl)phenoxy]phenolusing laccaseenzymes.100 Aersuccessfulcoupling,thelignosulfonate lmsexhibitedreducedswellingandanincreasein aqueouscontactangle.Fernandez-Costas etal. performed laccase-mediatedgraingofKra ligninonwoodasapreservativetreatment.101 Whilethereactionitselfwasdeemed asuccess,thedesiredantifungaleffectwasonlyobtainedaer inclusionofadditionaltreatmentagents,suchascopper.Itis hencequestionableifenzymaticallycoupledligninposesas acompetitivewood-treatmentagent,asthelignincouldalsobe
usedinwood-varnishformulationswithahighertechnological maturity.
3.2.3.Otherapproaches. Avarietyofothermodications hasbeenproposedtodevelopcoatingsfromlignin.For example,Dastpak etal. reactedligninwithtriethylphosphateto spray-coatiron-phosphatedsteelforcorrosionprotection.44 CoatingofaminosilicagelwithoxidatedKra ligninwasperformedbyelectrostaticdeposition,whichimprovedthe adsorptioncapacityfordyesfromwastewater.102 Wang etal. phenolatedlignosulfonate,followedbyMannichreactionwith ethylenediamineandformaldehydetoproduceslow-release nitrogenfertilizers.103 The nalproductexhibitedelevated contactangles,however,anincreasedsurfaceroughnesslikely alsocontributedtothiseffect,asthephenolatedandaminated ligninexhibitednanoparticlestructures.Adifferentapproach wastakenbyBehinandSadeghi,whoacetylatedligninwith aceticacidtocoatureaparticlesinarotarydrumcoater.104 The useoflignininslow-releasefertilizerscanbeuseful,aslignin canhaveasoil-conditioningeffect.However,biodegradability alsomustbeconsidered,whichcanbenegativelyaffectedby chemicalmodication.
Self-healingelastomersweresynthesizedbyCui etal.,who graedligninwithpoly(ethyleneglycol)(PEG)terminatedwith epoxygroups.31 Theauthorsconcludedthatanewmaterialwas developedwithpotentialapplicationforadhesives,butthe ultimatestresswascomparablylowat10–12MPa.Thematerial wasnamedasaself-healingelastomer;however,theappearanceandrheologicalpropertiessuggestathixotropicgel instead.
3.3.Blendsofligninwithothersubstances
Inthecontextofthisreview,thelargestnumberofpublications wasfoundforlignin-blendswithothersubstances.Theadvantageofthisapproachliesintheeaseofimplementation, exibilityforlateradjustments,andpotentialsynergieswithother co-agents.Theligninandotheradditivesmaybemixedright beforeorduringsurfacemodication,hencenotrequiring lengthypreparationssuchasthesynthesisofchemically modiedligninorapre-polymer.Tofacilitatebetteroverview, thissectionwassubdividedintoseveralsub-section,whichwere distinguishedbytheapplicationareaorformulation-approach.
3.3.1.Cellulose bersandotherwood-basedproducts. The useofligninincombinationwithcellulose bers, brils,or derivativeshasreceivedconsiderableattention,asthiscanyield
Fig.9 SEMimagesof(a)uncoatedpaperboardand(b)paperboardcoatedwithlignin-fattyacidester.This figurehasbeenadapted/reproduced fromref.78withpermissionfromElsevierB.V.,copyright2013. 12538 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
all-biobasedmaterialsandcoatings.Forexample,eucalyptus Kra ligninandcelluloseacetatewerecombinedinsolution andcastontobeech-wood,whichproducedaprotectivecoating similartobark.37 However,theauthorsdidnotdeterminethe mechanicalpropertiesoftheproduct,whichwouldbeimportanttoaddress,asthepotentialbrittlenesscouldimpartpracticaluse.Ontheotherhand,thebiodegradationofligninis indeedmorechallengingthanthatofcelluloseandhemicellulose,105 whichmayhencecontributetoanimprovedresistanceagainstcertainfungiandbacteria.Inaddition,theligninbasedveneermayaddfunctionalitiessuchaswater-repellence, UV-protection,andimprovedabrasionresistance,106 butstill acomparisonwithestablishedtreatmentagentsislacking.
Cellulosenanobrils(CNF)and(cationic)colloidallignin particleswascastinto lmsbyFarooq etal.,yieldingimproved mechanicalstrengthascomparedtotheCNFalone.107 AschematicoftheproposedinteractionsisgiveninFig.10.The authorsconcludedthattheligninparticlesactedaslubricating andstresstransferringagents,whichadditionallyimprovedthe barrierproperties.Thediscussedeffectscouldalsobeinduced bytheligninactingasabinder,hence llinggapsandproviding anoveralltighternetwork.36,88 Riviere etal. combinedligninnanoparticlesandcationicligninwithCNF,however,the oxygenbarrierandmechanicalstrengthwerelowerthanthe CNFwithoutaddedlignin.108 Thiseffectwaslikelydueto adisruptionofthebindingbetweenCNFnetworks.Thepolyphenolicbackboneofligningenerallyprovideslessopportunitiesforhydrogenbondingthancomparedtothecellulose macromolecule.Theauthorsworkonsolventextractionof ligninfromhydrolysisresiduesisnoteworthy,however,andthe workshowedpromisingpotentialforantioxidantuse.
LCCwerecombinedwithhydroxyethylcellulose,producing free-standingcomposite lms.109 Inthisstudy,theadditionof LCCenhancedtheoxygenbarrierpropertiesandcouldalso improvethemechanicalstabilityandrigidity.Abettereffectof LCCwasnotedthancombininglignosulfonateswithhydroxyethylcellulosealone.Synergiescouldhencearisefromcarbohydratesthatarecovalentlybondontothelignin.
AninterestingapproachwastakenbyHambardzumyan etal.,whoFenton'sreagenttopartiallygra organosolvlignin
ontocellulosenanocrystals.110 Theproductwascastintothin lms,whichshowednanostructuredmorphologieswith increasedwaterresistanceandtheabilitytoformselfsupportedhydrogel-lms.Inanotherpublication,Hambardzumyan etal. simplymixedthecellulosenanocrystalswith lignininsolution,aerwhich lmswerecastontoquartzslides anddriedbyevaporation.111 Theauthorsfoundthatoptically transparent lmswithUV-blockingabilitycouldbeproduced.It wasconcludedthatincreasingtheCNFconcentrationallowed forbetterdispersionoftheligninmacromolecules,dislocating the p–p aromaticaggregatesandhenceyieldingahigher extinctioncoefficient.
Anelaborateworkonlignin-starchcomposite lmswas conductedbyBaumberger.39 The lmswereproduced via oneof twomethods:(1)powderblendingofthermoplasticstarchand lignin,followedbyheatpressingandrapidcooling,and(2) dissolutioninwaterordimethylsulfoxidefollowedbysolventcastingandsolventevaporation.Theauthorconcludedthat theligninactedeitheras llerorasextenderofthestarch matrix,wherethecompatibilitywasfavoredbymediumrelative humidity,highamylopectin/amyloseratios,andlowmolecular weightlignin.Lignosulfonatesformedgoodblendsand impartedahigherextensibilityontothestarch lms,likelydue tobenecialinteractionsbetweensulfonicandhydroxylgroups. Non-sulfonatedlignin,ontheotherhand,improvedwaterresistancetoagreaterextent.
Threerecentstudieshavefoundthatincorporatinglignin intoamoldedpulpmaterialscanreducethewettabilityofthe material,aswitnessedbyanincreaseincontactangleor adecreaseinwater-uptake.8,36,88 Theadvantageofsuchimplementationisthathightemperatureandpressurewillpromote densication,asthelignincan owintocavities.Highdensities ofupto1200kgm 3 werereported,wheretheuptakeofwateris hinderednotonlybylimitingmass-transport,butalsoby conningtheswellingofcellulose bers.88
Variousresearchershaveincludedligninintheformulation ofpaper-sizingagents.Inoneimplementation,Javed etal. blendedKra ligninwithstarch,glycerol,andammonium zirconiumcarbonatetoproduceself-supporting lmsand paperboardcoatings.112 Themechanical lmstabilitywasbetter

Fig.10 SchematicillustrationofproposedinteractionbetweenCNFanddifferentligninmorphologies.107
whenusingammoniumzirconiumcarbonateasacross-linking agent,inadditiontoreducingthewater-transmissionrate.Both theligninandtheammoniumzirconiumcarbonatealso reducedleachingofstarchwhenincontactwithwater.In asecondpublication,theauthorfurtherdevelopedtheformulation'suseinpilottrials.81 Johansson etal. coatedpaperboard, aluminiumfoil,andglasswithmixturesoflatex,starch,clay, glycerol,laccaseenzyme,andtechnicallignin.113 Theauthors foundthattheoxygenscavengingactivitywasgreatestfor lignosulfonates,ascomparedtoorganosolv,alkaliorhydrolysis lignin.Thiseffectwasexplainedbyagreaterabilityofthelaccasetointroducecross-linkingonthelignosulfonatemacromolecules.Inanotherpublication,Johansson etal. also combinedlignosulfonateswithstyrene-butadienelatex,starch, clay,glycerol,andlaccaseenzyme.114 Theresultsshowedthat bothactiveenzymeandhighrelativehumiditywerenecessary forgoodoxygenscavengingactivity.Laccase-catalyzedoxidation oflignosulfonatesfurthermoreresultedinincreasedstiffness andwater-resistanceofthestarch-based lms.Winestrand etal. preparedpaperboardcoatingsusingamixtureoflatex,clay, lignosulfonates,starch,andlaccaseenzyme.115 The lms showedimprovedcontactanglewithactiveenzymeandoxygenscavengingactivityforfood-packagingapplications.Whilethe resultsforpaper-sizingwithadditionofligninshowpromising potential,foodpackagingapplicationsmayimposeadditional requirements.Forexample,stabilityofthecoatingsmaynotbe giveninenvironmentsthatcontainbothmoistureandlipids.In addition,tothebestofourknowledge,nostudyaddressedthe migrationofsizing-agentsintofood.Still,theutilizationof ligninasoxygenscavengerispromising,asthisutilizesoneof ligninsinherentproperties,whicharefoundinfewother biopolymers.
Asanalternativetotechnicallignin,Dong etal. applied alkalineperoxidemechanicalpulpingeffluentinpaper-sizing, whichcomprised20.1wt%ligninand16.5wt%extractives basedondrymatterweight.116 Blendedwithstarch,theeffluent improvedthetensileindexandreducetheCobbvalueofpaper, whileprovidingcontactanglesof120°andhigher.Such implementationcan,however,alsoaggravatecertainproperties
ofthepaper,asagingandyellowingmaybepromotedbythe presenceofacidsandchromophores.
Layer-by-layerself-assemblywasusedbyPeng etal. to producesuperhydrophobicpapercoatedwithalkylatedlignosulfonateandpoly(allylaminehydrochloride).40 Alternatively, Lit etal. depositedsuchlayersoncellulose bersbycombining lignosulfonateswiththedivalentcoppercationinsteadof apolycation.41 Asimilareffectonsurfacemorphologywas noted,whilecontactangleswithinthehydrophobicregime couldbeachieved.Theutilizationoflignosulfonate-polycation assembliesforcellulosehydrophobizationissomewhatcounterintuitive,sincepolyelectrolytecomplexestendtobehydrophilicandcanswellinwater.Thelong-termstabilityofsuch coatingsinwaterishencequestionable,stillforshortcontact timesthemodulationofsurfaceroughnessandchemistrycan bebenecial.
SolventcastingwasemployedbyWu etal.,usingionic liquidstodissolvecellulose,starch,andlignin.117 Thebiopolymerswerecoagulatedbyadditionofthenon-solventwater, furtherbeingprocessedinto exibleamorphous lms.The processappearssimilartotheproductionofcelluloseregenerates.Utilizingotherbiopolymersthancellulose, i.e.,lignin, hemicellulose,andstarch,isaninterestingapproachfor netuningthedesired lmproperties.
Zhao etal. usedevaporationinducedself-assemblyoflignin nanoparticlesandCNF,whichweresubsequentlyoxidizedat 250°Candthencarbonizedat600–900°C.79 Thesenano-and micro-sizedparticlescouldbeusedforCO2 adsorption,where synergisticeffectsbetweentheCNFandligninnanoparticles werenoted.AnillustrationoftheparticlesisshowninFig.11. Agrochemicalformulationswithlignin-basedcoatings predominantlyinvolvefertilizerformulations, i.e.,for controlledreleaseofnutrients.Thelignincanbepartof acoating,whichthenactsasamass-transferbarrierthatdelays thedissolutionofnutrients.82,118,119 Thefocusisusuallyonurea asnitrogenfertilizerorcalciumphosphateassuperphosphate fertilizers.82,118–120 Anadvantageofusinglignin,apartfrom beingbiodegradableandwater-insoluble,isthepotential functionassoilamendment.121

Fig.11 Lignin-basedporousparticlesobtainedbyoxidationandcarbonizationforcarboncapture.SEMimagesofligninparticlescarbonizedat low(a)andhigh(b)pre-oxidationrate,yieldingtwodistinctmorphologies.This figurehasbeenadapted/reproducedfromref.79withpermission fromElsevierB.V.,copyright2017.
12540 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
Twoapproachescangenerallybedistinguished,basedon eithertheuseofneatorchemicallymodiedlignin.Properties suchaswater-permeabilityandnitrogenorphosphorrelease canbepositivelyaffected;however,chemicalmodicationmay impairbiodegradation.Withthatsaid,theworkofFertahi etal. shouldbenoted,whocoatedtriplesuperphosphatefertilizers withmixturesofcarrageenan,PEG,andlignin.118 Thelatterhad beenobtainedfromalkalipulpingofolivepomace.Thethree mentionedcoating-materialsareinprincipleallbiodegradable. BlendingligninwithcarrageenanorPEGimprovedthe mechanicalstabilityofthe lmscomparedtoligninalone, whilealsoincreasingtheswellingofthecoatings.Similar blendswerestudiedbyMulder etal.,whofoundthatglycerolor polyolssuchasPEG400couldimprovethe lmformingproperties.120 Thewaterresistance,ontheotherhand,wasimproved byusinghighmolecularweightPEGorcrosslinkingagentssuch asAcronalorStyronal(commercialname).Onthedownside, thebiodegradabilitywillbenegativelyaffectedbysuchcrosslinkingagents,especiallyacrylatesorstyrene-based chemistries.
ChemicalmodicationofligninforcoatingofsuperphosphatefertilizerswasalsoconductedbyRotondo etal., 119 where thetechnicalligninwaseitherhydroxymethylatedoracetylated. Apartfromutilizingtoxicchemicalsinthesynthesis,these modicationsalonedonotposeasadetrimenttobiodegradability.However,theRotondo etal. alsosynthesizedphenolformaldehyderesintocoatthefertilizercores,whichcouldbe troubling,astheauthorsbasicallysuggestedaddingplasticsto thesoil.Zhang etal. furthermoremodiedligninbygraing quaternaryammoniumgroupsontoit.82 Whilethequaternary ammoniummayconvenientlybindanionsandaddnitrogento thesoil,someofitsdegradationproductsarehighlytoxicand henceconcerning,unlessthegoalistoaddbiocidestothesoil. AsimilarapproachwasdonebyLi etal., 14 whosynthesized multifunctionalfertilizers.First,alkaliligninandNH4ZnPO4 weremixedanddissolvedtoproducefertilizercores,which werefurthercoatedwithcelluloseacetatebutyrateandliquid paraffin.Asecondcoatingwasthenappliedasasuperabsorbent,whichwasbasedonalkaliligningraedwithpoly(acrylic acid)inablendwithattapulgite.Boththeparaffinandpoly(acrylicacid)gra shouldhavebeenavoidedduetoenvironmentalincompatibilities.
Atlast,adifferentapplicationwasexploredbyNguyen etal., i.e.,theencapsulationofphoto-liablecompoundswithalignin coatinglayer.122 Inparticular,theauthorsemulsiedthe insecticidedeltamethrininacornoilnanoemulsionwith polysorbate80andsoybeanlectinasemulsier.Thedroplets werefurthercoatedwithchitosanandlignosulfonate.The lignincontributedherebytoboththeUV-protectionofthe emulsiedinsecticide,aswellastoitscontrolledrelease.This approachispositiveinseveralregards,asonlybiobasedagents wereusedintheformulation,thelignosulfonateswerenot chemicallymodied,andtheapplicationdrewonsomeof lignin'sinherentproperties.
3.3.2.Biomaterialsandbiomedicalapplications. A biomaterial, i.e.,amaterialintendedforuseinoronthehuman body,mustcomplywithcertainrequirements.Thisimpliesthat
thematerialshouldbebiocompatibleandshouldnotcausean unacceptableeffectonthehumanbody.123 However,thedenitionofbiocompatibilityhasbeendebatedintheliterature.In additiontoamodieddenitionof “biocompatibility”,Ratner proposed “biotolerability” todescribebiomaterialsinmedicine.124 Biocompatibilitywasdenedby “theabilityofamaterial tolocallytriggerandguidenonbroticwoundhealing,reconstructionandtissueintegration”,whilebiotolerabilitywas proposedtobe “theabilityofamaterialtoresideinthebodyfor longperiodsoftimewithonlylowdegreesofinammatory reactions”.Novelbiomaterialsdevelopedforbiomedicalapplicationscouldbedenedbythesetermswiththetargetof limited broticreactions,125 andligninmaybewithinthisgroup ofbiomaterials.Ligninisamaterialderivedfrombiobased resources,withattractivepropertiesforbiomedicaluse, primarilywithantioxidantandantibacterialcharacteristics. Theantioxidantpropertyofligninisdependentonthephenolic hydroxygroupscapableoffree-radicalscavenging.Theantimicrobialeffectisalsocausedbythephenoliccompounds.126 As expected,theantibacterial,antioxidantandcytotoxicproperties mayalsodependonthetypeoflignin.127,128 Forexample,kra ligninhasbeenfoundtohavelessantibacterialproperties comparedtoorganosolvligninduetothelargermethoxyl contentinorganosolvlignins.127
Severalauthorshaveattemptedtodrawonlignin'santibacterialandantiviralproperties,whichcouldbeusefulinsurfaces forbiomaterialsandbiomedicalapplications.Antimicrobial coatingswere,forexample,preparedbyLintinen etal.via deprotonationandionexchangewithsilver,129 asshownin Fig.12.Jankovic etal. alsodevelopedsuchsurfacesby ashfreezingadispersionoforganosolvligninandhydroxyapatite withorwithoutincorporatedsilver.130 Aerfreezing,the samplesweredriedbycryogenicmultipulselaserirradiation, producinganon-cytotoxiccomposite,whichwerefurthertested ontheirinhibitoryactivity.Asimilarapproachwastakenby Erakovi´ c etal.131 Theauthorspreparedsilverdopedhydroxyapatitepowder,whichwasthensuspendedinethanolwith organosolvligninandcoated via electrophoreticdeposition ontotitanium.131 Thiscompositeshowedsufficientreleaseof silvertoimposeantimicrobialeffect,whileposingnon-toxicfor healthyimmunocompetentperipheralbloodmononuclearcells attheappliedconcentrations.However,theuseofsilverhas causedsomeenvironmentalconcernsthatshouldbe addressed.132 Asanalternative,copperhasbeenreportedwith betterantibacterialeffectthansilver,whichtoourknowledgeis currentlyunexploredinantimicrobiallignincomplexes.133
Lignin-titaniumdioxidenanocompositeswerepreparedby precipitationfromsolutionandtestedfortheirantimicrobial andUV-blockingproperties.134 Theauthorsconcludedthatthe lignincouldfunctionasthesolecappingandstabilization agentforthetitaniumdioxidenanocomposites.Betterperformanceofthenanocompositesforantioxidant,UV-shielding, andantimicrobialpropertieswasreported,ascomparedto theligninortitaniumdioxidealone.
Kra ligninandoxidizedKra ligninwereprocessedinto colloidalligninparticlesandcoatedwith b-casein,whichwas furthercross-linked.29 Thisworkaimedtoproducebiomaterials ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Simplifiedschematicoftheproductionofsilver-dopedligninnanoparticles.129
andbio-adhesives,wherethecolloidalligninactedasthescaffoldintendedforthesynthesisofbio-compatibleparticles. However,noassessmentofbiocompatibilityofthegenerated complexeswasperformed.Hence,thequestionremains whetherthisapproachmaybesuitableforbiomedical applications.
AccordingtoDominguez-Robles,therearevariousadditionalbiomedicalapplications,inwhichlignincouldbe promising, e.g.,ashydrogels,nanoparticlesandnanotubes,for woundhealingandtissueengineering.135 Theinterestinlignin forbiomedicalapplicationswasalsoemphasizedbythe increasingamountofpublicationsrelatedtoligninappliedas afunctionalmaterialfortissueengineering,drugdeliveryand pharmaceuticaluse.135,136 However,thereportedstudieson ligninforbiomedicalapplicationsisstilllimitedandvarious challengeswillneedtobeovercometoadvanceinthisarea. Theseareespeciallyregardingrelevantassessmentoflignins toxicologicalproleandbiocompatibility.Nottomentionthe largevariabilityofligninswhenitcomestothesourceoflignin, thefractionationprocessesandposteriormodication,which mayaffectthechemicalstructure,homogeneity,andpurity.
3.3.3.Wastewatertreatment. Differentresearchershave formulatedlignin-basedmaterials,whichweredesignedforthe puricationofdyecontainingwastewater.16,102,137 Suitabilityfor suchapplicationsisprincipallyderivedfromthechemical similarities,whichexistbetweenligninandmanydyes, i.e.,an abundanceofheteroatomsandaromaticmoieties.Such adsorbentscanbeproduced via depositiononsilicagel,102 coatingontocarbonparticles,16 carbonization,43 sorptionand co-precipitation.138 Developmentofsuchmaterialsisgenerally positive,asitdrawsontheuniquecompositionoflignin.
Adifferenttechnologicalapproachwithinthesamearea wouldbemembranes.Layer-by-layerassemblyisafrequently usedtechnique,inwhichpolyanioniclignosulfonatesor sulfonatedKra ligninarecombinedwithapolycation. Multiplebilayersaremadebystepwiseapplicationofthepolyelectrolytes, e.g.,byimmersioninasolutionofpolyanion rst, followedbydryingandimmersioninasolutionofpolycation. ThisapproachwasusedbyShamaei etal. asanantifouling
coatingformembranes,improvingthetreatmentofoily wastewater.139 Gu etal. usedlignosulfonatesandpolyethyleneimineonapolysulfonemembrane,whichsuccessfully repelledtheadsorptionofproteins.15 Whilethepreparationis straight-forward,thelong-termstabilityofsuchcoatingsalso mustbedemonstrated.Boththeligninand(poly-)cationwere water-soluble,sothecoatingwouldbepointlessifwashedaway withtheretentate.
3.3.4.Packagingapplications. Packagingapplicationscan benetfromlignin-containingsurfacesinvariousregards. Improvementsinthewater-resistance,waterandoxygen barrier,andmechanicalstrengthofcellulose-basedsubstrates havebeenreported.35,107,108,140 Amoredetailedsummaryofthese materialsisgiveninSection3.3.1.Theligninmayalsoserveas anoxygenscavenger.Toimplementthis,severalauthorshave formulatedcoatingsthatincludebothligninandlaccase enzyme.113–115 Atlast,theantibacterialandUV-shieldingpropertiesofligninhavebeenmentionedasbenecialcontributors.83,107,110 Whilethestudiesdemonstratefeasibilityon atechnologicallevel,thereareotherfactorsthatmustbe consideredaswell.Long-termstabilityandmigrationofthe coatingsisrarelyaddressed,despitethisbeingacrucial parameterinfoodpackaging.Inotherwords,onemustbesure thatnodetrimentalsubstancesaretransferredtothefood. Somefoodsreleasebothwaterandfat,forwhichligninisin theoryagoodmatch,asitissolubleinneither.Packagingof non-foodsgenerallyposeslessharshrequirements.The requirementsonpricepervolumearegreater;however,the pricingoftechnicalligninshouldbecompetitive.
3.3.5.UV-protection. Thepolyaromaticbackboneoflignin providesextendedabsorptionatsub-visiblewavelengthsof light.UV-shieldingapplicationshencedrawononeofthe intrinsicpropertiesoflignin.Oneexamplewouldbethe developmentofnaturalsunscreens via hydroxylationoftitaniumoxideparticles,duringwhichlignosulfonateswere added.141 Unsurprisingly,itwasconcludedthatthelignin enhancedtheUV-blockingeffectofthetitaniumoxideparticles. Anotherpublicationexploredsunscreens,wherenanoparticlesizeligninwasaddedtocommerciallotionformulations.142
Fig.12
TheUVabsorbancewasimprovedbybothnanoparticle formationandpretreatmentwiththeCatLigninprocess.The latterwasexplainedbypartialdemethylationandboostingof chromophoricmoieties.Whileligninmayconvenientlyreplace fossil-basedandnon-biodegradableUVactives,otherfactors alsoneedtobetestedforsuchaproducttobecomefeasible, e.g.,non-hazardousness,safetyforhumancontact,andskin tolerance.
Otherapplicationsthatcanprotfromthispropertyinclude UV-protectiveclothing,91 packagingmaterials,83,107 agrochemicalformulations,122 andpersonalprotectiveequipment.134 It shouldbementioned,however,thatenhancedUVabsorbance isnotalwaysbenecial,asitcanalsoleadtofasterdegradation ofthelignin-containingmaterials.12
3.4.Ligninaspartofthermoplasticmaterials
Ligninisathermoplasticmaterialwithglass-transition temperaturesintherangeof110–190°C.24 Assuch,itis straightforwardtousetechnicalligninasa llermaterialin, e.g.,thermoplasticsorbitumenadmixtures.38 Potentialadvantagesoflignininthermoplasticpolymercoatingshavebeen discussedbyParitandJiang,21 i.e.,byaddingUV-blockingand antioxidantactivityasrequiredinpackagingapplications.In general,theadditionoflignininthermoplasticscanincrease stiffness,butattheexpenseofextensibility.38 Chemicalmodication(alkylation)mayberequiredtoimprovebothtensile stiffnessandstrengthofolenicpolymers.26 Ontheotherhand, lignin'samphiphilicmake-upcanimpartadvantages, e.g.,by improvingtheadhesionofpolypropylenecoatings.143 Another examplewouldbetheuseoflignininbiocompositesfrom polypropyleneandcoir bers.45 Whilenosignicanteffecton tensilestrengthofthecompositeswasfound,addinglignin reportedlydelayedthethermaldecomposition.
Coatingswithpolymersarefrequentlyusedtoprotectthe mechanicalintegrityoftheunderlyingsubstrate.Foradded lignintobeadvantageous,themechanicalcharacteristicsofthe polymerblendmusthencebeimproved.Whilepublicationsin thisareafrequentlyfocusontheaddedfunctionalities,some alsoreportedimprovementsinthemechanicalstrengthofthe coatings.12,26 Onthedownside,theadditionofligninisoen limitedtolowratiosandchemicalmodicationmaybe required.12 Thesefactorscanlimittheoverallsustainability
gain,whichbiopolymershaveoverfossil-basedpolymersand llers.
Atlast,slow-releasefertilizerscanbepreparedfromthermoplasticsandlignin.Li etal. blendedpoly(lacticacid)(PLA) withKra ligninsamples,someofwhichhadbeenchemically modiedbyestericationorMannichreaction.144 Ureaparticles werethencoatedbysolventcastingordip-coating,wherethe alkylatedligninyieldedimprovedbarrierpropertiesandbetter compatibilitywithPLA.Microscopeimagesofthecoatedurea particlesareshowninFig.13.Whilelignin-PLAblendscan potentiallybemorebiodegradablethanlignin-basedresins,the biodegradationinsoilmaystillbeinsufficient.Ourrecommendationishencetofavorblendsofunmodi edligninwith biopolymers,suchasstarch,cellulose,orcarrageenan,asthis willnotcontributetomicroplasticspollution.
3.5.Ligninasaprecursortothermosets
Thefourmostcommonapplicationsoflignininthermosetsare polyurethane,epoxideresins,phenolicresins,andpolyesters.11 Unsurprisingly,formulationsoflignin-basedthermosetcoatingsareoenderivedfromsuchchemistries.Thelignincan alsoberenderedcompatiblewithotherformulations, e.g.,with polyacrylatesbygraingwithmethacrylicacid.145 Suchgraing reactionsareindeedinstrumentaltoovercomesomeofthe traditionalchallengesoflignin;146 however,theycanalsobe accompaniedbyunwantedside-effects,suchaspoor biodegradability.
3.5.1.Lignin-basedpolyurethanecoatings. Ligninutilizationinpolyurethanesisdoneaspolyolreplacement,where lignin'shydroxylgroupsarereactedwithisocyanategroups actingascross-linker.Theligninmayevenbesolubleinthe polyol,whichaidsstraight-forwardsubstitution.Ligninderivatizationtoimprovethecompatibilityandperformance includeshydroxyalkylation(e.g.,withpropyleneoxide, propylenecarbonate,orepichlorohydrin),estericationwith unsaturatedfattyacids,methylolation,anddemethylation.28
Chen etal. blendedalkaliligninandPEG,whichwerefurther polymerizedwithhexamethylenediisocyanateinpresenceof silicaaslevelingagent.147 Experimentswerelimitedto60wt% lignin,ashigherratiosyieldedanembrittlement.Themixtures wereprocessedinto lms,whichshowedsomepotentialfor biodegradation.Theseresultsindeedcorroboratedbyother authors,whichalsostatethatligninincorporationin

polyurethanesyieldedalimiteddegreeofbiodegradability.148 A differentapproachwasmadebyRahman etal., 149 whosynthesizedwaterbornepolyurethaneadhesiveswithaminatedlignin. ThetensilestrengthandYoung'smodulusimprovedwith increasingratiosofaminatedlignin,whichcouldbeduetoan increasedcross-linkingdensity.Still,theoverallpercentagesof lignininthecoatingswerecomparablylow,astheauthors addedonlybetween0–6.5mol%lignin.Itiscurioustonotethat theauthorsproclaimedbetterstoragestabilityofaminated lignindispersions,yetonlytheweatheringresistanceofthe nalcoatingwasmeasured.
Someofthechallengeswithlignininpolyurethanematerials includereactivityandahighcross-linkingdensity.Duetothe latter,polyurethaneformulationsarefrequentlylimitedtolow percentagesoflignin,typically20–30wt%atmax,ashigher ratioscanyieldbrittleandlow-strengthmaterials.150 One approachistoincreasethedegreeofsubstitutionisdepolymerizationoflignin,butotherchemicalmodicationsorfractionationsmaybeequallyapplicable.Inthiscontext,thework byKlein etal. shouldbementioned,whoreportedpolyurethane coatingswithligninratiosofupto80%.151 Acomparablylow curingtemperatureof35°Cwasused,whichcouldalsoentail incompletereaction.Curiously,thereisnodataonthe mechanicalstrengthofthe lms.Inaddition,theauthors measurementsofhydroxylgroups via ISO14900and 31p-NMR arewidelydivergent.Intwootherpublicationsbythesame author,theantioxidantpropertiesandantimicrobialeffectof such lmswerestudied.13,152 Inadifferentstudy,methyltetrahydrofuranwasusedtoextractthelow-molecularweight portionfromKra lignin.153 Theauthorsusedbetween70to 90wt%lignininthe nalformulationatNCO/OHmolarratios of0.16–0.04.Whileprovidingagoodadhesivestrength,the lmselasticmodulusiswithinthesamerangeofthefractionatedlignin,whereasnoinformationonthematerialstrength wasprovided.Itwouldthusappearthattheelevatedcrosslinkingdensitymaybecircumvented, i.e.,simplybyreacting onlyasub-fractionoftheavailablehydroxylgroupsoflignin. Still,ithasyettobedemonstratedthatsuchcoatingsarealso competitiveinmechanicalstrengthandabrasionresistance.
3.5.2.Lignin-basedphenolicresincoatings. Ligninmay alsobeusedasaphenol-substituentinphenol-formaldehyde resins.20 ThisapproachwasutilizedbyPark etal. toproduce cardboardcompositesbyspraycoating.154 Theauthorsreported thatligninpuricationbysolventextractionyieldedbetter resultsthanbyacidprecipitation.Substitutingwith20–40wt% ligninsurprisinglyacceleratedthecuringkinetics,comparedto thelignin-freecase.Thecoatedcardboardshowedlowerwater absorption;however,thecontactanglewasalsolower,which couldbeduetoachangeinsurfacechemistryandmorphology. Itwouldbeinterestingtostudyevenhigherdegreesofsubstitutionandtodelineatewiththemechanicalstrength.Still,it appearsthatcoatingswithlignin-phenol-formaldehydehaveso farbeenaimedatprovidingawater-barrier.Forexample,the workbyRotondo etal. coatedsuperphosphatefertilizerswith hydroxymethylatedligninresins,119 whichsignicantlyslowed thephosphaterelease.
3.5.3.Lignin-basedepoxyresincoatings. Similartolignincontainingpolyurethanes,epoxyresinsalsotargetareaction withthehydroxylgroups.Inanalogytothat,chemicalconditioningsuchasdepolymerizationcanpotentiallyimprovethe nalmaterial.Forexample,Ferdosian etal. testeddifferent ratiosofdepolymerizedKra ororganosolvlignininconventionalepoxyresinformulations.155 Theauthorsshowedthat largeamountsofligninretardedthecuringprocessparticularly inthelatestageofcuring.Attherightdosage(25%),theligninbasedepoxyexhibitedbettermechanicalpropertiesthanthe neatformulation,whileimprovingadhesiononstainlesssteel. Botheffectsappearplausibleconsideringligninsmacromolecularandpolydispersecomposition.Inthiscontext,arecent patentbyAkzoNobelshouldalsobementioned,which describestheuseofligninandpotentialepoxycrosslinkerfor functionalcoatings.156 AdifferentapproachwaschosenbyHao etal.,whocarboxylatedKra lignin rst,followedbyitsreaction withPEG-epoxy.157 Thecoatingspossessedalignincontentof 47%.Inaddition,theself-healingabilitywasdemonstratedby transestericationreactioninpresenceofzincacetylacetonate catalyst.
Crosslinkingofnanoparticlesisaninterestingapproach,as thecoagulationtonanoparticlesmayfavoradifferentratioof functionalgroupsatthesurfacethaninthebulklignin.In addition,thisapproachcanproducecompositematerials, whichexhibitdifferentcharacteristicsthanahomogeneous polymer.Forinstance,Henn etal. combinedligninnanoparticleswithanepoxyresin, i.e.,glyceroldiglycidyl ether,totreatwoodsurfaces.106 Thecoatingsshowednanostructuredmorphology,whichstillpreservedthebreathability ofthewood,hencedrawingadvantagefromlignin'snanoparticleformation.Zou etal. coprecipitatedsowoodKra lignintogetherwithbisphenol-a-diglycidylethertoproduce hybridnanoparticles.158 Theparticleswereeithercuredin dispersionforfurthercationizationordirectlytestedintheir functionaswoodadhesives.Theuseoflignin-basednanoparticlesincurableepoxyresinsishencepromising,asitcan generatenewfunctionalities,butthematurityofthistechnologystillneedstobeadvanced.
3.5.4.Lignin-basedpolyestercoatings. Whiletheuseof lignininpolyestercoatingsistechnologicallyfeasible,few publicationswerefoundtothistopic.Onereasonforthiscould betheslowreactionkineticsofdirectesterication.Coupled withlignin'sstructureandchemistry,polyester-basedcoatings wouldbelessstraightforwardthanpolyurethanesorepoxy resins,whichinvolvehighlyreactivecouplingagents.Asdiscussedpreviously,chemicalmodicationofligninmayimprove thiscircumstance,forexamplebydepolymerizationorintroductionofnewreactivesites.Assuch,oxidativedepolymerizationandsubsequentmembranefractionationhasbeen suggestedtoproducearawmaterial,whichcanbeutilizedin subsequentpolyestercoatings.159 Asecondexamplewouldbe solvent-fractionatedlignin,whichhasbeencarboxylatedby estericationwithsuccinicanhydride.19 AsillustratedinFig.14, themodiedligninreportedlyunderwentself-polymerization, wherethegraedcarboxylgroupsreactedwithresidual

hydroxylgroupsonthelignin.Developmentinthisareahas potential,aspolyesterstendtoexhibitbetterbiodegradability thanpolyolens.
3.5.5.Lignin-basedacrylatecoatings. Lignin-basedacrylatesrelyonthegraingofacrylatemoieties,asthesearenot inherenttolignin.Forexample,methacrylationofKra lignin wasdonetoproduceUV-curablecoatings.145 Theauthors concludedthatincorporatingligninintotheformulation improvedthermalstability,curepercentage,andadhesive performance.Anelaboratestudyonagingoflignin-containing polymermaterialswasconductedbyGoliszek etal.30 The authorsgraedKra ligninwithmethacrylicanhydrideand furtherpolymerizedtheproductwithstyreneormethylmethacrylate.Lowamountsoflignin(1–5%)showedincorporation intothenetwork,whereashigherconcentrationsshowed aplasticizingandmoreheterogeneouseffect.Highlignin loadingsalsoenhancedthedetrimentaleffectsofaging,which mayseemcounterintuitive,asotherreportsfrequentlystate aUV-protectiveabilityoflignin.Still,increaseabsorptionofUV lightcanalsoamplifythedetrimentaleffectsthereof.A combinationofepoxyandacrylatewasusedtodevelopdualcuredcoatingswithorganosolvlignin.160 Theligninwas rst reactedwithepoxyresinandsubsequentlywithacrylatetoform aprepolymer.Inasecondstep,theprepolymerwasmixedwith initiatorsanddiluenttobecoatedontotinplatesubstrates.All inall,lignin-basedacrylatecoatingsappeartohavereached sufficienttechnologicalmaturity,yettheadvantageofadding ligninissometimesunclear.
3.5.6.Otherapproaches. Szabo etal. graedKra lignin with p-toluenesulfonylchloride,whoseproductwasthengraftedontocarbon bers.161 Theresultssuggestedanimproved sheartoleranceofthemodiedcarbon bersinepoxyor cellulose-basedcomposites.SilylationwasfurthermoreperformedofKra lignin,whichwasfurtherco-polymerizedwith
permissionfromAmericanChemicalSociety,copyright2018. ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
polyacrylonitrile.162 Theauthorsconcludedthatsilylation improvedthecompatibilityforsurfacecoatingsand lms.
4.Ligninintechnicalapplications –acriticalcommentary
Thedevelopmenthigh-valueproductsfromligninhasbeen atopicofgreatinterestforsomeyears,andisstillgaining popularity.163 Added-valueapplicationsarebeingpursued, rangingfromasphaltemulsiersorrubberreinforcingagents, totheproductionofaromaticcompounds via thermochemical conversion.164 Thequestionarises,however,ifincludinglignin inacoatingcanreallyleadtoabetteroverallproduct? Comparisonwithstate-of-the-artformulationsisfrequently omitted,benchmarkinglignin-basedsolutionsonlytoareferencecasewithlowperformance. “Attributingvaluetowaste” is oneoftheprimarymotivationsbehindlignin-orientedresearch. Forexample,bioethanolproductionfromlignocellulose biomassoengivesrisetoalignin-richbyproduct.Theoverall economicsofsuchbioreneriescouldbeimprovediftheligninrichresiduecouldbemarketedatavalue.Still,toestablish anewproductonthemarket,thisproductalsoneedsto competewithexistingsolutionsintermsofperformanceand price.Thispointisoenoverlookedinliterature,inparticular concerninglignin-basedsurfacesandcoatings.
Harnessinglignin'sinherentpropertiesiskey,asthiscan createsynergiesandyieldanadvantageoverotherbiopolymers. Itcomestonosurprisethatthedominantuseoftechnical ligninisinwater-solublesurfactants,aspolydispersityisakey featurehere.3 Ashasbeenpointedout,theperformanceof surfactant-blendsoenoutperformssinglesurfactantsinrealworldapplications,sincethemixturecanpreserveitsfunction overawiderrangeofenvironmentalconditions.Asecond exampleofkeypropertieswouldbelignin'spolyphenolic
Fig.14 Schematicofproducinglignin-basedthermosettingpolyestercoatings.This figurehasbeenadapted/reproducedfromref.19with
structure,whichisnotfoundincommonpolysaccharides. LigninhashencebeeninvestigatedasaUVblockingadditivein e.g.,sunscreenproductsorpackaging.165 However,compatibilityoftheresultingproductwithhuman-orfood-contactis addressedinsufficientlybymanyauthors.Asimilarsituation wasgivenincaseofligninasantioxidantadditivein cosmetics,166 wherethedarkcolorandsmellmaylimitthe nal use.
Comparedtocelluloseorhemicellulose,ligninhasahigher carbon-to-oxygenratio.Duetothisanditspolyaromaticstructure,itwouldindeedbeabetterrawmaterialforproducing carbonaceousmaterials.Researchonactivatedcarbon, graphiticcarbon,andcarbon bershasindeedbeingconducted.167 Akeysteptowardlignin-basedcarbon berproduction wasidentiedasremovalof b-O-aryletherbonds.60 Inaddition, thecharringabilityofligninhasbeenproposedasabenetin reretardants.168 Still,lignin-based reretardantsoenuse chemicalmodications,suchasphosphorylation.Ifchemical modicationisnecessary,thequestionarisesifsuchchemistriesreallyneedtobebasedonlignin,sinceotherbiomacromoleculesmaypossessahigherreactivityandnumberof reactivesites.
Lignincanbereadilyprecipitatedfromsolutionintonanoparticlesandnanospheres.Variousapplicationshavebeen suggestedbasedonthis,suchasfunctionalcolloidsand compositematerialswithusesin ameretardancy,foodpackaging,agriculture,energystorage,andthebiomedical eld.169 A morespecicexamplewouldbenanoparticulatedligninin poly(vinylalcohol) lmswithincreasedUVabsorption.170 While thistechnologyappearsstraight-forward,its nalusehasyetto beproven.
Atlast,technicalligninisusuallythermoplastic,exhibiting glass-transitiontemperaturesintherangeof110–190°C.24 The useofligninaspolymeric llerorinthermoplasticblendsis hencepromising.Insomecases,chemicalmodicationmaybe necessarytoimprovecompatibility, e.g.,withpolyolens;26 however,theuseassimple llermaterialwouldnotnecessitate modication.Additionalstrengthcouldalsobederivedfrom addedcellulose bers,whichcouldpotentiallybenetfrom addedligninascompatibilizer.
Insummary,oneneedstobuildontheinherentpropertiesof lignin,suchaspolydispersity,poly-aromaticity,ahigherC/O ratiothanforpolysaccharides,andthermoplasticity.Onlyby utilizingcharacteristicsthatsetligninapartfromother biopolymers,cansolutionsbedevelopedthatareinnovative andmarketcompetitive.Chemicalmodicationisausefultool fortailoring;however,eachprocessingstepwilladdan economicalandenvironmentalcosttothe nalproduct.In otherwords,thesimplestapproachisoenthebest – somethingthatisfrequentlydisregardedwhendevelopingcomplex synthesisprotocolsforlignin.
5.Summaryandconclusion
Functionalsurfacesandcoatingscanbeformulatedinavariety ofways,whichincludestheuseofneat,chemicallymodied, blended,andcross-linkedlignin.Thisreviewprovides
asummaryofthecurrentdevelopmentsinresearch,where focuswasplacedontheformulationand nalapplications. Overall,coatingswithneatligninorblendsofligninwith otheractiveingredientsappearthemostpractical.Reduced wettingisherebyachieved,asthelignincanalterthesurface morphology,hindermass-transport,andconneswellingof enclosed bers.Theligninitselfisnotconsideredahydrophobicmaterial,becausethecontactangleisusuallybelow90°. Ontheotherhand,hydrophobicitycanbeinducedbyplasma surfacetreatment,blendingwithotheragents,orchemical modication.Forthelatter,graingorestericationoflignin withalkyl-containingmoietiesisafrequentlytakenapproach. Chemicalmodicationmayalsobeusedtoimprovethe compatibilitywitholenicthermoplastics.Additionoflignin can ne-tunethecharacteristicsthermoplasticsandimprove adhesiontoothermaterials.Onthedownside,embrittlement frequentlylimitsthistechnologytolowpercentagesoflignin. Thermosetcoatingswithlignincanbebasedonchemistries suchaspolyurethanes,phenolicresins,epoxyresins,polyesters, andpolyacrylates.Varioussynthesisrouteshavebeenproposed inliterature,whichcanbenettosomedegreeoftheinherent propertiesoflignin.
Boththeformulationandprocessingdependonthe nal applicationofthecoatingorsurfacefunctionalization.Theuse ofligninwithcellulose-basedsubstratesisfrequentlysuggested,asthiscanyieldall-biobasedmaterials.Lignincan improvetheresistancetowettingofpaperandpulpproducts.In addition,itcanaddUVprotectionandoxygen-scavenging capabilitiesinpackagingapplications.Lignin-basedsurfaces havealsobeenproposedforadsorbentsforwastewatertreatment,woodveneers,andcorrosioninhibitorsforsteel.The biomedical eldhasalsoexploredlignin-basedbiomaterials, whichdrawonitspotentialantimicrobialproperties.Agreat numberofpublicationsalsoreportsonagriculturaluses,where alignin-basedcoatingmayaccountforslowerreleaseoffertilizer.Atlast,general-purposepolymercoatingscanbetailored via theinclusionoflignin,andtheresistancetofoulingof membranescanbeimproved.Allmentionedapplicationswere discussedcriticallyinthisreview,placingemphasisonthe benetthataddingligninmayprovide.Whileintroductionof functionalitiesmaybepossible,publicationsfrequentlydonot comparetoawell-performingreferencecase,hencelimitingthe assessmentofthetruepotential.Inaddition,theratiooflignin inthermosetcoatingsisusuallyquitelow.Higherlevelsmaybe achievedaerchemicalmodication,butsuchsynthesiscan alsohavenegativeimplicationsontheeconomicandenvironmentalcostofthe nalproduct.
Inconclusion,theadvancementoffunctionalsurfacesand coatingswithligninhasyieldedpromisingresults.However, therealsomustbeabenetofusinglignincomparedtoother biopolymersorexistingpetrochemicalsolutions.Onlybyharnessinglignin'sinherentproperties,cansolutionsbedeveloped thatarecompetitiveandvalue-creating.Theseproperties includelignin'spolyphenolicstructure,ahigherC/Oratiothan, e.g.,polysaccharidebiopolymers,itsabilitytoself-associateinto nano-aggregates,anditsthermoplasticity.Thesepropertiesare
utilizedinsomeofthereviewedliterature,henceprovidingthe groundfornewandpromisingtechnologyinthefuture.
Authorcontributions
JostRuwoldt:conceptualization,writingoriginaldra,review, editing&visualization.FredrikHeenBlindheim:writing& visualization.GaryChinga-Carrasco:writing,review,editing, visualization,supervision.
Conflictsofinterest
Theauthorsdeclarenoconictofinterest.
Acknowledgements
TheauthorsthanktheResearchCouncilofNorwayforfunding partofthiswork.
References
1W.Boerjan,J.RalphandM.Baucher,LigninBiosynthesis, Annu.Rev.PlantBiol.,2003, 54,519–546,DOI: 10.1146/ annurev.arplant.54.031902.134938
2H.H.Nimz,D.Robert,O.FaixandM.Nemr,Carbon-13 NMRSpectraofLignins,8.StructuralDifferencesbetween LigninsofHardwoods,Sowoods,Grassesand CompressionWood, WoodResTechnol,1981, 35(1),16–26, DOI: 10.1515/hfsg.1981.35.1.16
3J.Ruwoldt.EmulsionStabilizationwithLignosulfonates, Lignin – ChemStructAppl.,2022,DOI: 10.5772/ intechopen.107336.
4J.Ruwoldt,ACriticalReviewofthePhysicochemical PropertiesofLignosulfonates:ChemicalStructureand BehaviorinAqueousSolution,atSurfacesandInterfaces, Surfaces,2020, 3(4),622–648,DOI: 10.3390/ surfaces3040042
5I.F.Demuner,J.L.Colodette,A.J.Demunerand C.M.Jardim,Bioreneryreview:Wide-reachingproducts throughkra lignin, BioResources,2019, 14(3),7543–7581, DOI: 10.15376/biores.14.3.demuner
6S.LaurichesseandL.Av´erous,Chemicalmodicationof lignins:Towardsbiobasedpolymers, Prog.Polym.Sci., 2014, 39(7),1266–1290,DOI: 10.1016/ j.progpolymsci.2013.11.004
7S.Shao,Z.Jin,G.WenandK.Iiyama,Thermo characteristicsofsteam-explodedbamboo(Phyllostachys pubescens)lignin, WoodSci.Technol.,2009, 43(7–8),643–652,DOI: 10.1007/s00226-009-0252-7 .
8Y.Zhao,S.Xiao,J.Yue,D.ZhengandL.Cai,Effectof enzymatichydrolysisligninonthemechanicalstrength andhydrophobicpropertiesofmolded bermaterials, Holzforschung,2020, 74(5),469–475,DOI: 10.1515/hf-20180295.
9T.J.Szalaty, Ł.KlapiszewskiandT.Jesionowski,Recent developmentsinmodicationofligninusingionicliquids
forthefabricationofadvancedmaterials–Areview, J.Mol. Liq.,2020,301,DOI: 10.1016/j.molliq.2019.112417 .
10J.Gil-Ch´avez,S.S.P.Padhi,U.Hartge,S.Heinrichand I.Smirnova,Optimizationofthespray-dryingprocessfor developingaquasolvligninparticlesusingresponse surfacemethodology, Adv.PowderTechnol.,2020, 31(6), 2348–2356,DOI: 10.1016/j.apt.2020.03.027 .
11H.Ariffin,S.M.SapuanandM.AliHassa, Lignocellulosefor FutureBioeconomy,2019.
12A.Morales,M. ´ A.Andr´es,J.LabidiandP.Gull´on,UV-vis protectivepoly(vinylalcohol)/bio-oilinnovative lms, Ind. CropsProd.,2019, 131,281–292,DOI: 10.1016/ j.indcrop.2019.01.071 .
13S.E.Klein,J.Rumpf,A.Alzagameem,M.Rehahnand M.Schulze,Antioxidantactivityofunmodiedkra and organosolvligninstobeusedassustainablecomponents forpolyurethanecoatings, J.Coat.Technol.Res.,2019, 16(6),1543–1552,DOI: 10.1007/s11998-019-00201-w .
14T.Li,S.Lü,S.Zhang,C.GaoandM.Liu,Lignin-based multifunctionalfertilizerforimmobilizationofPb(II)in contaminatedsoil, J.TaiwanInst.Chem.Eng.,2018, 91, 643–652,DOI: 10.1016/j.jtice.2018.06.025
15L.Gu,M.Y.Xie,Y.Jin, etal.,Constructionofantifouling membranesurfacesthroughlayer-by-layerself-assembly oflignosulfonateandpolyethyleneimine, Polymers,2019, 11(11),9–11,DOI: 10.3390/polym11111782
16L.Hu,C.Guang,Y.Liu, etal.,Adsorptionbehaviorofdyes fromanaqueoussolutionontocompositemagneticlignin adsorbent, Chemosphere,2020, 246,125757,DOI: 10.1016/ j.chemosphere.2019.125757
17A.EraghiKazzaz,Z.HosseinpourFeiziandP.Fatehi, Graingstrategiesforhydroxygroupsofligninfor producingmaterials, GreenChem.,2019, 21(21),5714–5752,DOI: 10.1039/c9gc02598g .
18N.S.ÇetinandN. Ozmen,Useoforganosolvligninin phenol-formaldehyderesinsforparticleboardproduction: I.Organosolvligninmodiedresins, Int.J.Adhes.Adhes., 2002, 22(6),477–480,DOI: 10.1016/S0143-7496(02)00058-1
19C.Scarica,R.Suriano,M.Levi,S.TurriandG.Griffini, LigninFunctionalizedwithSuccinicAnhydrideas BuildingBlockforBiobasedThermosettingPolyester Coatings, ACSSustainableChem.Eng.,2018, 6(3),3392–3401,DOI: 10.1021/acssuschemeng.7b03583
20B.M.UptonandA.M.Kasko,Strategiesfortheconversion oflignintohigh-valuepolymericmaterials:Reviewand perspective, Chem.Rev.,2016, 116(4),2275–2306,DOI: 10.1021/acs.chemrev.5b00345
21M.ParitandZ.Jiang,Towardsligninderivedthermoplastic polymers, Int.J.Biol.Macromol.,2020, 165,3180–3197,DOI: 10.1016/j.ijbiomac.2020.09.173 .
22M.Tanase-Opedal,E.Espinosa,A.Rodr´ ıguezandC.-C. G.Lignin,Abiopolymerfromforestrybiomassfor biocompositesand3Dprinting, Materials,2019, 12(18),1–15,DOI: 10.3390/ma12183006
23J.Bouajila,P.Dole,C.JolyandA.Limare,Somelawsof aligninplasticization, J.Appl.Polym.Sci.,2006, 102(2), 1445–1451,DOI: 10.1002/app.24299
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12547
24J.Sameni,S.Krigstin,D.dosS.Rosa,A.LeaoandM.Sain, Thermalcharacteristicsofligninresiduefromindustrial processes, BioResources,2014, 9(1),725–737,DOI: 10.15376/biores.9.1.725-737
25A.Kalliola,P.Kangas,I.Winberg, etal.,Oxidationprocess concepttoproducelignindispersantsatakra pulpmill, Nord.PulpPap.Res.J.,2022, 37(2),394–404,DOI: 10.1515/ npprj-2022-0017.
26L.Dehne,C.VilaBabarro,B.SaakeandK.U.Schwarz, Inuenceofligninsourceandestericationonproperties oflignin-polyethyleneblends, Ind.CropsProd.,2016, 86, 320–328,DOI: 10.1016/j.indcrop.2016.04.005 .
27C.A.Cateto,M.F.Barreiro,A.E.Rodriguesand M.N.Belgacem,Optimizationstudyoflignin oxypropylationinviewofthepreparationofpolyurethane rigidfoams, Ind.Eng.Chem.Res.,2009, 48(5),2583–2589, DOI: 10.1021/ie801251r.
28M.Alinejad,C.Henry,S.Nikafshar,A.Gondaliya, S.Bagheri,N.Chen,S.K.Singh,D.B.Hodgeand M.Nejad,Lignin-basedpolyurethanes:Opportunitiesfor bio-basedfoams,elastomers,coatingsandadhesives, Polymers,2019, 11(7),DOI: 10.3390/polym11071202
29M.L.Mattinen,G.Riviere,A.Henn,R.W.N.Nugroho, T.Leskinen,O.Nivala,J.Jos´eValle-Delgado, M.A.KostiainenandM. Osterberg,Colloidallignin particlesasadhesivesforso materials, Nanomaterials, 2018, 8(12),DOI: 10.3390/nano8121001
30M.Goliszek,B.Podko´scielna,O.Sevastyanova,K.Fila, A.ChabrosandP.Pa ˛czkowski,Investigationof acceleratedagingoflignin-containingpolymermaterials, Int.J.Biol.Macromol.,2019, 123,910–922,DOI: 10.1016/ j.ijbiomac.2018.11.141
31M.Cui,N.A.Nguyen,P.V.Bonnesen,D.Uhrig,J.K.Keum andA.K.Naskar,RigidOligomerfromLignininDesigning ofTough,Self-HealingElastomers, ACSMacroLett.,2018, 7(11),1328–1332,DOI: 10.1021/acsmacrolett.8b00600
32X.Zhang,D.Jeremic,Y.Kim,J.StreetandR.Shmulsky, Effectsofsurfacefunctionalizationofligninonsynthesis andpropertiesofrigidbio-basedpolyurethanesfoams, Polymers,2018, 10(7),DOI: 10.3390/polym10070706.
33S.Luo,L.GaoandW.Guo,Effectofincorporationoflignin asbio-polyolontheperformanceofrigidlightweightwood–polyurethanecompositefoams, J.WoodSci.,2020, 66(23), DOI: 10.1186/s10086-020-01872-5 .
34S.M.NotleyandM.Norgren,Surfaceenergyandwettability ofspin-coatedthin lmsofligninisolatedfromwood, Langmuir,2010, 26(8),5484–5490,DOI: 10.1021/la1003337
35S.Kopacic,A.Ortner,G.Guebitz,T.Kraschitzer,J.Leitner andW.Bauer,Technicalligninsandtheirutilizationin thesurfacesizingofpaperboard, Ind.Eng.Chem.Res., 2018, 57(18),6284–6291,DOI: 10.1021/acs.iecr.8b00974 .
36J.RuwoldtandM.Tanase,IndustrialCrops&Products Greenmaterialsfromadded-ligninthermoformedpulps, Ind.CropsProd.,2022, 185,115102,DOI: 10.1016/ j.indcrop.2022.115102.
37S.Barbe,M.Berger,R.Engstler, etal.,One-steppreparation ofbilayered lmsfromkra ligninandcelluloseacetateto
mimictreebark, Eur.J.WoodWoodProd.,2020, 78(4),831–834,DOI: 10.1007/s00107-020-01537-6 .
38M.Kienberger,PotentialApplicationsofLignin,in EconomicsofBioresources,SpringerInternational Publishing,2019,pp.183–193,DOI: 10.1007/978-3-03014618-4_12
39S.Baumberger,Starch-LigninFilms,in Chemical Modication,Properties,andUsageofLignin,2002,pp.1–19.
40L.Peng,Y.MengandH.Li,Facilefabricationof superhydrophobicpaperwithimprovedphysicalstrength byanovellayer-by-layerassemblyofpolyelectrolytesand lignosulfonates-amine, Cellulose,2016, 23(3),2073–2085, DOI: 10.1007/s10570-016-0910-5 .
41H.Li,H.Liu,S.FuandH.Zhan,Surfacehydrophobicity modicationofcellulose bersbylayer-by-layerselfassemblyoflignosulfonates, BioResources,2011, 6(2), 1681–1695,DOI: 10.15376/biores.6.2.1681-1695 .
42C.Zheng,D.LiandM.Ek,Improving reretardancyof cellulosicthermalinsulatingmaterialsbycoatingwith bio-based reretardants, Nord.PulpPap.Res.J.,2019, 34(1),96–106,DOI: 10.1515/npprj-2018-0031
43C.Seto,B.P.Chang,C.TzoganakisandT.H.Mekonnen, Ligninderivednano-biocarbonanditsdepositionon polyurethanefoamforwastewaterdyeadsorption, Int.J. Biol.Macromol.,2021, 185,629–643,DOI: 10.1016/ j.ijbiomac.2021.06.185
44A.Dastpak,B.P.WilsonandM.Lundström,Investigation oftheanticorrosionperformanceoflignincoatingsaer crosslinkingwithtriethylphosphateandtheiradhesion toapolyurethanetopcoat, Agron.Res.,2020, 18(1),762–770,DOI: 10.15159/AR.20.061
45A.A.Morandim-Giannetti,J.A.M.Agnelli,B.Z.Lanças, R.Magnabosco,S.A.CasarinandS.H.P.Bettini,Lignin asadditiveinpolypropylene/coircomposites:Thermal, mechanicalandmorphologicalproperties, Carbohydr. Polym.,2012, 87(4),2563–2568,DOI: 10.1016/ j.carbpol.2011.11.041
46I.Hasanov,M.RaudandT.Kikas,Theroleofionicliquids intheligninseparationfromlignocellulosicbiomass, Energies,2020, 13(18),1–24,DOI: 10.3390/en13184864 .
47R.C.Sun,LigninSourceandStructuralCharacterization, ChemSusChem,2020,4385–4393,DOI: 10.1002/ cssc.202001324
48S.SuzukiandH.Suzuki,Recentadvancesinforesttree biotechnology, PlantBiotechnol.,2014, 31(1),1–9,DOI: 10.5511/plantbiotechnology.13.1203b
49A.EraghiKazzazandP.Fatehi,Technicalligninandits potentialmodicationroutes:Amini-review, Ind.Crops Prod.,2020, 154,DOI: 10.1016/j.indcrop.2020.112732 .
50A.Lourenco,J.Rencoret,C.Chemetova,J.Gominho, A.Guti´errez,J.C.delR´ ıoandH.Pereira,Lignin compositionandstructurediffersbetweenXylem,Phloem andphelleminquercussuberL, Front.PlantSci.,2016, 7, DOI: 10.3389/fpls.2016.01612
51F.G.Calvo-FloresandJ.A.Dobado,Ligninasrenewable rawmaterial, ChemSusChem,2010, 3(11),1227–1235,DOI: 10.1002/cssc.201000157
12548 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
52H.Sadeghifar,H.Sadeghifar,A.Ragauskas,A.Ragauskas, A.RagauskasandA.Ragauskas,PerspectiveonTechnical LigninFractionation, ACSSustainableChem.Eng.,2020, 8(22),8086–8101,DOI: 10.1021/acssuschemeng.0c01348
53K.N.M.Khalili,P.dePeinder,J.Donkers,R.J.A.Gosselink, P.C.A.BruijnincxandB.M.Weckhuysen,Monitoring MolecularWeightChangesduringTechnicalLignin DepolymerizationbyOperandoAttenuatedTotal ReectanceInfraredSpectroscopyandChemometrics, ChemSusChem,2021, 14(24),5517–5524,DOI: 10.1002/ cssc.202101853
54A.VishtalandA.Kraslawski,Challengesinindustrial applicationsoftechnicallignins, BioResources,2011, 6(3), 3547–3568,DOI: 10.15376/biores.6.3.vishtal
55E.Adler,LigninStructure-Past,PresentandFuture, Wood Sci.Technol.,1977, 11(3),169–218.
56D.Tarasov,M.LeitchandP.Fatehi,Lignin-carbohydrate complexes:Properties,applications,analyses,and methodsofextraction:Areview, Biotechnol.Biofuels,2018, 11(1),1–28,DOI: 10.1186/s13068-018-1262-1
57D.Tarasov,M.LeitchandP.Fatehi,Lignin-carbohydrate complexes:Properties,applications,analyses,and methodsofextraction:Areview, Biotechnol.Biofuels,2018, 11(1),1–28,DOI: 10.1186/s13068-018-1262-1 .
58L.Zhou,V.Budarin,J.Fan,R.SloanandD.Macquarrie, EfficientMethodofLigninIsolationUsingMicrowaveAssistedAcidolysisandCharacterizationoftheResidual Lignin, ACSSustainableChem.Eng.,2017, 5(5),3768–3774, DOI: 10.1021/acssuschemeng.6b02545 .
59M.Kropat,M.Liao,H.Park,K.S.Salem,S.Johnsonand D.S.Argyropoulos,APerspectiveofLigninProcessing andUtilizationTechnologiesforCompositesandPlastics withEmphasisonTechnicalandMarketTrends, BioResources,2021, 16(1),2084–2115.
60A.J.Ragauskas,G.T.Beckham,M.J.Biddy, etal.,Lignin valorization:improvingligninprocessinginthe biorenery, Science,2014, 344(6185),1246843.
61A.Tribot,G.Amer,M.AbdouAlio, etal.,Wood-lignin: Supply,extractionprocessesanduseasbio-based material, Eur.Polym.J.,2019, 112,228–240,DOI: 10.1016/ j.eurpolymj.2019.01.007
62J.J.Liao,N.H.A.Latif,D.Trache,N.Brosseand M.H.Hussin,Currentadvancementontheisolation, characterizationandapplicationoflignin, Int.J.Biol. Macromol.,2020, 162,985–1024,DOI: 10.1016/ j.ijbiomac.2020.06.168
63G.Gellerstedt,Sowoodkra lignin:Rawmaterialforthe future, Ind.CropsProd.,2015, 77,845–854,DOI: 10.1016/ j.indcrop.2015.09.040 .
64A.Tribot,G.Amer,M.AbdouAlio, etal.,Wood-lignin: Supply,extractionprocessesanduseasbio-based material, Eur.Polym.J.,2019, 112,228–240,DOI: 10.1016/ j.eurpolymj.2019.01.007
65J.J.Liao,N.H.A.Latif,D.Trache,N.Brosseand M.H.Hussin,Currentadvancementontheisolation, characterizationandapplicationoflignin, Int.J.Biol.
Macromol.,2020, 162,985–1024,DOI: 10.1016/ j.ijbiomac.2020.06.168.
66F.S.ChakarandA.J.Ragauskas,Reviewofcurrentand futuresowoodkra ligninprocesschemistry, Ind.Crops Prod.,2004, 20(2),131–141,DOI: 10.1016/ j.indcrop.2004.04.016
67S.SubramanianandG.Øye,Aqueouscarbonblack dispersionsstabilizedbysodiumlignosulfonates, Colloid Polym.Sci.,2021, 299(7),1223–1236,DOI: 10.1007/s00396021-04840-7
68W.O.S.Doherty,P.MousaviounandC.M.Fellows,Valueaddingtocellulosicethanol:Ligninpolymers, Ind.Crops Prod.,2011, 33(2),259–276,DOI: 10.1016/ j.indcrop.2010.10.022
69W.O.S.Doherty,P.MousaviounandC.M.Fellows,Valueaddingtocellulosicethanol:Ligninpolymers, Ind.Crops Prod.,2011, 33(2),259–276,DOI: 10.1016/ j.indcrop.2010.10.022 .
70A.Guerra,I.Filpponen,L.A.Lucia,C.Saquing, S.BaumbergerandD.S.Argyropoulos,Towardabetter understandingoftheligninisolationprocessfromwood, J.Agric.FoodChem.,2006, 54(16),5939–5947,DOI: 10.1021/jf060722v.
71S.AlArni,Extractionandisolationmethodsforlignin separationfromsugarcanebagasse:Areview, Ind.Crops Prod.,2018, 115,330–339,DOI: 10.1016/ j.indcrop.2018.02.012
72M.Rubens,M.VanWesemael,E.Feghali, etal.,Exploring thereactivityofaliphaticandphenolichydroxylgroupsin ligninhydrogenolysisoiltowardsurethanebond formation, Ind.CropsProd.,2022, 180,114703,DOI: 10.1016/j.indcrop.2022.114703
73L.Zoia,A.Salanti,P.FrigerioandM.Orlandi,Exploring allylationandClaisenrearrangementasanovelchemical modicationoflignin, BioResources,2014, 9(4),6540–6561.
74T.AroandP.Fatehi,ProductionandApplicationof LignosulfonatesandSulfonatedLignin, ChemSusChem, 2017, 10(9),1861–1877,DOI: 10.1002/cssc.201700082
75P.Buono,A.Duval,P.Verge,L.AverousandY.Habibi,New InsightsontheChemicalModicationofLignin: Acetylation versus Silylation, ACSSustainableChem.Eng., 2016, 4(10),5212–5222,DOI: 10.1021/ acssuschemeng.6b00903
76A.Salanti,L.ZoiaandM.Orlandi,Chemicalmodications ofligninforthepreparationofmacromerscontaining cycliccarbonates, GreenChem.,2016, 18(14),4063–4072, DOI: 10.1039/c6gc01028h
77S.Antonsson,G.Henriksson,M.Johanssonand M.E.Lindström,LowMw-ligninfractionstogetherwith vegetableoilsasavailableoligomersfornovelpapercoatingapplicationsashydrophobicbarrier, Ind.Crops Prod.,2008, 27(1),98–103,DOI: 10.1016/ j.indcrop.2007.08.006
78E.L.Hult,J.Ropponen,K.Poppius-Levlin,T.Ohra-Ahoand T.Tamminen,Enhancingthebarrierpropertiesofpaper boardbyanovellignincoating, Ind.CropsProd.,2013, 50, 694–700,DOI: 10.1016/j.indcrop.2013.08.013
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12549
79B.Zhao,M.Borghei,T.Zou, etal.,Lignin-BasedPorous SupraparticlesforCarbonCapture, ACSNano,2021, 15(4), 6774–6786,DOI: 10.1021/acsnano.0c10307.
80L.Ignat,M.Ignat,E.Stoica,C.CiobanuandV.I.Popa, Ligninblendswithpolyurethane-containinglactate segments.Propertiesandenzymaticdegradationeffects, Cellul.Chem.Technol.,2011, 45(3–4),233–243.
81A.Javed,H.Ullsten,P.R¨attö,L.J¨arnströmandL.J.Asif JavedHUPRand,Lignin-containingcoatingsfor packagingmaterials – PilotTrials, Nord.PulpPap.Res.J., 2018, 33(3),548–556,DOI: 10.1515/npprj-2018-3042
82S.Zhang,X.Fu,Z.Tong, etal.,Lignin-ClayNanohybrid Biocomposite-BasedDouble-LayerCoatingMaterialsfor Controllable-ReleaseFertilizer, ACSSustainableChem. Eng.,2020, 8(51),18957–18965,DOI: 10.1021/ acssuschemeng.0c06472
83M.Borrega,S.Paarnila,L.G.Greca, etal.,Morphological andwettabilitypropertiesofthincoating lmsproduced fromtechnicallignins, Langmuir,2020, 36(33),9675–9684, DOI: 10.1021/acs.langmuir.0c00826
84J.R.Souza,J.R.Araujo,B.S.ArchanjoandR.A.Simao, Cross-linkedlignincoatingsproducedbyUVlightand SF6plasmatreatments, Prog.Org.Coat.,2019, 128,82–89, DOI: 10.1016/j.porgcoat.2018.12.017 .
85O.Cusola,S.Kivistö,S.Vierros, etal.,ParticulateCoatings via Evaporation-InducedSelf-AssemblyofPolydisperse ColloidalLigninonSolidInterfaces, Langmuir,2018, 34(20),5759–5771,DOI: 10.1021/acs.langmuir.8b00650 .
86A.Pereira,I.C.Hoeger,A.Ferrer, etal.,LigninFilmsfrom Spruce,Eucalyptus,andWheatStrawStudiedwith ElectroacousticandOpticalSensors:Effectof CompositionandElectrostaticScreeningonEnzyme Binding, Biomacromolecules,2017, 18(4),1322–1332,DOI: 10.1021/acs.biomac.7b00071 .
87T.Leskinen,J.Witos,J.J.Valle-Delgado, etal.,Adsorption ofProteinsonColloidalLigninParticlesforAdvanced Biomaterials, Biomacromolecules,2017, 18(9),2767–2776, DOI: 10.1021/acs.biomac.7b00676
88M.TanaseOpedalandJ.Ruwoldt,Organosolvligninas sizingadditiveinthermoformedproducts, ACSOmega, 2022, 7(50),46583–46593.
89F.Zikeli,V.Vinciguerra,A.D'Annibale,D.Capitani, M.RomagnoliandG.S.Mugnozza,Preparationoflignin nanoparticlesfromwoodwasteforwoodsurface treatment, Nanomaterials,2019, 9(2),DOI: 10.3390/ nano9020281
90L.A.EdyeandA.J.Tietz,Lignin-basedWaterproofCoating, WO2015054736A1,2015.
91A.K.SinghGangwar,D.B.Shakyawar,M.K.Singh, P.VishnoiandS.Jose,Optimizationofsodium lignosulfonatetreatmentonnylonfabricusingBox–BehnkenresponsesurfacedesignforUVprotection, Autex Res.J.,2022, 22,248–257,DOI: 10.2478/aut-2021-0011
92A.Dastpak,T.V.Lourenҫon,M.Balakshin,S.Farhan Hashmi,M.LundströmandB.P.Wilson,Solubilitystudy oflignininindustrialorganicsolventsandinvestigation ofelectrochemicalpropertiesofspray-coatedsolutions,
Ind.CropsProd.,2020, 148,112310,DOI: 10.1016/ j.indcrop.2020.112310.
93E.L.Hult,K.Koivu,J.Asikkala, etal.,Esteriedlignin coatingaswatervaporandoxygenbarrierfor ber-based packaging, Holzforschung,2013, 67(8),899–905,DOI: 10.1515/hf-2012-0214
94F.Bardot,E.S.EsakkimuthuandG.Mortha, Aninnovative “green” lignincoatingtoimprovepropertiesofpaperfrom recycled bers,ISWFPC18th,2015.
95Q.Hua,L.Y.Liu,M.A.KaraaslanandS.Renneckar, AqueousDispersionsofEsteriedLigninParticlesfor HydrophobicCoatings, Front.Chem.,2019, 7,DOI: 10.3389/fchem.2019.00515.
96O.Gordobil,R.Herrera,R.Llano-PonteandJ.Labidi, Esteriedorganosolvligninashydrophobicagentforuse onwoodproducts, Prog.Org.Coat.,2017, 103,143–151, DOI: 10.1016/j.porgcoat.2016.10.030 .
97Q.Wei,L.Zhang,J.Chen,Z.Tong,X.Zhou,L.Shao,Z.Wu, P.Zhan,F.Wang,N.Liu,H.LinandH.Dong,Solvent-free coatingofcrosslinkedandhydrophobiclignin-based biocompositeforslow-releasefertilizer, Polym.Test.,2021, 102,DOI: 10.1016/j.polymertesting.2021.107335
98N.Sadeghi,K.ShayestehandS.Lotman,Effectof ModiedLigninSulfonateonControlled-ReleaseUreain Soil, J.Polym.Environ.,2017, 25(3),792–799,DOI: 10.1007/s10924-016-0848-6
99A.Kalliola,M.Asikainen,R.TaljaandT.Tamminen, Experiencesofkra ligninfunctionalizationbyenzymatic andchemicaloxidation, BioResources,2014, 9(4),7336–7351,DOI: 10.15376/biores.9.4.7336-7351
100S.A.Mayr,N.Schwaiger,H.K.Weber,J.Kovaˇ c, G.M.GuebitzandG.S.Nyanhongo,EnzymeCatalyzed CopolymerizationofLignosulfonatesforHydrophobic Coatings, Front.Bioeng.Biotechnol.,2021,1–11,DOI: 10.3389/ioe.2021.697310 .
101C.Fern´andez-Costas,S.Palanti,M. ´ A.Sanrom´anand D.Moldes,Enzymaticgraingofkra ligninasawood bio-protectionstrategy.Part2:Effectivenessagainstwood destroyingbasidiomycetes.Effectofcopperentrapment, Holzforschung,2017, 71(9),689–695,DOI: 10.1515/hf-20160110
102T.M.Budnyak,I.V.Pylypchuk,M.E.Lindströmand O.Sevastyanova,ElectrostaticDepositionoftheOxidized Kra LigninontotheSurfaceofAminosilicas:Thermal andStructuralCharacteristicsofHybridMaterials, ACS Omega,2019, 4(27),22530–22539,DOI: 10.1021/ acsomega.9b03222
103H.Wang,X.Chen,L.Zhang,Z.Li,X.FanandS.Sun, Efficientproductionoflignin-basedslow-releasenitrogen fertilizer via microwaveheating, Ind.CropsProd.,2021, 166,DOI: 10.1016/j.indcrop.2021.113481 .
104J.BehinandN.Sadeghi,Utilizationofwasteligninto preparecontrolled-slowreleaseurea, Int.J.Recycl.Org. WasteAgric.,2016, 5(4),289–299,DOI: 10.1007/s40093016-0139-1.
105M.Tuomela,M.Vikman,A.HatakkaandM.It¨avaara, Biodegradationoflignininacompostenvironment:A
12550 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
review, Bioresour.Technol.,2000, 72(2),169–183,DOI: 10.1016/S0960-8524(99)00104-2 .
106K.A.Henn,N.Forsman,T.ZouandM. Osterberg,Colloidal LigninParticlesandEpoxiesforBio-Based,Durable,and MultiresistantNanostructuredCoatings, ACSAppl.Mater. Interfaces,2021, 13(29),34793–34806,DOI: 10.1021/ acsami.1c06087.
107M.Farooq,T.Zou,G.Riviere,M.H.Sipponenand M. Osterberg,Strong,Ductile,andWaterproofCellulose NanobrilCompositeFilmswithColloidalLignin Particles, Biomacromolecules,2019, 20(2),693–704,DOI: 10.1021/acs.biomac.8b01364 .
108G.N.Rivi`ere,F.Pion,M.Farooq,M.H.Sipponen, H.Koivula,T.Jayabalan,P.Pandard,G.Marlaire,X.Liao, S.BaumbergerandM. Osterberg,Towardwaste valorizationbyconvertingbioethanolproductionresidues intonanoparticlesandnanocomposite lms, Sustainable Mater.Technol.,2021, 28,DOI: 10.1016/ j.susmat.2021.e00269.
109B.Asikanius,A.S.Jaaskelainen,H.Koivula,P.Oinonenand M. Osterberg,DurableBiopolymerFilmsFromLigninCarbohydrateComplexDerivedFromaPulpMillSide Stream, Front.EnergyRes.,2021, 9,DOI: 10.3389/ fenrg.2021.782545.
110A.Hambardzumyan,L.Foulon,N.B.Bercu, etal., Organosolvligninasnaturalgraingadditivetoimprove thewaterresistanceof lmsusingcellulosenanocrystals, Chem.Eng.J.,2015, 264,780–788,DOI: 10.1016/ j.cej.2014.12.004.
111A.Hambardzumyan,L.Foulon,B.ChabbertandV.Agui´eB´eghin,NaturalorganicUV-absorbentcoatingsbasedon celluloseandlignin:Designedeffectsonspectroscopic properties, Biomacromolecules,2012, 13(12),4081–4088, DOI: 10.1021/bm301373b .
112A.Javed,H.Ullsten,P.RattöandL.Jarnström,Lignincontainingcoatingsforpackagingmaterials, Nord.Pulp Pap.Res.J.,2018, 33(3),548–556,DOI: 10.1515/npprj2018-3042
113K.Johansson,T.Gillgren,S.Winestrand,L.Jarnströmand L.J.Jönsson,Comparisonofligninderivativesas substratesforlaccase-catalyzedscavengingofoxygenin coatingsand lms, J.Biol.Eng.,2014, 8(1),1–10,DOI: 10.1186/1754-1611-8-1
114K.Johansson,S.Winestrand,C.Johansson,L.Jarnström andL.J.Jönsson,Oxygen-scavengingcoatingsand lms basedonlignosulfonatesandlaccase, J.Biotechnol.,2012, 161(1),14–18,DOI: 10.1016/j.jbiotec.2012.06.004
115S.Winestrand,L.JarnströmandJ.Leif,Jönsson. FractionatedLignosulfonatesforLaccase-Catalyzed Oxygen-ScavengingFilmsandCoatings, Molecules,2021, (26),6322.
116L.Dong,H.Hu,F.ChengandS.Yang,Thewaterresistance ofcorrugatedpaperimprovedbylipophilicextractivesand lignininAPMPeffluent, J.WoodSci.,2015, 61(4),412–419, DOI: 10.1007/s10086-015-1480-0 .
117R.L.Wu,X.L.Wang,F.Li,H.Z.LiandY.Z.Wang,Green composite lmspreparedfromcellulose,starchandlignin
inroom-temperatureionicliquid, Bioresour.Technol.,2009, 100(9),2569–2574,DOI: 10.1016/j.biortech.2008.11.044 .
118S.Fertahi,I.Bertrand,M.Amjoud,A.Oukarroum,M.Arji andA.Barakat,PropertiesofCoatedSlow-ReleaseTriple Superphosphate(TSP)FertilizersBasedonLigninand CarrageenanFormulations, ACSSustainableChem.Eng., 2019, 7(12),10371–10382,DOI: 10.1021/ acssuschemeng.9b00433.
119F.Rotondo,R.Coniglio,L.Cantera,I.DiPascua,L.Clavijo andA.Dieste,Lignin-basedcoatingsforcontrolledPreleasefertilizerconsistingofgranulatedsimple superphosphate, Holzforschung,2018, 72(8),637–643, DOI: 10.1515/hf-2017-0176 .
120W.J.Mulder,R.J.A.Gosselink,M.H.Vingerhoeds, P.F.H.HarmsenandD.Eastham,Ligninbased controlledreleasecoatings, Ind.CropsProd.,2011, 34(1), 915–920,DOI: 10.1016/j.indcrop.2011.02.011 .
121C.Xiao,R.BoltonandW.L.Pan,Ligninfromricestraw Kra pulping:Effectsonsoilaggregationandchemical properties, Bioresour.Technol.,2007, 98,1482–1488,DOI: 10.1016/j.biortech.2005.11.014
122M.H.Nguyen,I.C.HwangandH.J.Park,Enhanced photoprotectionforphoto-labilecompoundsusing double-layercoatedcornoil-nanoemulsionswithchitosan andlignosulfonate, J.Photochem.Photobiol.,B,2013, 125, 194–201,DOI: 10.1016/j.jphotobiol.2013.06.009
123S.J.Gobbi,V.J.GobbiandY.Rocha,Requirementsfor selection/developmentofabiomaterial, Biomed.J.Sci. Technol.Res.,2019, 14(3),1–6.
124B.D.Ratner,Thebiocompatibilitymanifesto: Biocompatibilityforthetwenty-rstcentury, J.Cardiovasc. Transl.Res.,2011, 4(5),523–527,DOI: 10.1007/s12265-0119287-x.
125A.Rokstad,B.Strand,T.EspevikandT.Mollnes, BiocompatibilityandBiotolerabilityAssessmentof MicrospheresUsingaWholeBloodModel, Micro Nanosyst.,2013, 5(3),177–185,DOI: 10.2174/ 1876402911305030005
126S.Sugiarto,Y.Leow,C.L.Tan,G.WangandD.Kai,Howfar isLigninfrombeingabiomedicalmaterial?, Bioact.Mater., 2022, 8,71–94,DOI: 10.1016/j.bioactmat.2021.06.023
127A.Alzagameem,S.E.Klein,M.Bergs,X.TungDo,I.Korte, S.Dohlen,C.Hüwe,J.Kreyenschmidt,B.Kamm, M.LarkinsandM.Schulze,Antimicrobialactivityof ligninandlignin-derivedcelluloseandchitosan compositesagainstselectedpathogenicandspoilage microorganisms, Polymers,2019, 11(4),DOI: 10.3390/ polym11040670
128V.Ugartondo,M.MitjansandM.P.Vinardell,Comparative antioxidantandcytotoxiceffectsofligninsfromdifferent sources, Bioresour.Technol.,2008, 99(14),6683–6687,DOI: 10.1016/j.biortech.2007.11.038
129K.Lintinen,S.Luiro,P.Figueiredo, etal.,Antimicrobial ColloidalSilver-LigninParticles via IonandSolvent Exchange, ACSSustainableChem.Eng.,2019, 7(18), 15297–15303,DOI: 10.1021/acssuschemeng.9b02498 .
©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12551
130A.Jankovi´c,S.Erakovi´c,C.Ristoscu,N.Mihailescu,L.Duta, A.Visan,G.E.Stan,A.C.Popa,M.A.Husanu, C.R.Luculescu,V.V.Srdic,Dj.Janackovic,V.MiskovicStankovic,C.Bleotu,M.C.ChiriucandI.N.Mihailescu, Structuralandbiologicalevaluationofligninadditionto simpleandsilver-dopedhydroxyapatitethin lms synthesizedbymatrix-assistedpulsedlaserevaporation, J. Mater.Sci.:Mater.Med.,2015, 26(1),DOI: 10.1007/s10856014-5333-y
131S.Erakovi´c,A.Jankovi´c,I.Z.Mati´c, etal.,Investigationof silverimpactonhydroxyapatite/lignincoatings electrodepositedontitanium, Mater.Chem.Phys.,2013, 142(2–3),521–530,DOI: 10.1016/ j.matchemphys.2013.07.047
132M.BoholmandR.Arvidsson,Controversyover antibacterialsilver:Implicationsforenvironmentaland sustainabilityassessments, J.CleanerProd.,2014, 68,135–143,DOI: 10.1016/j.jclepro.2013.12.058 .
133I.Codip˜ a,D.M.Caplan,E.-C.Dr˜ agulescu,B.-E.Lixandru, I.L.Coldea,C.C.Dragomirescu,C.Surdu-Boband M.Badulescu,AntimicrobialActivityOfCopperAndSilver NanolmsOnNosocomialBacterialSpecies, Rom.Arch. Microbiol.Immunol.,2010, 69(4),204–205.
134R.Kaur,N.S.Thakur,S.ChandnaandJ.Bhaumik, SustainableLignin-BasedCoatingsDopedwithTitanium DioxideNanocompositesExhibitSynergisticMicrobicidal andUV-BlockingPerformancetowardPersonalProtective Equipment, ACSSustainableChem.Eng.,2021, 9(33), 11223–11237,DOI: 10.1021/acssuschemeng.1c03637 .
135J.Dom´ ınguez-Robles, ´ A.C´arcamo-Mart´ ınez,S.A.Stewart, R.F.Donnelly,E.LarrañetaandM.Borrega,Ligninfor pharmaceuticalandbiomedicalapplications – Couldthis becomeareality?, SustainableChem.Pharm.,2020,(18), 100320,DOI: 10.1016/j.scp.2020.100320 .
136S.Sugiarto,Y.Leow,C.L.Tan,G.WangandD.Kai,Howfar isLigninfrombeingabiomedicalmaterial?, Bioact.Mater., 2022, 8,71–94,DOI: 10.1016/j.bioactmat.2021.06.023
137Y.L.Xiao,M.J.Ding,R.J.Wang,H.-L.Sun,J.-G.Zhang, Q.-J.PanandY.-R.Guo,FabricationofmesoporousSiO2 @SLScompositetoremoveorganicpollutants:hydrogen bond-inducedintriguingchangesofsolubility, J. Nanopart.Res.,2019, 21(1),DOI: 10.1007/s11051-019-44620
138S.Sharma,S.SinghandS.J.Sarma,Simultaneous depolymerizationandco-precipitationofligninwithiron oxidetoformferromagnetichybridsforadsorptionof industrialdyes, Int.J.Environ.Sci.Technol.,2022,DOI: 10.1007/s13762-022-04333-2
139L.Shamaei,B.Khorshidi,M.A.IslamandM.Sadrzadeh, Industrialwasteligninasanantifoulingcoatingforthe treatmentofoilywastewater:Creatingwealthfromwaste, J.CleanerProd.,2020, 256,120304,DOI: 10.1016/ j.jclepro.2020.120304
140A.Javed, Effectsofplasticizingandcrosslinkingoncoatings basedonblendsofstarch-PVOHandstarch-lignin,2018.
141J.Yu,L.Li,Y.Qian,H.Lou,D.YangandX.Qiu,Facileand GreenPreparationofHighUV-BlockingLignin/Titanium
DioxideNanocompositesforDevelopingNatural Sunscreens, Ind.Eng.Chem.Res.,2018, 57(46),15740–15748,DOI: 10.1021/acs.iecr.8b04101.
142P.Widsten,T.TamminenandT.Liitia,NaturalSunscreens BasedonNanoparticlesofModi edKra Lignin (CatLignin), ACSOmega,2020, 5(22),13438–13446,DOI: 10.1021/acsomega.0c01742.
143R.R.DeSousa,J.R.Gouveia,A.M.Nacas,L.B.Tavares, N.M.Ito,E.N.deMoura,F.A.Gaia,R.F.Pereiraand D.J.dosSantos,Improvementofpolypropyleneadhesion byKra LigninIncorporation, Mater.Res.,2019, 22(2), DOI: 10.1590/1980-5373-MR-2018-0123 .
144J.Li,M.Wang,D.SheandY.Zhao,Structural functionalizationofindustrialsowoodkra ligninfor simpledip-coatingofureaashighlyefficientnitrogen fertilizer, Ind.CropsProd.,2017, 109,255–265,DOI: 10.1016/j.indcrop.2017.08.011 .
145S.Hajirahimkhan,C.C.XuandP.J.Ragogna,Ultraviolet CurableCoatingsofModiedLignin, ACSSustainable Chem.Eng.,2018, 6(11),14685–14694,DOI: 10.1021/ acssuschemeng.8b03252
146Y.Han,L.Yuan,G.Li, etal.,Renewablepolymersfrom lignin via copper-freethermalclickchemistry, Polymer, 2016, 83,92–100,DOI: 10.1016/j.polymer.2015.12.010 .
147X.Chen,Z.Li,L.Zhang,H.Wang,C.Qiu,X.FanandS.Sun, Preparationofanovellignin-based lmwithhighsolid contentanditsphysicochemicalcharacteristics, Ind. CropsProd.,2021, 164,DOI: 10.1016/ j.indcrop.2021.113396.
148C.A.Cateto,M.F.Barreiro,C.Ottati,M.Lopretti, A.E.RodriguesandM.N.Belgacem,Lignin-basedrigid polyurethanefoamswithimprovedbiodegradation, J. Cell.Plast.,2014, 50(1),81–95,DOI: 10.1177/ 0021955X13504774.
149M.M.Rahman,H.ZahirandK.H.Do,Synthesisand propertiesofwaterbornepolyurethane(WBPU)/modied ligninamine(MLA)adhesive:Apromisingadhesive material, Polymers,2016, 8(9),DOI: 10.3390/polym8090318
150N.Mahmood,Z.Yuan,J.SchmidtandC.Xu, Depolymerizationofligninsandtheirapplicationsforthe preparationofpolyolsandrigidpolyurethanefoams:A review, RenewableSustainableEnergyRev.,2016, 60,317–329,DOI: 10.1016/j.rser.2016.01.037
151S.E.Klein,J.Rumpf,P.Kusch, etal.,Unmodiedkra ligninisolatedatroomtemperaturefromaqueous solutionforpreparationofhighly exibletransparent polyurethanecoatings, RSCAdv.,2018, 8(71),40765–40777,DOI: 10.1039/C8RA08579J
152S.E.Klein,A.Alzagameem,J.Rumpf,I.Korte, J.KreyenschmidtandM.Schulze,Antimicrobialactivity oflignin-derivedpolyurethanecoatingspreparedfrom unmodiedanddemethylatedlignins, Coatings,2019, 9(8),DOI: 10.3390/coatings9080494
153G.Griffini,V.Passoni,R.Suriano,M.LeviandS.Turri, Polyurethanecoatingsbasedonchemicallyunmodied fractionatedlignin, ACSSustainableChem.Eng.,2015, 3(6),1145–1154,DOI: 10.1021/acssuschemeng.5b00073
12552 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry
154Y.Park,W.O.S.DohertyandP.J.Halley,Developingligninbasedresincoatingsandcomposites, Ind.CropsProd., 2008, 27(2),163–167,DOI: 10.1016/j.indcrop.2007.07.021 .
155F.Ferdosian,Y.Zhang,Z.Yuan,M.AndersonandC.C.Xu, Curingkineticsandmechanicalpropertiesofbio-based epoxycompositescomprisinglignin-basedepoxyresins, Eur.Polym.J.,2016, 82,153–165,DOI: 10.1016/ j.eurpolymj.2016.07.014.
156A.Maruhashi,P.Wilson,S.Euclid,G.P.Craunand O.H.Us,LigninBasedCoatingCompositions, USPat, US10913824B2,2021.
157C.Hao,T.Liu,S.Zhang, etal.,AHigh-Lignin-Content, Removable,andGlycol-AssistedRepairableCoatingBased onDynamicCovalentBonds, ChemSusChem,2019, 12(5), 1049–1058,DOI: 10.1002/cssc.201802615
158T.Zou,M.H.Sipponen,A.HennandM. Osterberg,SolventResistantLignin-EpoxyHybridNanoparticlesforCovalent SurfaceModicationandHigh-StrengthParticulate Adhesives, ACSNano,2021, 15(3),4811–4823,DOI: 10.1021/acsnano.0c09500
159O.Fearon,V.Polizzi,P.VandeszandeandA.Kalliola, NordicWoodandBioreneryConference2022, Lignin BasedPolyacidstoSubstituteFossil-BasedMaterialsin CoatingsFormulations,2022,pp.162–166.
160R.Yan,Y.Liu,B.Liu, etal.,Improvedperformanceofdualcuredorganosolvlignin-basedepoxyacrylatecoatings, Compos.Commun.,2018, 10,52–56,DOI: 10.1016/ j.coco.2018.04.006.
161L.Szab´o,S.Imanishi,F.Tetsuo,D.Hirose,H.Ueda, T.Tsukegi,K.NinomiyaandK.Takahashi,Ligninas afunctionalgreencoatingoncarbon bersurfaceto improveinterfacialadhesionincarbon berreinforced polymers, Materials,2019, 12(1),DOI: 10.3390/ ma12010159.
162S.Li,W.Xie,M.Wilt,J.A.WilloughbyandO.J.Rojas, ThermallyStableandToughCoatingsandFilmsUsing
VinylSilylatedLignin, ACSSustainableChem.Eng.,2018, 6(2),1988–1998,DOI: 10.1021/acssuschemeng.7b03387 .
163F.Jos´eBorgesGomes,R.E.deSouza,E.O.Britoand R.C.CostaLelis,Areviewonligninsourcesanduses, J. Appl.Biol.Biotechnol.,2020, 7(C),100–105,DOI: 10.15406/ jabb.2020.07.00222
164L.Cao,I.K.M.Yu,Y.Liu, etal.,Ligninvalorizationforthe productionofrenewablechemicals:State-of-the-artreview andfutureprospects, Bioresour.Technol.,2018, 269,465–475,DOI: 10.1016/j.biortech.2018.08.065
165H.SadeghifarandA.Ragauskas,LigninasaUVLight blocker-areview, Polymers,2020, 12(5),1–10,DOI: 10.3390/POLYM12051134 .
166M.P.Vinardell,V.UgartondoandM.Mitjans,Potential applicationsofantioxidantligninsfromdifferentsources, Ind.CropsProd.,2008, 27(2),220–223,DOI: 10.1016/ j.indcrop.2007.07.011.
167A.M.Puziy,O.I.PoddubnayaandO.Sevastyanova,Carbon MaterialsfromTechnicalLignins:RecentAdvances, Top. Curr.Chem.,2018, 376(4),1–48,DOI: 10.1007/s41061-0180210-7
168L.Ferry,G.Dorez,A.Taguet,B.OtazaghineandJ.M.LopezCuesta,Chemicalmodicationofligninbyphosphorus moleculestoimprovethe rebehaviorofpolybutylene succinate, Polym.Degrad.Stab.,2015, 113,135–143,DOI: 10.1016/j.polymdegradstab.2014.12.015
169E.Lizundia,M.H.Sipponen,L.G.Greca, etal., Multifunctionallignin-basednanocompositesand nanohybrids, GreenChem.,2021, 23(18),6698–6760,DOI: 10.1039/d1gc01684a
170K.Shikinaka,M.NakamuraandY.Otsuka,StrongUV absorptionbynanoparticulatedlignininpolymer lms withreinforcementofmechanicalproperties, Polymer, 2020, 190,122254,DOI: 10.1016/j.polymer.2020.122254 . ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Volume 10, Number 3, 2024 Fit-for-Use

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Paper Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
nanomaterials



Article Fit-for-UseNanofibrillatedCellulosefromRecoveredPaper
AnaBalea 1 ,M.ConcepcionMonte 1 ,ElenaFuente 1 ,JoseLuisSanchez-Salvador 1 ,QuimTarrés 2 , PereMutjé 2 ,MarcDelgado-Aguilar 2 andCarlosNegro 1, *

Citation: Balea,A.;Monte,M.C.; Fuente,E.;Sanchez-Salvador,J.L.; Tarrés,Q.;Mutjé,P.;Delgado-Aguilar, M.;Negro,C.Fit-for-Use NanofibrillatedCellulosefrom RecoveredPaper. Nanomaterials 2023, 13,2536.https://doi.org/10.3390/ nano13182536
AcademicEditor:HirotakaKoga
Received:4August2023
Revised:6September2023
Accepted:8September2023
Published:11September2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).
1 DepartmentofChemicalEngineeringandMaterials,UniversityComplutenseofMadrid,AvdaComplutense s/n,28040Madrid,Spain;helenafg@ucm.es(E.F.)
2 LEPAMAPResearchGroup,UniversityofGirona,MariaAurèliaCapmany,6,17003Girona,Spain; pere.mutje@udg.edu(P.M.);m.delgado@udg.edu(M.D.-A.)
* Correspondence:cnegro@ucm.es;Tel.:+34-913944242
Abstract: Thecost-effectiveimplementationofnanofibrillatedcellulose(CNF)atindustrialscale requiresoptimizingthequalityofthenanofibersaccordingtotheirfinalapplication.Therefore,a portfolioofCNFswithdifferentqualitiesisnecessary,aswellasfurtherknowledgeabouthowto obtaineachofthemainqualities.Thispaperpresentstheinfluenceofvariousproductiontechniques onthemorphologicalcharacteristicsandpropertiesofCNFsproducedfromamixtureofrecycled fibers.Fivedifferentpretreatmentshavebeeninvestigated:amechanicalpretreatment(PFIrefining), twoenzymatichydrolysisstrategies,andTEMPO-mediatedoxidationundertwodifferentNaClO concentrations.Foreachpretreatment,fivehigh-pressurehomogenization(HPH)conditionshave beenconsidered.Ourresultsshowthatthepretreatmentdeterminestheyieldandthepotentialof HPHtoenhancefibrillationand,therefore,thefinalCNFproperties.Theseresultsenableoneto selectthemosteffectiveproductionmethodwiththehighestyieldofproducedCNFsfromrecovered paperforthedesiredCNFqualityindiverseapplications.
Keywords: recycledfibers;nanocellulose;enzymaticpretreatments;TEMPO-mediatedoxidation; refining;high-pressurehomogenization
1.Introduction
Papermakingisoneofthemostsustainableindustriescontributingtothecircular economy[1].Recoveredpaperiswidelyrecognizedasanefficientandeco-friendlycellulosesourceforpaperandboardproduction.InEurope,55.9%ofrawmaterialscome fromrecoveredpaper,whichcorrespondstoapaperrecyclingrateof70.5%[2].InSpain, thesevaluesareevenhigher(92%and71%,respectively).Theuseofrecoveredpaperas rawmaterialpresentsseveralchallenges,duetotherelativelylowqualityofthesecondary fibersafterseveralrecyclingcycles,whichmainlyaffectthemechanicalpropertiesofthe recycledpaperduetoshorteningandhornificationofthefibersduringeachrecycling process.Toenhancethequalityoftherecycledfibersandachievethedesiredproperties inthefinalproduct,papermakersusefiberrefiningandstrengtheningadditives.Inthis context,extensiveresearchhasbeencarriedoutinthelastdecadetoexplorethepotential ofnanocellulose-basedproductsaspaper-reinforcedadditives.Alotofdifferentnanomaterialshavebeendevelopmentduringthelastthreedecades,suchascarbonnanotubes,2D mono-elementalgraphene-likematerials,and2D β-Indiumsulfidenanoplates[3,4].Some ofthesehavebeencombinedwithnanocellulosetoimprovepaperpropertiesortodevelop newmaterials[5].ItiswellknownthatCNFsimproveinterfiberbonding,significantly increasingthemechanicalpropertiesoftherecycledproducts[6].However,theuseof CNFisstilllimitedatindustrialscale.Thisismainlyduetothehighcostofnanocellulose productsandtosomelimitsintheirapplicationmainlyduetotheireffectondrainage andthedispersiondegreeofthe3Dnetworkashasbeenrecentlydemonstrated[7].To
minimizetheselimitations,newapproachesarebeingdevelopedbasedontheinsitu productionanduseoffit-for-useCNFs.
AlthoughCNFscanbeobtainedfromawidevarietyofcellulosesourcessuchas wood(hardwoodandsoftwood),seedfibers(cotton,coir,etc.),bastfibers(flax,hemp,jute, kenaf,ramie,etc.),grasses(bagasse,bamboo,etc.),marineanimals(tunicate),algae,fungi, invertebrates,andbacteria[8],thetrendforinsituproductionisfocusedontheutilization ofvirginandsecondarypulps,dependingontheplantlocation[6].Althoughvirginpulps havebeenwidelystudiedforCNFproductionatindustrialscale,furtherknowledgerelated totheuseofrecycledpulpisstillnecessary.
ThemethodsusedtoobtainCNFsincludeavarietyoffabricationtechniques,eachof whichiscategorizedusingdifferentlabelsliketop-downandbottom-upapproaches,oraccordingtotheirnature,whichincludesphysical,chemical,andbiologicalmethods,oreven dependingonwhethertheyinvolvespinningornon-spinningtechniques[9].Spinning methodscanbefurthercategorizedintoelectrospinningtechniques,whichutilizeelectric voltageforfibermorphologycontrol;andalternativespinningapproacheswhichemploy forceslikepressurizedair(bubbleelectrospinning)orcentrifugalforces(centrifugalspinning)[10].Amongallofthem,physicalmethods(top-downapproaches)basedonintensive mechanicalpressure(high-pressurehomogenization,microfluidization,grinding,refining, ormilling)arecommonlyusedtoobtainCNFsfromvirginandsecondarycellulosefibers. Priortothismechanicaltreatment,variouspretreatments,includingchemical,enzymatic, mechanical,orcombinedapproaches,canbeemployedtoenhancenanofibrillationand theseparationoftheindividualnanofibers.Furthermore,thepretreatmentscontributeto reducetheenergydemandofthesubsequentmechanicaltreatment[11].
Ontheotherhand,thefinalpropertiesoftheCNFsareinfluencedbyseveralfactors, includingthecelluloserawmaterialused,thetypeandintensityofthepretreatment,and thetypeandseverityofthemechanicaldefibrillationprocess.Thesevariablescollectively determinethefinalcharacteristicsoftheproducedCNFs[12].Differentpropertiesare requiredbasedonthefinalapplication.Forexample,themedicalandelectronicfields requireCNFswithhighpurity,fibrillationyield,andhomogeneity[13,14]andtransparent nanopaperproductionrequireshightransmittance[15],butthesepropertiesarenotalways keyforreinforcingsomecompositesorpaperproducts[6].
ThereareseveralstudiesrelatedtotheuseofrecoveredpapertoobtainCNFsatlab scale.Someresearchershaveemployeddifferenttypesofrecycledcellulosicmaterials, suchasrecyclednewspapers[16];recycledpulp[17];wastepaper[18,19];oldcorrugated boards[20,21]orrecycledmilk-containerboard[22].Inthesestudies,CNFswereobtained throughultrafinegrindingorsonicationasmechanicaltreatments,withouttheapplication ofanypretreatment.OnlyUkkolaetal.(2021)pretreatedthepulpsinadeepeutectic solventsolutionbasedoncholinechlorideandureatoobtainnanofoamsfromcrosslinked CNFs[22].Recentstudieshavefocusedonutilizingdeinkingpulp(DIP)asrawmaterial toobtainCNFs.LeVanetal.(2018)successfullyobtainedCNFsbyemployingTEMPOmediatedoxidationfollowedbyhomogenizationinadigitalhomogenizermixer[23]. Angetal.(2020and2021)producedCNFsthroughacombinationofmechanicalpretreatment(PFIrefining)andhigh-pressurehomogenization(HPH)[24,25].Zambranoetal. (2021)obtainedCNFssolelythroughultrafinegrindingusingDIPasrawmaterial[26]. Baleaetal.(2019)producedCNFsfromtwodifferenttypesofrecycledpulps,oldnewsprint (ONP)andoldcorrugatedcontainer(OCC),atdifferentTEMPO-mediatedoxidationlevelspriortothehomogenizationprocess[6].Thestateoftheartshowsafragmentated knowledgefromwhichisnotpossibletoproducefit-for-useCNFs.
Theeffectofdifferentpretreatmentsandhomogenizationconditionshavebeenstudiedforvirginbleachedsoftwoodandhardwoodchemicalpulps[27]andthermomechanicalpulp[28]whichalsodeterminedtheenergyappliedforthenanofibrillationprocess. However,tothebestofourknowledge,theimpactoftreatmentintensity,involvingvariouspretreatmentmethodsandhomogenizationconditionsappliedtorecoveredpaper-
board,onthepropertiesoftheresultingCNFsandtheassociatedenergyconsumption remainsunexplored.
Recently,Angetal.(2021)producedseveralCNFnanopapersfromDIPusingdifferent combinationsofmechanicalrefining(10,000,30,000,and50,000revolutionsinPFI)and HPHat1000bar(1passand3passes)[24].Theyfoundthatthenanofibrillationefficiency forrecycledfiberswaslowerthanthatforvirginbleachedeucalyptuskraftpulpdue tohornificationduringpapermaking.Therefore,resultsfromvirginpulpscannotbe transferredtorecycledpulp,sincethepulpcompositionisdifferent,aspaperboardcontains moreligninandashes,andthefibersarehornifiedduetothedryingprocess.Therefore, recycledpulpswillbehavedifferentlyduringCNFproduction.
Intermsofenergyconsumption,Jossetetal.(2014)conductedanenergy-related studyonthedirectfibrillationofrecyclednewspaperandwheatstrawthroughagrinding process[16].TheycomparedtheCNFsobtainedfromtheserawmaterialswithCNFs derivedfromableachedwoodpulp(ECF)byevaluatingthemechanicalpropertiesand specificsurfaceareasofthefibrillatedmaterials.Thestudyfoundthattheenergyinputs requiredtoachieveoptimalmechanicalpropertiesinthepreparedfilmsfromrecycled newspaperwerehighercomparedtotheECF,rangingfromapproximately4to5kWh/kg. AnotherstudybyOzolaetal.(2019)estimatedthattheproductionofCNFsfromrecycled pulp,withoutdeinking,hadhigherspecificenergyconsumption(0.865kWh/kgwaste) comparedtotheproductionofotherproductssuchaseggpackagingorcardboard[29]. Overall,thesestudiesdemonstratethattheproductionofCNFsfromdifferenttypesof recycledpapersisfeasibleintermsofimprovingthequalityofthefinalproduct.However, itisimportanttoconsidertheenergyconsumptionassociatedwiththespecificproduction processesforeffectiveresourcemanagementandsustainability.
Thisresearchaimstogeneratenewknowledgeontheeffectsofdifferenttreatment combinationsontheCNFpropertiesobtainedfromrecoveredpaperboard.Fivedifferent pretreatmentsareconsidered,includingamechanicalpretreatmentthroughPFIrefining (20,000revolutions),twoenzymatichydrolysisapproaches(80mg/kgand240mg/kg), andTEMPO-mediatedoxidationundertwodifferentconditions(5molNaClO/kgand 15molNaClO/kg).ThestudyexploresfivedifferentconditionsfortheHPHmechanical processforeachpretreatmentmethod.Furthermore,theenergyrequirementsassociated withthedifferenttreatmentprocessesareassessed.Thisinformationwillfacilitatethe selectionofafibrillationprocessbasedontherequiredCNFproperties.
2.MaterialsandMethods
2.1.Materials
OCCwasselectedastherecycledcellulosesourceasitisoneofthemostsignificant typesofrecoveredpapersforrecycling,anditislistedintheEuropeanListofStandard GradesofRecoveredPaperandBoard(EN643)asGroup1inordinaryqualities(1.05). Linerandfluting,usedinproportionsof35and65%forOCCpulppreparation,were kindlyprovidedbySAICA(Zaragoza,Spain).Thisfluting/linerratioisthemostcommon forcardboardboxes.ThechemicalcompositionoftherecycledpulpispresentedinTable 1 Acommercialmonocomponentenzymecocktail,Novozym476,waskindlysuppliedby NovozymesA/S(Bagsværd,Denmark).Thisenzymecocktailcontains2%(w/v)ofendoβ-1,4-glucanases,withanenzymeactivityof341U/mL.Theotherreagentsutilizedinthis researchwerepurchasedfromSigmaAldrich(Madrid,Spain).
2.2.CelluloseNanofiberProduction
OCCpulpwaspreparedfromamixtureof35%linerand65%flutingOCCpaper bydisintegrationat3%at3000rpmfor20minusingastandardized2Llabpulper.The resultingpulpwasthenadjustedtothedesiredpretreatmentconsistencybydilutingitwith distillatedwaterorfilteringitthroughaqualitativepaperfilterusingaBuchnerfunnel. TheproductionofCNFsinvolvesatwo-stepprocess,beginningwithapretreatmentstage
followedbymechanicaldefibrillationusingHPH.Differentpretreatmentswereexplored, andfivelevelsofHPHenergywereappliedduringtheprocess.
Table1. Chemicalcompositionofrecycledpaperboardpulp.
CompoundPercentage(wt%)
Cellulose56.8 ± 0.4
Hemicelluloses14.0 ± 0.2
Solublelignin4.6 ± 0.2
Klasonlignin11.6 ± 0.2
Extractives1.7 ± 0.1
Ashes11.3 ± 0.4
2.2.1.Pretreatments
ThefivedifferentpretreatmentsconsideredinthestudyaresummarizedinTable 2.
Table2. PretreatmentsstudiedtoproduceCNFsfromrecycledpaperboard.
Pretreatment Identification DescriptionIntensityConditions
Mec
RefiningatPFIrefiner ISOstandard5264-2 (2011) 20,000revolutions
Enz_80 Enzymatichydrolysis
Doseofenzyme: 80mg/kg
PC=5%
pH=7
Time=4h
Enz_240240mg/kg
TEMPO_5
Denaturalization (80 ◦ C,15min) Pulpwashing
T=50 ◦ C
5molNaClO/kg
TEMPO_1515molNaClO/kg
TEMPO-mediated oxidation Pulpwashingwith waterandfiltration uptopH=7
Allthedosesareexpressedasdryagentperkgofdrypulp.PC:Pulpconsistency.
PC=1%
pH=10
T=25 ◦ C
ThemechanicalpretreatmentwasconductedinaccordancewiththeISOstandard 5264-2(2011)[30];theenzymatichydrolysisprocedurefollowedthemethodologyoutlined inTarrésetal.(2016)[31]andTEMPO-mediatedoxidationwasperformedfollowingthe methoddescribedbySaitoetal.(2007)[32].
2.2.2.High-PressureHomogenization
Inthisresearch,atotalof25differenttypesofCNFswereproduced.Thenanofibrillationofthesampleswascarriedoutbypassingthepretreatedpulpsuspensionsat1%of consistencythroughaPANDAPlus2000laboratoryhomogenizer(GeaNiroSoavi,Italy) usingdifferentpressuresequencesasdetailedinTable 3
AllCNFsproducedwerenamedusingthefollowingnomenclature:Pretreatment_doseCNF-HPHsequencenumber.Asanexampleofthis,CNFsproducedthroughenzymatic hydrolysispretreatmentusinganenzymedosageof80mg/kg,followedbyaHPHsequenceofthreepassesat300bar,threepassesat600bar,andthreepassesat900bar,are designatedEnz_80-CNF-5.
TheenergyconsumptionoftheHPHprocesswascontinuouslymonitoredusinga CircutorCVM-C10measuringdevice(Barcelona,Spain),providingreal-timereadingsof
theconsumedenergy.TheenergyconsumptionwasrecordedaftereveryHPHcycleand wasthennormalizedtotheprocesseddrymass.
Table3. HPHconditionstoproduceCNFs.
HPHSequenceNumber
NumberofCycles
2.3.CharacterizationofthePulps
2.3.1.ChemicalComposition
Thecompositionanalysisofbothunpretreatedandpretreatedpulps(Table 4)was conductedaccordingtoTAPPIT204forextractivedetermination,TAPPIT211forashdetermination,andNREL/TP-510-42618foradditionallaboratoryanalytical procedures[33–35] Briefly,theextractivesweredeterminedusingtheSoxhletextractionmethodwithacetone assolvent.Theashcontentwasdeterminedthroughcalcinationat525 ◦ C.Forlignin analysis,thefollowingstepswerefollowed:(i)acidhydrolysisof0.3gofdrypulpusing 3mL of72%H2 SO4 for1hat30 ◦ C,(ii)dilutionwith84gofdistilledwatertoprevent phaseseparationbetweenhighandlowconcentrationacidlayers,and(iii)autoclavingat 121 ◦ Cfor1h,followedbyfiltrationtodetermineKlasonligninbydryingandweighing thefiltrationcake.Thepercentageofsolublelignin,cellulose,andhemicelluloseweredeterminedbyanalyzingthefiltrate;solubleligninwasobtainedbymeasuringtheabsorbance ofthefiltrateat240nmusingaUV–visspectrophotometer.Celluloseandhemicellulose wereanalyzedusinghigh-performanceliquidchromatography(HPLC)ofthefiltrateafter neutralizationwithCaCO3 andmicrofiltrationthrougha0.2 μmfilter.
Table4. Compositionofpretreatedpulps.
ExtractivesAshesSolubleLigninKlasonLigninCelluloseHemi-Cellulose
Thebehaviorofpretreatedpulpsisinfluencedbythefunctionalgroupspresentonthe surfaceofcellulose.Therefore,conductimetrictitrationwasusedtodeterminethecontent ofcarboxylgroupspergramofthepretreatedpulps,byfollowingthemethoddescribed inpreviousstudies.Inthismethod,adriedsampleweighingbetween0.05and0.1gwas suspendedin15mLof0.01NHClsolutionandstirredfor10minandthentakentoa conductivitysensor.Thetitrationwasperformedbyconsecutivelyadding0.1mLof0.05N NaOHsolutiontothesuspensionuntilanoticeableincreaseinconductivitywasobserved. Asthealkalineutralizesthechlorohydricacid,theconductivityinitiallydecreases.Once theacidgroupsareneutralized,theconductivityremainsconstant.Finally,theexcessof NaOHleadstoanincreaseinconductivity.Thenumberofcarboxylgroupswascalculated fromthetitrationcurve,whichrelatesconductivityvs.amount(meq)ofNaOHadded, followingthemethodologydescribedbyHabibietal.(2006)[36].
2.3.2.Morphology
Themorphologicalanalysisencompassedseveralparameters,includingaverage lengthweightedinlength(lengthw ),diameter(d),coarseness,andfinepercentage(%). ThesemeasurementsweredeterminedusingimageanalysisperformedwithaMorFi Compactanalyzer(TechPap,Gières,France).However,astheresolutionofMorFiimages waslimitedandwewereunabletoaccuratelymeasurenanofibers,theaspectratioofthe pretreatedsampleswasestimatedusingthemeasurementofthegelpoint(GP)basedonthe methodologydevelopedbyVaranasietal.(2013)andSanchez-Salvadoretal.(2021)[37,38].
Furthermore,opticalimagesofthepretreatedpulpsweretakenusingaZeissAxio Lab.A1opticalmicroscopeandacolormicroscopecameraZeissAxioCamERc5s(Carl ZeissMicroscopyGmbH,Göttingen,Germany).Subsequently,theopticalimageswere processedusingtheversion1.53iofImageJsoftwarepackagetoenhancetheclarityofthe imagesforfurtheranalysis.
2.4.CharacterizationoftheCNFs
CharacterizationoftheCNFsinvolvedthemeasurementofseveralproperties,includingnanofibrillationyield,transmittanceat600nm,cationicdemand(CD),andaspectratio oftheCNFsuspensions,followingthemethodsdescribedinpreviousstudies[6,27].To determinethenanofibrillationyield,CNFsuspensionwasdilutedto0.1wt.%andcentrifugatedat4500 × g for30mintoisolatenanofibrillatedcellulosefromnon-nanofibrillated components,whichsettledinthesediment.Theweightofthesedimentwasmeasuredto calculatethenanofibrillationyield.AUV–visShimadzuspectrophotometerUV-160Awas usedtomeasurethetransmittanceoftheCNFsuspensionsattwodifferentwavelengths. TheanioniccharacterofCNFscorrelateswiththeirCD,whichwasdeterminedviaback titration,withpolydiallyldimethylammoniumchloride(PDADMAC)andpolyvinylsulfate potassiumsaltusingaMütekPCD04particlechargedetector(BTGInstruments,Weßling, Germany).TheaspectratiooftheCNFswasdeterminedusingarecentlydeveloped methodologybySanchez-Salvadoretal.(2021)[38].Thisapproachmodifiedthetraditional GPmethodologybydyingthefiberswithcrystalviolet,enablingthevisualizationofthe fibrilsedimentationandoptimizingthesedimentationtimetoensurecompletesettling.
AnopticalmicroscopewasusedtoobtainimagesfromCNFhydrogelsforqualitative supportofourresults.Inthiscase,theparametersandmethodusedforobtainingthese imageswereconsistentwiththoseutilizedforthepretreatedpulps.Additionally,the opticalimagesunderwentprocessingwiththeImageJsoftwarepackagetoseamlessly eliminatethecontinuousbackground.Thiswasachievedbyapplyingthe“Process› SubtractBackground”commandfromthemenu,withthespecifiedparametersincludinga rollingballradiusof50pixels,alightbackground,andaslidingparaboloid.
FortheobservationofCNFs,aJEOLJEM1400PLUStransmissionelectronmicroscopy(TEM)device(Tokyo,Japan)wasutilizedattheSpanishNationalCentreof ElectronicMicroscopy(CNME),followingthemethodologydevelopedbyCampanoetal. (2020)[39].TheTEMmicroscopeoperatedat100kVacceleratingvoltage,withanOrius SC200CCDcameramanufacturedbyGatan(Pleasanton,CA,USA),featuringaresolution of2048 × 2048pixelsandapixelsizeof7.4microns.
WiththeTEMimagesobtained,projectedfractaldimension(D2)wasmeasured.D2 givesanideaofthe“treestructure”ofthesample,whichcaninfluencethemechanical propertiesofthematerial[40].Theacquiredimageswerealsoprocessedandanalyzedwith ImageJsoftware,editingimagestoachievegooddefinitionandhighcontrastinCNFsand convertingtheseinto8-bitimages.Theywerebinarizedthroughathresholdandcorrected withaclosefilter.Elementsintheimageswereselectedindividuallyandcopiedintoa separatefile.Thefractalanalysiswasperformedwiththefractalboxcountplugin.To reduceprocessingtimes,thisprocedurewasautomatizedthroughascript[41,42].
3.ResultsandDiscussion
3.1.PretreatmentEffectsonFiberMorphologyandCarboxylContentofthePulp
Table 4 showstheeffectofthedifferentpretreatmentsonthechemicalcomposition ofthepulp.Thewashingstagefollowedtheenzymaticpretreatmentstoremovepart oftheashes,whichexplainsthereductioninashcontent.Thisreductioninashescould notbedetectedbySanchez-Salvadoretal.(2022)becauseofthelowashcontentofthe virginpulps[27].Parketal.(2022)observedthatashinrecycledpaperhasahighaffinity forcellulaseenzymesandattachedtothem,reducingenzymeefficiency[43].Thus,ash attachedtotheenzymeisremovedduringpulpwashing.InthecaseofTEMPOpretreatments,theincreaseinashcontentisattributedtotheproductionofNaClasbyproduct duringtheoxidationprocessandtheadditionofNaBr,bothofwhicharenotcompletely removedduringwashing[44].Partoftheextractivescouldbedegradedorsolubilizedby theenzymes,asshowninTable 4.Consequently,thisledtoanincreaseinthepercentage ofcellulose.However,excessiveamountsofenzymesorNaClO,particularlyatahigh TEMPO-mediatedoxidationdegree(TEMPO_15),couldresultintheexcessivedegradation ofcellulosechains,leadingtotheformationofsolubleoligosaccharidesorsugars,which weresubsequentlyremovedduringthewashingstage.Hemicelluloseseemstoremain intactafterthepretreatmentprocess.
Figure 1 showsthecarboxylcontentofthepretreatedpulps.Thetypeofpretreatment anditsseveritydeterminethefinalquantityofcarboxylgroups.Mechanicalandenzymatic pretreatmentsdonotcontributetothegenerationofcarboxylgroups.Incontrast,the numberofcarboxylgroupsgeneratedthroughTEMPO-mediatedoxidationincreaseswith thedosageoftheoxidant,althoughnottothesameextentastheNaClOdosage.This discrepancyarisesbecauseaportionoftheNaClOisconsumedintheoxidationofother componentsfoundinrecoveredpapers,suchasdissolvedligninandcolloidalmaterial[45]. Therefore,onlyafractionoftheNaClOisavailabletooxidizehydroxylgroupstocarboxyl groups.Furthermore,thereisasaturationphenomenon;whenthedosageofNaClO surpassesathreshold,theoverdosedNaClOremainsinthemediumandcausessecondary reactionsinsteadofeffectivelyoxidizingcellulose.
Figure1. Carboxyliccontentoftherecycledfibersaftereachpretreatment.
Table 5 andFigure 2 presentthemorphologicalparametersofthefibersandtheoptical imagesofthepretreatedfibersproducedbydifferentpretreatments.Table 5 showsfibers andfineswhicharedetectablebytheMorFianalyzer,whosedetectionlimitisaround5 μm (forlength).
Table5. Morphologicalcharacteristicsofthepulpspretreatedwithrefining,enzymatichydrolysis, andTEMPO-mediatedoxidationpriortotheHPH.
Lengthw :lengthweightedinlength.

Figure2. Opticalimagesoftheinitialrecycledpulpwithoutpretreatment(a)andthepulpsafter differentpretreatments:mechanicalpretreatment(refining)(b);enzymatichydrolysiswith80mg/kg (c);enzymatichydrolysiswith240mg/kg(d);TEMPO-mediatedoxidationwith5NaClO/g(e);and TEMPO-mediatedoxidationwith15mmolNaClO/g(f).
Figure 2 showstheopticalimagesoftheoriginalandpretreatedpulps.Theoriginal fibers(Figure 2a)exhibitedasmoothsurface,withoutnotableexternalfibrillation.In contrast,theMecpulpimage(Figure 2b)showsanextremelyhighdegreeoffibrillation, whichfavorsfine-and-fiberinteraction,aswellastheformationofsmallernetworks. Duringmechanicalrefining,fiberhornificationisreversedsincefibersrecoverpartoftheir swellingability,whichincreasestheircoarseness[46].Fibrillationwasalsoobservedin theEnz_80-andEnz_240-pretreatedpulps,albeittoalesserextent(Figure 2c,d).This factwasalsoobservedbyotherauthors[27],soenzymeshavebeenproposedasan alternativetorefiningtoreducethehornificationeffect.ItisnoticeablethatEnz_240 inducedgreaterfibrillationcomparedtoEnz_80,resultinginareductioninfiberlength (Table 5).Incontrast,TEMPO-mediatedoxidationledtothelowestexternalfibrillation, asthisreactionspecificallyoxidizesthecellulosechains,conferringelectrostaticrepulsive forcesoninterfibrilsthatreducetheenergyrequiredfornanofibrillation(Figure 2d,e),but withoutchangingthefibermorphologyduringthechemicaltreatment.However,athigh dosesofNaClO,someexternalmicrofibrillationonthefiberscanbeobservedduetothe highelectrostaticrepulsiveforcesamongchainsduetothegeneratedcarboxylgroupsin combinationwithhydrodynamicforcesduringpulpwashing.ThisproducessomeCNFs
fromthesmallestfines,asshownbythecleanbackgroundoftheopticalimageinFigure 2f. TheseCNFsarenotvisiblewithanopticalmicroscope.Furthermore,somedegradationof theamorphouspartofthefibersbyside-reactionscancontributetotheexternalfibrillation (Figure 2f),whichisinaccordwiththeabove.
Furthermore,theTEMPO-mediatedoxidationprocessresultedintheproductionof asignificantquantityoffinesandmicrofibersthatdecreasedthevaluesofcoarseness anddiameter.Someofthemicrofibersweretoosmalltobeclearlyobservedwithan opticalmicroscopeandappearedasdotsinFigure 2e.TheopticalimagesofTEMPOmediatedoxidizedpulpsrevealthetreatedfibersretaintheirstructurepriortoundergoing mechanicalnanofibrillation.However,theseimagesdonotshowtheelectrostaticrepulsive forcesoccurringwithinthefibers,whichareresponsibleforinducingnanofibrillationwhen shearingforcesareapplied.
3.2.EffectofthePretreatmentonthePropertiesoftheCelluloseNanofibers
Table 6 showstheresultsofthequantitativecharacterizationofdifferentCNFsproducedusingthehighestintensityofHPHthatcorrespondstoSequence5,asindicatedin Table 3.GPwasusedtodeterminetheaspectratioofthefibersusingcrowdingnumber (CN)theory[37,38,47].
Table6. Propertiesofcellulosenanofibersproducedbydifferentpretreatmentsandfollowedby Sequence5HPH(3passesat300bar+3passesat600bar+3passesat900bar).
(GP) Mec16.215.2202173 Enz_8028.026.323391 Enz_24030.028.9228109 TEMPO_541.438.5110847 TEMPO_1562.359.819087.3
Theaspectratioofthenanofibersintheobtainedhydrogelsdependsonthepulp pretreatment.Themechanicallypretreatedfibers(refinedpulp)showedthehighestaspect ratio,approximately173.Figures 3 and 4 providevisualqualitativeevidenceofthesignificantlyhighaspectratioofthispretreatedpulpcomparedtotheothers.Theyareoptical (Figure 3)andTEMmicrographs(Figure 4)ofthetwenty-fiveCNFsproduced.EachCNF producedwasanalyzedbycapturingtwentyimages,andeachimagein Figures 3 and 4 wasselectedasarepresentativefromthosetwentyimages.
Figures 3 and 4 display,inthecaseofCNFsobtainedbyrefining(Mec),thepresence ofhighlyfibrillatedfiberslongerthan500 μm,withastructurethinnerthanthoseobtained throughenzymaticdegradationfollowedbyHPH.Opticalimagesprovideahighervisual field,butwithlowerresolutionthanTEMimages.Forexample,thefluffshowninFigure 3 mustbeinterpretedwiththeinformationgivenbyTEMimages,whichshowthelevelof nanofibrillationachieved.Figure 5 showstheD2ofrefiningpretreatedpulpatdifferent HPHsequencescomparedtotheotherpretreatments.UndersoftHPH,itispossibleto observeahighD2value,near2.0,duetothefibrilsjoiningtothecellulosebackbone, formingbundles.Increasingtheintensityofhomogenization,adecreaseisobservedinthe D2,associatedwithfibrilsseparationfromthemainstructure.
BothenzymatichydrolysisandTEMPO-mediatedoxidationpretreatmentsresultina decreaseinfiberlengthand,consequently,aspectratiocomparedtomechanicallytreated pulp.Enz_80CNFsuspensioncontainsasubstantialamountofshortandthickfibersasD2 showsinFigure 5,withalowervaluethanforMec.Figure 3 showsthelengthandFigure 4 showsthehigherthicknessoffibersthatremainedaftertheHPHprocess.Amoreintense enzymaticpretreatment,Enz_240,reducesthethickness,asevidencedbyFigure 4,andthe
amountofthesefibersthatremainafterHPH,asshownbytheyieldandtransmittance values(Table 6),resultinginincreasedaspectratiovalues.Thiseffectonthicknessisnot observedinpretreatedpulp,becauseitistheresultofthecombinedeffectsofhydrolysis andHPH.Theinternalnanofibrillationcausedbytheenzymefavorsthedeconstructionof fiberinnanofibersduringHPH.ThiseffectisalsoobservedinFigure 5,inwhichtheD2 increaseswiththeseverityofHPH,whichindicatestheformationofmicrofibrilsaround themainstructureswiththemaintreatment.Ontheotherhand,theorangecolorofEnz-80 andEnz-240CNFsinFigure 6,whichisevendarkerthanMecCNFs,couldbeduetothe degradationproductsfromenzymatichydrolysis,whichcanproduceoligosaccharides fromtheamorphouspartofthecellulosechainsdecreasingthepolymerizationdegreeof cellulose[48].

Figure3. OpticalmicroscopyimagesofCNFs(scalebar:500 μm).




Figure4. TEMimagesofCNFs(scalebar:2 μm).

Figure5. Projectedfractaldimension(D2)calculatedfromTEMimagesatdifferentHPHsequences.


Thus,theaspectratioofTEMPOCNFsisnotablylowerthantheothersandisdecreasedwiththeNaClOdose.Figure 3 showsthatonlyafewmicrofibrilsinTEMPOare detectedbyopticalmicroscopyafterHPH(shownassmalldots)andthesebecomefewer andfewerastheintensityofhomogenizationincreases,asD2indicateswithitsdecrease duetofiberindividualization.However,Figure 4 showsaCNFnetworkbeingresponsible forformingagel,asevidencedbythephotographinFigure 6 forTEMPO-15.Thefactthat noneoftheobtainednanocellulosesweretransparentindicatesthatallofthemhavesome microfibrilsornanocelluloseaggregatesthatdispersedvisiblelight.However,Figure 6 shows,theopacityofthegelsuspensionwaslowerinthecaseofTEMPO-15,asexpected fromthelowernumberofmicrofibersandhigheramountofnanofibrillatedcelluloseand nanocrystals.ThethinandshortnanofibersobservedinFigure 4 forTEMPO-15-CNF-5 accountforthelowaspectratiovaluesoftheseCNFs(Table 6).Thesensitivityofcellulose tomechanicalforcesduringtheHPHprocesswasincreasedbythecelluloseoxidationand theremovalofligninduetotheeffectofNaClOduringTEMPO-mediatedoxidation.The softyellowcolorofTEMPO-pretreatedCNFsindicatesligninremovalduringthetreatment. Infact,atthefirststageofthereaction,NaClOismainlyconsumedinligninoxidation[45]. Asaresult,anintenseHPHtreatmentcausedthehighestcuttingeffect,whichaccounts forthelowestaspectratio(around7)obtainedforTEMPO_15-CNF-5,suggestingthat thesufficientlyintenseTEMPO-mediatedoxidationfollowedbyanintenseHPHprocess producescellulosenanocrystals(CNCs),whichhaveloweraspectratiosthanCNFs[42]. AccordingtoSerra-Pararedaetal.2021,CNCshaveD2valuesunder1.4–1.5,whereasCNFs havehigherD2[42].Withthiscriterion,asFigure 5 shows,TEMPO_15-CNF-5isinthe CNCscalewhileTEMPO_15-CNF-3andTEMPO_15-CNF-4rangefromCNCstoCNFs.
3.3.EffectofHomogenizationSequenceonthePropertiesandMorphologyofCelluloseNanofibers Thehomogenizationpressureandcycleswerevariedinthisstudyfortheisolationof differentCNFqualities.ThefinalgoalistooptimizetheproductionofCNFsbasedonthe desiredmorphologyandpropertiesforspecificapplicationsinthefuture.
Figures 3 and 4 showthesignificantinfluenceofpretreatmentonthenanofibrillation processofthepulpsunderdifferentHPHintensities.TheMecpulpsufferedminimal changesduringHPHprocess,exceptforsomeinternalfibrillationasshowninFigure 4. Althoughthefiberwallstructureafterenzymatictreatmentsexhibitedlimitedsignsof externalfibrillation,thisfibrillationnoticeablyincreasedwiththeintensityofsubsequent mechanicaltreatmentusingHPH(Figure 3).Furthermore,Figure 4 showssomeinternal
Figure6. PhotographsofobtainedCNFhydrogels.
fibrillation.ThemostsignificantimpactofHPHonmorphologywasobservedinTEMPO_5 andTEMPO_15CNFs.Inbothcases,thenumberofvisibleelements(Figure 3)decreased withincreasingHPHintensitywhenobservedthroughopticalmicroscopy.Thisreduction wasattributedtotheintenseinternalnanofibrillationresultingfromthecombinationof shearingforcesandelectrostaticrepulsiveforces.
Figure 7 showshowthepretreatmentdeterminesthepotentialofHPHtoenhancethe propertiesofCNFs.Inallcases,CNFsproducedsolelythroughmechanicalpretreatment andHPHexhibitedthelowestvaluesofyield,transmittance,andCD,butthehighest valuesofaspectratio,measuredbyGP.Mechanicalpretreatmentcausedexternalfibrillation andincreasedtheaccessibilityofcelluloseforsubsequenttreatments.However,ithad limitedimpactontheyieldandtransmittanceofCNFs.Theenergyconsumptionforeach HPHsequencedependsontheappliedpretreatment.EnzymatichydrolysisandTEMPOmediatedoxidationaremoreefficientinreducingenergyconsumptionforhomogenization asshownatFigure 7.ThemostefficientwasTEMPO_15,asexpectedfromthehighanionic groupsintroducedonthefibersthatgenerateelectrostaticrepulsiveforcesamongcellulose chainshelpingnanofibrillation.Nanofibrillationyieldandtransmittanceincreasednotably withenergyconsumptionandwithNaClOusedinTEMPO-mediatedoxidation.However, differencescausedfortheenzymedosewerenotsignificantexceptforaspectratio.This couldindicatethattheeffectoftheenzymeislimitedbyothervariables,forexample,due topooraccessibilityoftheenzymetothecellulosechainsduetothelowerswellingability andthepresenceoflignin.Figure 6 showsthatEnz_80andEnz_240CNFshavedifferent behaviorwithwater.ThelattertendstoreleasewaterwhenitisdepositedinaPetridish. TheinteractionwithwateriskeyforGPdeterminationbecauseitaffectsthesettlingprocess. ThisdiffersfromtheresultsobtainedforvirginpulpsbySanchez-Salvadoretal.(2022) whoobservedanotableincreaseintransmittance,yield,andcationicdemandbyincreasing thedoseofenzymethreefold[27].Thisevidencestheeffectofrawmaterialcompositionin CNFproductionbyenzymatichydrolysis.
TheCDofCNFsisnotsolelyattributedtothepresenceofanionicgroupsonthe nanofibrilsurface,butitisalsoinfluencedbythesurfaceareaavailableforPDADMAC adsorption,whichdependsontheexternalspecificsurfaceoftheCNFs.Thisisevidentfrom theincreaseinCDwiththeintensityofHPHtreatmentandwiththeleveloffibrillation. However,themainfactoraffectingCDisthepretreatmentitself.Itisnotpossibletoachieve ahighCDforTEMPOCNFswiththestudiedcombinationsofpretreatmentfollowedby HPH,duetothesubstantialnumberofanionicchargesgeneratedbyTEMPO-mediated oxidation.TEMPOCNFsalsoexhibitedhigheryieldandtransmittancecomparedtoothers.
However,similaryieldsandtransmittancetoTEMPO_5CNFscanbeobtainedusing enzymatichydrolysisfollowedbyamoreintenseHPHtreatmentbutwitharound50% higherenergyconsumption.Evenmechanicalrefiningoftherecycledpulpfollowedby themostintenseHPHstudiedcanproduceCNFsofthesameorderofmagnitudein termsofyieldandtransmittance,althoughwithalowervaluethanthelessfibrillated TEMPO_5CNF.ThesefindingsdifferfrompreviousstudiesonAspenpulp[28],where TEMPO-mediatedoxidationfollowedbyhighlyintenseHPHenabledayieldof100%and atransmittancearound95%,whichweresignificantlyhigherthanthevaluesobtainedwith recoveredpaper.Inthiscase,pulpcompositionisdifferentduetothehigherpercentageof ashesandthepresenceofhornifiedfibers,whichaffectstheircapacityforbeingfibrillated andtheirinteractionwithwaterandchemicalsandsomedissolvedandcolloidalmaterial. TheeffectofHPHonaspectratioisclearlyinfluencedbythepretreatment.Inthe caseofamechanicalpretreatment,theaspectratioofCNFsincreasedwiththeenergyconsumptionofHPH.Asmalleffectonaspectratiowasobservedforenzymaticpretreatments andanegligibleeffectwasobtainedinthecaseofTEMPO_5.However,theaspectratio decreasedwithHPHintensityforTEMPO_15CNF.TheseCNFsformedahydrogelwhose consistencyincreasedwithHPHintensity,whichindicatesthattherewasa3Dnetworkof CNFsinteractingwithwater.IftherealaspectratioofalltheCNFsinTEMPO_15wasas lowasthatshowninTable 6 andFigure 7,theformationofanetworkwouldbeunlikely.
Theaspectratiodecreased(Figure 7)whiletheconsistencyofthegelincreased(Figure 6). Thisisduetothepresenceofnon-settledparticlesduringthesedimentationexperiments. Tobettermeasuretheaspectratio,different,verydilutedsuspensionswerepreparedand thepeakofsedimentwasmeasuredafteralongtime(attheendofsedimentationprocess). InthecaseofTEMPO_15CNF,thereweresomeverystablenanoparticlesinthesuspension thatdidnotsettleevenafterseveralweeks,andthefinalaspectratiowasnotrealsinceit correspondedtothesettleablematerial.TheincreaseinHPHintensityincreasedthedegree ofnanofibrillationandCDvalues,whichimpliesthatahigheranionicchargeisavailable togeneraterepulsiveforcesamongparticles,whichcaninteractmorestronglywithwater, formingastablegel.
Figure7. Nanofibrillationyield(a),transmittance(b)cationicdemand(c)andaspectratio(d)ofthe differentCNFsuspensions.
4.Conclusions
Bycarefullyselectinganappropriatepretreatmentandlevelofseverity,aswellasan optimalHPHintensity,differentCNFqualitiescanbeproducedfromrecoveredpaperboard. BasedonthepretreatmentandHPHintensity,theresultscanbeusedtopredicttheexpected qualityofCNFs.Recycledpaperboardpulpallowsonetoobtaincost-effectivecoloredand turbidhydrogelswithanotablenanofibrillationyield(63%)andtransmittance(60%),which canbeusedasreinforcingaidsinboard-recyclingmills.Thehornificationofthefibersand thepresenceofashesandligninaffectstheefficiencyofenzymatichydrolysis,withadose of80mg/gofpulpbeingenoughtoobtainthemaximalperformanceoftheproducedCNF. ThecharacteristicsoftheproducedCNFsandtheimpactofHPHonnanofibrillationare bothsignificantlyinfluencedbythepulppretreatment.Thisenablesonetochoosethebest
(a)
b)
(c)
d)
productionstrategywiththehighestyieldintermsofproducedCNFfortherequiredCNF qualityinvariousapplications.
AuthorContributions: Conceptualization,C.N.,A.B.,E.F.andM.D.-A.;Methodology,C.N.,M.C.M., A.B.,E.F.,M.D.-A.andQ.T.;Software,J.L.S.-S.;FormalAnalysis,A.B.andJ.L.S.-S.;Investigation,A.B., J.L.S.-S.andM.C.M.;Writing—OriginalDraftPreparation,A.B.,M.C.M.andE.F.; Writing—Review andEditing,C.N.,E.F.,A.B.,M.D.-A.,Q.T.andJ.L.S.-S.;Visualization,A.B.,M.C.M.andE.F.;Supervision,C.N.andM.D.-A.;ProjectAdministration,C.N.andP.M.;FundingAcquisition,C.N.andP.M. Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding: TheauthorsaregratefulforthefinancialsupportbytheSpanishMinistryofScienceand InnovationtotheprojectsCTQ20217-85654-C2-1-RandCTQ2017-85654-C2-2-R(NANOPROSOST) andPID2020-113850RB-C21andPID2020-113850RB-C22(CON-FUTURO-ES)andtheCommunityof Madrid(projectS2018/EMT-4459“RETOPROSOST2-CM”).
DataAvailabilityStatement: Datacanbemadeavailableuponrequesttothecorrespondingauthor.
Acknowledgments: TheauthorsarethankfultotheSpanishNationalCentreofElectronicMicroscopy forthesupportduringTEMimagesacquisition.MarcDelgado-AguilarandQuimTarrésareSerra HúnterFellows.
ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesign ofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript;or inthedecisiontopublishtheresults.
References
1. Amândio,M.S.;Pereira,J.M.;Rocha,J.M.;Serafim,L.S.;Xavier,A.M.GettingValuefromPulpandPaperIndustryWastes:Onthe WaytoSustainabilityandCircularEconomy. Energies 2022, 15,4105.[CrossRef]
2. CEPI.KeyStatistics2022.EuropeanPulpandPaperIndustry.Brussels,Belgium.2022.Availableonline: https://www.cepi.org/ wp-content/uploads/2023/2007/2022-Key-Statistics-FINAL.pdf (accessedon15July2023).
3. Li,X.;Han,Y.;Shi,Z.;An,M.;Chen,E.;Feng,J.;Wang,Q.J. β-In2S3NanoplatesforUltrafastPhotonics. ACSAppl.NanoMater. 2022, 5,3229–3236.[CrossRef]
4. Zhang,H.;Sun,S.;Shang,X.;Guo,B.;Li,X.;Chen,X.;Jiang,S.;Zhang,H.;Ågren,H.;Zhang,W.Ultrafastphotonicsapplications ofemerging2D-Xenesbeyondgraphene. Nanophotonics 2022, 11,1261–1284.[CrossRef]
5. Trache,D.;Tarchoun,A.F.;Abdelaziz,A.;Bessa,W.;Hussin,M.H.;Brosse,N.;Thakur,V.K.Cellulosenanofibrils–graphene hybrids:Recentadvancesinfabrication,properties,andapplications. Nanoscale 2022, 14,12515–12546.[CrossRef]
6. Balea,A.;Sanchez-Salvador,J.L.;Monte,M.C.;Merayo,N.;Negro,C.;Blanco,A.InSituProductionandApplicationofCellulose NanofiberstoImproveRecycledPaperProduction. Molecules 2019, 24,1800.[CrossRef]
7. Das,A.K.;Islam,M.N.;Ashaduzzaman,M.;Nazhad,M.M.Nanocellulose:Itsapplications,consequencesandchallengesin papermaking. J.Packag.Technol.Res. 2020, 4,253–260.[CrossRef]
8. Pennells,J.;Godwin,I.D.;Amiralian,N.;Martin,D.J.Trendsintheproductionofcellulosenanofibersfromnon-woodsources. Cellulose 2020, 27,575–593.[CrossRef]
9. Barhoum,A.;Pal,K.;Rahier,H.;Uludag,H.;Kim,I.S.;Bechelany,M.Nanofibersasnew-generationmaterials:Fromspinningand nano-spinningfabricationtechniquestoemergingapplications. Appl.Mater.Today 2019, 17,1–35.[CrossRef]
10. Stojanovska,E.;Canbay,E.;Pampal,E.S.;Calisir,M.D.;Agma,O.;Polat,Y.;Simsek,R.;Gundogdu,N.S.;Akgul,Y.;Kilic,A.A reviewonnon-electronanofibrespinningtechniques. RSCAdv. 2016, 6,83783–83801.[CrossRef]
11. DjafariPetroudy,S.R.;Chabot,B.;Loranger,E.;Naebe,M.;Shojaeiarani,J.;Gharehkhani,S.;Ahvazi,B.;Hu,J.;Thomas,S. RecentAdvancesinCelluloseNanofibersPreparationthroughEnergy-EfficientApproaches:AReview. Energies 2021, 14,6792. [CrossRef]
12. Kumar,V.;Pathak,P.;Bhardwaj,N.K.Wastepaper:Anunderutilizedbutpromisingsourcefornanocellulosemining. Waste Manag. 2020, 102,281–303.[CrossRef][PubMed]
13. Moohan,J.;Stewart,S.A.;Espinosa,E.;Rosal,A.;Rodríguez,A.;Larrañeta,E.;Donnelly,R.F.;Domínguez-Robles,J.Cellulose nanofibersandotherbiopolymersforbiomedicalapplications.Areview. Appl.Sci. 2020, 10,65.[CrossRef]
14. Zhang,C.;Cha,R.;Li,R.;Tang,L.;Long,K.;Zhang,Z.;Zhang,L.;Jiang,X.Cellophaneornanopaper:Whichisbetterforthe substratesofflexibleelectronicdevices? ACSSustain.Chem.Eng. 2020, 8,7774–7784.[CrossRef]
15. Liu,W.;Liu,K.;Du,H.;Zheng,T.;Zhang,N.;Xu,T.;Pang,B.;Zhang,X.;Si,C.;Zhang,K.Cellulosenanopaper:Fabrication, functionalization,andapplications. Nano-MicroLett. 2022, 14,104.[CrossRef]
16. Josset,S.;Orsolini,P.;Siqueira,G.;Tejado,A.;Tingaut,P.;Zimmermann,T.Energyconsumptionofthenanofibrillationofbleached pulp,wheatstrawandrecyclednewspaperthroughagrindingprocess. Nord.PulpPap.Res.J. 2014, 29,167–175.[CrossRef]
17. Portela,I.;Alriols,M.G.;Labidi,J.;Llano-Ponte,R.Cellulosenanofibersfromrecycledcellulosepulp. Chem.Eng.Trans. 2015, 45, 937–942.
2023, 13,2536
18. Hietala,M.;Varrio,K.;Berglund,L.;Soini,J.;Oksman,K.Potentialofmunicipalsolidwastepaperasrawmaterialforproduction ofcellulosenanofibres. WasteManag. 2018, 80,319–326.[CrossRef]
19. Yasim-Anuar,T.A.T.;Sharip,N.S.;Megashah,L.;Ariffin,H.;Nor,N.A.M.Cellulosenanofibersfromwastewaperandtheir utilizationasreinforcementmaterialsinpoly((R)-3hydroxybutyrate-co-(R)-3hydroxyhexanoatebionanocomposite. PertanikaJ. Sci.Technol 2020, 28,259–272.[CrossRef]
20. Yousefhashemi,S.M.;Khosravani,A.;Yousefi,H.Isolationoflignocellulosenanofiberfromrecycledoldcorrugatedcontainerand itsinteractionwithcationicstarch–nanosilicacombinationtomakepaperboard. Cellulose 2019, 26,7207–7221.[CrossRef]
21. Dölle,K.;Darius,J.;Medina,R.C.;Henkler,O.;Day,J.AStudyonLaboratoryTypePaperMachineUsingNanoFibrillated CellulosefromRecycledOldCorrugatedContainerboardasBioAdditiveinBoardProduction. J.Eng.Res.Rep. 2023, 24,46–55. [CrossRef]
22. Ukkola,J.;Lampimäki,M.;Laitinen,O.;Vainio,T.;Kangasluoma,J.;Siivola,E.;Petäjä,T.;Liimatainen,H.High-performance andsustainableaerosolfiltersbasedonhierarchicalandcrosslinkednanofoamsofcellulosenanofibers. J.Clean.Prod. 2021, 310,127498.[CrossRef]
23. LeVan,H.A.I.;Kafy,A.;Zhai,L.;Kim,J.W.;Muthoka,R.M.;Kim,J.Fabricationandcharacterizationofcellulosenanofibersfrom recycledandnativecelluloseresourcesusingtempooxidation. Cellul.Chem.Technol. 2018, 52,215–221.
24. Ang,S.;Ghosh,D.;Haritos,V.;Batchelor,W.Recyclingcellulosenanofibersfromwoodpulpsprovidesdrainageimprovements forhighstrengthsheetsinpapermaking. J.Clean.Prod. 2021, 312,127731.[CrossRef]
25. Ang,S.;Haritos,V.;Batchelor,W.Cellulosenanofibersfromrecycledandvirginwoodpulp:Acomparativestudyoffiber development. Carbohydr.Polym. 2020, 234,115900.[CrossRef][PubMed]
26. Zambrano,F.;Wang,Y.;Zwilling,J.D.;Venditti,R.;Jameel,H.;Rojas,O.;Gonzalez,R.Micro-andnanofibrillatedcellulosefrom virginandrecycledfibers:Acomparativestudyofitseffectsonthepropertiesofhygienetissuepaper. Carbohydr.Polym. 2021, 254,117430.[CrossRef]
27. Sanchez-Salvador,J.L.;Campano,C.;Balea,A.;Tarrés,Q.;Delgado-Aguilar,M.;Mutjé,P.;Blanco,A.;Negro,C.Critical comparisonofthepropertiesofcellulosenanofibersproducedfromsoftwoodandhardwoodthroughenzymatic,chemicaland mechanicalprocesses. Int.J.Biol.Macromol. 2022, 205,220–230.[CrossRef][PubMed]
28. Balea,A.;Tarrés,Q.;Pèlach,M.;Mutjé,P.;Delgado-Aguilar,M.;Blanco,A.;Negro,C.Influenceofpretreatmentandmechanical nanofibrillationenergyonpropertiesofnanofibersfromAspencellulose. Cellulose 2021, 28,9187–9206.[CrossRef]
29. Ozola,Z.U.;Vesere,R.;Kalnins,S.N.;Blumberga,D.Paperwasterecycling.circulareconomyaspects. RigasTeh.Univ.Zinat. Raksti 2019, 23,260–273.[CrossRef]
30. ISO5264-2:2011;Pulps—Laboratorybeating—Part2:PFIMillMethod.ISO:Geneva,Switzerland,2011.
31. Tarrés,Q.;Saguer,E.;Pèlach,M.;Alcalà,M.;Delgado-Aguilar,M.;Mutjé,P.Thefeasibilityofincorporatingcellulosemicro/nanofibersinpapermakingprocesses:Therelevanceofenzymatichydrolysis. Cellulose 2016, 23,1433–1445.[CrossRef]
32.Saito,T.;Kimura,S.;Nishiyama,Y.;Isogai,A.CellulosenanofiberspreparedbyTEMPO-mediatedoxidationofnativecellulose. Biomacromolecules 2007, 8,2485–2491.[CrossRef]
33. NREL/TP-510-42618;DeterminationofStructuralCarbohydratesandLignininBiomass.NREL:Golden,CO,USA„2012.
34. TAPPIT211om-16:2016;AshinWood,Pulp,PaperandPaperboard:Combustionat525DegreesC.NREL:Golden,CO,USA,2016.
35. TAPPIT204cm-17:2017;SolventExtractivesofWoodandPulp.NREL:Golden,CO,USA,2017.
36. Habibi,Y.;Chanzy,H.;Vignon,M.R.TEMPO-mediatedsurfaceoxidationofcellulosewhiskers. Cellulose 2006, 13,679–687. [CrossRef]
37. Varanasi,S.;He,R.;Batchelor,W.Estimationofcellulosenanofibreaspectratiofrommeasurementsoffibresuspensiongelpoint. Cellulose 2013, 20,1885–1896.[CrossRef]
38. Sanchez-Salvador,J.L.;Monte,M.C.;Negro,C.;Batchelor,W.;Garnier,G.;Blanco,A.Simplificationofgelpointcharacterization ofcellulosenanoandmicrofibersuspensions. Cellulose 2021, 28,6995–7006.[CrossRef]
39. Campano,C.;Balea,A.;Blanco, Á.;Negro,C.Areproduciblemethodtocharacterizethebulkmorphologyofcellulosenanocrystals andnanofibersbytransmissionelectronmicroscopy. Cellulose 2020, 27,4871–4887.[CrossRef]
40.Zuo,Y.-T.;Liu,H.-J.Fractalapproachtomechanicalandelectricalpropertiesofgraphene/siccomposites. FactaUniv.Ser.Mech. Eng. 2021, 19,271–284.[CrossRef]
41. Campano,C.;Lopez-Exposito,P.;Gonzalez-Aguilera,L.;Blanco, Á.;Negro,C.In-depthcharacterizationoftheaggregationstate ofcellulosenanocrystalsthroughanalysisoftransmissionelectronmicroscopyimages. Carbohydr.Polym. 2021, 254,117271. [CrossRef]
42. Serra-Parareda,F.;Tarrés,Q.;Sanchez-Salvador,J.L.;Campano,C.;Pèlach,M.À.;Mutjé,P.;Negro,C.;Delgado-Aguilar,M.Tuning morphologyandstructureofnon-woodynanocellulose:Rangingbetweennanofibersandnanocrystals. Ind.CropsProd. 2021, 171,113877.[CrossRef]
43. Park,H.;Cruz,D.;Tiller,P.;Johnson,D.K.;Mittal,A.;Jameel,H.;Venditti,R.;Park,S.Effectofashinpapersludgeonenzymatic hydrolysis. BiomassBioenergy 2022, 165,106567.[CrossRef]
44. Xu,H.;Sanchez-Salvador,J.L.;Blanco,A.;Balea,A.;Negro,C.RecyclingofTEMPO-mediatedoxidationmediumanditseffecton nanocelluloseproperties. Carbohydr.Polym. 2023, 319,121168.[CrossRef]
45. Ma,P.;Fu,S.;Zhai,H.;Law,K.;Daneault,C.InfluenceofTEMPO-mediatedoxidationontheligninofthermomechanicalpulp. Bioresour.Technol. 2012, 118,607–610.[CrossRef]
, 13,2536
46. Ruvo,A.d.;Htun,M.;Ehrnroot,E.;Lundberg,R.;Kolman,M.Fundamentalandpracticalaspectsofpaper-makingwithrecycled fibers. Ind.DellaCarta 1980, 18,287–300.
47. Zhang,L.;Batchelor,W.;Varanasi,S.;Tsuzuki,T.;Wang,X.Effectofcellulosenanofiberdimensionsonsheetformingthrough filtration. Cellulose 2012, 19,561–574.[CrossRef]
48. Copenhaver,K.;Li,K.;Wang,L.;Lamm,M.;Zhao,X.;Korey,M.;Neivandt,D.;Dixon,B.;Sultana,S.;Kelly,P.Pretreatmentof lignocellulosicfeedstocksforcellulosenanofibrilproduction. Cellulose 2022, 29,4835–4876.[CrossRef]
Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM
Volume 10, Number 3, 2024

PAPERmaking!




Facile Strategy for Boosting of Inorganic Fillers Retention in Paper
Paper Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
polymers
Article
FacileStrategyforBoostingofInorganicFillersRetention inPaper
KlaudiaMa´slana 1, *,KrzysztofSielicki 1 ,KarolinaWenelska 1, * ,TomaszK˛edzierski 1 ,JoannaJanusz 2 , GrzegorzMaria´nczyk 2 ,AleksandraGorgon-Kuza 2 ,WojciechBogdan 2 ,BeataZieli´nska 1 andEwaMijowska 1
1 DepartmentofNanomaterialsPhysicochemistry,FacultyofChemicalTechnologyandEngineering, WestPomeranianUniversityofTechnologyinSzczecin,PiastowAve.45,70-311Szczecin,Poland; krzysztof-sielicki@zut.edu.pl(K.S.);tomasz.kedzierski@zut.edu.pl(T.K.);bzielinska@zut.edu.pl(B.Z.); emijowska@zut.edu.pl(E.M.)
2 ArcticPaperKostrzynSA,ul.Fabryczna1,66-470KostrzynnadOdra,Poland; joanna.janusz@arcticpaper.com(J.J.);grzegorz.marianczyk@arcticpaper.com(G.M.); wojciech.bogdan@arcticpaper.com(W.B.)
* Correspondence:klaudia.maslana@zut.edu.pl(K.M.);kwenelska@zut.edu.pl(K.W.)
Citation: Ma´slana,K.;Sielicki,K.; Wenelska,K.;K˛edzierski,T.;Janusz,J.; Maria´nczyk,G.;Gorgon-Kuza,A.; Bogdan,W.;Zieli´nska,B.;Mijowska, E.FacileStrategyforBoostingof InorganicFillersRetentioninPaper. Polymers 2024, 16,110.https:// doi.org/10.3390/polym16010110
AcademicEditor:SelestinaGorgieva
Received:21November2023
Revised:18December2023
Accepted:25December2023
Published:29December2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).
Abstract: Achievingthedesiredpropertiesofpapersuchasstrength,durability,andprintability remainschallenging.Papermillsemploycalciumcarbonate(CaCO3 )asafillertoboostpaper’s brightness,opacity,andprintability.However,weakinteractionbetweencellulosefibersandCaCO3 particlescreatesdifferentissuesinthepapermakingindustry.Therefore,thisstudyexploresthe influenceofvariousinorganicadditivesascrosslinkerssuchasmesoporousSiO2 nanospheres,TiO2 nanoparticles,h-BNnanoflakes,andhydroxylatedh-BNnanoflakes(h-BN-OH)oninorganicfillers contentinthepaper.Theywereintroducedtothepaperpulpintheformofapolyethyleneglycol (PEG)suspensiontoenablebondingbetweentheinorganicparticlesandthepaperpulp.Ourfindings havebeenrevealedbasedondetailedmicroscopicandstructuralanalyses,e.g.,transmissionand scanningelectronmicroscopy,X-raydiffraction,Ramanspectroscopy,andN2 adsorption/desorption isotherms.Finally,theinorganicfillers(CaCO3 andrespectiveinorganicadditives)contentwas evaluatedfollowingISO1762:2001guidelines.Conductedevaluationsallowedustoidentifythe mostefficientcrosslinker(SiO2 nanoparticles)intermsofinorganicfillerretention.Papersheets modifiedwithSiO2 enhancetheretentionofthefillersby~12.1%.Therefore,webelievethesefindings offervaluableinsightsforenhancingthepapermakingprocesstowardboostingthequalityofthe resultingpaper.
Keywords: cellulose;crosslinker;fillers;polymer
1.Introduction
Theprocessofpapermakinginvolvesconvertingrawmaterials,likewoodfibersor recycledpaper,intoaproductthatmeetsqualitystandardsandmarketdemands.Oneofthe mainchallengesinthisprocessisachievingthedesiredpropertiesinthefinalproduct,such asstrength,durability,brightness,opacity,andprintability,whichenhancethestrengthand stiffnessofthepaper,avoidingpoorfolding,tearing,andcrackingresistance.Toachieve this,papermillsoftenusefillerssuchasCaCO3 [1].However,theweakinteractionbetween cellulosefibersandCaCO3 particlescanleadtoarangeofproblemsinpapermaking[2,3]. Thisproblemisrelatedtothecellulosefibers’structuralproperties,whichhaveahighly crystallinestructurewithalowsurface-area-to-volumeratio.Asaconsequence,alimited availabilityofactivesitesforhydrogenbonds,bothbetweenfibersandwithCaCO3 particles,isobserved[4,5].TheinteractionbetweencellulosefibersandCaCO3 particles affectspapermassdrainageandretention.Thepresenceoffillerscaninterferewithwater flowthroughthepapermachine,leadingtolongerdryingtimesandincreasedenergy consumption[6].
Variousstrategieshavebeendevelopedtoovercometheseobstaclestoenhancethe affinityofthepapermasstoCaCO3 .Oneofthestrategiesistheadditionofcrosslinkers,whichcanimprovetheinteractionbetweenthecellulosefibersandCaCO3 particles. Crosslinkersarechemicalcompoundsthatcanformbondsbetweenthecellulosefibers, creatingamorestablenetworkthatcanbetterresistthedisruptiveeffectsoffillers[7,8].The additionoffillerssuchasSiO2 [9],TiO2 [10],h-BN[11],andh-BN-OH[12]hasbeenshown tobeeffectiveinimprovingtheaffinityofthepapermasstoCaCO3 .Thesecompounds canformbondswithboththecellulosefibersandCaCO3 particles,creatingastronger networkthatimprovesthestrength,stiffness,andprintabilityofthepaper.Therefore, usingcrosslinkersinpapermakingisanimportantstrategyforimprovingthequalityand performanceofpaperproducts.
Silicondioxide(SiO2 )canformcovalentbondswithboththecellulosefibersand CaCO3 particles.TheSiO2 particlescanalsoserveasaconnectorbetweenthecellulose fibersandCaCO3 particles,helpingtostrengthentheinter-fiberbondingandimprovethe stiffnessandstrengthofthepaper.Inadditiontoitsroleasacrosslinker,SiO2 canalso improvethedrainageandretentionofthepapermass.TheSiO2 particlesarehydrophilic, whichmeansthattheycanhelpabsorbwaterandimprovetheflowofthepapermass throughthepapermachine.Thiscanleadtofasterdryingtimesandincreasedproductivity. SiO2 canbeaddedtothepapermassinvariousforms,includingcolloidalsilica,precipitated silica,andsilicafume[9,13].
Titaniumdioxide(TiO2 )asacrosslinkercanalsoimprovetheopticalpropertiesof paperproducts.TiO2 isawhitepigmentthatcanreflectandscatterlight,leadingtoa brighterandmoreopaquepaper.Thiscanbeparticularlybeneficialinapplicationswhere highbrightnessandopacityareexpected.Inaddition,TiO2 canalsoimprovethedrainage andretentionofthepapermass—similartoSiO2 .Thiscanleadtofasterdryingtimesand increasedproductivity.TiO2 canbeaddedtothepapermassinvariousforms,including rutile,anatase,andnano-sizedTiO2 particles.Rutileandanatasearetwocrystallineforms ofTiO2 ,withrutilebeingthemostcommonlyusedforminpapermakingduetoitshigher refractiveindexandopacity.Nano-sizedTiO2 particleshaveasmallerparticlesizeandcan provideadditionalbenefitssuchasimprovedprintabilityandinkadhesion[10,14].
Hexagonalboronnitride(h-BN)isalayeredmaterialthatconsistsofhexagonally arrangedboronandnitrogenatoms.Ithasahighsurfaceareaanduniquesurfacechemistry thatmakeitattractiveforvariousapplications.Whenaddedtothepapermass,h-BN canformcovalentbondswithboththecellulosefibersandCaCO3 particles,improving theinteractionbetweenthemandcreatingamorestablenetwork.Theh-BNparticles canalsoserveasaconnectorbetweenthefibersandfillers,enhancingthestiffnessand strengthofthepaper.h-BN-OHisaderivativeofh-BNthathasbeenfunctionalizedwith hydroxylgroups.Thehydroxylgroupsincreasethesurfaceenergyandwettabilityofthe h-BNparticles,allowingthemtointeractwiththecellulosefibersandCaCO3 particles moreeffectively.Thehydroxylgroupscanalsoprovideadditionalchemicalfunctionality, allowingforfurthermodificationsandimprovementsinthepaperproperties[12,15].
Inthiswork,theimpactofdifferentinorganicfillersoncalciumcarbonatecontentin thepaperwasinvestigated.Forthisreason,mesoporousSiO2 nanoparticles,TiO2 nanoparticles,h-BNnanoflakes,andhydroxylatedh-BNnanoflakes(h-BN-OH)havebeenexplored asadditives.Theyhavebeenintroducedtothepaperpulpintheformofapolyethylene glycol(PEG)mixturetoinducebondingbetweentheinorganicstructuresandpaperpulp components.Variouscharacterizationmethodswereemployedtodeterminethechemical structureandmorphologyofpreparedsamples,includingTEM,SEM,XRD,Ramanspectroscopy,andTGA.Theashcontent(residualsolidparticlesafterthecombustionprocess) wasevaluatedaccordingtoISO1762:2001.Itallowedustoselectmesoporoussilicaasthe mostefficientfiller,enhancingtheretentionofthefillersby12.1%inrespecttounmodified papersheets.
2.ExperimentalPart
2.1.Chemicals
Eucalyptus-derivedcellulosefibers,wood-derivedcellulosefibers,chemicalthermomechanicalpulpcellulose(CTMP),cationicstarch,calciumcarbonate,andpotassiumamyl xanthate(PAX)werederivedbyArcticPaperKostrzynSA.Polyethyleneglycol2000(PEG, M=1800–2200g/mol)waspurchasedfromCarlRoth,Karlsruhe,Germany.Titanium dioxidewaskindlysuppliedbyGrupaAzotyPolice(Police,Poland).Tetraethylorthosilicate(TEOS)andboronnitride(BN,~1 μm,98%)werepurchasedfromSigmaAldrich (Pozna´n,Poland).Ammoniasolution(NH4 OH,25%),sulfuricacid(H2 SO4 ,95%),nitric acid(HNO3 ,65%),andpotassiumpermanganate(KMnO4 )weredeliveredfromChempur (Piekary ´ Sl˛askie,Poland).
2.2.SynthesisofSiliconDioxide(SiO2 )
SiO2 nanoparticleswerepreparedaccordingtoamodifiedStöbermethod[16];5.8mL ofTEOSand150mLofethanolwereinitiallymixedinaroundbottomflaskandstirredfor 10minatroomtemperature(RT).Next,7.8mLofammoniasolutionwasadded,andthe mixturewasfurtherstirredfor12h.Afterthat,theproductwasseparatedbycentrifugation, washedafewtimeswithethanol,anddried.
2.3.SynthesisofHexagonalBoronNitride(h-BN)
Atotalof0.2gofbulkboronnitridewasplacedinaflask,andthen,200mLof ethanolwasadded.Afterward,theobtainedmixturewassonicatedusinganultrasonic homogenizerfor12h.Thefinalproductwaswashedwithdistilledwateranddriedat 80 ◦ C.
2.4.SynthesisofOxidizedHexagonalBoronNitride(h-BN-OH)
Toprepareh-BN-OH,amodifiedHummersmethodwasapplied[12].Briefly,0.2g ofh-BNpowderwasplacedinaround-bottomedflask,andthen,13.5mLofH2 SO4 and 4.4mLofHNO3 wereadded.Themixturewasstirredtoobtainahomogenousdispersion. Afterthat,1.2gofKMnO4 waspartiallyintroduced,andfinally,themixturewasheatedto 90 ◦ Candkeptatthistemperaturefor12h.Next,themixturewascooledtoRT,filtrated, andwashedafewtimeswithdistilledwateruntilthepHvalueapproached7.Finally,the productwasdriedat80 ◦ Covernight.
2.5.PreparationofPEGSolution
Intheexperiments,thedifferentpolyethyleneglycol(PEG)variants(PEG2000,PEG 4000,PEG10000,andPEG20000)weretestedtochoosetheoptimalone.Duringthe preparationofpapersheetsusingtheRapid-Köthenmachine(Lodz,Poland)different performancecharacteristicsofthepaperwiththetestedPEGvariantswereevaluated.The finalselectionofPEG2000wasbasedonitssuperiorperformanceduringthepapersheet preparationprocess.PEG2000exhibitedthebestsolubilityinthechosensolventandits integrationwithpaperpulp.AnappropriatePEG2000amountwasaddedto1Lofdistilled water,andwiththeuseofamagneticstirrer,itwascompletelydissolved.Theamountof PEG2000wascalculatedin1tonofdrypulptoobtainaconcentrationof1kgofPEG/ton ofdrycellulose(typicalcommercialprocedure).
2.6.PreparationofPaperSheets
Asareferencesample,asheetofpaperwithouttheadditionofinorganicfillerswas prepared.Thereferencepapersamplecontainedonlystandardcommercialcomponents usedfortheproductionofpapersheets.Paperwithagrammageof80g/m2 wascreated bycombiningthreetypesofcellulosefibers:short-fibercellulosepulp(eucalyptusderived), long-fibercellulosepulp(birch-derived),andchemicalthermomechanicalpulpcellulose (CTMP)withamassratioof70/20/10,respectively.Thecellulosicmasswasmixedina plasticcontainerusingamechanicalstirrerfor15min.Subsequently,PAXandacationic
starchsolution(3.8%)wereaddedtothemixturewith2and5kgpertonofdrycellulose fibers,respectively.Finally,CaCO3 andappropriatecrosslinkers(SiO2 ,TiO2 ,h-BN,and h-BN-OH)dispersedinPEGsolutionwereintroducedtothesystem.Todoso,1kgof crosslinkersper1tonofdrycellulosefiberswasfirstdispersedin100mLofPEGsolution andsonicatedtoobtainahomogeneousmixture.Thepreparedmixturewasmechanically stirredwithcellulosicmassfor15min.PapersheetswereformedusingaRapid-Köthen AutomaticSheet-FormingMachine(Lodz,Poland),followingtheguidelinesofPN-ISO 5262–2.Thismethodofproducingmodifiedpapersheetsusingthementionedequipment replicatestheconditionsfoundinlarge-scaleproduction,facilitatingeasyscalabilityof theentireprocess.Thepreparedpapersheetsweredenotedasreferenceforthesample withoutanycrosslinker,andPEG/SiO2 ,PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OHfor sampleswhereadditionalPEGsuspensioncontainingSiO2 ,TiO2 ,h-BN,andh-BN-OH wereadded,respectively.Thereferencewaspreparedbythesameprocedurebutwithout theadditionofPEG/inorganicfillermixture.
2.7.Characterization
High-resolutiontransmissionelectronmicroscopy(HR-TEM)(Washington,DC,USA) imagingwasperformedwiththeFEITecnaiF20microscopeatanacceleratingvoltageof 200kV.Theimagesweretakendirectlyonsample-drop-castCugridswithcarbonfilm. Ascanningelectronmicroscope(SEM)(VEGA3,TESCAN)(Brno,CzechRepublic)was usedtodeterminethemorphologyofthepreparedsheets.Thechemicalbondingofthe structuresinthepapersheetswasexaminedusingRamanspectroscopy(InViaRenishaw, Wotton-under-Edge,UK)equippedwithanexcitationwavelengthof785nm.Itisanideal methodtostudythestructuralpropertiesofthenanomaterials.Thephasecompositionwas determinedbyX-raydiffraction(XRD)patternsbyusinganAeris(MalvernPanalytical, Malvern,UK)diffractometerusingCuKα radiation.ThecontentofCaCO3 wasdetermined inaccordancewiththeInternationalOrganizationofStandardization(ISO1762:2001).The thermogravimetricanalysiswasconductedusinganSDTQ600Thermogravimeter(TA Instruments,NewCastle,DE,USA)underairflowof100mL/min.Ineachcase,the sampleswereheatedfromroomtemperatureto600 ◦ Catalinearheatingrateof10 ◦ C/min. Thesamplesweremeasuredinanaluminacruciblewithamassofabout5.0mg.N2 adsorption/desorptionisothermswereacquiredatliquidnitrogentemperature(77K) usingaMicromeriticsASAP2460(Norcross,GA,USA).TheBrunauer–Emmett–Teller(BET) anddensityfunctionaltheory(DFT)methodswereadoptedtocalculatethespecificsurface areaandporesizedistribution.
3.Results
TEMimagesofSiO2 ,TiO2 ,h-BN,andh-BN-OHarepresentedinFigure 1.SiO2 andTiO2 revealdistinctmorphologies.SiO2 (Figure 1A)exhibitsparticleswithspherical morphology,showcasingvisibleporositywithinthesilicastructure.Highporositydirectly leadstothehighsurfaceareaofSiO2 .Similarly,TiO2 (Figure 1B)nanoparticlesdisplaya sphericalorquasi-sphericalmorphology,relativetoSiO2 ,andexhibitobservableporosity withevidentpores.Forh-BN,theTEMimageillustratesaflatandtwo-dimensional(2D) sheet-likestructure.Itisalayeredmaterialwithahexagonallatticeresemblinggraphene, showcasingathinandplanar2Dnature.Hydroxylatedh-BN(h-BN-OH,Figure 1D)also portraysthis2Dplanarstructure,withthepresenceofhydroxyl(OH)groupsaltering surfacecharacteristicsbutnotthefundamentalstructuralmorphology.

Figure1. TEMimagesofcrosslinkers:(A)SiO2 ,(B)TiO2 ,(C)h-BN,and(D)h-BN-OH.
XRDpatternsofallcrosslinkers(SiO2 ,TiO2 ,h-BN,andh-BN-OH)areshownin
Figure 2.Bothh-BNandh-BN-OHshowreflectionscorrespondingtoboronnitride (2θ =~26.7◦ , 41.6◦ ,43.7◦ ,54.9◦ ,75.6◦ ;ICDDPDFno.00-034-0421).Forh-BN-OH,aclear shiftofpeakstowardthehigheranglesisobservedincomparisontoh-BN.Forexample,the signalat~26.39◦ ,correspondingtothe(002)planeofh-BN,isshiftedto26.83◦ .Thisisdue totheexpansionofcrystallographicstructurebytheincorporationofthe-OHfunctional groupsintothelattice.SiO2 exhibitsonebroadpeakcenteredataround23◦ ,whichcanbe assignedtotheamorphousstructureofsilicaoxide[17,18].TiO2 iscomposedoftwocrystal phases:anatase(ICDDPDFno.04-014-8515)andrutile(ICDDPDFno.00-021-1276).There are~83.9%ofanataseand~16.1%ofrutileinthesample[19].
N2 adsorption/desorptionisothermsacquiredatliquidnitrogentemperatureare presentedinFigure 3.TheisothermsforTiO2 ,SiO2 ,h-BN,andh-BN-OHaretypeII isotherms,wherethereisawiderangeofporesizes[20].FromTEM,itisclearthat poresarepresent.ThehighestcontentisinSiO2 ,whichcanresultinahighsurfacearea. ThehighestsurfaceareawasdeterminedfortheSiO2 ,whichis275.4m2 /g.h-BN-OH exhibitsalargerspecificsurfaceareacomparedtoh-BN,whichis38.7m2 /gand19.8m2 /g, respectively.Thisisduetotheexpansionofindividualh-BNlayersbyhydroxylgroups andthecreationofalargersurfaceareathatisaccessibleforN2 adsorption.Thelowest specificsurfaceareafromallcrosslinkerswasmeasuredfortheTiO2 (10.8m2 /g).Asimilar dependencecanbeobservedforthetotalporevolume(Figure 3b).Themeasuredtotalpore
volumeswere0.248,0.035,0.011,and0.008cm3 /gforSiO2 ,h-BN-OH,h-BN,andTiO2 , respectively.DatacollectedfromtheN2 adsorption/desorptiontestarecollectedinTable 1.

Figure2. XRDpatternsofcrosslinkers:TiO2 ,SiO2 ,h-BN-OH,andh-BN.


(a) (b)
Figure3. (a)N2 adsorption/desorptionisothermsofcrosslinkers,TiO2 ,SiO2 ,h-BN,andh-BN-OH, and(b)poresizedistribution.
Table1. BETsurfacearea,microporevolume,andmedianporewidthofsamples.
Next,theimpactofdifferentcrosslinkersonthemorphologyofthepreparedpaper sampleswasevaluatedviaSEM(Figure 4).Thereferencesampleexhibitsthepresence ofCaCO3 betweenthecellulosefiberswithunevendistribution.ThePEG/SiO2 and PEG/TiO2 papersamples(Figure 4B,C)showamoreevendistributionofCaCO3 particles alongcellulosefiberscomparedtothereferencesample.InthematerialwithPEG/SiO2 , theamountofCaCO3 betweenthefibersismuchhighercomparedtothereferencesample. Papersampleswithh-BNandh-BN-OHexhibitagglomeratedCaCO3 particles.Thismay leadtoincreasedpermeabilityofCaCO3 throughcellulosefibers,whichwillresultina reducedcontentofcalciumcarbonateinthesample.



Figure4. SEMimagesof(A)referencepaperandpapercontainingdifferentcrosslinkers: (B)PEG/SiO2, (C)PEG/TiO2 ,(D)PEG/h-BN,and(E)PEG/h-BN-OH.
Figure 5 presentstheRamanspectraofpapersamples(reference,PEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OH).Celluloseisalinearpolymermadeupofrepeatingglucoseunitslinkedby β-1,4-glycosidicbonds.Itexhibitsahighdegreeofcrystallinity,with bothcrystallineandamorphousregionsinitsstructure.Ramanspectroscopyissensitivetovariousvibrationalmodespresentincellulose.ThemainRaman-activemodes forcellulosefibersincludeC-CandC-Obonds.Thesevibrationsareobservedaround 1095cm 1 ,offeringvaluableinformationaboutthemolecularbondswithinthecellulose structure[21,22].Next,out-of-planeringbending(C-C-CandC-O-C),observedintherange of400to600cm 1 ,providesinsightsintothespatialarrangementandflexibilityofthecelluloserings.Additionally,RamanpeaksassociatedwithdeformationsintheCH2 andCH3 groupsareprominentintherangeof1300to1470cm 1 [23](orangezones).Furthermore, RamanspectroscopystudiesrevealedthedistinctivepeaksofCaCO3 correspondingto twodifferentforms:calcite(greenzones)andvaterite(bluezones).Thepeakat1085cm 1 signifiescalcite,whilethepeaksat1080and1090cm 1 representvaterite,specifically
correspondingtotheAginternalmodederivedfromthev1 symmetricstretchingmodeof thecarbonateionineachmaterial.Thev4 in-planebendingmodeofcarbonateisobserved at712cm 1 forcalciteand739–749cm 1 forvaterite.Itisnoteworthythatthecharacteristic peakforvateritewasnotdetectedinthecaseofPEG/h-BNandPEG/hBN-OH.However, thereasonofthelackofthispeakisnotclear.

Figure5. Ramanspectraofreferencepaperandpaperwithdifferentcrosslinkers(PEG/SiO2 , PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH).
Figure 6 showstheX-raydiffractionpatternsofthereference,PEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OHpapersamples.Inthepatternsofallsamples,twocharacteristicphaseswereidentified,i.e.,celluloseandcalciumcarbonate(CaCO3 ).Thethree observedpeaks(broadpeaks)at2θ =16◦ ,22◦ ,and35◦ correspondtocellulose.However,a seriesofreflectionsat2θ equalto~23◦ ,29.4◦ ,36◦ ,39.4◦ ,43.2◦ ,47.5◦ ,and48.5◦ arecharacteristicforCaCO3 (ICDDno.00-005-2586).TheXRDdiffractogramsalsoshowtwopeaks (lowintensity)at~30.9◦ and31.6◦ ,whichcanbeattributedtoothercalciumcarbonate polymorphs(e.g.,aragoniteandvaterite)(ICDDno.01-075-9984,00-024-0030).Thereflections,whichcorrespondtothecalciumcarbonate,arenarrowandintense(comparedto thecellulosepeaks,thepeaksarewiderandoflowerintensity),whichindicatesthehigh crystallinityoftheusedCaCO3 .Alackofasignificanteffectofthefillersontheintensity andlocationofindividualreflectionswasfound,whichmaybeattributedtothesmall amountoftheadditives.
Todefinethethermalbehaviorofthepapersamples,thermogravimetricanalysis (TGA)wasapplied.TheTGAresultsforthereferenceandthePEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OHpapersarepresentedinFigure 7.Forallsamples,three significantweightdecreasesarenoticeable.First,weightlossisobservedat90 ◦ Candis attributedtotheevaporationoftheadsorbedwaterormoisturepresentinthesamples. Furthermore,twostagesofcellulosedegradationareobserved.Thefirstdecomposition stagestartsat250 ◦ C.Celluloseconsistsofglucosemoleculeslinkedtogetherby β-1,4glycosidicbonds[24].Duringthisstage,glycosidicbondsbreak,resultingintherelease ofvolatileproductsandvariousvolatileorganiccompounds,suchasaceticacidand levoglucosan[25,26].Next,aseconddecompositionstagestartingat350 ◦ Cisobserved. Duringthisstage,additionalvolatileproductsareformedascellulosedecomposes.Carbon dioxide(CO2 )andcarbonmonoxide(CO)arereleasedatthisstageasaresultofthe
breakdownofmorecomplexcellulosestructures.Startingwiththereference,agradual masslosswithincreasingtemperatureleadstoaresidueofapproximately26%,indicating theashcontentinthereferencesample.InthecasesofPEG/SiO2 ,PEG/TiO2 ,PEG/h-BN, andPEG/h-BN-OH,thethermalprofilesdisplayanalogousmasslosscurves,resultingin residualmassesofabout27.0%,25.7%,25.5%,and24.8%,respectively.

Figure6. X-raydiffractionpatternsofreferencepaperandpaperwithdifferentcrosslinkers: PEG/SiO2 ,PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH.
Figure7. TGAplotsofreferencepaperandpaperwithcrosslinkers:PEG/SiO2 ,PEGTiO2 ,PEG/h-BN, andPEG/h-BN-OH.
Todeterminetheashcontentinthepaper,theguidelinessetbytheInternational OrganizationofStandardization(ISO1762:2001)wereapplied.Theprocedurewasthrough sampleignitionat525 ◦ C.Theashcontentinthereferenceandmodifiedpapers(PEG/SiO2 , PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH)arepresentedinTable 2
Table2. DataobtainedfromtheInternationalOrganizationofStandardization(ISO)standard(ISO 1762:2001)ashcontentforallsamples.
BasedontheresultspresentedinTable 2,theadditionofSiO2 nanoparticlesincreased theashcontentinthepapersignificantly.ThismeansthatthisfacilestrategyboostsCaCO3 retentiononcellulosefibersby12.1%inthepresenceofPEG/SiO2 asananofiller,which canberelatedtotheabundanceofactivesitesavailableforCaCO3 bonding.Theopposite trendcanbeobservedforPEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH,whereashcontent is8.1,11.1,and17.5%lowercomparedtothereferencepaper,respectively.
Insummary,basedontheaboveresults,itcanbeinferredthattheadditionofporous SiO2 intheformofaPEGsuspensionisthemostpromisingcrosslinkerincreasingthe affinityofCaCO3 tocellulosefibers.Thisconclusionissupportedbynumerousanalyses, suchasTGA,andISO1762:2001tests,whichshowedthattheinorganicfillerscontent aftertheintroductionofPEG/SiO2 increasedby12.1%,whichprovesthepotentialof thisfacilestrategyinpracticalapplicationinthepaperindustry.Thismaybebecause SiO2 possessesthelargestspecificsurfaceareaamongothercrosslinkers(TEMandN2 adsorption/desorption),increasingaffinitytocellulosefibers,resultinginhigherinorganic fillercontentretention.
4.Conclusions
Insummary,thisstudyinvestigatedtheinfluenceofvariouscrosslinkers(TiO2 ,SiO2 , h-BN,andh-BN-OH)ontheinorganicfillercontentinpapersamples.Ramanspectroscopy andXRDconfirmedthatthechemicalstructureofthesamplesremainedinsignificantly changedupontheadditionofthesecompounds.Thisstudyfurtherdelvedintothe moleculardynamicsofcellulosethroughvariousRamanpeaksassociatedwithspecific vibrationalmodes.Additionally,Ramanspectroscopyidentifiedcharacteristicpeaksfor CaCO3 ,distinguishingbetweencalciteandvateriteforms.Moreover,theintroductionof h-BNandh-BN-OHledtotheformationofagglomeratesandunevendistributionofCaCO3 particlesoncellulosefibers,resultingindecreasedashcontentaftertesting.Amongthe crosslinkers,SiO2 suspendedinaPEGsolutionemergedasapromisingcandidateduetoits excellentaffinitytocelluloseandhighsurfacearea,enhancinginorganicfillercontentinthe paper.Thesefindingscontributetoadeeperunderstandingofhowdifferentcrosslinkers impactthecompositionandstructureofpapersamplesandallowtheboostingofthe contentofinorganiccompoundsinthepapersheet,reducingthecontributionofcellulose.
AuthorContributions: Methodology,K.W.andT.K.;Investigation,W.B.;Writing—originaldraft,K.M. andK.S.;Visualization,B.Z.;Supervision,E.M.;Projectadministration,A.G.-K.;Fundingacquisition, J.J.andG.M.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding: ThisresearchreceivedfundingfromtheNationalCentreforResearchandDevelopment (Poland):POIR.01.01.01-00-0272/19-00.
InstitutionalReviewBoardStatement: Notapplicable.
DataAvailabilityStatement: Thedatapresentedinthisstudyareavailablefromthecorresponding authoruponreasonablerequest.
ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.
References
1. CalciumCarbonateinthePaperIndustry â¢BlessingforCoatedPapermakingandCurseforRecycling.Availableonline: https://imisrise.tappi.org/TAPPI/Products/14/NOV/14NOV47.aspx (accessedon22June2023).
2. Dalas,E.;Klepetsanis,P.G.;Koutsoukos,P.G.CalciumCarbonateDepositiononCellulose. J.ColloidInterfaceSci. 2000, 224,56–62. [CrossRef][PubMed]
3. Fimbel,P.;Siffert,B.Interactionofcalciumcarbonate(calcite)withcellulosefibresinaqueousmedium. ColloidsSurf. 1986, 20, 1–16.[CrossRef]
4. Guerra-Garcés,J.;García-Negrete,C.A.;Pastor-Sierra,K.;Arteaga,G.C.;Barrera-Vargas,M.;deHaro,M.C.J.;Fernández,A. MorphologicallydiverseCaCO3 microparticlesandtheirincorporationintorecycledcelluloseforcirculareconomy. Mater.Today Sustain. 2022, 19,100166.[CrossRef]
5. Kandirmaz,E.A.;Yenido,S.;Aydemir,C.;Karademir,A.Effectofusingcalciumcarbonate(CaCO3 )insurfacecoatingonliquid absorptionofpaperandsomeprintabilityparameters. Cellul.Chem.Technol. 2020, 54,485–493.[CrossRef]
6. Su,N.Preparationandperformanceofretentionanddrainageaidmadeofcationicsphericalpolyelectrolytebrushes. e-Polymers 2022, 22,676–685.[CrossRef]
7. Salfitra,M.;Putra,A.Effectofcalciumcarbonate(caco3)additivesonthequalityofcellulose-basedbiodegradableplastics bacteria-polyethyleneglycol(peg)ofcoconutwater(Cocosnucifera). Electrolyte 2023, 2,65–72.[CrossRef]
8. Watcharamul,S.;Lerddamrongchai,S.;Siripongpreda,T.;Rodtassana,C.;Nuisin,R.;Kiatkamjornwong,S.EffectsofCarboxymethylCellulose/Nano-CalciumCarbonateHydrogelAmendmentofLoamySandSoilforMaizeGrowth. ACSAgric.Sci. Technol. 2022, 2,1071–1080.[CrossRef]
9. Zhang,Y.;Wang,Q.;Wang,C.;Wang,T.High-strainshapememorypolymernetworkscrosslinkedbySiO2 J.Mater.Chem. 2011, 21,9073–9078.[CrossRef]
10. Roy,S.;Zhai,L.;Kim,H.C.;Pham,D.H.;Alrobei,H.;Kim,J.Tannic-Acid-Cross-LinkedandTiO2 -Nanoparticle-Reinforced Chitosan-BasedNanocompositeFilm. Polymers 2021, 13,228.[CrossRef]
11. Aki,D.;Ulag,S.;Unal,S.;Sengor,M.;Ekren,N.;Lin,C.C.;Yılmazer,H.;Ustundag,C.B.;Kalaskar,D.M.;Gunduz,O.3Dprinting ofPVA/hexagonalboronnitride/bacterialcellulosecompositescaffoldsforbonetissueengineering. Mater.Des. 2020, 196,109094. [CrossRef]
12. Onyszko,M.;Markowska-Szczupak,A.;Rakoczy,R.;Paszkiewicz,O.;Janusz,J.;Gorgon-Kuza,A.;Wenelska,K.;Mijowska, E.FewLayeredOxidizedh-BNasNanofillerofCellulose-BasedPaperwithSuperiorAntibacterialResponseandEnhanced Mechanical/ThermalPerformance. Int.J.Mol.Sci. 2020, 21,5396.[CrossRef][PubMed]
13. Zeng,X.;Liu,Y.;He,R.;Li,T.;Hu,Y.;Wang,C.;Xu,J.;Wang,L.;Wang,H.Tissuepaper-basedcompositeseparatorusing nano-SiO2 hybridcrosslinkedpolymerelectrolyteascoatinglayerforlithiumionbatterywithsuperiorsecurityandcyclestability. Cellulose 2022, 29,3985–4000.[CrossRef]
14. Zhang,W.;Rhim,J.W.Titaniumdioxide(TiO2 )forthemanufactureofmultifunctionalactivefoodpackagingfilms. FoodPackag. ShelfLife 2022, 31,100806.[CrossRef]
15. Chen,L.;Xiao,C.;Tang,Y.;Zhang,X.;Zheng,K.;Tian,X.Preparationandpropertiesofboronnitridenanosheets/cellulose nanofibershear-orientedfilmswithhighthermalconductivity. Ceram.Int. 2019, 45,12965–12974.[CrossRef]
16. Ghimire,P.P.;Jaroniec,M.RenaissanceofStöbermethodforsynthesisofcolloidalparticles:Newdevelopmentsandopportunities. J.ColloidInterfaceSci. 2021, 584,838–865.[CrossRef][PubMed]
17. Liang,Y.;Ouyang,J.;Wang,H.;Wang,W.;Chui,P.;Sun,K.Synthesisandcharacterizationofcore–shellstructured SiO2 @YVO4 :Yb3+ ,Er3+ microspheres. Appl.Surf.Sci. 2012, 258,3689–3694.[CrossRef]
18. Chandraboss,V.L.;Kamalakkannan,J.;Senthilvelan,S.SynthesisofAC-Bi@SiO2 NanocompositeSphereforSuperiorPhotocatalyticActivityTowardsthePhotodegradationofMalachiteGreen. Can.Chem.Trans. 2016, 3,410–429.[CrossRef]
19. Spurr,R.A.;Myers,H.QuantitativeAnalysisofAnatase-RutileMixtureswithanX-rayDiffractometer. Anal.Chem. 1957, 29, 760–762.[CrossRef]
20. Awe,A.A.;Opeolu,B.O.;Fatoki,O.S.;Ayanda,O.S.;Jackson,V.A.;Snyman,R.Preparationandcharacterisationofactivated carbonfrom Vitisvinifera leaflitteranditsadsorptionperformanceforaqueousphenanthrene. Appl.Biol.Chem. 2020, 63,12. [CrossRef]
21. Lahiri,S.K.;Liu,L.FabricationofaNanoporousSilicaHydrogelbyCross-LinkingofSiO2 -H3 BO3 -Hexadecyltrimethoxysilanefor ExcellentAdsorptionofAzoDyesfromWastewater. Langmuir 2021, 37,8753–8764.[CrossRef]
22. Hsieh,Y.C.;Yano,H.;Nogi,M.;Eichhorn,S.J.AnestimationoftheYoung’smodulusofbacterialcellulosefilaments. Cellulose 2008, 15,507–513.[CrossRef]
23. Schenzel,K.;Fischer,S.NIRFTRamanspectroscopy—Arapidanalyticaltoolfordetectingthetransformationofcellulose polymorphs. Cellulose 2001, 8,49–57.[CrossRef]
24. Zhu,C.;Krumm,C.;Facas,G.G.;Neurock,M.;Dauenhauer,P.J.Energeticsofcelluloseandcyclodextringlycosidicbondcleavage. React.Chem.Eng. 2017, 2,201–214.[CrossRef]
25.Huang,Y.B.;Fu,Y.Hydrolysisofcellulosetoglucosebysolidacidcatalysts. GreenChem. 2013, 15,1095–1111.[CrossRef]
26. Paajanen,A.;Vaari,J.High-temperaturedecompositionofthecellulosemolecule:Astochasticmoleculardynamicsstudy. Cellulose 2017, 24,2713–2725.[CrossRef]
Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM
Volume 10, Number 3, 2024

PAPERmaking!




Evaluation of oxygen delignified fibers with high water absorbency, as a greener alternative to fully bleached fibers for tissue paper
Nord.PulpPaperRes.J.2024;aop
ChemicalPulping
CláudiaV.G.Esteves*
Evaluationofoxygendelignified fiberswithhigh waterabsorbency,asagreeneralternativetofully bleached fibersfortissuepaper
https://doi.org/10.1515/npprj-2024-0024
ReceivedApril5,2024;acceptedJuly2,2024; publishedonlineAugust27,2024
Abstract: Thepotentialofoxygendelignified fiberstoreplace fullybleached fibersintissueproductswasinvestigatedon softwoodpulps.Theabsorption,mechanicalpropertiesand softnessoflaboratorytissuehandsheetsfromonecommercial fullybleachedpulpand fiveunbleachedoxygendelignifiedlab pulpswerecompared.Thepulpswithdifferentlignincontent andtotal fiberchargewereevaluatedwithandwithoutPFI refining.Thepulpssubjectedtooxygendelignificationresulted inpulpswithmuchhighertotal fiberchargecontentthatledto higherswellingandhigherwetstrengthwhencomparedtothe commercialfullybleachedpulp.Someunbleachedoxygen delignifiedpulpsshowedgreatpotentialintheabsorption capacity,whileothersshowedamuchhigherwettensile strengthwhencomparedtothecommercialpulp.Comparedto thecommercialbleachedpulp,asimilarsoftnessforahigher wetanddrytensileindexintheunbleached fiberswasobserved fortheoxygendelignifiedpulps.Unbleachedpulpssubjected toanextendedoxygendelignificationprovedtobeasuitable alternativetofullybleachedpulpsintissuegrades,depending onthedesiredproperty(absorptionorwetstrength).
Keywords: absorptioncapacity; fibercharges;highlignin content;oxygendelignification;wetstrength
1Introduction
Tissueproductsarepresentinoureverydaylivesfordifferent purposes,suchaspersonaluseasfacialtissue,toiletpaper, napkins,householdtowels,packingtissuepaper,among others.Theprimaryrequiredpropertiesaregenerallygood liquidabsorptioncapacity,smoothness,bulkand,strength
*Correspondingauthor:CláudiaV.G.Esteves,SustainableMaterialsand PackagingDepartment,RISEResearchInstitutesofSweden,Bioeconomy andHealth,DrottningKristinasväg61,SE-11428,Stockholm,Sweden, E-mail:claudia.esteves@ri.se
(deAssisetal.2018).Thosepropertiesarehighlydependenton theproductionprocessandrawmaterialandtheywillvary accordingtothe finaluse.Whileabsorbencyandsoftnessare themostrequiredqualitiesfortoiletpapers,napkinsorfacial tissue(Kimetal.1994),fortowelpapers,besidestheabsorption capacity,tensilestrengthisalsoacrucialpropertytotake intoconsideration,especiallywettensilestrength(Gigacand Fišerová2008).
Theproductionandconsumptionoftissueproductshave beenconstantlygrowingovertheyears,withtheprediction thattheywillcontinuetoincrease,accordingtoCEPI(Central EuropeanPaperIndustries)statistics.Theawarenessaround healthandhygieneissues,populationgrowthandtheimproved standardoflivingaresomeofthecausesoftheincreased demandfortissue.However,theincreaseintissueconsumptionleadstosomeenvironmentalissues.
Nowadays,fullybleached fibersaretheonestypicallyused intissueandhygieneproductsduetotheirgoodproperties: high-levelbrightness,goodwaterabsorption,softnessandlower impuritycontent(Beutheretal.2010;Fišerováetal.2019; Kullander2012;Rebolaetal.2021).However,fullybleached fibersrequirebleachingprocessesthatnegativelyaffectthe environmentandcompromisesustainability.Consumer awarenessforsustainabilityisrisingeverydayandthereisan increasingpreferenceforproductswithlowerenvironmental impact,suchasrecycledorunbleachedproducts(Britoetal. 2023;Feberetal.2020;Halleretal.2020;Zambranoetal.2022).
Unbleached fiberscanbeagreatalternativetofully bleached fibersduetotheirlowercarbonfootprint(Jouretal. 2013;Manetal.2020).Dependingonthe finalproductproperties,unbleached fiberscanprobablybetailor-madeand eventuallyreplacethefullybleached fibersusednowadays. Studieshaveshownthatunbleachedoxygendelignifiedpulps canhaveagreatswellingabilityduetothe fibercharge increaseduringtheiroxidationreactions(Esteves2022;Mai 2021;Zambranoetal.2022;Zhangetal.2005).Besidesthat, oxygendelignificationtendstoresultin fiberswithhigher curlandahighernumberofkinks(Estevesetal.2021a;Mohlin andAlfredsson1990),whichcanbebeneficialforthebulkof the finalproduct(Rebolaetal.2021).Thisworkaimsto
OpenAccess.©2024theauthor(s),publishedbyDeGruyter. ThisworkislicensedundertheCreativeCommonsAttribution4.0InternationalLicense.
maximizetheincreaseinthetotal fiberchargeofthe fibers subjectedtooxygendelignificationassessingkraftcooked pulpwithdifferentstartingkappanumbersandinvestigating thepotentialofusingthosepulpsasareplacementforfully bleached fibers.

2Materialsandmethods
2.1Materials
Amixtureofsoftwoodchipsfromanindustrialmill(80% Spruceand20%Pine)wasusedinthisstudyforkraftcooking andoxygendelignification.Aneverdriedcommercialfully bleachedpulp(referencepulp)fromthesamemillwasused forcomparison.Forfuturecomparisons,itisimportantto highlightthatthefullybleachedpulpwasproducedindustriallyand,thereforesubjectedtomuchharshertreatments thanthepulpsproducedinthelaboratory.
2.2Methods
2.2.1Kraftcooking
Threeseriesofkraftcooksweredoneinthisstudytoobtain pulpswithdifferentkappanumbers,twowereproducedin onerecirculatorydigesterandonewasproducedinautoclave.
Recirculatordigester:Thewoodchipswerekraftcooked inarecirculateddigesterwithadrychipscapacityof2kg, controlledtemperatureandaforcedliquor flow.Thewood chipswereimpregnatedinwaterunder0.5MPanitrogen pressurethedaybeforethecooking.Thewaterwasthen removedandcookingliquorwasaddedtogivealiquor/wood ratioof4.5l/kg.Theimpregnationstepwasperformed for30minat100 °Candthecookingstepwasperformedat 160 °C.Afterthecooking,thesteam flowwasstopped,and thespentliquorwasdrainedoff andcollectedforanalysis.
Autoclave:Thetrialswereperformedinsteelautoclaveswithavolumeof2.5dm 3 ,whichwereloadedwith
250g(o.d.)woodchips.Withavacuumpump,theairinside thevesselswasremovedfor30minandafterthattime,the cookingliquorwassuckedintotheautoclaves.Thechips were fi rstsubjectedto0.5MPanitrogeninjectionforabout 30min,andthenreleasedbeforestartingthecook.Forthe impregnationstep,theautoclaveswereplacedinasteamheatedglycolbathat100 °Cfor30min,andat160 °Cforthe cookingstep.Rotationandslightinclinationoftheautoclavesensuredgoodmixinginside.Afterthecookingstep, theautoclaveswerecooleddowninawaterbathfor10min, andthenthespentliquorwasdrainedo ff thechipsand collectedforanalysis.
Thetrialswereperformedwithaneffectivealkaliof 22%,asulfidityof30%andwithanionicstrengthof0.1M. ThetrialswerestoppedatdifferentHfactors(cookingtimes) toachievedistinctkappanumbers.
Thedelignifiedchipswerewashedwithdeionizedwater for10hinself-emptyingmetalcylindersandsubsequently defibratedandscreenedinanNAFwaterjetdefibrator (NordiskaArmaturfabriken).Theshiveswerecollected, driedat105 °C,andweighed.
2.2.2Oxygendelignification
Oxygendelignificationwascarriedoutwith60gofovendried(o.d.)pulp,placedinpolyethylenebagswiththe requiredamountofNaOH,MgSO4,andwaterataconsistencyof12%.Thebagswereclosedbyheat-welding,kneadedinitiallybyhandandtheninavibrationalshaker.The pulpwasthenremovedfromthebagsandtransferredto pressurizedteflon-coatedstainless-steelautoclaves.The autoclaveswereclosed,pressurizedwithoxygenandplaced inanelectricallyheatedglycolbath,withrotationataslight inclination.Thetrialswereperformedwithsingleordouble oxygenstageswithnowashinginbetween.Thesingleoxygenstageswerepressurizedwith0.7MPaofoxygenandthe reactionwascarriedat100 °C.Forthedoublestagesofoxygendelignificationthepressureusedinthe firststagewas 1MPaandthetemperaturewas85 °C,whileforthesecond stagethepressurewas0.5MPaand110 °C.Aftertheoxygen delignification,thepulpswerewashedwithdeionizedwater and filtrated.
TheconditionsforeachtrialareillustratedinFigure1. PulpsweredenominatedKX_OY,whereXisthekappa numberofthecookedpulpandYisthekappanumberafter theoxygendelignificationstage.
2.2.3Re
fining,papermaking
Thepulpsampleswererefinedattwodifferentlevels(2000 and4,000rpm)inaPFI-millaccordingtoISO5264–2and 2

Figure1: Illustrativerepresentationoftheperformedkraftcookingandoxygendelignificationtrials.Theblackarrowsrepresentthecookingextension andthewhitearrowstheoxygendelignification.Thewhitesinglearrowsarerelativetothesingleoxygenstage,whilethetwowhitearrowsoverlapping arerelativetothedoubleoxygenstage.ThesamplesaredenominatedKX_OY,whereXisthekappanumberofthecookedpulpandYthekappanumber afteroxygendelignification.
handsheetswerepreparedaccordingtoISO5269–1with deionizedwater,toagrammageof60g/m2 forthestandard handsheetsandagrammageof20g/m2 forthetissuehandsheets,withnopressing.
2.3Analysisofpulpandpaperproperties
Table1and2presentthedifferentpulpandpapercharacterizationstandards.
Measuringtissuepropertiesusuallydependsonseveral factorsthatareoftenpoorlycontrolledsuchasthesample size,thenumberofplies,amongothers.Inthepresentstudy, thepaperswereproducedandevaluatedinthesameconditions:labtissuehandsheetsof20g/m2 forthecommercial fullybleachedpulpandfortheoxygendelignifiedpulps.
Table : Standardsusedforthepulpcharacterization.
MethodsStandards KappanumberISO
Table : Standardsusedforthestandardandtissuehandsheet characterization.
MethodsSamplesStandards
Grammage
Thicknessandbulk
Basketimmersiontest
Capillarityrise(Klemm)
Drytensilestrength
Dryandwettensilestrength
TissueSoftnessanalyzer(TSA)
g/m
RISEinternalstandard ainsteadof gthetestwasperformedwith gofsample, binsteadof min thetestwasperformedfor min.
2.3.1Softnessevaluation
Thesoftnessofthetissuehandsheetswasevaluatedbythe TissueSoftnessAnalyzer(TSA).TSAcollectsdatafromseveral sensorsintheinstrument,butthreeparametersareconsidered tobeofmostimportance:softness(TS7),surfacesmoothness (TS750)andsheetstiffness(D).Theequipmentusesarotating lamellarfanonthepaper’ssurfacetoestimatethesample’s softness.BothTS7andTS750aredeterminedfromthesound spectrumcapturedbymicrophonesoneithersideofthesample.
Thehighertheresponsefromthesensortheloweristhepaper softness.Thetopmicrophonealgorithmwasusedinthiswork.
2.3.2Total fiberchargeincreasecalculation
Toquantifyhowmuchtheincreaseinthe fiberchargeafter oxygendelignificationwascomparedtothekraftcooking,a regression fitwasmadeforthekraftcookedpulpsasa reference,givenbyEquation(1).
TTFCcook ( y) = 0 88x + 58 9(1)
TTFCCook isthe Theoreticalvalueforthe Total Fiber Chargeofakraftcookedpulpforagivenkappanumber.The fiberchargeincreaseobtainedbyoxygendelignificationis thencalculatedaccordingtoEquation(2):
TFCoxygen TTFCcook TTFCcook (2)
whereTFCOxygen isthetotal fiberchargeofpulpafteroxygen delignificationtokappanumber “x”,andTTFCCook isthetheoreticaltotal fiberchargeofpulpafterkraftcookinguntilthe kappanumber(x)wasthesameastheoxygendelignifiedpulps.
3Resultsanddiscussion
3.1Delignification
Thecookingtrialswereaimedtoobtainthreedi ff erent kappanumbers:ahighkappanumber(109),amediumhighkappa(61)andalowkappanumber(29) – Table3. Thekappanumbersaimedforarebasedonresultsfrom previousstudies(Esteves2022;Estevesetal.2021a; Mai2021)whereitwasseenthatthehigherthestarting kappanumberisaftercookingthehigherwillbethe fi ber chargeincrease.Havingkraft-cookedpulpsbetween kappa109and29willalsoallowustoevaluatethe in fl uenceofthelignincontentonthe fi nalabsorption andstrengthpropertiesinconnectionwiththe fi ber charge.
Thepulpwiththehighestkappanumber(K109)was de fi bratedinaSproutWaldronrefi nerbeforetheoxygen deligni fi cation.Theoxygentrialswereaimedtohave extendeddelignifi cation(morethan60min)withahigh alkalicharge(morethan3%NaOH)andanendpHbetween 10and11.5.Thegoalwastoachievethehighestpossible total fi bercharge.However,forthelowercookedkappa number(K29)theendpHwashigherthanitwasaimedat sincethealkalichargewastoohighforthedelignifi cation e ffi ciency.
Table : Summaryofthekraftcookingandoxygendelignificationtrials. Cookingtemperaturewas °C,sulfidity %,effectivealkali %and liquor-to-woodratio l/kg.Forthesingleoxygentrialsthepressurewas MPaandthetemperaturewas °C,whileforthedoubleoxygen trialsthepressurewas MPaandthetemperaturewas °Cforthe first stageand MPaand °Cforthesecondstage.
SamplesH factor – Kappa no. Totalyield (cooking stage)(%) Residual alkali(g/l) K
SamplesTime, min Alkali charge, % Kappa no. Totalyield (oxygen stage)(%) EndpH K
3.2Total fibercharge
Itisknownthatthecarboxylicacidgroupsarethemain chargedgroupsfoundinthechemicalpulp fibers(Dangetal. 2006;Zhangetal.2005).However,thechargessuffermodificationsduringthedifferentpulpingprocessesthatcan eventuallyleadtotheirdecline.Figure2illustratesthe differentbehaviorsthatoccurduringKraftcooking,oxygen delignification,andbleaching.
Thelineardecreaseinthechargedgroupsasthelignin contentisreducedduringkraftcookingisclear(Figure2) anditiswelldocumented(Buchertetal.1997;Chaietal.2003; Dangetal.2006;Esteves2022).Thisiscausedbythelignin removalduringthedelignificationandbysomexylan dissolution(Buchertetal.1997;Chaietal.2003;Dangetal. 2006;Estevesetal.2021a)sincetheyarethemaincomponentswherethechargedgroupsarepresent.
Foroxygendelignification,thetotal fiberchargedevelopmentisnotstraightforward,buttheincreaseintotal fiber chargewhencomparedtothekraftcookedpulpsforthesame lignincontentisevidentinthehigherkappanumbers.The highervaluesforthechargecontentwereobtainedforthe pulpwiththehighestkappanumberfromthecooking,which wasexpected.Thisismainlyduetotheoxidationreactionsin ligninthatleadtoahighercontentofnewchargedgroupson thepulpduetothehigherlignincontent.Thesegroupsare largelyfromthemuconicacidstructurescreatedinlignin (Dangetal.2006;Snowmanetal.1999;Yangetal.2003),but

Figure2: Total fiberchargefornonrefined pulpsatdifferentkappanumbersafterkraft cooking(blackline)andoxygendelignification (green,orangeandbluelines)atdifferent alkalicharges,givenas%NaOHinthe figure. Theoxygentrialspresentedingreenwere performedonkraftcookedpulpwithaninitial kappa(iKa)numberof29,whiletheoxygen trialspresentedinorangewereperformedon kraftcookedpulpwithaninitialkappanumber (iKa)of61andtheoxygentrialspresentedin bluewereperformedonkraftcookedpulp withaninitialkappanumber(iKa)of109.The commercialfullybleachedpulpis denominatedasreferenceinthe figure(black square). C.V.G.Esteves:Oxygendeligni
alsofromoxidizedcarbohydrates(Taoetal.2011;Zhangetal. 2006;Zhaoetal.2016).Forthelowerkappanumber(K29)the increasein fiberchargeswasalmostinsignificantafteroxygendelignification.Thiswasnotasurprisesincethelignin contentwasreducedsignificantlyduringthekraftcooking step,andthepotentialtomaximizethechargeswasreduced.
Previousstudieshavereportedthatthe fibercharge increasefromoxygendelignificationwillbedependenton severalfactors,suchasinitiallignincontent,alkalicharge applied,delignificationdegreeandtheextensionofthereaction(Esteves2022;Estevesetal.2021a;Zhangetal.2006). FromFigure2thevariationinthoseparameterscanbe observed.Pulpswithdifferentstartingkappanumber(109, 61and29)willhavedifferent finalchargecontentafter extendedoxygendelignificationdependingontheconditionsintheoxygenstage(alkalichargeandreactiontime).
Table4presentsthe finaltotal fiberchargeobtained afteroxygendelignificationandtheincreasedamountof total fiberchargeifthepulpwouldbeonlycookedtothe samekappanumbers,calculatedbyequation(1)and(2).
Table : Fiberchargeincreaseforthestudiedpulps.Thesamplesthat obtainedthehighestincreaseof fiberchargeswithineachkraftcooking seriesarehighlightedinbold.
SamplesKappa number Total fibercharge, meq/kg Fiberchargeincrease,% K
_O Noincrease K_O K_OO K_O K_O
Previousstudies(Esteves2022;Estevesetal.2020)have shownthataminimumincrease(>60%)inthe fibercharge isvitalforthechangeinpulpproperties.FromTable4the samplesthatpresentedthehighest fiberchargeincrease wereselectedandconsideredforfurtherstudies(refining andpapertesting).Thesamplesfromthecookedpulpwith kappanumber29didn’thaveasignificantincreaseinthe fibercharge,achievingonly23%increase,nevertheless,the samplewasalsoconsideredforfurthertrialstoevaluatethe influenceofthelignincontentonthe finalproperties.
3.3Waterretentionvalue
Thewaterretentionvalue(WRV)wassignificantlyhigherfor theoxygendelignifiedpulpscomparedtothecommercial fullybleachedpulp(reference) – Figure3A.Thisbehavior wasalreadyexpectedsincetheoxygendelignified fibers presentedahighertotal fibercharge(highercontentof carboxylicacidgroups)whichleadstoanincreasein fiber swelling(Estevesetal.2020;Sjöstedtetal.2015;Zhaoetal. 2016).Thepulpswiththehighestkappanumberwerethe oneswiththehighestwaterretentionvalues,whilethe referencefullybleachedpulppresentedthelowestcharge andthelowestWRV – Figure3BandC.
Figure3Bshowsthewaterretentionvaluecorrelation alongthekappanumberwhenpulpsareunrefinedor refinedwith4000revolutions.Asexpected,theWRVincreaseswithrefininganddecreaseswithkappanumber.A similarrelationcanbeseeninFigure3CwheretheWRVis plottedagainstthetotal fibercharge.Aspreviouslysuggested,WRVishighlydependentonthetotal fibercharge (Estevesetal.2021b).
Thesignificantincreaseinthewaterretentionvalueis verybeneficialtotheabsorptionandstrengthpropertiesof

Figure3: WaterretentionvalueforunbleachedoxygendelignifiedpulpsandfullybleachedpulpasafunctionofA)PFI-refining,B)kappanumberandC) total fibercharge.
thepulps,however,itmightimpactthepaperdryingsection, leadingtohigherenergyrequirements.However,theincreaseinthewaterretentionvaluealsoleadstoadecreasein therefiningrequiredtoacertaintensilestrength,whichin turnwillleadtolowerenergyconsumption.
3.4Absorptionandcapillarityproperties
Toevaluatetheabsorptionandcapillaritypropertiesofthe studiedpulps,thebasketmethodandKlemmtestwere used,respectively.Theabsorptioncapacitycanbede fi ned asameasurementofthe fi berabilitytoabsorbwater(g water/g fi ber)untilitgetssaturated(SchuchardandBerg 1991).Theabsorptionquanti fi cationalsoconsidersthe fi ber capacityofholdingwater,sincethereisadewatering periodbeforemeasuringthewetweight.Theabsorption capacityfortheanalyzedsamplesispresentedinFigure4. Asexpected,theabsorptioncapacityisdirectlyrelatedto thepaperbulkdespitethelargespaninkappanumber, rangingfrom0(REF)to47.
ThecommercialfullybleachedpulpandthepulpsK61_O andK61_OOpresentedverysimilarresultsfortheabsorptioncapacity(Figure4)whiletheoxygendelignifiedpulps withthehighestkappanumber(K109_OandK109_OO)and thelowest(K29_O10)afterthecookingsteppresentedlower absorptioncapacity.
Absorbencycanbesigni fi cantlyincreasedthrough theincreaseintheproductbulk(SedinandVomho ff 2017).Bulkisthereforeanimportantpropertyoftissue paper,asitregulatesthepaperabsorption,paper networkporosityandsoftnesssensation.Theoxygen deligni fi edpulps(K61_O25andK61_OO18)presented

Figure4: Absorptioncapacityforunbleachedoxygendelignifiedpulps andfullybleachedpulpasafunctionofbulk(20g/m2 laboratorytissue handsheetswereused).Decreaseinbulkforeachpulpsampleisobtained byincreasedrefining.
similarabsorptioncapacityasthereferencepulpwith slightlyhigherbulk.Theoxygendeligni fi edpulps K109_O47,K109_OO35andK29_O10presentedamuch lowerbulkwhencomparedtotheotherpulpsand, consequentlylowerabsorptioncapacity.Fortheunrefi nedsamples,K109_O47andK29_O10,thebulkandabsorptioncapacityareverysimilar,eventhoughthelignin contentissigni fi cantlydi ff erent.
Contrarytowhathappenswiththewaterretention value(Figure3A),whenrefiningisappliedthewaterabsorptioncapacityofthepulpsdecreases – Figure4.Whilethe waterretentionvalueismainlyrelatedtothewaterabsorptioninthe fiberwall,theabsorptioncapacityisrelated tothewaterabsorptionwithinthe fibernetwork.The externalandinternal fibrillationcreatedbytherefining leadstoagreaterswellingpotentialbyincreasingthewater penetrationbetweenthe fibrilsseenaswaterretention

Figure5: Watercapillarityrisedistanceforunbleachedoxygen delignifiedpulpsandfullybleachedpulpasafunctionofbulk(20g/m2 laboratorytissuehandsheetswereused).Decreaseinbulkforeachpulp sampleisobtainedbyincreasedrefining.
value(Hartman1985;Kang2007),butsimultaneously,the increasein fibrillationalsoleadstobetter fiberbonding whichpromotesadenserpaperstructure,leadingtoalower absorptionvalues(Lumiainen2000).
Figure5showsthecapillaryrisebehaviorofthe differentpulpsobtainedbytheKlemmmethod.Similarto theresultsinFigure4,thepulpsK61_O25andK61_OO18 presentedthemostsimilarresultswhencomparedtothe referencefullybleachedpulp.
Capillaryrisedependsonthecohesionandadhesion forcesofthewatermoleculesthatwillrisealongthe fiber wallsorwithinthepores(MoraisandCurto2022).Thesize ofthoseporeswilldefinethecapillarypressureinside the fibersandthe fibernetwork,determininghowfastthe
waterwillrise.Microporesarepresentinnative fibers,but duringpulpingthelignin–hemicellulosematrixisgradually removedcreatingsomeporesinthecellwall,calledmacropores(Brännvalletal.2021).Themicroandmacropores willinfluencethewaterabsorptioncapacityofthe fibers, oncetheyinfluencethe fibercapillarypressure(Beuther etal.2010).Biggerporestendtodecreasethecapillaryforces andtheholdingcapacity(JoutsimoandAsikainen2013), whilesmallerporesarecapableofretainingmoreliquidat higherpressuresthanlargerporesduetogreatercapillary force(BrodinandTheliander2012).
When fi bersundergore fi ning,thecapillarypressure tendstodecrease,probablyduetointernalandexternal fi brillation.As fi berinteractionsgetstronger,thesheet thicknessisreducedbytheincreaseinsheetdensifi cation, andconsequently,theopenvoidsavailableinthesheetin whichwatercanbeheldwillbereduced(Kullander2012). Thedecreaseinthecapillarypressurewiththeincreasein fi brillationwassuggestedbefore(Moraisetal.2021).The higherthebulk,thehigherthevolumeofporesinsidethe papernetwork.
Figure6showsthediff erentspeedsinthecapillaryrise forthestudiedpulps.Forunre fi nedpulps,theoxygen deligni fi edK29_O10andK61_O25hadthefastestwaterrise (Figure6A).Thepulpswithslowerwaterrisingwerethe oxygendelignifi edpulpswithhigherkappanumbers, K109_O47andK109_OO35.Thefastercapillarityriseseen fortheK61_OandK61_OOisprobablyduetothemoreopen structureofthepapernetworksincebothpulppresented thehighestbulk.

Figure6: RateofwatercapillarityriseforunbleachedoxygendelignifiedpulpsandfullybleachedpulpforA)unrefinedandB)4000PFI-refinedpulps. (20g/m2 laboratorytissuehandsheetswereused).
8 C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper
Whenrefiningisapplied,thefastestwaterriseisforthe commercialfullybleachedpulp,whiletheoxygendelignified pulpslandinlowerwaterrising,especiallyfortheK29_O10.
3.5Mechanicalproperties
3.5.1Drytensileproperties
Thereferencefullybleachedpulppresentedamuchlower tensileindexthantheunbleachedoxygendelignifiedpulps –Figure7A.Thedifferenceinthetensileindexisevenmore significantforunrefinedpulps.Thisiscausedbythedifferent chemistryofthefullybleachedandunbleached fibersandthe harsherindustrialtreatmentthatthefullybleachedpulpwas subjectedto.Theoxygendelignifiedpulpsobtainedahigher tensileindex.Alltheunrefinedoxygendelignifiedpulps,obtainedsimilartensileindex(between74and83Nm/g)and higherbulk(1.55–1.45cm3/g)whencomparedtothereference fullybleachedpulprefinedwith2000PFI-revolutions(72Nm/g and80g/cm3).Forhigherrefininglevels,theunbleachedpulps continuedtopresenthighertensileindexvaluesthanthe referencepulp.Theresultsshowedthatoxygendelignification pulpsobtainsimilarabsorptionpropertieswithmuchhigher tensilestrengththanfullybleachedpulps,withlowerrefining energyrequired.
Theincreaseinpaperstrengthwassurelyachieved bytheincreaseininternalandexternal fi brillationinthe re fi ningstep.Re fi ningbreakssomeinnerbondsinthe fi berswall,makingthemmore fl exibleandswellable,
leadingtobetter fi berbonding(Gharehkhanietal.2015; Kullander2012;MaloneyandPaulapuro1999).However, forthefullybleachedpulps,theincreaseinthetensile indexseemstobemorein fl uencedbytheincreaseof sheetdensi fi cationduetore fi ning,ratherthantheincreaseinthe fi berbondingstrength.Oxygendeligni fi ed pulpspresentedhigherstrengthforsimilarbulk comparedtothereferencepulp.Thissuggeststhataless bondedareaisneededtoaccomplishacertainstrength. Nordström(2014)andEstevesetal.(2021b)havepreviouslyreportedsimilarresults,wherepulpswithhigher lignincontentobtainedahighertensileindextoagiven lowdensity.
FromFigure7B,itisinterestingtohighlightthatthe oxygendelignifi edpulpshaveasignifi cantlyhigher strengthforsimilarabsorptioncapacity.Asseenforthe otherproperties,thesamplesK61_O25andK61_OO18presentedthebeststrengthandabsorptionperformance,as showninFigure4.
3.5.2Wettensileproperties
Cellulose-basedmaterialssuchastissueproductsare highlysensitivetohumiditysincecellulosemoleculeshold alargenumberofhydroxylgroups.Paperis,therefore,a hydrophilicmaterial;whenincontactwithwateror moisture,itstartstoswell,breakingdownthehydrogen bondsandlosingitsstructure.Therefore,thewetstrength becomescriticalfortissuepapersexposedtowaterand moisture.

Figure7: TensileindexforthereferenceandoxygendelignifiedpulpsasafunctionofA)bulk(60g/m2 laboratorytissuehandsheetswereused)and B)absorptioncapacity(20g/m2 laboratorytissuehandsheetswereused).Theincreaseintensilestrengthforeachpulpsampleisobtainedbyincreased refining.
C.V.G.Esteves:Oxygendeligni
Wettensilestrengthisoneoftheimportantproperties oftissueproductssincetheyshouldberesistantand maintaintheirstructurewhenwetted.Figure8presents thewettensileindexfortheoxygendelignifiedpulpsand thereferencefullybleachedpulp.Thewettensileindexfor

Figure8: Wettensileindexforthereferenceandoxygendelignified pulpsasafunctionofA)bulk,B)waterretentionvalueandC)absorption capacity.(20g/m2 laboratorytissuehandsheetswereused).
thereferenceunrefinedpulpwasnotpossibletodetermine duetothelackofwetstrengthsincenowetstrengthadditiveswereusedinthisstudy.
Thereferencefullybleachedpulpafter2000and4000 PFIrevolutionsdidnotpresentanincreaseinthewettensile strength(Figure8A).Theunbleachedpulps,ontheother hand,hadanalmostlinearincreaseofthewettensileindex withtherefining,obtainingbetween200and400%higher wettensilethanthereferencefullybleachedpulpforsimilar bulkvalues.
Whenthewettensileindexisseenasafunctionofthe waterretentionvalue,therelationisalmostlinearforthe unbleachedpulps(Figure8B).Thehigherthepulpswelling thehigherthewettensileindex.
Figure8CshowssimilarbehaviourasseeninFigure8A, sincebulkandabsorptioncapacityhavealinearrelationship. Forsimilarabsorptioncapacity(around7g/g),thepulpswith thehigherkappanumber(K109_O47andK109_OO35)present thehighestwetstrength(2.5Nm/g).
Theincreasein fi ber fi brillationand fi berbonding, thatisexpectedfromre fi ning,seemstovanishwhen thepaperiswettedforthecommercialfullybleached pulp.Theunre fi nedunbleachedpulpspresentedwet tensilestrengthinthesamerangeasthecommercial fullybleachedpulpwhenitwasre fi nedwith2,000and 4,000revolutions,withmuchhigherbulk.Thehigherwet strengthseenfortheunbleachedpulpsshowsagreat potentialfortowelpapers,forexample,wheretheycan stillhaveahighabsorptioncapacityandhigherstrength.
Whenthestrengthvaluesareplottedasafunctionof thekappanumbertherelationisclear:higherlignincontentinthepulpsleadstohigherwettensilestrength (Figure9).Someoldlaboratorystudieshavealsoshowna connectionbetweenhighlignincontentandincreasedwet strength(Gunnarsson2012).Figure9Bshowsthefairly linearrelationofthepulps ’ relativestrengthandlignin content.
Theseresultsshowthepotentialofusingpulpswithhigh lignincontenttoincreasethewetstrengthofthetissue products.Theequilibriumbetweenwetstrengthandabsorptioncapacityofunbleachedtissueproductscanbe alteredbytheoxygendelignificationconditionsandbythe startingkappanumberofthepulps.
3.6Softness
Softnesscanbedescribedasthehumanperceptionof somethingthatisbulkyanddelicatewithnosharpedges. However,itisalsoaquitecomplexphenomenontoevaluate andquantify.Softnessdependsonseveralfactors,suchas
10 C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper

Figure9: Strengthpropertiesforthereferenceandoxygendelignifiedpulpsatdifferentlevelsofrefiningasafunctionofkappanumber.A)Wettensile indexandB)relativestrength.(20g/m2 laboratorytissuehandsheetswereused).ThenumbersonthetopofthesymbolsingraphA)arethetotal fiber chargeofthesamples.Thevaluesareinmeq/kg.
individualsensibility,bulk, flexibility,thickness,among others.Softnessisconsideredoneofthemostessential propertiesoftissueproducts(deAssisetal.2018).
ThestudiedsampleswereevaluatedusingtheTissue SoftnessAnalyzer(TSA),whichisclaimedtogivea perceptionofthesample ’ ssoftness(Figure10).ThesoftnesscanbeestimatedbytheTS7parameter,wherelower TS7valuesareattributedtohighersoftness(deAssisetal. 2020).
Theunbleachedpulps(K61_O25andK61_OO18)presentedsimilarTS7valuesforslightlyhigherbulkasthe referencepulpwhennore fi ningwasapplied.Thehighest andlowestkappasamplesalsoobtainedasimilarTS7 valueasthereferencebutforlowerbulkvalues.TheincreaseinTS7withre fi ningwasexpectedsincethehigher strengthisusuallyassociatedwithlowersoftness(Debnathetal.2021;Scottetal.1995).Thus,anincreased strengthresultsinimpairedsoftnessandviceversa (Figure10BandC).
Anincreaseinthepaperstrengthisgenerallyfollowed byadecreaseinsoftness(Salemetal.2023).However,itcan beseenthatunbleachedpulpspresentedsimilarsoftness levelswithmuchhigherwetanddrystrength(Figure10B andC).Figure10Bshowsthatoxygendeligni fi edpulps, whennotre fi ned,presenthigherwetstrengthforlower TS7values(highersoftness).Whenthepulpsarere fi ned, thewetstrengthsigni fi cantlyincreaseswithoutvaryingthe TS7factorsignifi cantly(K109_O47andK109_OO35).Quite
similarbehaviorwasseenforthedrystrength – Figure10C. Theoxygendelignifi edpulpsevenshowedslightlybetter softnessatspeci fi ctensilestrengththancommercially bleachedpulp.Unfortunately,thesoftnessmeasurements throughtheTSAequipmentcomewithasigni fi cantlylarge standarddeviationforsomesamples,whichgivessome uncertaintyaboutthesoftnesscomparisonbetweenthe samples.
4Conclusions
Thisworkshowedthepotentialofusingoxygendelignified pulpsasareplacementforfullybleachedpulps.Comparedto thecommercialfullybleachedpulp,similarabsorptionand muchhighertensilestrengthwereobtainedfortheoxygen delignifiedpulps,especiallyforunrefinedpulps.Twoofthe oxygendelignifiedpulps(K61_O25andK61_OO18)achieved similarabsorptioncapacityandfasterwaterrisingwith higherbulkwhencomparedtocommercialpulp.Significantly higherwetstrengthandhigherstrengthratiowereobtained fortheoxygendelignifiedpulps,especiallyforthepulpswith thehighestlignincontent.Theoxygenpulpsshowedsimilar softnesslevelsforhighertensilestrength.Lignincontentwas seentohaveanimpactontheWRVbutnoeffectonabsorptioncapacityorcapillaryrising,whichonlydependedonbulk. Asexpected,whentheoxygendelignificationstartswitha kraftcookedpulpwithalowkappanumbertheincreasein
C.V.G.Esteves:Oxygendeligni

Figure10: Softnessforunbleachedoxygendelignifiedpulpsandfully bleachedpulpasafunctionof,a)bulk,b)wetandc)drytensileindex (20g/m2 laboratorytissuehandsheetswereused).
the fiberchargesisnotmaximizedasinthehigherkappa numberpulpsandthereforenosignificantbenefitwasseen. Thehigherwetstrengthandsimilarabsorptioncapacity seenfortheoxygenunbleached fiberswillbesuitablefor differenttypesoftissueproducts,makingthemamoresustainableoptionthanthefullybleached fibers,sincenobleachingwouldbenecessary.Nevertheless,otherconsiderations mustbeconsideredandstudiedfurther,suchasthepossibly higherenergyconsumptioninthedryingpapersection.
Acknowledgments: Theauthorgratefullyacknowledges “ SödraSkogsägarnasStiftelseförForskning,Utvecklingoch Utbildning ” forthe fi nancialsupportofthisproject2022–297.TheauthorwouldalsoliketoacknowledgeMikaela Kubatforthecooking,oxygendelignifi cationand fi ber chargemeasurements.FredrikAdåsandLadanFouladiare alsoacknowledgedfortheirguidanceandcommentsonthe tissuetesting.ElisabetBrännvallandAronTysénare acknowledgedforreadingandcommentingonthe manuscript.
Researchethics: Notapplicable.
Authorcontributions: Theauthorhasacceptedresponsibilityfortheentirecontentofthismanuscriptandapproved itssubmission.
Competinginterests: Theauthorstatesnocon fl ictof interest
Researchfunding: SödraSkogsägarnasStiftelseförForskning, UtvecklingochUtbildning,2022–297.
Dataavailability: Therawdatacanbeobtainedonrequest fromthecorrespondingauthor.
References
Beuther,P.D.,Veith,M.W.,andZwick,K.J.(2010).Characterizationof absorbent flowrateintowelandtissue. J.Eng.FiberFabr. 5,https://doi. org/10.1177/155892501000500201.
Brännvall,E.,Larsson,P.T.,andStevanic,J.S.(2021).Changesinthecellulose fiberwallsupramolecularstructureduringtheinitialstagesof chemicaltreatmentsofwoodevaluatedbyNMRandX-rayscattering. Cellulose 28:3951–3965,https://doi.org/10.1007/s10570-021-03790-1.
Brito,A.,Suarez,A.,Pifano,A.,Reisinger,L.,Wright,J.,Saloni,D.,Kelley,S., Gonzalez,R.,Venditti,R.,andJameel,H.(2023).Environmentallife cycleassessmentofpremiumandultrahygienetissueproductsinthe UnitedStates. BioResources 18:4006–4031,https://doi.org/10.15376/ biores.18.2.4006-4031.
Brodin,F.W.andTheliander,H.(2012).Absorbentmaterialsbasedonkraft pulp:preparationandmaterialcharacterization. BioResources 7, https://doi.org/10.15376/biores.7.2.1666-1683.
Buchert,J.,Bergnor,E.,Lindblad,G.,Viikari,L.,andEk,M.(1997). Significanceofxylanandglucomannaninthebrightnessreversionof kraftpulps. TappiJ.80:165–171.
Chai,X.-S.,Hou,Q.,andZhu,J.(2003).Carboxylgroupsinwood fibers.2.The fateofcarboxylgroupsduringalkalinedelignificationandits applicationfor fiberyieldpredictioninalkalinepulping. Ind.Eng. Chem.Res. 42:5445–5449,https://doi.org/10.1021/ie0209733.
Dang,Z.,Elder,T.,andRagauskas,A.J.(2006).Influenceofkraftpulpingon carboxylatecontentofsoftwoodkraftpulps. Ind.Eng.Chem.Res. 45: 4509–4516,https://doi.org/10.1021/ie060203h.
deAssis,T.,Pawlak,J.,Pal,L.,Jameel,H.,Reisinger,L.W.,Kavalew,D., Campbell,C.,Pawlowska,L.,andGonzalez,R.W.(2020).Comparison betweenuncrepedandcrepedhandsheetsontissuepaperproperties usingacrepingsimulatorunit. Cellulose 27:5981–5999,https://doi. org/10.1007/s10570-020-03163-0.
deAssis,T.,Reisinger,L.W.,Pal,L.,Pawlak,J.,Jameel,H.,andGonzalez,R.W. (2018).Understandingtheeffectofmachinetechnologyandcellulosic fibersontissueproperties–Areview. BioResources 13:4593–4629, https://doi.org/10.15376/biores.13.2.deassis.
Debnath,M.,Salem,K.S.,Naithani,V.,Musten,E.,Hubbe,M.A.,andPal,L. (2021).Softmechanicaltreatmentsofrecycled fibersusingahighshearhomogenizerfortissueandhygieneproducts. Cellulose 28: 7981–7994,https://doi.org/10.1007/s10570-021-04024-0.
Esteves,C.V.(2022). Pulpstrengthenhancementbyoxygendelignification,PhD Compilation.KTHRoyalInstituteofTechnology,Stockholm. Esteves,C.V.,Brännvall,E.,Östlund,S.,andSevastyanova,O.(2020). Evaluatingthepotentialtomodifypulpandpaperpropertiesthrough oxygendelignification. ACSOmega 5:13703–13711,https://doi.org/10. 1021/acsomega.0c00869.
Esteves,C.V.,Sevastyanova,O.,Östlund,S.,andBrännvall,E.(2021a).
Differencesandsimilaritiesbetweenkraftandoxygendelignification ofsoftwood fibers:effectsonchemicalandphysicalproperties. Cellulose 28:3149–3167,https://doi.org/10.1007/s10570-021-03713-0.
Esteves,C.V.,Sevastyanova,O.,Östlund,S.,andBrännvall,E.(2021b).
Differencesandsimilaritiesbetweenkraftandoxygendelignification ofsoftwood fibers:effectsonmechanicalproperties. Cellulose 28: 3775–3788,https://doi.org/10.1007/s10570-021-03781-2.
Feber,D.,Granskog,A.,Lingqvist,O.,andNordigården,D.(2020).
Sustainabilityinpackaging:insidethemindsofUSconsumers, Retrieved08-2023,2023,Availablefrom:https://www.mckinsey.com/ industries/paper-forest-products-and-packaging/our-insights/ sustainability-in-packaging-inside-the-minds-of-us-consumers. Fišerová,M.,Gigac,J.,Stankovska,M.,andOpalena,E.(2019).Influenceof bleachedsoftwoodandhardwoodkraftpulpsontissuepaper properties. Cell.Chem.Technol. 53:469–477,https://doi.org/10.35812/ cellulosechemtechnol.2019.53.47.
Gharehkhani,S.,Sadeghinezhad,E.,Kazi,S.N.,Yarmand,H.,Badarudin,A., Safaei,M.R.,andZubir,M.N.M.(2015).Basiceffectsofpulprefiningon fiberproperties – areview. Carbohyd.Polym. 115:785–803,https://doi. org/10.1016/j.carbpol.2014.08.047.
Gigac,J.andFišerová,M.(2008).Influenceofpulprefiningontissuepaper properties. TappiJ.7:27–32,https://doi.org/10.32964/tj7.8.27.
Gunnarsson,M.(2012) Decreasedwetstrengthinretortedliquidpackaging board.Master,ChalmersUniversityofTechnology.Göteborg,Sweden. Haller,K.,Lee,J.,andCheung,J.(2020). Meetthe2020consumersdriving change.IBMInstituteforBusinessValue,Availableonline: https://www.ibm.com/downloads/cas/EXK4XKX8(Accessedon29 March2021).
Hartman,R.R.(1985). Mechanicaltreatmentofpulp fibresforproperty development,PhD.Appleton,USA. Jour,P.,Halldén,K.,andWackerberg,E.(2013).Environmentalsystems analysisofalternativebleachingsequenceswithfocusoncarbon footprint.In: ProceedingsoftheABTCP,the46thABTCPinternationalpulp andpapercongress.©2013ABTCP,SaoPaulo,Brazil. Joutsimo,O.P.andAsikainen,S.(2013).Effectof fiberwallporestructureon pulpsheetdensityofsoftwoodkraftpulp fibers. BioResources 8: 2719–2737,https://doi.org/10.15376/biores.8.2.2719-2737. Kang,T.(2007). Roleofexternal fibrillationinpulpandpaperproperties,PhD. HelsinkiUniversityofTechnology,Espoo. Katz,S.,Beatson,R.P.,andScallon,A.M.(1984).Thedeterminationofstrong andweakacidicgroupsinsulfitepulps. Svenskpapperstidn 87:48–53. Kim,J.J.,Shalev,I.,andBarker,R.L.(1994).Softnesspropertiesofpaper towels. TappiJ.77:83–89. Kullander,J.(2012). Evaluationoffurnishesfortissuemanufacturing,Ph.D. Karlstad,Karlstadsuniversitet. Lumiainen,J.(2000).Refiningofchemicalpulp. Papermakingpart 1:86–122. Mai,J.(2021). Developmentofpulp fiberchargeinoxygendelignificationof softwood,Masterdegree.KTH,Stockholm. Maloney,T.andPaulapuro,H.(1999).Theformationofporesinthecellwall. J.PulpPap.Sci. 25:430–436. Man,Y.,Li,J.,Hong,M.,andHan,Y.(2020).EnergytransitionforthelowcarbonpulpandpaperindustryinChina. RenewableSustainableEnergy Rev. 131:109998,https://doi.org/10.1016/j.rser.2020.109998. Mohlin,U.-B.andAlfredsson,C.(1990).Fibredeformationandits implicationsinpulpcharacterization. Nord.PulpPap.Res.J.5:172–179, https://doi.org/10.3183/npprj-1990-05-04-p172-179.
Morais,F.P.andCurto,J.M.(2022).Challengesincomputationalmaterials modellingandsimulation:acase-studytopredicttissuepaperproperties. Heliyon 8:e09356,https://doi.org/10.1016/j.heliyon.2022.e09356. Morais,F.P.,Carta,A.,Amaral,M.E.,andCurto,J.M.(2021).Cellulose fiber enzymaticmodificationtoimprovethesoftness,strength,and absorptionpropertiesoftissuepapers. BioResources 16:846–861, https://doi.org/10.15376/biores.16.1.846-861.
Nordström,B.(2014).Unbleachedlinerboardkraftpulpswithdifferent kappanumber(yield)–effectsontensilepropertiesandcompression strengthwithfreeorrestraineddrying. Nord.PulpPap.Res.J.29: 462–467,https://doi.org/10.3183/npprj-2014-29-03-p462-467.
Rebola,S.M.,Azevedo,C.A.,andEvtuguin,D.V.(2021).E ffectofcooking andbleachingconditionsonthepropertiesofeucalyptuskraft fl uff pulps. Cellulose 28:4411 –4426,https://doi.org/10.1007/s10570-02103789-8.
Salem,K.,Jameel,H.,Lucia,L.,andPal,L.(2023).Sustainablehigh-yield lignocellulosic fibersandmodificationtechnologieseducingsoftnessand strengthfortissuesandhygieneproductsforglobalhealth. Mater.Today Sustainability 22:100342,https://doi.org/10.1016/j.mtsust.2023.100342. Schuchard,D.R.andBerg,J.C.(1991).Liquidtransportincompositecellulose superabsorbent fibernetworks. WoodFiberSci.:342–357. Scott,W.E.,Abbott,J.C.,andTrosset,S.(1995).Thepropertiesofcreped tissuepapers.In: Propertiesofpaper:anintroduction.TAPPI,Atlanta, GA,pp.179–185.
Sedin,M.F.,F.andVomhoff,H.(2017).Theinfluenceofabsorptiondirection ontheabsorptioncapacityofkitchentowel. InnventiaResearch Programme:2015–2017,InnventiaReport973.
Sjöstedt,A.,Wohlert,J.,Larsson,P.T.,andWågberg,L.(2015).Structural changesduringswellingofhighlychargedcellulose fibres. Cellulose 22:2943–2953,https://doi.org/10.1007/s10570-015-0701-4.
C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper 13
Snowman,V.R.,Genco,J.M.,Cole,B.J.,Kwon,H.B.,andMiller,W.J.(1999). Bondstrengthofoxygen-deligni fi edkraftpulps. TappiJ .82: 103 – 109.
Tao,L.,Genco,J.M.,Cole,B.J.,andFortJr,R.C.(2011).Selectivityofoxygen delignificationforsouthernsoftwoodkraftpulpswithhighlignin content. TappiJ.10:29–39,https://doi.org/10.32964/tj10.8.29. Yang,R.,Lucia,L.,Ragauskas,A.J.,andJameel,H.(2003).Oxygen delignificationchemistryanditsimpactonpulp fibers. J.WoodChem. Technol. 23:13–29,https://doi.org/10.1081/wct-120018613. Zambrano,F.,Marquez,R.,Vera,R.,Jameel,H.,Venditti,R.,andGonzalez,R. (2022).Developingalternative,high-absorbencyBrown fibers:tissue paperfromupcycledcorrugatedpackagingwastetomeetnew
consumertrends. ACSSustain.Chem.Eng. 10:13343–13356,https://doi. org/10.1021/acssuschemeng.2c03280.
Zhang,D.,Chai,X.-S.,Hou,Q.,andRagauskas,A.(2005).Characterizationof fibercarboxylicaciddevelopmentduringone-stageoxygen delignification. Ind.Eng.Chem.Res. 44:9279–9285,https://doi.org/10. 1021/ie050489a.
Zhang,D.,Pu,Y.,Courchene,C.,Chai,X.-S.,andRagauskas,A.(2006).Total fibrechargeoffullybleachedSWkraftpulps:acomparativestudy. J.PulpPap.Sci. 32:231–237.
Zhao,C.,Zhang,H.,Zeng,X.,Li,H.,andSun,D.(2016).Enhancingtheinter-fiber bondingpropertiesofcellulosic fibersbyincreasingdifferent fibercharges. Cellulose 23:1617–1628,https://doi.org/10.1007/s10570-016-0941-y.

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Comparison of Degradation of Lignincontaining Wastewaters in the Presence of Different Microbial Consortia
Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
Introduction
Keywords
Chem. Biochem. Eng. Q.

Shinella Cupriavidus Bosea Serratia Yersinia
et al.
et al.
Chem. Biochem. Eng. Q.
Materials and methods
Materials
Shinella Cupriavidus Bosea Bacillus Rhodococcus Serratia Yersinia Astragalus membranaceus Fritillaria cirrhosa, Angelica sinensis
Culture media and model wastewater
Domestication of the microorganisms
Chem. Biochem. Eng. Q.
Analysis methods
Wastewater treatment and conditions optimization
– Experimental design for wastewater treatment conditions
Chem. Biochem. Eng. Q.
Chem. Biochem. Eng. Q.
Statistical analysis
Results and discussion
Conditions optimization and analysis of wastewater degradation effect
Effect of treatment time on degradation
3.1.2 Effect of temperature on COD removal
– Degradation of lignin-containing wastewater by different microorganisms
Chem. Biochem. Eng. Q.

– Effect of treatment time on lignin-containing wastewater treatment (a: traditional Chinese medicine wastewater; b: papermaking wastewater)

– Effect of temperature on lignin-containing wastewater treatment (a: traditional Chinese medicine wastewater treatment by J-6; b: traditional Chinese medicine wastewater treatment by J-1; c: papermaking wastewater treatment by J-6; d: papermaking wastewater treatment by J-1)
Effect of pH on COD removal
Effect of dissolved oxygen on COD removal
Chem. Biochem. Eng. Q.
Effect of wastewater concentration on COD removal
Chem. Biochem. Eng. Q.



– Effect of different factors on the treatment of lignin-containing wastewater (a: effect of pH on traditional Chinese medicine wastewater treatment; b: effect of pH on papermaking wastewater treatment; c: effect of DO on traditional Chinese medicine wastewater treatment; d: effect of DO on papermaking wastewater treatment; e: effect of wastewater concentration on traditional Chinese medicine wastewater treatment; f: effect of wastewater concentration on papermaking wastewater treatment)
Effect of nitrogen source addition on papermaking wastewater treatment
Chem. Biochem. Eng. Q.
et al. et al.

– Effect of nitrogen source addition on papermaking wastewater treatment (a: average removal efficiency of COD under different nitrogen addition; b: effluent ammonia nitrogen concentration under different nitrogen addition)
Consortium structure and diversity analysis
Analysis of consortium diversity and composition
Chem. Biochem. Eng. Q.
– Bacterial community diversity in different samples
Sphingomonas Rhodoplanes Lactobacillus Pseudomonas Serratia Ralstonia
Rhodoplanes Pseudomonas Serratia Lactobacillus Ralstonia
Bacteroides
Rhodoplanes
Sphingomonas Rhodoplanes
Rhodoplanes
Rhodoplanes
Sphingomonas
Sphingomonas
Sphingomonas
Chem. Biochem. Eng. Q.

– Bacterial community composition of different wastewater treatment systems (T: traditional Chinese medicine wastewater; P: papermaking wastewater)
Serratia Ralstonia Pseudomonas Lactobacillus Rhodoplanes Geobacter
Serratia Sphingomonas
Pseudomonas Lactobacillus Ralstonia
et al.
Serratia
Serratia
Serratia
Serratia
Serratia
Chem. Biochem. Eng. Q.

– Microscopic examination of lignin degradation microbial consortia in different wastewater treatment systems (a: traditional Chinese medicine wastewater treatment by J-1; b: papermaking wastewater treatment by J-1; c: traditional Chinese medicine wastewater treatment by J-6; d: papermaking wastewater treatment by J-6)
Microorganism correlation analysis
Serratia
Rhodoplanes Sphingomonas, Pseudomonas
Serratia Geobacter Lactoba-
Biochem. Eng. Q.

– Correlation between different species in the lignin-containing wastewater treatment systems
cillus Serratia Geobacter Lactobacillus
Conclusion
DECLARATION OF COMPETING INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
ACKNOWLEDGMENTS
This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ20B060004, Zhejiang Shuren University project (2019R017) and Zhejiang Shuren University Basic Scientific Research Special Funds (2021XZ016).
References
Jin, H., Xu, C., Yang, L., Qu, G., Peng, J.,
Chen, J., Zhang, B., Luo, L., Zhang, F., Yi, Y., Shan, Y., Liu, B., Zhou, Y., Wang, X., Lü, X.,
Zhang, W., Diao, C., Wang, L.,
Singh, A. K., Bilal, M., Iqbal, H. M. N., Meyer, A. S., Raj, A.,
Kumar, A., Priyadarshinee, R., Singha, S., Sengupta, B., Roy, A., Dasgupta, D. M., Mandal, T., Bacillus flexus
Li, N., An, X., Xiao, X., An, W., Zhang, Q.,
Zhong, W., Guo, L., Ji, C., Dong, G., Li, S.,
Huang, C., Huang, Z.-Y., Hu, Y., Li, Z.-X., Wu, Y., Gao, J., Lal, K., Garg, A.,
Yaser, A. Z., Cassey, T. L., Hairul, M. A., Shazwan, A. S.,
Li, C., Chen, C., Wu, X. F., Tsang, C. W., Mou, J. H., Yan, J. B., Liu, Y., Lin, C. S. K.,
Chen, Z.-B., Hu, D.-X., Ren, N.-Q., Tian, Y., Zhang, Z.-P.,
Chem. Biochem. Eng. Q.
Liang, J., Mai, W., Wang, J., Li, X., Su, M., Du, J., Wu, Y., Dai, J., Tang, Q., Gao, J., Liu, Y., Tang, J., Wei, Y.
Kong, Z., Li, L., Li, Y.-Y.,
Ma, X.-C., Li, X.-K., Wang, X.-W., Liu, G.-G., Zuo, J.-L., Wang, S.-T., Wang, K.,
Huang, X., Zhou, T., Chen, X., Bai, J., Zhao Y.,
Zhang, W., Ren, X. H., He, J., Zhang, Q. R., Qiu, C., Fan, B. M.,
Da Re, V., Papinutti, L.,
Chen, Z., Wan, C. X.,
Zhang, W., Ren, X., Lei, Q., Wang, L.,
Ling, Q., Kong, Y., Wu, C., Wang, M., Wang, Y., Yan, N.,
Anderson, J. P. E., Domsch, K. H.,
Chang, Y.-C., Choi, D., Takamizawa, K., Kikuchi, S., Bacillus
He, J., Zhang, W., Ren, X. H., Xing, L. F., Chen, S. Q., Wang, C.,
Chris, F. S., Aswin, K. N., Thilagam, R., Chandralekha, A., Raghavarao, K. S. M. S., Gnanamani, A., Bacillus lichenformis
Baghel, S., Sahariah, B. P., Anandkumar, J.,
Chen, H., Chang, S.,
Tucci, M., Viggi, C. C., Núñez, A. E., Schievano, A., Rabaey, K., Aulenta, F.,
Chem. Biochem. Eng. Q.
Merry, R. J., McAllan, A. B., Smith, R. H.,
Ren, L. F., Chen, R., Zhang, X., Shao, J., He, Y.,
Shinde, R., Shahi, D. K., Mahapatra, P., Naik, S. K., Thombare, N., Singh, A. K.,
Sun, Q., Qiu, H., Hu, Y., Wei, X., Chen, X., Ge, T., Wu, J., Su, Y.,
Mate, D. M., Alcalde, M.,
Xie, X. G., Dai, C. C., Phomopsis liquidambari
Liang, W., Huang, S. B.,
Holenda, B., Domokos, E., Rédey, Á., Fazakas, J.,
Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., Ozturk, I.,
He, Y., Xu, P., Li, C., Zhang, B., Gentili, F. G.,
Zhong, Y., Luan, T., Wang, X., Lan, C., Tam, N. F. Y., Sphingomonas
Zhang, J., Li, X., Lei, H., Zhao, R., Gan, W., Zhou, K., Li, B., Sphingomonas
Moraes, E. C., Alvarez, T. M., Persinoti, G. F., Tomazetto, G., Brenelli, L. B., Paixão, D. A. A., Ematsu, G. C., Aricetti, J. A.,
Singh, A. K., Yadav, P., Bharagava, R. N., Saratale, G. D., Raj, A., Serratia liquefaciens
Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G., Bushman, F. D., Knight, R., Kelley, S.,

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Which Wastepaper Should Not Be Processed?
Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
sustainability
Article
WhichWastepaperShouldNotBeProcessed?
EdytaMałachowska 1,2, *,AnetaLipkiewicz 1 ,MarcinDubowik 1 andPiotrPrzybysz 1,2
1 NaturalFibersAdvancedTechnologies,42ABlekitnaStr.,93-322Lodz,Poland


Citation: Małachowska,E.; Lipkiewicz,A.;Dubowik,M.; Przybysz,P.WhichWastepaper ShouldNotBeProcessed?
Sustainability 2023, 15,2850. https://doi.org/10.3390/su15042850
AcademicEditors:JianxinJiang, JunHuandHailongYu
Received:26November2022
Revised:13January2023
Accepted:2February2023
Published:4February2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).
* Correspondence:edyta_malachowska@sggw.edu.pl;Tel.:+48-22-59-385-45


2 InstituteofWoodSciencesandFurniture,WarsawUniversityofLifeSciences-SGGW,159Nowoursynowska Str.,02-787Warsaw,Poland
Abstract: Inthe21stcentury,numerouseconomicandenvironmentalinitiativeshavesignificantly increasedpaperrecycling,whichcontinuestoexpandduetoenvironmentalawareness.Withincreasingrecyclingrate,low-qualitypaperfractionsmaybeincludedintheprocess,leadingtothe overproductionofverylow-valuepapersthatcannotbereprocessed.Moreover,theproductionof paperfrompoor-qualitywastepapercanresultintheintroductionofchemicalsfromtherecycled paperintotherecyclingloopandunintendedspreadofchemicalsubstances.Therefore,reliable andconsciousselectionofrecycledpulpisimperative.Tothisend,thepresentstudyverifiedthe propertiesofrecycledpulpcriticalfortheassessmentofitspapermakingabilityfortheproduction ofhigh-qualitysanitarypaper.Followinganexaminationofsamples,itwasfoundthatthekey parametersthatinfluencethepapermakingabilityofwastepaperincludepresenceofimpurities, contentofextractivesubstances,freeness,andlengthoffiber.Onthisbasis,typesofwastepaperthat, attheverybeginning,didnotportendwellforobtainingpaperproductswithhighpotentialfor utilitywereeliminated.
Keywords: wastepaper;recycling;papermakingability;wastemanagement
1.Introduction
Recoveredfibrousrawmaterialsfrompaperproductshavelongbeenusedforsecondarypulpproduction[1–4].Forseveralcenturies,productsofinadequatequality,unsuitableforfurtheruseorwithdrybreaks,havebeenusedasinputmaterials.Withgrowing demandforpaper,however,theprocessingofusedpaperproducts,calledwastepaper,has becomeincreasinglysignificantforobtainingfibrousrawmaterials.Currently,thepulpand paperindustryusessecondarypulpasanindispensableproductioninput.Theglobalpaper recyclingratestandsatapproximately58%[5–8].Insomeofthemoredevelopedcountries, therecyclingrateofwastepaperhasreachedashighas70–75%ofthetotalamountof wastepapergeneratedatthenationalscale[9].Inparticular,Europestandsoutwiththe highestpaperrecyclingrateintheworld(72%),followedbyNorthAmerica,whereas Asia,LatinAmerica,andAfricahavethelowestrecyclingrates[10].Manycountrieshave unceasinglysoughttoincreasethisratebyimplementingmeasurestooptimizeactivities fromthebeginningofpaperproductionuntilitsuse,collection,andrecycling.
Paperanditswasteareeasilydegradable,andtheresultingcellulosefiberscanbe recycleduptoseventimes[11,12].Therefore,usefulpaperwastemustberecycled.Efficient wastepaperrecyclingplaysasignificantroleinbuildingasustainableenvironment,offering severalbenefitsoverthepaperlifecycle[13,14].Sensiblepaperrecyclingsavesenergy, water,andlandfillareas.Moreover,wastepaperrecyclingsavesvirginfiberinputduring paperproduction.Asopposedtochemicalpulpingofwoodfromvirginpulp,wastepaper pulpinggeneratesnowoodwasteordissolvedchemicalsforenergygeneration[15].Moreover,paperrecyclingreducestheemissionsofCO2 ,NO2 ,andSO2 intheairanddecreases waterpollutioncausedbychlorinecompoundsfrombleachingandchemicals[16].In
general,recyclingandretreatmentofpaperimpactsustainability,particularlytheeconomy, environment,andsociety.
Whilstthepaperrecyclingratecanundoubtedlybefurtherincreasedinmostcountries, thequalityofwastepapermayeventuallydecreaseasincreasingnumbersofmarginalpaper fractionsaregatheredforrecycling.However,increasingthepaperrecyclingraterequires theuseofrecycledfibersfromhigh-qualitypaper.Thisiscrucialsincethemechanical andprintingpropertiesofthematerialdeteriorateeverytimeitisrecycledowingto thelimitednumberofrecyclingrounds[17–21].Thesefibersareshortenedandtheir swellingandflexibilitypropertiesdeteriorate.Poor-qualitywastepapernotonlyreducesthe papermakingabilityofpulpbutisalsoassociatedwithincreaseduseofchemicaladditives andfillers,whichproducelargequantitiesofby-products,creatingmajorenvironmental andeconomicchallenges[22].Moreover,poor-qualityrecycledfibersincreasethecontent ofinjurioussubstancesinpaper[23–25].Inthiscontext,systematicanalysisofpaper pulpisessentialtoprovideabasisforfurtherevaluationofthequalityofwastepaperas aresourceaswellastoidentifyappropriateprocessingmethodsforensuringthatthe resultingrecycledpulpmeetstheexpectationsofpapermakersand,ultimately,consumers. Thisisparticularlyapplicabletosanitarypapers,whichmustbenotonlystrongbutalso absorbentandsoft.Inaddition,consumersrequireacertainqualityofwhitenessand brightness.Thus,recyclablewastepapercanbesegregatedintovariousgradestofacilitate theproductionofhigh-qualityproducts.Bydividingtherecyclablepaperwasteaccording toitspropertiesandcomparingthemwiththecharacteristicsofthedesiredfinalproduct, paperwastecanberecycledmoreefficiently.Inaddition,ahighlysortedpaperstream facilitatestheproductionofhigh-qualityendproducts;savesprocessingchemicals,water, andenergy;andreducestheamountofsludgeandrejectsgeneratedduringwastepaper processing.Removingcontaminantsfromwastepaper,ensuringpapermakingability,and maintainingconsistentqualitywhilstlimitingtheenvironmentalfootprintofproductshave becomeamajorgoalandchallengeintheindustry.
Thesegoalsandchallengeswereexploredbymanystudiesonpaperrecyclingat theturnofthelastdecade[26–30].Previousresearchmainlyfocusedonthedevelopmentoftechnologiesthatenablethereuseoffibersfromwastepaper,suchasbleaching methods[31–35] offibersanddeinkingtechnologies[36–39].Publicationsonpaperrecyclingpeakedin2000,whichmayhavebeendictatedbytheEuropeandeclarationonpaper recoveryissuedinthatyear[40].Duringthenextdecade,publicationscontinuedtofocus onfiberrecoveryissues[41–45].Inrecentpublications,thetopicofrecoveryofbiomaterialsandbio-refineryfeedstockfromwastepaperprevailed[46–49]since,consideringthe principlesofcirculareconomy,thisisstrategicformitigatingtheongoingclimatechange.
However,theavailableliteraturelacksthoroughanalysesofthepapermakingability ofspecifictypesofwastepaper,alongwiththeverificationofthepossibilityofusingthem fortheproductionofspecifictypesofpaper.Allofthisismoresignificantsince,inpractice, thequalityandcompositionofwastepaperdeliveredtopapermillsoftendifferfrom expectations,andthespecifictypesofwastepaperdonotmeettherequirementsinthe respectivestandards.Therefore,inthepresentstudy,wedeterminedthepapermaking abilityofawiderangeofwastepaperprocessedinaselectedpapermillandverifiedthe possibilityofusingthemfortheproductionofhigh-qualitysanitarypaper.Theresearchin thearticlecontributesfurthertothemethodsofassessmentofwastepaperforthepaper production.
2.MaterialsandMethods
2.1.Materials
Thefollowingmaterialswereselectedfromthepapermillforresearch:
• Whitewastepaper,includingproductsofbleachedpulps,scrapsofwood-freepaper, littleprinted,noglue,nowaterproofpaper,andnocoloredpaper(ranked3.04accordingtotheEN643‘ListofEuropeanstandardtypesofwastepaper’[50])(seven samples).
• Mixedwastepapercomposedofunsortedwastepaper,formallyclassifiedastheentire spectrumofthesecondtypeofpaper,thatismedium-sizedvarieties.Theseincluded newspapersandprintedofficewastepaper,amongothers(ranked3.19accordingto theEN643‘ListofEuropeanstandardtypeswastepaper’)(fivesamples).
Thewastepaperwascrushedmanually(piecesofapproximately2–5cm)andmixed toensurethatthesamplewasmixedhomogeneously.Thewastepaperpreparedinthisway wasplacedinthedescribedPPfoilbags,whichweresubsequentlystoredinbarrelswith tightcoverstoprotectthesamplesfrommoistureandcontamination.Aftermechanical shredding,thewastepapersampleswerepackedintightcontainersandstoredataconstant temperatureofapproximately15 ◦ C.
2.2.Non-FibrisedSubstancesandChemicalAnalysisofPulp
Todeterminetheamountofnon-fiberizedsubstancesinthetestedwastewater,the rewettedpulpsamples(22.5gdryweightsamplessoakedinwaterfor24h)weresubjected todisintegrationusingalaboratoryJACSHPD28Dpropellerpulpdisintegrator(Danex, Katowice,Poland)with23,000revolutionsfollowingISO5263-1(2004).Non-defibered substancesversusfibersandwaterwereremovedusingamembranescreener(PS-114; Danex,Katowice,Poland)atanamplitudeof25mmandafrequencyof2Hz.Thescreener isequippedwithagapscreen(gapwidth=0.50mm).
Toidentifythedissolvedsubstancesinthetestedwastepapersamples,theassociation betweentheamountofoxygenrequiredfortheoxidationoforganicsubstancesinthetested samplesandthatofsolublesubstanceswasused.TheMERCKCODtestwasappliedto quantifythesesubstances.Organiccompoundswereoxidizedfollowingthemanufacturer’s instructions.Theamountofoxygenconsumedtooxidizethesesubstanceswasdetermined usingaspectrophotometer(UV-1280;Shimadzu,Japan)at620nm.
Analysesofthechemicalcompositionofcellulosicpulpincludedthequantificationof ash,extractives,holocellulose,andlignin.Ashcontentwasdeterminedusingagravimetric methodincompliancewiththeTappiT211standard(ashinwood,pulp,paper,and paperboard;combustionat525 ◦ C).Theamountsofextractivesweredeterminedaccording totheTappiT204standard(solventextractivesfromwoodandpulp).Holocellulosecontent wasdeterminedaccordingtoTappiUsefulMethod249(celluloseinpulp).Asindicatorsof lignincontentinthepulp,kappanumbersfordriedpulpswereexaminedaccordingtoISO 302(2015).Theaveragepolymerizationdegreeofcellulose(DP)inthepulpwasdetermined usingviscometryfollowingISO5351(2010).Allchemicalanalyseswereperformedin triplicateforeachpulpsample.
2.3.AnalysisofFibreandPulpProperties
Pulpswerecharacterizedintermsoffiberdimension,finecontent,waterretention value(WRV),andfreeness.ThedimensionsoffibersweremeasuredaccordingtoISO 16065-2:2014usingtheMorfiCompactBlackEditionapparatus(Techpap,Grenoble,France). WRVwasdeterminedaccordingtoISO23714:2014.Freenesswasmeasuredusingthe Schopper–Rieglerapparatus(Thwing-AlbertInstrumentCompany,WestBerlin,NJ,USA), accordingtoPN-ENISO5267-1(2002).Allanalyseswereperformedonbothunbeatenand refinedpulpsamples.
2.4.PulpRefining
Beforeprocessing,thepulpwassoakedinwaterfor24h.Then,wastewaterwas treatedintheDanexJACSHPD28Dpropellerpulpdisintegrator(Danex,Katowice,Poland) accordingtoPNENISO5263-1(2006)with23,000revolutions.Therefiningprocesswas performedintheDanexJACPFID12XPFImill(Danex,Katowice,Poland),withasingle batchofdriedpulp(22.5g),accordingtoPN-ENISO5264-2(2011).Pulpwasrefinedto 30 ± 1 ◦ SR.
2.5.PreparationofPaperSheets
Laboratorypapersheetswerepreparedfromunbeatenandrefinedpulpsamplesthat hadbeenpreviouslydisintegrated,asdescribedinSection 2.4 Sheetsofpaperwereformed usingtheRapid–KoethenapparatusinaccordancewithPN-ENISO5269-2(2007).Each papersheethadthebasisweightof80g m 2 (ISO536:2012).Onlysheetswithbaseweights between79and81g · m 2 wereusedforfurtherinvestigation.
Thepapersampleswereconditionedat23 ◦ Cand50%relativehumidityaccordingto ISO187:1990foraminimumof24hbeforeexamination.
2.6.AnalysisofPaperProperties
ContaminantsonthetestedpapersurfaceswereassessedusingtheKeyenceVHX6000microscope(Keyence,Belgium)equippedwiththeVH-Z20UTlens(20/200 × magnification).TheOP-72402adapter(ringshape)wasusedforsampleillumination.Image analysis-basedmeasurementsofelementswasperformedusingthemicroscopesoftware. ThesurfacetextureofsampleswastestedunderamicroscopeinaccordancewithISO 25178:2016GeometricalProductSpecifications(GPS).Briefly,basedonthree-dimensional microscopicphotographsofcoatedsurfacepapers,roughnessprofileswereprepared. Specifically,roughnessprofileswereobtainedfromthesurfaceprofilesbyseparatingthe long-wavecomponents(wavinessandshapedeviations)withan λcprofilefilter.The λcprofilefilterdeterminesthetransitionfromroughnesstowaviness,thatis,random orclose-to-periodicinequalities.Thebasicroughnessparameters(SaandSz)describing surfacemicrogeometryandthoserelatedtospecificprofilefeatureswereobtainedfrom theroughnessprofilephotographs.Forroughnessprofiles,Sarepresentsthearithmetic meandeviationoftheroughnessprofilealongthesamplinglength,whilstSzrepresents themaximumroughness(themaximumheightoftheprofileindicatestheabsolutevertical distancebetweenthemaximumprofilepeakheightandmaximumprofilevalleydepth alongthesamplinglength).
Furthermore,theroughnessofpapersurfacewasdeterminedinaccordancewithISO 8791-2:2013withtheTMI58-27BendtsenRoughnessTester(Kontech,Lodz,Poland).Air permeabilitywasdeterminedaccordingtotheISO5636-3:2013withtheTMI58-27Bendtsen RoughnessTester(Kontech,Lodz,Poland).Opticalparametersweredeterminedusingthe X-riteExactspectro-densitometerinaccordancewithISO2470-1:2016.
TheprioritystrengthpropertiesofpapersweredeterminedusingtheZwick005 ProLinetestingmachine(ZwickRoell,Ulm,Germany)coupledwiththetestXpertIIIsoftwareinaccordancewithISO1924-2:2010.Thefollowingtensilepropertiesofpaperwere examined:
• IB :breakinglength[m]
• FB :tensileforceatbreak[N]
• σT b :width-relatedforceatbreak[N m 1 ]
• σT W :forceatbreakindex[Nm g 1 ]
• εT :strainatbreak[%]
• WT b :energyabsorption[J m 2 ]
• WT W :energyabsorptionindex[J · g 1 ]
• Eb :tensilestiffness[N m 1 ]
• Ew :tensilestiffnessindex[Nm g 1 ]
• E*:Young’smodulus[MPa]
Detailedstatisticalanalysiswasperformedonindividualresearchseriestodetermine thefollowingbasicindicators:arithmeticmean,extendeddeviation,andpercentagerelative error.
3.ResultsandDiscussion
Contentsofnon-fiberizedsubstancesinwastepaperpulpsamplesaresummarized inTable 1.Whitewastepaper,describedasnumber3.04inaccordancewiththePN-
EN643:2004standard,containsscrapsofwood-freepaperwithlittleprint,noglue,no waterproofpaper,andnocoloredpaper.Cursoryanalysisofwastepaperrevealedthatmost ofthetestedsamplesdidnotmeettheassumedrequirementstoagreaterorlesserextent. Specifically,thiswastepapercontainedcertainamountsofwoodpaperandpapercolored inmass,andmostofthemcontainedasignificantamountofheavilyprintedpaper.Based ontheresultsoftheseanalyses,thedeliveredwastepapertothemillshouldbeformally characterizedundercategory3.02,thatis,mixedwastepaperwithscrapsofprintingand writingpaper,slightlydyedinmass,containingatleast90%ofwood-freepaper,orunder category3.03,thatis,wastepapercontainingbookbindingscrapsofwood-freepaper(itmay contain10%woodpaperatthemost),withlittleprintandgluebutnopapercoloredinmass. Insummary,thetreatmentofwhitewastepaperaspurelytype3or04isasimplification usedinthetradeofwastepaper.Infact,thistypeofpaperexhibitsaspectrumofproperties.
Table1. Non-fiberizedsubstancesandchemicalcompositionofwastepaperpulps. Wastepaper
White1.1 2.5519.971.602.6767.6749.67376
White1.2 0.0118.121.471.9563.2649.58339
White1.3 0.0016.710.223.2878.335.34840
White1.4 2.6117.601.131.9866.685.28832
Mixed1.5 1.0523.681.102.4670.7745.50531
White2.1 0.7127.270.751.7273.6845.32660
White2.2 0.7924.601.572.4476.7319.38673
Mixed2.3 0.4837.871.416.7470.5839.62376
Mixed2.4 2.4022.921.243.6076.5239.59412
Mixed2.5 1.3527.481.241.3576.9540.15377
Mixed3.1 1.7125.430.500.5971.3816.25611
White3.2 0.3516.900.410.6579.5913.60643
Theseresultsconfirmedthechemicalcompositionoftheexaminedwastepaperpulp, withoutsimpledependenciesonthetypeofwastepaper.Thedegreeofpolymerization affectsthestrengthpropertiesofpaper;thisisduetothefactthatwithadecreasein polymerizationdegree,themechanicalstrengthofcellulosedecreases.Basedontheresults ofouranalyses,despitethehighdegreeofcellulosepolymerization,theselectedwastepaper pulpsdidnotachievethehigheststrengthproperties.Therefore,presenceofimpurities andmanyotherfactorsmayaffectthestrengthofpaperderivedfromrecycledpulp.
Todeterminethecriticalparametersforobtaininghigh-qualityrecycledpulpand ensuringsuitabilityfortheproductionofspecifictypesofpaper,papermakingabilitywas assessed.Thisanalysiscoversawidespectrumoftestsaimedatdeterminingwhethera givenfibrousrawmaterialissuitableforuseinpaperproduction.Papermakingabilityis determinedbasedonmultipleparametersofpulp,includingthechemicalcompositionand propertiesofthefinishedpaper.Theassessmentofpapermakingabilityallowscomprehensivecomparisonofthepropertiesofrecycledpulpsanddeterminationofthetypesof wastepaperthatmaybeuseful.Mostimportantly,thisassessmentidentifiesthetypesthat cannotcertainlybeusedtoobtainproductsofhighutilityvalue.
Toassesspapermakingability,pulpwasrefined,theprimarypurposeofwhichis themaximumdevelopmentofsurfaceareaboundinthepaper.Refiningincreasesthe elasticityofcellulosefibers,therebyimprovingthestrengthandstructural-dimensional propertiesofthefinishedpaper.Simultaneously,however,itcontributestothereduction ofpulpdewatering,whichadverselyaffectstheefficiencyofthepapermakingmachine. Moreover,therefiningprocessishighlyenergyintensive,accountingfornearly50%of theelectricityconsumptionofthepapermill.Previousstudiesandindustrialexperiments haveestablishedthattheoptimumcost,efficiency,andpaperproductpropertiescouldbe
obtainedatalubricityofapproximately30 ◦ SR.Therefore,thepapermakingabilityofthe selectedpulpswasdeterminedafterrefiningfortheSchopper–Rieglerfreenessof30 ± 1 ◦ SR,whichwasexpectedtoensurethemaximumstrengthofpulpsandcontributetoeasy dehydration.Infurtheranalysesofpapermakingability,thepulpsamplesthatdidnot promiseproductswithexcellentfunctionalpropertiesduetotheircharacteristicsatthevery beginningwererejected.Therefore,fromamongstallconsideredwastepapertypes,the pulpsthatwerecharacterizedbyafreenessof>30 ◦ SRintheunrefinedstatewererejected. Inaddition,pulpsamplesinwhichthecontentofextractivesubstancesexceeded1.30% wereexcluded.Owingtotheirhighchemicalreactivityaswellasthesignificantviscosity andadhesionoftheircomponents,extractivesmayhinderthepapermakingprocessinthe formofso-calledresindifficultiesandmaycreateresinstains,visibleasspotsinthefinished products.Inaddition,pulpsampleswithfiberlengthof<900 μmwereexcludedasthey increasestaticstrengthbutdecreasetearresistance.Incontrast,theintermediatefraction lowersthestaticstrengthbutimproveshedynamicstrength.Meanwhile,thelong-fiber fractionimprovesallstrengthpropertiesofthepaper.Alongerfiberlengthincreasesthe tearresistanceandextensibilityofthepaper,whichareparticularlydesirableinthecase ofsanitarypapers.Inthepresentstudy,whitewastepaper1.3,1.4,2.1and3.2andmixed wastepaper1.5mettheabovecriteria.
Consideringthepracticaltechnologicalaspectsofsubsequentprocessesonapaper machine,themostimportantchangesoccurringasaresultoftherefiningprocess,in additiontofromfreeness,includethedevelopmentofswellingdegree(WRV)ofthe recycledpulp.Thegreaterthedegreeofpulpswelling,thegreaterthecompactnessofthe structureoftheobtainedpaper,whichsignificantlyimprovesitspropertiesbutreducesits dynamicstrength.Afterrefining,WRVofthetestedpulpsincreasedby28–61%(Table 2), achievingthehighestvaluesforwhitewastepaper.Mixedwastepaper1.5wasmuchmore keratinizedandachievedamuchlowerdegreeofpulpswelling.Similarly,regardingfiber length,highervalueswererecordedforwhitewastepaper(Table 3),suggestingthatthe paperobtainedfromthesetypeswillachievehigherstrengthparametersattheoutset.To date,thehighestcontentofthefinefractionamongstrefinedpulpshasbeenrecordedfor white2.1andmixed1.5wastepaper(Table 2),whichisconducivetothequalitypaper derivedfromthesepulpsaswellastotheprocesseconomyresultingfromthesavingof bulkadditives.Overall,ouranalysesofunrefinedandrefinedpulpsshowedthatthetype ofwastepaper(impuritycontent),similartochemicalcomposition,doessignificantlyaffect fiberandpulpproperties.
Table2. Characteristicsofwastepaperpulps.
WastepaperFineContentFineContentWRVSchopper–RieglerFreeness [%inArea][%inLength][%][◦ SR]
UnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefined White1.1 21.05-62.24-130.9-36-
White1.2 23.63-65.94-136.3-56-
White1.3 10.0315.2734.7327.89103.8164.621731
White1.4 12.209.4137.3920.71101.4159.081829
Mixed1.5 14.5515.8749.2041.03103.6134.172229
White2.1 12.3910.9554.9941.93102.3151.862230
White2.2 13.32-47.31-101.3-20-
Mixed2.3 16.63-51.08-91.1-22-
Mixed2.4 13.42-44.98-97.6-22-
Mixed2.5 26.78-66.60-107.2-35-
Mixed3.1 17.63-46.68-103.7-20-
White3.2 10.7118.4734.5332.27105.8185.651630
Resultsofmicroscopicanalysisofimpuritiesonthesurfaceofthetestedpaperare presentedinFigure 1.Significantamountsofimpuritieswereobservedonthesurfaceof papersproducedfrommixedwastepaperduetothehighercontentofimpuritiesinthe pulp.












White wastepaper 1.1
Whitewastepaper 1.2
White wastepaper 1.3
White wastepaper 1.4
Mixed wastepaper 1.5
White wastepaper 2.1
White wastepaper 2.2
Mixed wastepaper 2.3
Mixed wastepaper 2.4
Mixed wastepaper 2.5
Mixed wastepaper 3.1
White wastepaper 3.2
Figure1. Microscopicimagesofwastepapersurfaces.
Table3. Fiberproperties.
WastepaperMeanLength-WeightedFibreLengthMacro-FibrillationIndexMeanFibreCoarseness [μm][%][mg m 1 ]
UnrefinedRefinedUnrefinedRefinedUnrefinedRefined
White1.1 994-1.11-0.16-
White1.2 925-1.24-0.15-
White1.3 102110060.510.650.100.10
White1.4 112610380.500.540.090.10
Mixed1.5 9798800.860.650.130.10
White2.1 10609721.220.860.150.13
White2.2 960-0.82-0.11-
Mixed2.3 884-0.86-0.11-
Mixed2.4 825-0.88-0.10-
Mixed2.5 985-1.06-0.15-
Mixed3.1 886-0.48-0.11-
White3.2 102210010.690.750.140.12
Whenprocessingpaper,theroughnessofthematerial’ssurfaceisaveryimportant parametersinceitaffectsmanypropertiesofthematerialaswellasvariousothercharacteristicsoftheproductsuchasappearance,aesthetics,andfunctionalvalue,whichare particularlyimportantinthecaseofsanitarypapers.Hence,basedonthethree-dimensional microscopicanalysisofdifferentpapers,roughnessprofileswereprepared.Specifically, profileswereobtainedbyseparatingthelong-wavecomponentsofthesurfaceprofile (wavinessandshapedeviations)witha λcprofilefilter.The λcprofilefilterdeterminesthe transitionfromroughnesstowaviness,thatis,randomorclose-to-periodicinequalities. Therefore,thebasicroughnessparameters(Sa andSz )describethesurfacemicrogeometry andlinkittospecificprofilefeatures(Table 4).Inroughnessprofiles,Sa representsthe arithmeticmeandeviationoftheroughnessprofilealongthesamplinglength,whilstSz representsthemaximumroughness(themaximumheightoftheprofileindicatestheabsoluteverticaldistancebetweenthemaximumprofilepeakheightandmaximumprofile valleydepthalongthesamplinglength).
Table4. Structuralandopticalpropertiesofpapers.
WastepaperSa Sz
[μm][μm][mL min 1 ][mL/min][%]
UnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefined
White1.1 3.15-36.77-991-183-66.38-
White1.2 3.08-32.95-315-169-67.24-
White1.3 3.783.6441.2141.564956215428825285.1891.14
White1.4 4.033.4046.7045.563971191329829983.0580.43
Mixed1.5 3.833.1242.7838.872905150827724764.1165.89
White2.1 3.513.0040.8130.85264314596027478.0776.70
White2.2 3.57-42.87-4407-303-74.58-
Mixed2.3 3.99-39.47-4456-56-68.39-
Mixed2.4 3.98-36.95-3440-59-70.36-
Mixed2.5 3.72-40.74-1458-59-56.75-
Mixed3.1 4.01-48.05-5009-323-70.70-
White3.2 3.742.3745.0632.41401979731918976.4978.44
Microscopicanalysisofpaperroughnessshowednosignificantdifferencesdepending onthetypeofwastepaperusedtoproducepapersheets,despitethedifferencesinthe amountofimpuritiesbetweenwhiteandmixedwastepaper(Table 4).Additionalroughness measurements,performedfollowingtheBendtsenprocedure(Table 4),confirmedthatthe typeofwastepaperuseddidnotalterroughnessparameters.Notably,inmostcases,the processofrefiningsmoothedthesurfaceofthepapersproducedonlytoasmallextent.
Thiswasalsotrueforopticalparameters.Interestingly,comparedtomixedwastepaper, whitewastepaperdidnotexhibithigherwhitenessindices.Theopticalcharacteristicsare presentedinTable 4 andFigures 2 and 3
Anotherimportantpropertythatcontributessignificantlytothefunctionalproperties ofpaperisairpermeability.Moreover,airpermeabilityisanimportantindicatorforthe productionprocesscontrolofsanitarypapers,sinceitreflectstheporosityoftheproduct andthusitsabsorbanceandtensileproperties.Mostofthestudiedpapersproducedfrom unrefinedpulpswerecharacterizedbyhighairpermeability,whichdecreasedsignificantly afterrefining(Table 4).However,whetherthisisdisadvantageousdependsonthepurpose ofapplication.
Thetensilepropertiesofpapersheetsareimportantformanufacturingandprocessing[51,52].Therefore,theeffectsofspecificpulpparametersandimpuritycontentson thestrengthofpaperswereanalyzed,andtheresultsaresummarizedinTables 5 and 6 Regardingstrengthproperties,papersproducedfromunrefinedwhitewastepaper2.1and 3.2achievedthebestresultsintheconductedtests(Table 5).Refiningsignificantlyimproves thepapermakingabilityofwastepaperpulp,increasingthestrengthoftheobtainedpapers. Fromrefinedpulp,thebestresultswererecordedforwhiterecycledpapers1.3and3.2 (Table 6),whichwasexpectedconsideringtheirexcellentpulpandfiberproperties(Tables 2
Figure2. Lightreflectioncurveofwhitewastepaper.
Figure3. Lightreflectioncurveofmixedwastepaper.
and 3).Hightearresistanceandelasticityrenderthesepapersthemostattractiveforusein theproductionofsanitarypaper.Theloweststrengthwasrecordedfromrecycledpaper1.5, whichmaybeduetothelowestfiberlengthofitspulp.
Table5. Tensilepropertiesofpaperproducedfromunrefinedpulp.
WastepaperIB
White1.1 250029.1195624.61.6320.50.258255,50032132320
White1.2 290034.3231928.41.6625.70.315266,40032622425
White1.3 285033.1222027.71.6924.00.300309,10038592809
White1.4 230026.5182922.61.4918.10.224256,10031572328
Mixed1.5 230026.7180422.51.5919.60.244258,00031592344
White2.1 245028.3192423.8 2.0626.70.331 260,60032242367
White2.2 255029.0201225.01.6823.00.285272,80033912481
Mixed2.3 180020.8141216.61.3010.50.130216,60026781970
Mixed2.4 205023.6159019.91.5317.00.213219,90027562000
Mixed2.5 225026.3176021.91.6619.60.244233,20029002120
Mixed3.1 235028.0189223.31.7521.70.267261,10032072376
White3.2 315036.6248030.5 1.7026.20.329 321,40040312922
Abjectresultsaremarkedwithcolor(thebesttensilepropertiesonthegreen,theworstonthered).
Table6. Tensilepropertiesofpaperproducedfromrefinedpulps.
WastepaperIB
White1.3 705077.1533569.03.02103.21.33514,400
Abjectresultsaremarkedwithcolor(thebesttensilepropertiesonthegreen,theworstonthered).
Ofnote,inafewcases,pulpswithsimilarpropertiesintheunrefinedstateexhibited markedlydifferentpropertiesintherefinedstate,suchaswastepaper1.4and1.5.Therefore, thoroughestimationofthepapermakingabilityisessential.
4.Conclusions
Analysesconductedinthepresentworkwereaimedatverifyingthespecificproperties ofwastepaperpulponthebasisofwhichtheirsuitabilitytoproduceaproductwith satisfactoryusabilitycharacteristicscanbeinitiallyassessed.However,althoughthepresent workdoesnotallowforidentifyingthepulpthatisreliableintermsofpapermaking, itallowsforrevealingthepulpthatisnotsuitable.Inotherwords,theusefulnessof recycledpulpcanbeassessedathighprobabilitybydeterminingthefreenessandcontent ofextractivesubstances.Basedontheobtaineddata,itwasconductedthat,samples containinglargeamountsofextractives(above1.30%)anddissolvedsubstancescannot yieldproductswithahighaddedvalue.Also,sampleswithveryhighinitialSchopper–Rieglerfreenessshouldnotbeintroducedintothesystem,astheydonotallowforachieving theexpectedresultsandmayinduceanumberoftechnologicaldifficulties.Similarly,pulp sampleswithfiberlengthof<900 μmdonotallowgoodpaperstrength,andespecially satisfactorytearresistance,soessentialtosanitarypapers.Moreover,strengthproperties cannotbedeterminedwithouttherefiningprocess.Overall,comprehensiveevaluation ofthepapermakingabilityofwastepaperisimperative.Undeniably,ourfindingswill behelpfultofurtheranalyzethevalidityofrecycledmaterialsandreducetheimpactof wastepaperontheenvironment.
AuthorContributions: Conceptualization,E.M.andP.P.;methodology,A.L.,M.D.andE.M.;data processing,M.D.andA.L.;literaturereview,M.D.;writing—originaldraftpreparation,E.M.;writing— reviewandediting,E.M.;supervision,P.P.;fundingacquisition,P.P.Allauthorshavereadandagreed tothepublishedversionofthemanuscript.
Funding: ThisresearchwasfundedbytheNationalCenterofResearchandDevelopmentinPoland, grantnumberPOIR.01.01.01-00-0084/17.
InstitutionalReviewBoardStatement: Notapplicable.
InformedConsentStatement: Notapplicable.
DataAvailabilityStatement: Thedatasetsgeneratedduringand/oranalyzedduringthecurrent studyareavailablefromthecorrespondingauthoronreasonablerequest.
ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.
References
1. Aue,J.;Picard,K.;Grabner,K.Fiberrecoveryfromwastepaper:Abreakthroughinre-pulpingtechnology. TAPPIFallTechnol. Conf. 2003,273–280.
2. Scott,G.M.Chapter10—Recoveredpaper.In Waste,AHandbookforManagement;AcademicPress:Cambridge,MA,USA,2011; pp.137–149.[CrossRef]
3. Scott,G.M.Chapter14—Recoveredpaper.In Waste,AHandbookforManagement,2nded.;AcademicPress:Cambridge,MA,USA, 2019;pp.291–305.[CrossRef]
4. KeyStatistics2021.EuropeanPulp&PaperIndustry.Availableonline: https://www.cepi.org/wp-content/uploads/2022/07/ Key-Statistics-2021-Final.pdf (accessedon22November2022).
5. PaperRecyclingRateatabout66Percentin2020.RecyclingToday.Availableonline: https://www.recyclingtoday.com/article/ paper-recycling-rate-66-percent-2020/ (accessedon22November2022).
6. EuropeanPaperRecyclingCouncilMonitoringReport2020.EuropeanDeclarationonPaperRecycling2016–2020.Availableonline: https://www.cepi.org/wp-content/uploads/2021/07/WEB-PAGES_EPRC-Monitoring-Report-2020_20210716.pdf (accessedon22November2022).
7. UnpackingContinuouslyHighPaperRecyclingRate.AmericanForest&PaperAssociation.Availableonline: https://www. afandpa.org/news/2022/unpacking-continuously-high-paper-recycling-rates (accessedon25July2022).
8. GlobalPaperRecyclingMarket(2021–2026)bySourceofCollection,Type,Application,Collection&SegregationChannel, End-Use,Geography,CompetitiveAnalysisandtheImpactofCOVID-19withAnsoffAnalysis.ResearchandMarketsthe World’sLargestMarketResearchStore.Availableonline: https://www.researchandmarkets.com/reports/5317165/global-paperrecycling-market-2021-2026-by (accessedon25September2022).
9. GlobalForestandPaperIndustryReleasesPolicyStatementonPaperRecycling.CEPI.Availableonline: https://www.cepi.org/ global-forest-and-paper-industry-releases-policy-statement-on-paper-recycling/ (accessedon13November2022).
10. RecyclingFacts.IMPACTPapeRec.Availableonline: https://impactpaperec.eu/en/facts-figures/recycling-facts/ (accessedon 13November2022).
11. CircularEconomy,RenewableandRecyclable:OurEssence.CEPI.Availableonline: https://sustainability.cepi.org/policyblocks/circular-economy/# (accessedon25July2022).
12. HowManyTimesCanPaperBeRecycled?MythVs.Fact—CanRecycledPaperbeUsedIndefinitely?FSSIDocumentOutsourcing Specialists.Availableonline: https://www.fssi-ca.com/myths-vs-facts-we-can-use-recycled-paper-until-its-all-gone/ (accessed on22November2022).
13. Laurijssen,J.;Marsidi,M.;Westenbroek,A.;Worrell,E.;Faaij,A.Paperandbiomassforenergy?:Theimpactofpaperrecycling onenergyandCO2 emissions. Resour.Conserv.Recycl. 2010, 54,1208–1218.[CrossRef]
14. Villanueva,A.;Wenzel,H.Paperwaste—Recycling,incinerationorlandfilling?Areviewofexistinglifecycleassessments. Waste Manag. 2007, 27,S29–S46.[CrossRef]
15. Rahman,M.O.;Hussain,A.;Basri,H.Acriticalreviewonwastepapersortingtechniques. Int.J.Environ.Sci.Technol. 2013, 11, 551–564.[CrossRef]
16. Ozola,Z.U.;Vesere,R.;Kalnins,S.N.;Blumberga,D.Paperwasterecycling.Circulareconomyaspects. Environ.Clim.Technol. 2019, 23,260–273.[CrossRef]
17. Cabalova,I.;Kacik,F.;Geffert,A.;Kacikova,D.TheEffectsofpaperrecyclinganditsenvironmentalimpact. Environ.Manag. Pract. 2011,329–350.[CrossRef]
18. Potˇcek,F.; Cešek,B.;Milichovský,M.Effectofaddingsecondaryfiberstokraftpulponstrengthpropertiesandairresistance. Cellul.Chem.Technol. 2013, 47,425–441.
19. Yilmaz,U.;Tutus,A.;Sönmez,S.Fiberclassification,physicalandopticalpropertiesofrecycledpaper. Cellul.Chem.Technol. 2021, 55,689–696.[CrossRef]
20.Ghais,A.;Mutwly,M.Effectofrecyclingprocessonpaperproperties. Int.J.Sci.Eng.Res. 2014, 5,401–403.
2023, 15,2850
21. Obradovic,D.;Mishra,L.N.Mechanicalpropertiesofrecycledpaperandcardboard. J.Eng.ExactSci. 2020, 6,0429–0434. [CrossRef]
22. Faubert,P.;Barnabé,S.;Bouchard,S.;Côté,R.;Villeneuve,C.Pulpandpapermillsludgemanagementpractices:Whatarethe challengestoassesstheimpactsongreenhousegasemissions? Resour.Conserv.Recycl. 2016, 108,107–133.[CrossRef]
23. Liao,C.;Kannan,K.WidespreadoccurrenceofbisphenolAinpaperandpaperproducts:Implicationsforhumanexposure. Environ.Sci.Technol. 2011, 45,9372–9379.[CrossRef][PubMed]
24.Pivnenko,K.;Eriksson,E.;Astrup,T.F.Wastepaperforrecycling:Overviewandidentificationofpotentiallycriticalsubstances. WasteManag. 2015, 45,134–142.[CrossRef]
25. Geens,T.;Goeyens,L.;Kannan,K.;Neels,H.;Covaci,A.Levelsofbisphenol-AinthermalpaperreceiptsfromBelgiumand estimationofhumanexposure. Sci.TotalEnviron. 2012, 435–436,30–33.[CrossRef]
26. Ervasti,I.;Miranda,R.;Kauranen,I.Aglobal,comprehensivereviewofliteraturerelatedtopaperrecycling:Apressingneedfor auniformsystemoftermsanddefinitions. WasteManag. 2016, 48,64–71.[CrossRef]
27. Grossmann,H.;Handke,T.;Brenner,T.Paperrecycling.In HandbookofRecycling:State-of-the-ArtforPractitioners,Analysts,and Scientists;Elsevier:Amsterdam,TheNetherlands,2014;pp.165–178.[CrossRef]
28. Technologiesforpaperrecycling.In LeadMarketsforEnvironmentalInnovations.ZEWEconomicStudies;Physica-VerlagHeidelberg: Heidelberg,Germany,2005;Volume27,pp.205–2016.[CrossRef]
29. Jin,H.;Kose,R.;Akada,N.;Okayama,T.Relationshipbetweenwettabilityofpulpfibersandtensilestrengthofpaperduring recycling. Sci.Rep. 2022, 12,1560.[CrossRef]
30. Ali,I.Studyofthemechanicalbehaviorofrecycledfibers.Applicationstopapersandpaperboards.In Contribution à l’ ÉtudeDu ComportementMécaniqueDesFibresRecyclées;ApplicationsAuxSupport;Université deGrenoble:Grenoble,France,2013.
31. Valchev,I.V.;Bikov,P.I.;Blyahovski,V.N.;Tsekova,P.B.NewPossibilitiesforRecycledPaperBleaching.InProceedingsofthe16th InternationalSymposiumWood,FiberPulpingChemistry,Tianjin,China,8–10June2011;Volume1,pp.677–681.
32. OptimizationofBleachingandDeinkingofWastePaperforStrengthandBrightnessImprovement.EuropeanCommission CORDISEUResearchResult.Availableonline: https://cordis.europa.eu/project/id/MP2B0006/pl (accessedon20August 2022).
33. Kopania,E.;Stupi´nska,H.;Palenik,J.Susceptibilityofdeinkedwastepapermasstoperoxidebleaching. FibresText.East.Eur. 2008, 16,112–116.
34. Pe¸sman,E.;Parlak,M.Recyclingofcoloredofficepaper.PartII:Postbleachingwithformamidinesulfinicacidandhydrogen peroxide. BioResources 2019, 13,4841–4855.[CrossRef]
35. Zeb,H.;Hussain,M.A.;Ahmed,I.;Akram,M.S.;Haider,B.;Haider,R.;Babar,Z.B.;Saleem,R.M.;Ahsan,A.;Aziz,I.;etal.Study ofbleachingofoldnewsprintrecycledpaper:Reproductionofnewspapermaterial. Mater.Res.Express 2021, 8,085305.[CrossRef]
36.Bajpai,P.Deinkingwithenzymes. Recycl.DeinkingRecover.Pap. 2014,139–153.[CrossRef]
37. Kumar,A.;Dutt,D.AComparativestudyofconventionalchemicaldeinkingandenvironment-friendlybio-deinkingofmixed officewastepaper. Sci.African 2021, 12,e00793.[CrossRef]
38. Hasanin,M.S.;Hashem,A.H.;AbdEl-Sayed,E.S.;El-Saied,H.Greenecofriendlybio-deinkingofmixedofficewastepaperusing variousenzymesfrom Rhizopusmicrosporus AH3:Efficiencyandcharacteristics. Cellulose 2020, 27,4443–4453.[CrossRef]
39. Lasheva,V.;Todorova,D.;Kotlarova,S.;Kamburov,M.DeinkingofWasteOffsetPrintedPaperbytheUseofEnzymes. Int.Sci.J. Sci.Business,Soc. 2016, 1,26–28.
40. PaperRecycling. MonitoringReport2011,ERPCEuropeanDeclarationonPaperRecycling2011–2015;PaperRecycling:Brussel, Belgium,2011;pp.1–8.Availableonline: http://www.cobelpa.be/pdf/Monitoring%20report%20final.pdf (accessedon30 November2022).
41. Li,S.;Wu,Z.;Wu,Z.;Liu,G.Enhancingfiberrecoveryfromwastewatermayrequiretoiletpaperredesign. J.Clean.Prod. 2020, 261,121138.[CrossRef]
42. Su,Z.H.;Fan,S.J.;Zhang,Y.;Tian,C.;Gong,C.;Ni,J.P.;Yang,B.;Peng,F.;Korkko,M.;Mahmoud,M.S.Industrialscale-upoffiber recoverytechnologyfrommixedofficewastefinescreenrejects. BioResources 2020, 15,6420–6430.[CrossRef]
43.Cortright,A.PaperRecyclingFiberRecapture.HonorsThesis,WesternMichiganUniversity,Kalamazoo,MI,USA,2020.
44. Small-ScalePaperFiberRecovery.FinalReport.1995.Availableonline: https://p2infohouse.org/ref/17/16804.pdf (accessedon 23November2022).
45. Barber,S.D.AnalysisandPreventionofUsableFiberLossfromaFinePaperMill.Master’sThesis,VirginiaPolytechnicInstitute andStateUniversity,Blacksburg,VA,USA,1998.
46. Adu,C.;Jolly,M.;Thakur,V.K.Exploringnewhorizonsforpaperrecycling:Areviewofbiomaterialsandbiorefineryfeedstocks derivedfromwastepaper. Curr.Opin.GreenSustain.Chem. 2018, 13,21–26.[CrossRef]
47. Haile,A.;Gelebo,G.G.;Tesfaye,T.;Mengie,W.;Mebrate,M.A.;Abuhay,A.;Limeneh,D.Y.Pulpandpapermillwastes: Utilizationsandprospectsforhighvalue-addedbiomaterials. Bioresour.Bioprocess. 2021, 8,35.[CrossRef]
48. Al-Battashi,H.;Annamalai,N.;Al-Kindi,S.;Nair,A.S.;Al-Bahry,S.;Verma,J.P.;Sivakumar,N.Productionofbioplastic(poly3-hydroxybutyrate)usingwastepaperasafeedstock:Optimizationofenzymatichydrolysisandfermentationemploying burkholderiasacchari. J.Clean.Prod. 2019, 214,236–247.[CrossRef]
49. AbsorbingResearchProducesAerogelsfromWastePaper.MaterialsToday.Availableonline: https://www.materialstoday.com/ biomaterials/news/research-produces-aerogels-from-waste-paper/ (accessedon23November2022).
2023, 15,2850
50.PN-EN643:2014-03.Availableonline: https://sklep.pkn.pl/pn-en-643-2014-03e.html (accessedon13November2022).
51. Kamel,S.;El-Sakhawy,M.;Nada,A.M.A.Mechanicalpropertiesofthepapersheetstreatedwithdifferentpolymers. Thermochim. Acta 2004, 421,81–85.[CrossRef]
52.Nada,A.M.A.;El-Sakhawy,M.;Kamel,S.;Eid,M.A.M.;Adel,A.M.Mechanicalandelectricalpropertiesofpapersheetstreated withchitosananditsderivatives. Carbohydr.Polym. 2006, 63,113–121.[CrossRef]
Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T E P O P T


Production of wood based panel from recycled wood resource: a literature review
Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
European Journal of Wood and Wood Products (2023) 81:557–570
https://doi.org/10.1007/s00107-023-01937-4
REVIEW ARTICLE
Production of wood-based panel from recycled wood resource: a literature review
Duy Linh Nguyen1,3 · Jan Luedtke2 · Martin Nopens2 · Andreas Krause2
Received: 17 February 2022 / Accepted: 28 January 2023 / Published online: 17 February 2023 © The Author(s) 2023
Abstract
This article presents and discusses the available studies on utilization of waste wood (WW) resource for wood-based panel production. The cited literature indicated that the majority of WW research was from Europe and conducted mainly on recycled material from particleboard. In addition, particleboard was presented as the first option of wood-based panel product manufactured from waste wood. There was a lack of research on the recycling of plywood. Physical and chemical contaminants fluctuated strongly between low- and high-quality recycled wood mixes depending on their origins. Findings from studies also noticed that wood-based panels (e.g., particleboard) could be produced from 100% WW. However, the physical and mechanical properties of wood-based panel drop with the high proportion of WW content due to the decrease in slenderness ratio and increase in contaminants. Moreover, formaldehyde emission content of particleboard and Oriented Strand Board (OSB) manufactured from WW particles increases when the WW percentage increases. Contrary, the formaldehyde amount decreases with the increase in recycled fiber content in fiberboards. Notably, the properties and emission of recycled wood composite products could be improved by applying high-tech sorting technologies, appropriate chipping techniques, pretreatment steps and formaldehyde-free binders during waste wood handling and production process.
1 Introduction
Post-consumer waste wood is a valuable feedstock for energetic and material sector. Its volume has been increased together with the rapid urbanization and industrialization. Based on Eurostat data in 2014, Europe generates annually about 60 million tons of waste wood collected from different sectors. Germany is the country in Europe collecting the highest number of waste wood per year, accounting for about 6.6 million tons in 2016 (Purkus et al. 2019). Italy, UK and France generate roughly 4 million tons per year, whereas Belgium, Austria, Spain and Poland produce around 2 million tons in 2014 (Silvio 2018). In addition, Sweden, Norway and Denmark collect nearly 1.0 million tons per
* Duy Linh Nguyen linh.nguyen@uni-hamburg.de
1 Institute of Wood Science, University of Hamburg, Leuschnerstrasse 91C, 21031 Hamburg, Germany
2 Thuenen Institute of Wood Research, Leuschnerstrasse 91C, 21031 Hamburg, Germany
3 Faculty of Forestry, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc District, 70000 Ho Chi Minh City, Vietnam
year (Sekundaerrohstoffe 2018). According to the United State Environmental Protection Agency (EPA), USA generated about 18.1 million short tons of waste wood in 2018 collected from municipal solid waste streams.
Waste wood originates from various resources. Therefore, it is not a homogeneous material due to its complexity of wood types, applications and sources (Bergeron 2014). In addition, waste wood is also considered as a highly sophisticated material in terms of chemical and physical composition (Edo et al. 2016). Various physical and chemical contaminants exist in the waste wood resources causing problems for recycling processes and influencing the properties of recycled products. Nowadays, mechanical processes (e.g. sieving, magnet or eddy current) can sort physical contaminants in waste wood such as plastic, metal, textile, etc. However, chemical contaminants that are coming from substances of wood preservatives, paints, glues, etc. are not easy to eliminate from waste wood mechanically. Thus, the management of these contaminants from inputs plays an important role in cascading and re-using this valuable resource effectively (Besserer et al. 2021). From this point of view, management using waste wood ordinances has been established and used in many countries. However, there is a lack of uniform waste wood ordinance among countries
nowadays. Germany, Austria and Switzerland apply the same ordinance divided into four categories depending on the characteristics of the waste wood, namely AI, AII, AIII and AIV, whereas France, Belgium, Netherlands and Luxemburg classified their waste wood categories with A, B, C and D (Jan 2019). UK, Sweden, Estonia and Spain have their own waste wood ordinances. In addition, many countries have not established waste wood ordinance. In this sense, it is difficult to trade different collected waste wood assortments between European countries.
Despite the difference in waste wood management, the recycling rate of waste wood varies from country to country in material and energy uses. For instance, in European countries, for decades, energy utilization of waste wood exceeds material utilization, accounting for 60–95%. Sweden, Switzerland, Norway, Netherlands, and Finland are the top leading European countries, which share high waste wood portion for energy purpose, ranging from 85 to 95% (BAV e.V. 2021). In the sector of material use, Italy ranks in first position among European countries with a 42%, share of waste wood in panel production, followed by Austria with 33% (Silvio 2018).
As resources, fossil and renewables are limited in their availability, though for different reasons, the European Green Deal laid the political basis for a shift from linear to circular economy. Products entering the cycle must be designed in a way that supports circular utilization (Fig. 1). However, repeated utilization of resources through recycling requires a thorough cleaning process to prevent contaminants that may have entered the resources cycle decades ago from being carried over and accumulated. As the use of natural resources gains massive interest, their efficient use together with consumer protection is of high concern. Many authors have therefore been working on the characteristics of different waste wood resources and their utilizations. Some focused on the origins and contaminants of waste wood materials (Tables 1, 2). The others concentrated on the application
of waste wood to the production of wood-based panel as well as its effects on the physical and mechanical properties and formaldehyde emission of final products (Tables 3, 4). Due to the variety of materials and the effects of possible contaminations, this paper presents an overview of the conducted waste wood research with the goal to answer the following questions:
1. Where do the waste wood materials come from and what are the target composites?
2. What are the challenges that recyclers are facing during the conversion of waste wood?
3. What is the concentration of recycled wood material in the new composite products and its consequences?
2 Methods
The stated questions were addressed by collecting peerreviewed articles, proceedings of conferences and reports of research projects relating to waste wood material and its utilization from the following scientific websites:
• ScienceDirect (https://www.sciencedirect.com/)
• Google Scholar (https://scholar.google.com/)
• WorldCat (https://www.worldcat.org/)
• SpringerLink (https://link.springer.com/)
• Taylor&Francis Online (https://www.tandfonline.com/)
• ACS Publications (https://pubs.acs.org/)
• Web of Science (https://www.webofscience.com)
The following keywords were used:
• Waste wood contaminants
• Waste wood composites
• Recycled wood, formaldehyde emission
• Secondary wood resources
• Wood residues utilization
The term waste wood mentioned in the searched articles is restricted to used/secondary or recycled wood. Research articles, dealing with by-products from sawmills or the like are not included in this article.
Fig. 1 Existing resources utilization pathways (solid
and approaches
The collected publications for the review article were analyzed and categorized dealing with the research questions focusing on the recycling of waste wood materials from wood-based panel products to produce wood-based panel only. Therefore, wood plastic composite-based publications and the research papers that focused on waste wood materials from solid wood with and without CCA treated will not be discussed and shown up in the Supplementary information.
3 Results and discussion
3.1 Waste wood origin and target composite type
3.1.1 Waste wood origin
Table 1 includes twenty-eight research articles classified into two main categories namely origin and target composite type presenting the origin of waste wood materials conducted in the last twenty years. About half of the studies in Table 1 was conducted from 2015 to 2019. The results indicated that a large proportion of waste wood stream originates mainly from recycling center companies or combustion power plants. In this waste stream, construction and demolition (10 references) and furniture (9 references) dominate the origin uses of waste wood,
followed by packaging (6 references), whereas municipal counts for only one interest (Lesar et al. 2018). This finding is also consistent with the research of Mantau and Doering (2018) and Van Benthem et al. (2007) about waste wood streams in Europe.
In the sector of waste wood type, most studies dealt with/focused on wood-based panel (17 references). It is surprising that particleboard was found more than fiberboard, plywood and OSB in waste wood type of woodbased panel industry. According to FAO (2018), plywood production accounted for the largest volume of woodbased panel globally, followed by fiberboard, particleboard and OSB. Therefore, it was expected that more secondary/recycled plywood would be found in the waste wood type rather than particleboard and fiberboard. However, the finding in this research is controversial to the
References Origin
WW type Original use
Contaminant analysis
PBFBOSBPlywoodSolid woodC & DMunicipalFurniturePackagingPhysicalChemical
Schild et al. (2019)
Faraca et al. (2019)xxxxxxxxx
Azambuja et al. (2018a)xxxxx
Azambuja et al. (2018b)xxxxx
Hameed et al. (2018a)xx
Laskowska and Maminski (2018)x
Hong et al. (2018)x
Lesar et al. (2018)xxxxxxxxxxx
Robey et al. (2018)xx
Hameed et al. (2018b)xx
Zamarian et al. (2017)xxxxx
Edo et al. (2016)xxxx
Roffael et al. (2016)x
Andrade et al. (2015)xxx
Costa et al. (2014)
Martins et al. (2007)xx
Nagalli et al. (2013)xxxx
Lykidis and Grigoriou (2011)x
Mirski and Dorota (2011a)xx
Mirski and Dorota (2011b)x
Suffian et al. (2010)x
Lykidis and Grigoriou (2008)x
Yang et al. (2007)x
Wang et al. (2007)x
Mantanis et al. (2004)x
Jermer et al. (2001) xx
Tolaymat et al. (2000)xx
Krzysik et al. (1997)x
Table 1 Origin of waste wood materials
Table 1 (continued)
ReferencesOrigin
Target composite type and research topic
Country Wood based panel Composition Strength properties FE PBFBOSBPure WWMix
Schild et al. (2019)Canadaxxx
Faraca et al. (2019)Denmark
Azambuja et al. (2018a)Brazilxxx
Azambuja et al. (2018b)Brazilxxx
Hameed et al. (2018a)Swedenxxx
Laskowska and Maminski (2018)Polandxxx
Hong et al. (2018)Koreaxxxx
Lesar et al. (2018)Germany, UK, Finland, Slovenia
Robey et al. (2018)USA
Hameed et al. (2018b)Swedenxxx
Zamarian et al. (2017)Brazilxxx
Edo et al. (2016)Sweden
Roffael et al. (2016)Germanyxxxx
Andrade et al. (2015)Portugalxxx
Costa et al. (2014)Portugalxxxx
Martins et al. (2007)Portugalxxxx
Nagalli et al. (2013)Brazil
Lykidis and Grigoriou (2011)Greecexxxx Mirski and Dorota (2011a)Polandxxxx
Mirski and Dorota (2011b)Polandxxx
Suffian et al. (2010)UKxxx
Lykidis and Grigoriou (2008)Greecexxxx
Yang et al. (2007)Taiwanxxx
Wang et al. (2007)Taiwanxxxx
Mantanis et al. (2004)Portugalxxx
Jermer et al. (2001)Sweden, German, Netherlands
Tolaymat et al. (2000)USA
Krzysik et al. (1997)Polandxxx
FAO statistic about the production volume and recycling amount of plywood. On the other hand, more plywood and OSB were expected in waste wood research rather than particleboard and fiberboard as the waste wood stream came mostly from construction and demolition. Moreover, it could be that plywood and OSB are often used for exterior applications or as formwork. Therefore, they could be contaminated by preservatives and are usually not suitable for material utilization anymore.
The majority of the found research was conducted based on the waste wood materials collected in Europe (18 references) and South America (4 references). Only six articles were found in other countries such as Canada (Schild et al. 2019), Korea (Hong et al. 2018), USA (Robey et al. 2018; Tolaymat et al. 2000), Taiwan (Yang et al. 2007; Wang et al. 2007). This shows that Europe is more concerned with the waste wood recycling topic than other continents due
to established recycling programs, policies and regulations (e.g., European Union Commission Decision 2009/894/EC; Zero Waste Europe 2014).
3.1.2 Target composite type
Relating to the target composite type, the possibilities of using different waste wood percentages to produce woodbased panels were investigated. Particleboard (14 references) is by far the most favorable product to be made from waste wood materials. The number of fiberboards (Hong et al. 2018; Roffael et al. 2016; Mantanis et al. 2004; Krzysik et al. 1997) and OSB (Schild et al. 2019; Mirski and Dorota 2011a, b) articles together account for seven references. There was no research found using waste wood materials for the production of plywood. The reason could be the impossibility of processing waste wood materials into veneers
European Journal of Wood and Wood Products (2023) 81:557–570
for plywood production. This can be done only from wood logs. On the other hand, there are more advantages in low cost, simple treatment process (mechanical e.g., chipping instead of chemical methods), and less technical barriers for waste wood during the conversion of wood-based panel (particleboard, fiberboard, OSB, plywood) into particles for particleboard production compared to conversion of old fiberboard into fiber or old OSB and plywood into strands. In general, recycled plywood can be processed into strands for the production of OSB when they are well collected and sorted. However, waste wood streams are normally a mixture of wood-based panel products together. The difficulty in the conversion process of inhomogeneous waste wood types into proper strand size and shapes hinders the usage of this resource in the three-layer OSB panel production compared to virgin wood.
3.2 Challenges in waste wood conversion and recycled composites products
3.2.1 Contaminants in waste wood and sorting technologies
3.2.1.1 Contaminants in waste wood Material flows during recycling must ensure that the products contain only nonhazardous contamination levels. The type and threshold of contaminations described in the national legal framework determines whether waste wood may be reused for material purposes or can only be thermally utilized. To use the waste wood efficiently by sorting out as little uncontaminated wood as possible is one of the most challenging steps during recycling. Physical contaminants or material impurities in WW are usually plastic, metal, glass, textiles, concrete or stone (Edo et al. 2015; Vaermeforsk 2012; Krook et al. 2006) that may originate from different material sources depending on the end-use of wood products or the waste wood collection plant/process. Chemical contaminants on the other hand may come from wood treatments, which were applied in order to improve wood products appearance (e.g., coating pigments, paints, oils), strengthen properties (e.g., gluing agents), prevent biological decay (e.g., wood preservatives) or fire resistance (e.g., flame-retardants) indicated by Johan et al. (2007).
Table 2 shows the research conducted in Europe and America on the analysis of physical and chemical contamination in waste wood. The waste wood materials were collected from different sources such as combustion plant, construction site and recycling companies. Physical and chemical impurities of waste wood fluctuate considerably from the findings. It can be seen in Table 2 that physical contaminants were found from 1 to 3% basic dry weight of total material content (Faraca et al. 2019; Lesar et al. 2018; Edo et al. 2016; Jermer et al. 2001). A higher proportion of
non-wooden material was found in low quality mixed recycled wood (e.g., hazardous waste wood) rather than in high quality material (e.g., clean/non-hazardous waste wood) (Lesar et al. 2018). These fluctuations might be relevant to types, sources, fractions and seasons in year, collection and sorting process as well as management of waste wood at recycling facilities. Lesar et al. (2018) also indicated that companies with sophisticated sorting systems showed low content of non-wooden compounds in their waste wood materials. Nowadays, manual sorting, size, sink-float, gravity, magnetism, surface tension, and electric conductivity are the most popular sorting methods, which can help to sort out up to 96% of physical impurities in waste materials (Lahtela and Kaerki 2018).
The chemical elements in waste wood originate from various substances accumulated from preservatives, adhesives, pigments, paints, coatings or lacquers. Wood preservatives (e.g., Chromated Copper Arsenate CCA) can be found in many waste wood samples of the collected articles. The amount of Cr, Cu and As varies widely depending on various origins of incoming recycled wood. For example, the waste wood materials from Europe (Faraca et al. 2019; Lesar et al. 2018; Edo et al. 2016; Jermer et al. 2001) tend to contain less CCA than the ones from America (Robey et al. 2018; Tolaymat et al. 2000). It can be explained by the fact that the CCA has been banned in Europe since 2006 as wood preservative (EU Directive 2006/139/CE), whereas it is still allowed in USA. Therefore, these CCA values are lower than in USA. Moreover, Jermer et al. (2001) also found that the amount of arsenic, copper and chromium in German waste wood are lower than in Sweden. This may be a result of the German wood waste ordinance which limits strictly those chemical impurities at lower values compared to Sweden [e.g., As and Cd (2 mg/kg), Cu (20 mg/kg), Cr and Pb (30 mg/kg), Hg (0.4 mg/kg), Cl (600 mg/kg)].
In addition, the amount of Pb, Hg, Cd and Cl varied significantly depending on waste wood sources. Pb was found at high level (up to 2900 ppm) in waste wood from Sweden (Edo et al. 2016) whereas Cl was found (up to 1191 ppm) in waste wood mix of Sweden, Germany and Netherlands (Jermer et al. 2001). The reasons for these phenomena could be due to the difference in waste wood quality among countries depending on company size, collecting seasons and deliveries of waste wood. These elements are commonly used in pigments, paints, coatings, lacquers for wood floor and furniture treatment and were found more in Swedish waste wood (Fjelsted and Christensen 2007; Jermer et al. 2001). Furthermore, Pb and Cd also originated from heat stabilizers in PVC products (Mesch 2010; Krook et al. 2004). Another reason could be due to the waste wood fraction variations. Faraca et al. (2019) proved that the fractions of waste wood affected the amount of contaminants. For instance, the amount of Cl and Pb in waste wood increases
Table 2 Contaminants
in waste wood
ReferencesCountrySource
Contaminants analysis
Physical/material contaminants
%wt. dry basic of total material content (1)
Variation in (1)
Stone (%)Plastic (%)Metal (%)Textile (%)Other (%)
Faraca et al. (2019)DenmarkRecycling center1–21–892–990–1
Lesar et al. (2018)Germany, Slovenian, Finish, UK Recycling companies1–2.96
Robey et al. (2018)USARecycling Facilities
Edo et al. (2016)SwedenCombustion power plant 1.119–4414–2514–22
Nagalli et al. (2013)BrazilConstruction site28.8–75.748.3–69.22.9–11.1
Jermer et al. (2001)Sweden, Germany, The Netherlands
Combustion plant< 1
Tolaymat et al. (2000)USARecycling facilities
References Contaminants analysis
Chemicals/trace element
mg/kg dry wood (ppm) CrCuAsPbHgCdClPCPPCBPAH
Faraca et al. (2019)0.5–1501–5000.03–7.00.1–1200.01–0.510–5–1.010–3–10–1 10–5–10
Lesar et al. (2018)3–591–251–11697–802
Robey et al. (2018)7.0–94.63.7–3482.0–150
Edo et al. (2016)1.5–3133.6–32000.10–2701.80–29000.5–10.5–10.07–0.13
Nagalli et al. (2013)
Jermer et al. (2001)9–730–641–410–1530.06–0.520.12–1.2291–1191
Tolaymat et al. (2000)10–29,00039–1600
when the waste wood particles, which are lower than 4 mm (fine fraction) increases (Edo et al. 2016; Vaermeforsk 2012; Jermer et al. 2001). This is probably due to the crushing and chipping process resulting in more surface coating materials removed from the waste wood surface increasing the amount of heavy metal and Cl in the fine fraction after sieving. There are limited studies conducted on finding organic compounds of waste wood in the recycling process. Faraca et al. (2019) was the only reference found in analyzing PCP, PCB and PAH of waste wood materials. The finding showed that those substances are mainly coming from old furniture. In the past, PCB was used as plasticizers in the coating ingredients of paints and flame retardant (Butera et al. 2014; Jartun et al. 2009a, b). Nowadays, these substances are slowly replaced by other ingredients in paints and coating recipes applied to wood surface treatment. Therefore, high quality waste wood was found containing less of these components and complies with European standards for organic pollutants.
3.2.1.2 Sorting technologies Different sorting technologies have been developed to detect and eliminate chemical contaminants in waste wood particles such as atomic absorption spectroscopy (CV, GF, or HG-AAS), inductively coupled plasma spectrometry (ICP-OES, ICP-MS), energy dispersive X-ray fluorescence (ED-XRF) and near infrared (NIR) spectroscopy (Mauruschat et al. 2016; Fellin et al. 2014, 2011; Hasan et al. 2011a, b; Williams 1976). It is noticed that atomic absorption spectroscopy and inductively coupled plasma spectrometry are the methods used to detect the chemical contaminants of waste wood or biomass in the laboratory indicated by EU Commission decision 2009/894/EC. Other sorting techniques such as energy dispersive X-ray fluorescence (ED-XRF) and near infrared (NIR) spectroscopy have recently shown advantages in the sorting process of waste wood due to fast detection and high sorting efficiency. Plastics and wood preservatives can be detected and sorted by these techniques easily. For example,
European Journal of Wood and Wood Products (2023) 81:557–570
Hasan et al. (2011a, b) stated that the application of EDXRF in online sorting could eliminate 92–96% of wood preservatives (CCA) and alkaline copper quaternary (ACQ) in recycled wood at recycling plants. This method also showed high efficiencies with certain limitations for the elemental analysis of six different groups (origin, type, material, visually detected pollution, pollutant macro category and pollutant specification) from wood residues in wood recycling plants (Fellin et al. 2014). On the other hand, Fellin et al. (2011) stated the positive results on the application of infrared spectroscopy for the detection of pollutants in wood residues. Moreover, Mauruschat et al. (2016) indicated that near infrared (NIR) spectroscopy and automatically pneumatic nozzles can distinguish four types of plastic granulate in WPC. In addition, this study also showed the possibility to distinguish between untreated and treated wood at different moisture contents containing inorganic and organic preservatives. However, these technologies need more investigations/improvements prior to being used on an industrial scale besides focusing on the development of new sorting techniques.
Principally, the detection and sorting of most contaminants in waste wood could be conducted by appropriate methods. However, the waste wood after sorting and processing could contain certain contaminants. Depending on types and contents, those physical and chemical contaminants in waste wood resources will be classified whether they are problematic for the later wood-based panel products.
3.2.2 Properties of wood-based panel produced from waste wood
Table 3 presents information about the properties of woodbased panels made from recycled wood. In this part, some factors influencing physical and mechanical properties of particleboard, fiberboard and OSB produced from recycled wood such as treatment process of waste wood (e.g., hydrothermal process), waste wood mixing ratio, and adhesives type will be addressed.
3.2.2.1 Particleboard Different investigations based on hydrothermal treatment processes were conducted at various schedules to separate waste wood into particles and use them for the production of particleboard (Andrade et al. 2015; Lykidis and Grigoriou 2011, 2008). The findings indicated that the particleboards manufactured from treated waste wood particles show stable dimensions. However, the mechanical properties (MOE, MOR and IB) and physical properties (thickness swelling and water absorption) of the panel decrease when the temperature increases. This finding is also consistent with the results of Michanickl (1996a) and Boehme and Michanickl (1998). It can be explained by the degradation of holocellulose and lignin in recycled wood
resulting in reduction of the mechanical properties of boards due to the temperature increase (Yilgor et al. 2001). Moreover, these findings correspond to the research of Goldstein (1973) that the treatment temperature range should be between 110 and 170°C for recycled particles of particleboards. Additionally, Lykidis and Grigoriou (2011, 2008) concluded that the panel made from hydrothermally treated waste wood particles at around 150 °C shows better quality than others.
The effects of different waste wood ratio on the physical and mechanical properties of particleboard were investigated by Azambuja et al. (2018a, b), Laskowska and Mamiński (2018), Zamarian et al. (2017), Martins et al. (2007) and Suffian et al. (2010). The research results stated that it is possible to use 100% recycled wood particles in the production of panel products with UF as binder. In general, the higher the wood mix ratio applied, the lower the mechanical properties (MOE, MOR and IB) and the higher the hygroscopic properties (thickness swelling and water absorption) of panel achieved. The reasons could be due to the decrease in slenderness ratio of waste wood particles formed during the chipping process, which leads to the limitation of contact area between the particles (Arabi et al. 2011). In addition, the physical contaminants from surface coating materials (e.g., polypropylene, polyethylene, polyvinylchloride) of different waste wood-mix resources ( e.g., construction and demolition, furniture, packaging) cause negative effects on glue bonding of panel production, resulting in the decline of strength properties of boards. Moreover, Czarnecki et al. (2003) confirmed that waste wood particles containing PF resin could hinder UF curing due to its alkaline character resulting in reducing MOE, MOR and IB of recycled particleboard. On the other hand, Azambuja et al. (2018b) proved that the strength properties of produced particleboard containing up to 50% of waste wood mix are comparable to the one made from fresh wood particles and their values meet the standard of panel type P2. In general, the properties of the particleboards can be controlled based on the waste wood ratio in wood mixture.
Adhesive types also strongly affect the properties of particleboards. Several investigations focused on PF, TF and PMDI adhesives instead of UF for the improvement of particleboard properties using 100% waste wood particles (Hameed et al. 2018a; Laskowska and Mamiński 2018; Yang et al. 2007; Wang et al. 2007). The key findings illustrated that the MOE, MOR, and IB increase and TS and WA decrease when the percentages of those glues in waste wood mixture increase. This may be due to the differences in bonding properties (e.g., impregnation/absorbing ability only on surface or deeply inside middle lamella of wood) of UF, PF, TF and PMDI adhesives with wood particles/ fiber during the curing process affecting the physical and mechanical properties of produced panels. Better bonding
Properties of wood-based panels made from waste wood
Table 3
ParticleboardAzambuja et al. ( 2018a ) xxUF25; 1007500.49–1.304.6–7.20.18–0.7615.2–26.744.4–79.4
Azambuja et al. ( 2018b ) xxUF25; 507500.70–1.493.7–8.40.48–0.9214.2–27.943.2–81.3
Hameed et al. ( 2018a ) xUF, TF, PMDI1006402.10–2.1210.1–11.00.40–0.428.9–16.226.9–51.5
xUF, PF20; 40; 60; 80; 1006500.10–2.01.5–17.00.01–0.552.0–13.0
Laskowska and Mamiński ( 2018 )
xxUF10; 25; 50; 75; 1007001.45–1.9610.2–13.10.60–0.9611.6–16.034.8–42.7
Zamarian et al. ( 2017 )
Andrade et al. ( 2015 )xxUF0; 25; 50; 75; 1006000.61–0.844.4–9.00.37–0.8930.592.5
Martins et al. ( 2007 )xUF50; 70; 1006120.52–1.003.4–8.90.16–0.42
Lykidis and Grigoriou ( 2011 ) xUF1006801.78–2.699.2–14.20.38–0.5419.4–24.079.8–86.3
Suffian et al. ( 2010 )xUF1006502.5613.80.6135.763.6
xUF1006502.14–2.589.5–17.20.18–0.9426.2–59.179.0–119.6
Lykidis and Grigoriou ( 2008 )
Yang et al. ( 2007 )xPF100700; 8001.73–5.3311.1–29.00.12–0.422.0–11.0
Wang et al. ( 2007 )xPF, PMDI1008002.08–3.4511.4–27.90.56–0.737.0–18.1
FiberboardHong et al. ( 2018 )xUF10; 20; 307001.60–2.3010.0–18.00.08–0.2218.2–53.023.2–92.8
Roffael et al. ( 2016 )xUF, PMDI0; 33; 67; 1007300.40–0.5414.7–19.649.7–75.3
Mantanis et al. ( 2004 ) xUF2575032.4–37.80.60–1.027.0–8.2
Krzysik et al. ( 1997 )xPF7010003.38–4.1811.7–37.70.41–0.597.1–12.513.2–25.5
OSB Schild et al. ( 2019 )xPF0; 25; 50; 1006008.10–12.6528.0–33.50.38–0.5928.5–39.070.0–77.0
Mirski and Dorota ( 2011a ) xMUPF0; 25; 50; 75; 1006001.55–6.759.9–36.90.32–0.6426.9–33.6
Mirski and Dorota ( 2011b ) xPMDI0; 25; 50; 75; 1006001.40–7.1510.2–44.10.49–0.8821.6–32.9
OSB Oriented Strand Board, WW waste wood, WBP wood-based panel, UF urea formaldehyde, TF tannin formaldehyde, PF phenol formaldehyde, PMDI polymeric methylene diphenyl isocyanate, MUPF melamine urea phenol formaldehyde, MOE modulus of elasticity, MOR modulus of rupture, IB internal bond, TS thickness swelling, WA water absorption Target compositeReferences WW typeAdhesivesWW
European Journal of Wood and Wood Products (2023) 81:557–570
ability will result in better board properties. Laskowska and Maminski (2018) and Yang et al. (2007) stated that boards made from PF showed better properties than UF boards, whereas Wang et al. (2007) indicated that panels produced from PMDI showed higher properties than PF ones. Furthermore, Hameed et al. (2018a) demonstrated that the combination of TF and PMDI at the ratio of 30%:70% and 40%:60% in particleboard manufactured from waste wood material complied with the standard values of type P2 strength.
3.2.2.2 Fiberboard In the sector of fiberboard produced from the mixture of waste wood fiber and virgin wood, Hong et al. (2018), Roffael et al. (2016), Mantanis et al. (2004) and Krzysik et al. (1997) found that the strength properties (MOE, MOR and IB) of the panel decrease tendentially with the increase in waste wood fiber content. It could be explained by the fact that the handling process (e.g., hammering, cooking, refining) of recycled fiberboard into fiber resulted in shortening the fiber length of recycled fiber leading to the reduction in mechanical properties. There was a controversial finding in hygroscopic properties of investigated fiberboard. Hong et al. (2018) and Krzysik et al. (1997) found that TS and WA of investigated fiberboard increased with the higher proportion of recycled fiber content, whereas Roffael et al. (2016) and Mantanis et al. (2004) stated that TS and WA were improved and decreased when more recycled fibers are used. However, the difference could be explained by the fact that the adhesive content in recycled fiberboard contributes to the increase in TS and WA. Moreover, the interaction of cross-linking of the lignocellulose fibers with existing UF-pre-polymers in UF resin could be a reason for this effect (Andrews et al. 1985). Another possibility may be the effects of contaminants from adhesives, coating layers or surface laminate types (e.g., polyethylene terephthalate) in recycled fiberboard. Therefore, the findings indicated that it is only feasible to substitute 20% (Hong et al. 2018) to 25% (Mantanis et al. 2004) of recycled fiber in the UF wood mixture to produce fiberboards, reaching mechanical and physical properties comparable to virgin wood fibers.
At industrial scale, fiberboard recycling is facing a major problem of effectively collecting, sorting and disintegrating the wood fibers. Recycled fiberboards from off-cuts, machining errors, and transport and storage losses contain different types of wood adhesives and coating surface materials. These cause difficulties in applying appropriate technologies (e.g. mechanical, thermo-hydrolytic and chemical) to disintegrating fiberboard waste wood into reclaimed fiber completely in a single step used for fiberboard production. Therefore, the combination of mechanical, thermal and chemical technologies is requested. However, this combination will lead to the quality reduction in recovered fibers (Irle et al. 2019; Buschalsky and Mai 2021).
In addition, most collected waste wood resources at recycling centers or companies are mixtures of different wood types such as particleboard, fiberboard, plywood and OSB. Fiberboard accounts for about 5–15% of the amount of these waste wood resources and normally is not easy to separate from the mixture by traditional sorting methods (Fechter 2021). This amount will generate challenges (e.g. dust during chipping process of waste wood into particles and higher consumption of adhesives at gluing stage) when using it for the manufacture of industrial particleboards. For the time being, sorting technologies are developed that can sort out most of the fines from the waste wood mixture. Great effort is made to increase the recovery of MDF by different technologies besides improved sorting such as steaming at high pressure, ohmic heating or microrelease.
3.2.2.3 OSB For the production of OSB from waste wood, Mirski and Dorota (2011a, b) stated that 75% of recycled wood particles could replace virgin ones in the core layer of OSB with MUPF and PMDI, complying with the mechanical and physical property values of standard EN 300. On the other hand, Schild et al. (2019) indicated that the substitution up to 100% of unsorted waste wood particles in the core layer of OSB with PF is possible and the MOE, MOR and IB of the boards comply with standard requirements, except for TS and WA. However, MOE and MOR decrease when the waste wood content increases, whereas IB, thickness swelling and water absorption increase with the increase in waste wood proportions. These effects could be due to the inhomogeneous distribution of strands and particles and particles contaminants (e.g., wood preservatives, resonated waste wood particles, paints) in the face and core layers of OSB resulting in high-density variations in core layer and the whole board.
3.2.3 Formaldehyde emission
Table 4 shows the summarized data of studies conducted on formaldehyde emission of wood-based panels (particleboard, OSB, fiberboard) produced with various waste wood ratio and adhesives types.
Tendentially, the amount of formaldehyde emission of particleboard and OSB produced from waste wood particles increases with higher proportion of waste wood mixture. Martins et al. (2007) indicated that particleboards produced from higher waste wood ratio (from 50 to 100%) and same UF content showed higher formaldehyde emission. Mirski and Dorota (2011a) found the same tendency in the production of OSB from recycled wood. The reason for this is probably due to the former concentration of formaldehyde included in the glue of recycled wood. In contrast, Hong et al. (2018) and Roffael et al. (2016) found that the amount of formaldehyde emission of fiberboards made from waste
Adhesives (%)WW ratio (%)Density (kg/m 3 ) Formaldehyde emission
Desiccator (mg/L)
Flask (mg/1000 g o.d) (EN 717–3)
Perforator (mg/1000 g o.d) (EN 120)
References WW type
PBFBUnknownType%Chamber (ppm or mg/m 3 air) (EN 717–1)
Costa et al. ( 2014 ) xUF71006502.90–8.50
Martins et al. ( 2007 ) xUF750; 70; 1006122.20–6.96
Lykidis and Grigoriou ( 2011 ) xUF8;121006803.68–14.40
Lykidis and Grigoriou ( 2008 ) xUF71006501.61–10.26
Wang et al. ( 2007 ) xPF PMDI 6 4 1008000.03–0.89
Table 4
Target composite
ParticleboardHameed et al. ( 2018b ) xUF, TF, PMDI1006400.06–0.593.10–13.305.30–145.4
OSBMirski and Dorota ( 2011a ) xMUPF50; 25; 50; 75; 100 6004.87–6.21
Hong et al. ( 2018 ) xUF1210; 20; 307000.80–1.50
Roffael et al. ( 2016 ) xUF PMDI 10 0.5;1.0 0; 33; 67; 1007301.90–11.802.70–122.0
Formaldehyde emission of wood-based panel products produced from waste wood UF urea formaldehyde, PF phenol formaldehyde, TF tannin formaldehyde, PMDI
Fiberboard
European Journal of Wood and Wood Products (2023) 81:557–570
wood fiber decreases with the increase in recycled fiber content. This formaldehyde reduction could be related to the amount of urea pre-polymers, urea and ammonia generated during the degradation of amino-plastic resin in recycled fiberboard reacting with formaldehyde as formaldehyde scavengers. Another explanation might be the release of melamine during hot-pressing acting as formaldehyde scavengers (Sugita et al. 1990; Martin et al. 1992). Furthermore, the findings of Costa et al. (2014), Martins et al. (2007) and Mirski, and Dorota (2011a) indicate that formaldehyde emission of particleboards and OSB (middle layer) produced from 100% recycled wood meets the standard values of EN 120 (< 8.0 mg/100 g o.d).
The type of adhesives affects the formaldehyde emission strongly. According to Hameed et al. (2018b), the particleboard produced from UF showed higher amount of formaldehyde content than TF/PMDI. Moreover, the amount of formaldehyde content reduced notably when the ratio of TF/PMDI increased. Wang et al. (2008) added that formaldehyde release of particleboards made from waste wood decreases linearly when the PMDI/PF ratio increases. The same tendency was found in the study of Roffael et al. (2016) with UF and PMDI for fiberboard production from secondary wood fibers.
On the other hand, the hydrothermal process of waste wood particles contributed to reduce the amount of formaldehyde emission. Moreover, the formaldehyde content of thermally treated wood particles is comparable or almost the same as the formaldehyde content of the virgin ones. Waste wood particles treated at 150 °C with 30% water retention/20 mins; 45% water retention/10 mins; and 60% water retention/8 mins (Lykidis and Grigoriou 2011) and 6 bar/156 °C/45 min (Lykidis and Grigoriou 2008) reduce considerably the formaldehyde content in the produced particleboards compared to control panel and comply with emission class E1. Roffael (1995), Michanickl (1996a, b) and Dix et al. (2001a, b) found the same. It can be explained by the fact that the increase in temperature during hydrothermal treatments speeds up the degradation of adhesives in waste wood particles and therefore, urea and other derivatives of hardened urea-formaldehyde will be activated as formaldehyde catchers (Roffael and Kraft 2005).
It can be noticed that the formaldehyde emission of wood-based panels manufactured from waste wood could be reduced using thermal hydrolysis process to handle waste wood particles or formaldehyde-free adhesives.
4 Conclusion
Over the last two decades, many efforts have been put into studying the properties of waste wood resource and its application on material use. Evidently, waste wood is not
a homogeneous material. Therefore, there are still some limitations that need to be overcome before waste wood can be used as raw material for wood composites production. Considering the research questions put forward in this review of waste wood utilization, the following conclusions can be drawn:
• It is not surprising that most of previous investigations focused on recycled wood of construction and demolition, furniture and packaging since they are the most popular waste wood stream resources. The potential municipal waste resource was missing in the research.
• There are not enough published data and results available based on research with material derived from plywood and OSB as compared to particleboard and fiberboard even though most of the wood-based panel products in the world are plywood. It is controversial between production volume, usage and recycling.
• Due to the rather strict national and/or Europe-wide regulations controlling recycling topics, European institutions and European research institutes are currently the forerunners in waste wood studies. However, the European member states are lacking a common legislation scheme about the recycling of wood regarding classification and thresholds. Waste wood resources in other continents such as Asia, Africa and Australia would be of high research interest in the future. In addition, more studies about waste wood ordinances should be conducted especially for countries outside Europe.
• The advantages in technical and mechanical treatment process of waste wood into particles indicated that particleboard was the primary option for the production of wood-based panel compared to fiberboard and OSB. The present literature analysis has confirmed that currently, there appears to be hardly any research on the use of waste wood materials in the production of plywood.
• Physical and mechanical contaminants of waste wood resources would not be a problem for wood composites recycling if they were well managed. This management can be done beforehand at recycling companies or facilities via steps of collection, separation and sorting into certain grades. In general, every contaminant could be detected and eliminated by appropriate sorting techniques. On the other hand, the focus on improvement of sorting methods will bring the future perspective values for cleaning waste wood mix. Moreover, changing ingredients of coating pigments, paints, preservatives etc., which contain less harmful substances contributing to reduce contaminants in recycled wood, would be an option as well.
• Particleboard and the core layer of OSB panel products could be substituted up to 100% by waste wood particles. However, the contaminants and the low slenderness ratio
of recycled wood particles will result in the reduction of physical and mechanical properties of the panel products. Those disadvantages could be overcome by applying modern sorting techniques to eliminate contaminants and appropriate chipping techniques in order to increase the slenderness ratio of recycled wood particles. Further investigations are needed at the moment for the improvement of fiberboard properties made from 100% recycled fibers since only up to 25% of waste wood fiber can be utilized in the fiberboard wood mixture achieving comparable physical and mechanical properties with fiberboard from virgin wood.
• Using waste wood for the production of wood-based panel increases the risk of formaldehyde emission in products of particleboard and OSB, except for fiberboard. However, this risk can be addressed by applying pretreatment steps to reduce formaldehyde emission (e.g., hydrothermal process) or using formaldehyde-free adhesives (e.g., PMDI)
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00107-023-01937-4
Author contributions All authors contributed to the study conception and design of this review paper. Papers search, data collection, analysis and interpretation were performed by NDL, JL, MN and AK. NDL wrote the first version of this manuscript. All authors commented and revised on previous versions of the manuscript. At the end, all authors proofread and approved the final manuscript to be published.
Funding Open Access funding enabled and organized by Projekt DEAL. German Academic Exchange Service (Deutscher Akademischer Austauschdienst [Grant no. 91691453]) funded this research.
Data availability The datasets collected, generated and analysed during the current study are available from the corresponding author on reasonable request.
Declarations
Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References
Andrade PI, Araújo SO, Neiva DM, Vital BR, Oliveira C, Angélica C, Gominho J, Pereira H (2015) Strength properties and dimensional stability of particleboards with different proportions of thermally treated recycled pine particles. Holzforschung 70(5):467–474. https://doi.org/10.1515/hf-2015-0090
Andrews K, Reinhard R, Frick JG, Bertoniere R (1985) Cellulose reaction with formaldehyde and its amid derivates in formaldehyde release from wood products. In: Proceedings of the ACS symposium series No. 316. (ISBN 0-8412-0982-0
Arabi M, Faezipour M, Layeghi M, Enayati AA (2011) Interaction analysis between slenderness ratio and resin content on mechanical properties of particleboard. J for Res 22(3):461–464. https:// doi.org/10.1007/s11676-011-0188-2
Azambuja RR, Castro VG, Trianoski R, Iwakiri S (2018a) Recycling wood waste from construction and demolition to produce particleboards. Maderas Ciencia y Tecnologia 20(4):681–690. https://doi.org/10.4067/S0718-221X2018005041401
Azambuja RR, Castro VG, Trianoski R, Iwakiri S (2018b) Utilization of construction and demolition waste for particleboard production. J Build Eng 20:488–492. https://doi.org/10.1016/j. jobe.2018.07.019
Bergeron FC (2014) Assessment of the coherence or the Swiss waste wood management. Resour Conserv Recycl 91:62–70
Besserer A, Troilo S, Girods P, Rogaume Y, Brosse N (2021) Cascading recycling of waste wood: a review. Polymers 13(11):1752. https://doi.org/10.3390/polym13111752
Boehme C, Michanickl A (1998) Process for recovering chips and fibers from residues of timber-derived materials, old pieces of furniture, production residues, waste and other timber containing materials. Patent No. US5804035, EP 0697941
Bundesverband der Altholzaufbereiter und -Verwerter (BAV e.V.) (2021) Waste wood markets in Europe, Kategorie Europa. https://altholzverband.de/2021/09/27/waste-wood-markets-ineurope/. (German waste wood association (2021) Waste wood markets in Europa, Category Europe). Accessed on 12.10.2021
Buschalsky FY, Mai C (2021) Repeated thermo-hydrolytic disintegration of medium density fiberboards (MDF) for the production of new MDF. Eur J Wood Prod 79:1451–1459. https://doi.org/ 10.1007/s00107-021-01739-6
Butera S, Christensen TH, Astrup TF (2014) Composition and leaching of construction and demolition waste: inorganic elements and organic compounds. J Hazard Mater 276:302–311. https:// doi.org/10.1016/j.jhazmat.2014.05.033
Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhães FD (2014) Formaldehyde emission in wood-based panels: effect of curing reactions. Int Wood Prod J 5(3):146–150. https:// doi. org/ 10. 1179/2042645314Y.0000000070
Czarnecki R, Dziurka D, Łęcka J (2003) The use of recycled boards as the substitute for particles in the center layer of particleboards. Electron J Pol Agric Univ Wood Technol 6(2):#01. http://www.ejpau.media.pl/volume6/issue2/wood/art-01.html Accessed 22 Dec 2019
Dix B, Schafer M, Roffael E (2001a) Using fibers from waste fiberboards pulped by a thermo-chemical process to produce medium density fiberboard (MDF). Holz Roh Werkst 59(4):276
Dix B, Schafer M, Roffael E (2001b) Using fibers from waste particleboard and fiberboards pulped by a chemo-thermo-mechanical process to produce medium density fiberboard (MDF). Holz Roh Werkst 59(4):299–300
European Journal of Wood and Wood Products (2023) 81:557–570
Edo MB, Persson E, Jansson PE (2015) Assessment of chemical and material contamination in waste wood fuels—a case study ranging over nine years. Waste Manage 49:311–319. https://doi. org/10.1016/j.wasman.2015.11.048
Edo M, Bjoern E, Per-Erik P, Jansson S (2016) Assessment of chemical and material contamination in waste wood fuels—a case study ranging over nine years. Waste Manag (new York, NY) 49:311–319. https://doi.org/10.1016/j.wasman.2015.11.048
European Union Commission Decision 2009/894/EC (2009) On establishing the ecological criteria for the award of the community eco-label for wooden furniture (notified under document C (2009) 9522) OJ L 320, 5.12.2009:23–32. http://extwprlegs1. fao.org/docs/pdf/eur91599.pdf. Accessed on 13.01.2022
FAO (2018) Global forest products. Fact and figures. 6–8. https:// www. fao. org/3/ ca741 5en/ ca741 5en. pdf . Accessed on 17.08.2021
Faraca G, Alessio B, Thomas A (2019) Resource quality of wood waste: the importance of physical and chemical impurities in wood waste for recycling. Waste Manag 87:135–147. https://doi. org/10.1016/j.wasman.2019.02.005
Fechter JO (2021) Von der Vision zur Umsetzung—IKEAS Recyclingziele für Altholz, IKEA of Sweden. BAV-Altholztag, Koeln, Germany. (Fechter JO (2021) From vision to implementation— IKEAS recycling targets for waste wood, IKEA of Sweden. BAV Waste Wood Day, Cologne, Germany)
Fellin M, Negri M, Zanuttini R (2011) Monitoring pollutants on wood residues using FT-IR-ATR technology, ISCHP 11-Virginia Tech, Blacksburg, VA, USA 16–18 October 2011, pp 187–195. (ISBN 978-0-9837700-0-8 )
Fellin M, Negri M, Zanuttini R (2014) Multi-elemental analysis of wood waste using energy dispersive X-ray fluorescence (EDXRF) analyzer. Eur J Wood Prod 72(2):199–211. https://doi.org/ 10.1007/s00107-013-0766-4
Fjelsted L, Christensen TH (2007) Household hazardous waste: composition of polluted waste. Waste Manag Res 25:502-S09. https:// doi.org/10.1177/0734242X07082956
Goldstein I (1973) Degradation and protection of wood from thermal attack. In: Ddd V (ed) Wood deterioration and its prevention by preservative treatments, Volume I: degradation and protection of wood. Syracuse wood science series, vol 5. Syracuse University Press, New York
Hameed M, Roennols E, Bramryd T (2018a) Particleboard based on wood waste material and bonded by hybrid resin of TF and PMDI. Part 1: the mechanical and physical properties of particleboards. Holztechnologie 59(4):24–32
Hameed M, Roennols E, Bramryd T (2018b) Particleboard based on wood waste material and bonded by hybrid resin of TF and PMDI. Part 2: the extractable formaldehyde content and formaldehyde release. Holztechnologie 59(5):32–38 (ISSN: 0018-3881)
Hasan RA, Schindler J, Solo-Gabriele HM, Townsend TG (2011a) Part I: online sorting of recovered wood waste by automated XRFtechnology. Detection of preservative-treated wood waste. Waste Manag (new York, NY) 31(4):688–694. https://doi.org/10.1016/j. wasman.2010.11.010
Hasan RA, Solo-Gabriele H, Townsend TG (2011b) Part II: online sorting of recovered wood waste by automated XRF-technology— sorting efficiencies. Waste Manag (new York, NY) 31(4):695–704. https://doi.org/10.1016/j.wasman.2010.10.024
Hong MK, Lubis MAR, Park B, Sohn CH, Roh J (2018) Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Mat Sci Eng 15(3):163–171. https://doi.org/10.1080/17480272.2018.1528479
Irle M, Privat F, Couret L, Belloncle C, Deroubaix G, Bonni E, Cathala B (2019) Advanced recycling of post-consumer solid wood and
MDF. Wood Mater Sci Eng 14(1):19–23. https://doi.org/10.1080/ 17480272.2018.1427144
Jan VM (2019) Überblick über den Europäischen Markt, SUEZ trading. BAV-Altholztag, München, Deutschland (Jan VM (2019) European Market Overview, SUEZ Trading. German waste wood association—Waste wood day, Munich, Germany)
Jartun M, Ottesen RT, Steinnes EVT (2009a) Painted surfaces „ important source of polychlorinated biphenyl (PCBs) contamination to the urban and marine environment. Environ Pollut 157:295–302
Jartun M, Ottesen RT, Tl V, Kvist Q (2009b) Local sources of polychlorinated biphenyls (PCB) in Russian and Norwegian settlements on Spitsbergen Island, Norway. J Toxicol Environ Health Part A Curr Lssues 72:284–294. https://doi.org/10.1080/15287390802539426
Jermer J, Annika E, Claes T (2001) Analysis of contaminants in waste wood. In: Annual meeting paper, the international research group on wood preservation. IRG/WP 01-50179
Johan S, Maria Z, Ron Z (2007) Combined thermal treatment of CCAwood waste and municipal sewage sludge for arsenic emissions control. Report 2007-1. Faculty of Technology. Abo Akademi University. http://users.abo.fi/rzevenho/CCAreportV T2007-1. pdf. Accessed on 15.10.2021
Krook J, Mirtensson A, Eklund M (2004) Metal contamination in recovered waste wood used as energy source in Sweden. Resour Conserv Recycl 41:1–14. https://doi.org/10.1016/50921-3449(03) 00100-9
Krook J, Mirtensson A, Eklund M (2006) Sources of heavy metal contamination in Swedish wood waste used for combustion. Waste Manag 26:158–166. https://doi.org/10.1016/j.wasman.2005.07. 017
Krzysik JMA, Youngquist AJ, Bowers H (1997) Medium density fiberboard panels from waste wood and paper. Mater Sci (Corpus ID: 18005113)
Lahtela V, Kaerki T (2018) Mechanical sorting processing of waste material before composite manufacturing—a review. JESTR 11(6):35–46. https://doi.org/10.25103/jestr.116.06
Laskowska A, Mamiński M (2018) Properties of particleboard produced from post-industrial UF- and PF-bonded plywood. Eur J Wood Prod 76(2):427–435. https:// doi. org/ 10. 1007/ s00107-017-1266-8
Lesar B, Humar M, Hora G (2018) Quality assessment of recycled wood with and without non-wooden materials from selected recycling companies in Europe. Waste Manag (new York, NY) 79:362–373. https://doi.org/10.1016/j.wasman.2018.08.002
Lykidis C, Grigoriou A (2008) Hydrothermal recycling of waste and performance of the recycled wooden particleboards. Waste Manag (new York, NY) 28(1):57–63. https://doi.org/10.1016/j.wasman. 2006.11.016
Lykidis C, Grigoriou A (2011) Quality characteristics of hydrothermally recycled particleboards using various wood recovery parameters. Int Wood Prod J 2(1):38–43. https://doi.org/10.1179/ 2042645311Y.0000000002
Mantanis G, Eleftheria A, Panagiotis N, Aires C (2004) A new process for recycling waste fiberboards. In: 38th international wood composites symposium, pp 119–122
Mantau U, Doering P (2018) Rohstoffmonitoring Holz. Altholz im Entsorgungsmarkt—Herkunft und Aufbereitung, INFRO Teilbericht. http://infro.eu/downloads/studien/10_ATH_2016_Zusatz_Teilb ericht_FINAL_20180904.pdf. Accessed on 08.09.2021
Martin RE, Hizo CB, Ong AM, Alba OM, Ishiwata H (1992) Release of formaldehyde and melamine from melamine tableware manufactured in the Philippines. J Food Prot 55(8):632–635
Martins J, João P, Brígida P, Cristina C, Luisa C (2007) Effect of recycled wood on formaldehyde release of particleboard. In: COST action E49 conference “Measurement and Control of VOC Emission from Wood Based Panels”, Braunschweig, Germany
Mauruschat D, Plinke B, Aderhold J, Gunschera J, Meinlschmidt P, Salthammer T (2016) Application of near-infrared spectroscopy for the fast detection and sorting of wood–plastic composites and waste wood treated with wood preservatives. Wood Sci Technol 50(2):313–331. https://doi.org/10.1007/s00226-015-0785-x
Mesch K (2010) Heat stabilizers. In: Encyclopedies of polymer science and technology. Wiley Online Library. https://doi.org/10.1002/ 0471440264.pst153
Michanickl A (1996a) The material utilization of products made from wood-based panels. In: Proceedings of the third Eurowood symposium, Braunschweig, Germany, pp 1–5
Michanickl A (1996b) Recovery of fibers and particles from woodbased products. In: Proceedings no 7286: the use of recycled wood and paper in building applications. Forest Products Society, pp 115–119
Mirski R, Dorota D (2011a) The utilization of chips from comminuted wood waste as a substitute for flakes in the oriented strand board core. For Prod J 61(6):473–477. https://doi.org/10.13073/00157473-61.6.473
Mirski R, Dorota D (2011b) Applicability of strand substitution in the core of OSB. In: BioResources 6(3):3080–3086
Nagalli A, Fernada PL, Piera MP, Rafaela MH, Ronaldo LSI (2013) Analysis of wood waste contamination used in construction sites. EJGE 18(Bund. S):3999–4009
Purkus A, Luedtke J, Becher G, Jochem D, Polley H, Rueter S, Weimar H, Maack C (2019) Charta fuer Holz 2.0—Kennzahlenbericht 2019 Forst & Holz. Guelzow-Pruezen: Fachagentur Nachwachsende Rohstoffe e.V. (FNR). 45 S (Purkus A, Luedtke J, Becher G, Jochem D, Polley H, Rueter S, Weimar H, Maack C (2019) Charter for wood 2.0—key figures report 2019 forest and wood. Guelzow-Pruezen: Agency for Renewable Resources e.V. (FNR). 45S)
Robey NM, Solo-Gabriele HM, Jones AS, Marini J, Townsend TG (2018) Metal’s content of recycled construction and demolition wood before and after implementation of best management practices. Environ Pollut (barking, Essex: 1987) 242(Pt B):1198–1205. https://doi.org/10.1016/j.envpol.2018.07.134
Roffael E, Franke R (1995) On recycling of wood-based panels. In: Proc. IUFRO XX World Congress. Tampere, Finland, August 1995. http://www.metla.fi/iufro/iufro95abs/d5pap69.htm
Roffael E, Kraft R (2005) Zur quantitativen Bestimmung von Harnstoff mittels Indophenolmethode (Berthelot-Reaktion). (On the quantitative estimation of urea using the Indophenol method). Holz Roh Werkst 63:309–310
Roffael E, Behn C, Schneider T, Krug D (2016) Bonding of recycled fibers with urea-formaldehyde resins. Int Wood Prod J 7(1):36–45. https://doi.org/10.1080/20426445.2015.1131918
Schild A, Cool J, Barbu MC, Smith GD (2019) Feasibility of substituting core layer strands in randomly OSB with contaminated waste wood particles. Wood Mater Sci Eng 52(5):1–8. https://doi.org/ 10.1080/17480272.2019.1652682
Sekundaerrohstoffe A (2018) Aufkommen, Verwendung, Maerkte und Trends. EU-Recycling 11:30–32
Silvio M (2018) Panel production trends: will the role of waste wood change? Poeyry group. In: 11th European wood-based panel symposium, pp 10–12 October 2018, Hamburg, Germany
Suffian M, Ormondroyd GA, Hale MD (2010) Comparisons of particleboard produced from Acacia hybrid and a UK commercial particleboard furnish from recycled wood. J Trop for Sci 2010:227–236
Sugita T, Ishiwata H, Yoshihira K (1990) Release of formaldehyde and melamine from tableware made of melamine–formaldehyde resin. Food Addit Contam 7(1):21–27
Tolaymat TM, Timothy GT, Helena SG (2000) Chromated copper arsenate-treated wood in recovered wood. Environ Eng Sci. https://doi. org/10.1089/ees.2000.17.19
United State Environmental Protection Agency (2018) Facts and figures about materials, waste and recycling. Wood: Material-Specific Data. https:// www. epa. gov/ facts- and- figures- about- mater ialswaste-and-recycling/wood-material-specific-data. Accessed on 10.01.2022
Vaermeforsk (2012) Report 1234 Braenslehandboken (The fuel handbook), p 442 (ISSN 1653-1248)
Van Benthem M, Leek N, Mantau U, Weimar H (2007) Markets for recovered wood in Europe: case studies for the Netherlands and Germany based on the Bioxchange project, pp 1–12. http://www. probos.nl/images/pdf/artikelen/PaperProbosforCOST-E31.pdf Accessed on 09.01.2022
Wang SY, Yang T, Lin L, Lin C, Tsai M (2007) Properties of lowformaldehyde-emission particleboard made from recycled wood-waste chips sprayed with PMDI/PF resin. Build Environ 42(7):S.2472-S.2479. https://doi.org/10.1016/j.buildenv.2006. 06.009
Williams C (1976) The rapid determination of trace elements in soils and plants by X-ray fluorescence analysis. J Sci Food Agric 27:561–570
Yang TH, Lin C, Wang S, Tsai M (2007) Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Build Environ 42(1):189–195. https:// doi.org/10.1016/j.buildenv.2005.08.028
Yilgor N, Unsal O, Kartal S (2001) Physical, mechanical and chemical properties of steamed beech wood. For Prod J 51(11–12):89–93
Zamarian EHC, Iwakiri S, Trianoski R, Albuquerque CECA (2017) Production of particleboard from discarded furniture. Rev Árvore 41(4):333. https://doi.org/10.1590/1806-90882017000400007
Zero Waste Europe (2014) Press release: Eurostat data for 2014 confirms need for European residual waste target. Published in 23.03.2016. https://zerowasteeurope.eu/press-release/press-relea se-eurostat-data-for-2014-confirms-need-for-european-residualwaste-target/. Accessed on 13.01.2022
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications
Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating
polymers
Review



RecentAdvancesinNaturalFibre-BasedMaterialsforFood PackagingApplications
HarikrishnanPulikkalparambil 1 ,SandhyaAliceVarghese 1 ,VaneeChonhenchob 1,2 ,TarineeNampitch 1 , LerpongJarupan 1,2 andNathdanaiHarnkarnsujarit 1,2, *

Citation: Pulikkalparambil,H.; Varghese,S.A.;Chonhenchob,V.; Nampitch,T.;Jarupan,L.; Harnkarnsujarit,N.RecentAdvances inNaturalFibre-BasedMaterialsfor FoodPackagingApplications. Polymers 2023, 15,1393.https:// doi.org/10.3390/polym15061393
AcademicEditor:SwarupRoy
Received:22December2022
Revised:24January2023
Accepted:23February2023
Published:10March2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).
1 DepartmentofPackagingandMaterialsTechnology,FacultyofAgro-Industry,KasetsartUniversity,50Ngam WongWanRd.,Latyao,Chatuchak,Bangkok10900,Thailand
2 CenterforAdvancedStudiesforAgricultureandFood,KasetsartUniversity,50NgamWongWanRd.,Latyao, Chatuchak,Bangkok10900,Thailand
* Correspondence:nathdanai.h@ku.ac.th;Tel.:+662-562-5045;Fax:+662-562-5046
Abstract: Packagingisoneofthemajordomainsinthefoodprocessingindustrythatreduceswaste andenhancesproductshelflife.Recently,researchanddevelopmenthavefocusedonbioplasticsand bioresourcestocombatenvironmentalissuescausedbythealarminggrowthofsingle-useplastic wastefoodpackaging.Thedemandfornaturalfibreshasrecentlyincreasedbecauseoftheirlow cost,biodegradabilityandeco-friendliness.Thisarticlereviewedrecentdevelopmentsinnatural fibre-basedfoodpackagingmaterials.Thefirstpartdiscussestheintroductionofnaturalfibresin foodpackaging,withafocusonfibresource,compositionandselectionparameters,whilethesecond partinvestigatesthephysicalandchemicalwaystomodifynaturalfibres.Severalplant-derivedfibre materialshavebeenutilisedinfoodpackagingasreinforcements,fillersandpackagingmatrices. Recentinvestigationsdevelopedandmodifiednaturalfibre(physicalandchemicaltreatments)into packagingusingcasting,meltmixing,hotpressing,compressionmoulding,injectionmoulding,etc. Thesetechniquesmajorlyimprovedthestrengthofbio-basedpackagingforcommercialisation. Thisreviewalsoidentifiedthemainresearchbottlenecksandfuturestudyareasweresuggested.
Keywords: naturalfibres;foodpackaging;fibremodifications
1.Introduction
Bothsmall-andlarge-scalefoodindustriesaregrowingcontinuously,withfood packagingbeinganintegralaspecttoreducespoilageandextendproductshelflife[1].The globalproductionofplasticsisprojectedtoreach1100milliontonnesby2050,with36%of theoutputcurrentlyusedinthepackagingindustryand85%ofthisendsupinlandfills.
Figure 1 showsagraphicalrepresentationofplasticwastegenerationbyseveralindustrial sectorsin2015[2].Thisdiscardedwastepollutestheenvironment.Plasticpackagingis nowusedtoproducecomplexgeometrieswithfunctionalsnapfitsanddecorationsbut single-useplasticscauseextremeecologicalissues.Highproductionvolumes,shortusage timeanddealingwiththedisposalofend-lifeplasticshavebecomepressingissues.Rates ofrecyclingforconventionalsingle-usepackagingsuchasglass,plastic,paper,aluminium, andotheralloysarelow,withpaperandpaper-basedpackagingmaterialsrecycledaround 20%ofthetime,whileotherssuchasplasticarerecycledatsubstantiallylowerrates[3].
(measured in tonnes per year)

Figure1. Plasticwastegeneratedbydifferentindustrialsectors[2].
Packagingmaterialhasavitalroleinproductfunctionality,efficiency,processing parametersandenvironmentallyfriendlycustomersatisfaction[4,5].Petroleum-based conventionalplasticpackagingismostlynon-biodegradable,withrisingandunstable pricesduetofluctuationsintheavailabilityofpetroleumsources.Packagingdisposalis nowaprimaryconcernthreateningtopollutewatersupplies,sewersystems,riversand lakes[6].Overtime,plasticproductsfragmentintomicro-andnano-sizedparticlesthat causeserioushealthissues[7].Microplasticshavebeendetectedin15humanbiological componentsincludingbreastmilk,bronchoalveolarlavagefluid,blood,lung,liver,kidney, spleen,placenta,meconium,skin,hair,head,face,hand,saliva,colectomyspecimens, faecesandsputum[8].Babiesingest553to4,550,000microplasticparticles/daythrough feedingbottles[9].Thismicroplasticexposuredirectlyimpactsthedigestive,reproductive, centralnervous,immuneandcirculatorysystemsduringearlydevelopmentalstages.
Pollutioncausedbyplasticsrequireswastemanagementactionbyinnovation,improvedproductandpackagedesignandincreasedrecycling.Thisrequiresorganised legislativeactionsandinternationalcooperation.Thestatisticsindicatethattheutilisation ofplasticresourcesinthetakeawayfoodindustryhasmushroomed[10].Chinaisthe largestconsumeroftakeawayfood,generating350kT/dayofplasticfoodpackaging,with 40billionfoodboxesdiscardedperdayin2019[11].Recently,theCOVID-19crisiscaused a2.2%reductionintheuseofplasticsin2020butthevolumesoftakeawaypackaging andconsumptionofplasticmedicalequipmentincreasedaseconomicactivityresumedin 2021.Thisupwardprogressionoftheuseandconsumptionofplasticsmustbecritically addressed[12,13].
Thisstudyinvestigatedalternativestotraditionalsyntheticplasticpackagingby adoptingasustainable,renewableandbiodegradableapproach[14,15].Naturalfibres arecommonlyusedasreinforcementincompositematerials[16].Theyplaypivotalroles inattainingsomeofthespecificneedsincompositepreparations.Recently,theutilisationofnaturalfibreshasincreasedbecauseofecologicalconcerns;theyarelightweight, naturallydegradable,CO2 neutralandreadilyavailableasrenewablematerials[17,18]. Mostimportantly,duetotheirvulnerabilitytolivingorganisms,theyarebiodegradable anddonotimpacttheecosystem[19].Consequently,incorporatingnaturalfibresinto
thepolymermatricesimprovesthedisposalofcompositematerial[20–22].Varghese etal.[23]investigatedtheuseof Ceibapentandra naturalfibresinpoly(3-hydroxybutyrateco-3-hydroxyvalerate)-basedpackagingapplications.Theyfoundthattheincorporation ofnaturalfibresacceleratedthedegradationofpackagingmaterials,whichshowedgood antibacterialcapacityagainst Staphylococcusaureus andeffectivelypreservedthefreshness ofstrawberriesforalongerperiod.Naturalfibresareecologicallyfriendlybutnegative packagingaspectsincludetheirdominanthydrophilicityandlowmechanicalproperties underhumidconditions.Therefore,usesofnaturalfibresinseveralpackagingapplications arelimited.Recently,naturalfibreshavebeenutilisedwhentherecoveryofconventional plasticsisnoteconomicallyfeasible,controllableorviableandone-time-usepackaging materialsarepreferrable.Naturalfibre-reinforcedcompositescanbereused,unlikecardboardboxes.Saraivaetal.[24]developednaturalfibre-reinforcedcompositematerialfrom spongegourdresidueandcompareditspackagingefficacywiththatofcardboardboxes. Theresultsshowedthatthedevelopednaturalpackagingmaterialwaspreferableafter fourcyclesofuse.
Thisreviewaimedtoinvestigateadvancementsintheresearch,developmentand utilisationofnaturalfibre-basedcompositesforfoodpackagingapplications.Sources, compositionsandrecentproductiontechniquesofseveralnaturalfibresinfoodpackaging werediscussed.Physicalandchemicalmodificationsofnaturalfibresthatimprovetheir suitabilityforfoodpackagingwerealsoexplored.
2.NaturalFibresinPackaging
Naturalfibresareabundantlyavailableasbiodegradableandrenewablenatural materials[25]andtheyhaverecentlyreceivedhugeattentionfromtheglobalresearch community[26,27].Naturalfibrescanbedividedintothreecategoriesbyorigin:animalbased,mineralbasedandplant-based[28].Plant-basednaturalfibreswerethemainfocus ofthisreviewbecauseoftheirabundantavailabilityatlowcost.Plant-basednaturalfibres arelignocellulosicinnaturewiththeirbasicconstituentsincludinglignin,hemicellulose andcellulose.Animal-basedfibresmostlyconsistofproteins,e.g.,woolandsilk.Mineralbasedfibresareformedasaresultofgeologicalprocesses,suchasasbestosandbasalt.In plant-basednaturalfibres,bothprimaryfibresobtaineddirectlyfromplantsandsecondary fibresobtainedasbyproductsafterutilisationofprimaryfibresareused.
2.1.SourceandCompositions
Naturalprimaryplantfibresincludehemp,kenaf,sisalandcotton,whilesecondary fibresincludebagasse,coir,pineapple,agaveandoilpalm[29–31].Naturalfibreshave longbeenexploitedinthepreparationandmanufactureofropesandtextiles,forexample, flax,hemp,cottonlintorsisal.Somefibreshavesecondaryapplicationsinfoodpackaging. Figure 2 showssomeofthecommonlyavailablenaturalfibresandtheirsources,while Table 1 showstheoriginandpropertiesofnaturalfibres.Someofthemajorvarietiesof naturalfibresarediscussedinmoredetailbelow.


Figure2. Commonlyavailablenaturalplantfibresandtheirsources[32–60]Agavefiberfigure ReprintedwithpermissionfromRef.[58].Copyright2021ElsevierLtd.
2.1.1.Hemp(Cannabissativa)
Hempisoneofthemostwidelyutilisednaturalfibresaftersisalasreinforcementfor composites[61].HempisgrownwidelyintheEU,China,thePhilippinesandCentral Asia.Theplantsarecultivatedfromseedandcangrowupto5minheight.Crops cultivatedforfibrearedenselysownandproduceplantsaveraging2–3minheightwith almostnobranching.Hempfibreshaveantibacterialproperties[62–64]emanatingfrom cannabinoids,alkaloids,otherbioactivecomponentsorlignin[65].Khanetal.[66]studied theantibacterialpropertiesofhemphurdpowderagainst E.coli usingretted,semi-retted andnon-rettedhemphurdpowderwithdifferentparticlesizes.Thefibreswerekeptat 160 ◦ Cfor2hto eliminateself-contaminationssuchashumidityandthermalhistory.These authorsfoundthathempwasanecofriendlyfoodpackagingmaterialsuitableformeat, saladsandready-madefoodproducts.Teixeiraetal.[67]studiedthetemperatureeffects onmechanicalstrengthofhempfibres.Theyfoundthattensilestrengthincreasedby18% oncethefibreswereexposedto100 ◦ Cfor24h.However,whenexposedto200 ◦ Cfor24h, tensilepropertiesdecreasedandthefibresbecamefragileandbrittle.
2.1.2.Sisal(Agavesisalana)
Sisalisoneofthemostcommonlyusednaturalfibresgrownintropicalandsubtropical regionsofNorthandSouthAmerica,Africa,theWestIndiesandtheFarEast.Moreover, thehydroalcoholicextractobtainedfromsisalleavespossessessignificantantimicrobial activityagainst Aspergillusniger and Candidaalbicans [68,69].Pulikkalparambiletal.[70] examinedthereuseofdiscardedpolypropylene(PP)-baseddisposablefacemaskswith sisalandhempfibremats.TheyusedhotcompressionmouldingtosandwichthePPmasks andnaturalfibres.Theresultingcompositesshowedexcellentmechanicalpropertieswith antimicrobialactivitiesagainst S.aureus
2.1.3.Kenaf(Hibiscuscannabinus L.)
KenafisamemberoftheMalvaceaefamilyandherbaceousfibrecrops.Kenafplants aregrownthroughouttheyearwithashortharvesttimeinWestAfrica,IndiaandChina[71]. Theycangrowupto2.5–4.5mtallwithstemsupto1–2minlength.Kenafseedsandleaves areusedinfoodproductsastheyarerichinnutritionalandphytochemicalcompounds[72].
2.1.4.Bamboo(Bambusavulgaris)
Bamboo(Bambusavulgaris)growsinAsia-Pacific,African,EuropeanandNorthand SouthAmericanregions.Bambooreachesmaturityin3yearswhenitstensilestrength iseffectivelycomparabletomildsteel.Mosobamboohasagrowthrateof2inchesper hour.Somebamboospeciesreachaheightof60feetin3months.Therefore,cutting downthiswooddoesnotaffecttheecologicalandnaturalbalancemuch[73].Bamboois consideredthemostunder-utilisednaturalfibreandisabundantlyavailableinSoutheast Asiancountries.Theannualglobalavailabilityofbamboofibresis30milliontonneswith amaturitycycleofonly3–4years.Bamboofibreshaveexcellentmechanicalstrength. Thespecificstiffnessandstrengthiscomparabletoglassfibres[74].Afrinetal.[75] reportedstrongantibacterialpropertiesofbamboofibresagainst E.coli and S.aureus due toretainedlignin.AnotherpossiblereasonwasthepresenceofH2 O2 thatdamagedthe DNAsequencingof E.coli.However,theybelievedthatthiswasnotpossibleasH2 O2 was thermallydecomposedduringtheextractionprocess.
2.1.5.Jute
Juteisoftenneglectedbutconsideredasoneofthemostimportantfibres.Juteisinthe TiliaceaefamilywiththescientificnameCorchoruscapsularisbecauseitisextractedfrom Corchorusplants.JutefibresaremostlyfoundintheMediterraneanbutrecentlythefinest growthfibrescomefromBangladesh,India,China,Nepal,Thailand,IndonesiaandBrazil. Jutefibresarebrittleandcangrow2–3.5minheight.Theypossessveryhighlignincontent (12–16%)andthushavelowelongationatbreak.Jutefibrespossessuniqueproperties which,ifutilisedeffectively,cansolveproblemsinthetextileandfoodpackagingfields. TheincorporationofjutefibresinPLAmatricesimprovedbothoxygenandwatervapour barrierproperties.
2.1.6.Flax(Linumusitatissimum)
FlaxiscommonlygrowninmoderateclimaticregionssuchasIndia,Argentina,SouthernEurope,ChinaandCanada[28].Flaxplantscangrowtoheightsof80to150cmin lessthan110days.Fibresfromflaxbastgrowbetween60and140cmlongwithdiameters rangingfrom40to80 μm.Theyaremembersofthebastfamily.Thebastfibresarecollected fromthefibrousbundleslocatedintheinnerbarkofaplantstem.Themajorcomponentsof flaxfibresarepectin,hemicellulose,cellulose,andlignin.Therearealsosmallamountsof wax,oilandwater.Theincorporationofflaxfibresincreasesstrengthandstiffness,which canbefurtherimprovedbymodificationwithamalleatedcouplingagent[76].
2.1.7.BananaPlants
Bananaplantsaremostlygrownintropicalcountrieswheretheyareconsideredas anagriculturalcrop.Bananabastfibreisalingo–cellulosicmaterialandextractedas awasteproductofbananaplantcultivation.Bananafibrehasgreatspecificstrength whichiscomparabletoconventionalmaterialssuchasglassfibre[77].Ranaetal.[78] manufacturedbananafibre-reinforcedpolyvinylalcohol(PVA)resinandevaluatedthe mechanicalstrengthofthesecomposites.TheyconcludedthatPVAcompositeswith reinforcedbananafibrecouldbeusedasbiodegradablefoodpackaging.Theyhadgood biodegradationwithadequatehandlingstrength.
2.1.8.Ramie(Boehmerianivea (L)Gaud.)
RamieisaperennialhardyshrubbelongingtotheUrticaceaefamily.Ramieisconsideredoneoftheoldestvegetablefibreswhichhasbeenutilisedforthousandsofyears, specificallyasmummyclothsinEgyptfrom5000–3000BC.Ramiewasinitiallygrownin China,whiletodayramiefibreismainlygrowninBrazil,India,China,thePhilippines, SouthKorea,TaiwanandThailand.ThefibresarepopularlyknownasRhea,Kunkura, Pooah,Kunchoor,Puya,steelwireandChinagrassindifferentpartsofIndia.Thereishigh demandforramiefibresduetotheirperformanceandaestheticproperties.Ramiefabrics effectivelyabsorbmoisture,transmitheat,andaremoreresistanttomildewthanother cellulose-basedfibres.
Table1. Originandpropertiesofnaturalfibres.ReprintedwithpermissionfromRef.[79].Copyright 2021WileyLtd.
Natural Fibre Origin WorldProduction (× 103 Tonnes)
AbacaLeaf700.83114–130418–48612–13.8BananaStem2001.3580–250529–7598.201–3.5 BambooStem10,000910-50335.911.4 CoirFruit1001.15100–460108–2524–615–40 CottonLintFruit18,5001.6-287–5975.5–12.63–10 FlaxStem8101.5-345–150027.6–801.2–3.2 JuteStem25001.46-393–80010–301.5–1.8 HempStem2151.48-550–900701.6 KenafStem7701.4812504.3OilpalmFruitAbundant0.7–1.55150–50080–2480.5–3.217–25 RamieStem1001.0–1.5520–80400–100024.5–1281.2–4.0
Ricehusk Fruit/ grain Abundant-----
RoselleStem250----SisalLeaf3801.4550–300227–4009–202–14
2.2.NaturalFibreSelectionParametersasPackagingMaterial
Thefunctionoffoodpackagingistoprotectthefoodcontainedinsidethepackaging fromphysical,chemicalandbiologicalhazards(oxygen,moisture,light,microbialcontaminationandinsects)[80].Packagingmaterialsdependgreatlyuponthetypeoffood. containedinsidethepackagingsuchasmeat,fruits,vegetablesandready-to-eatfood.The packagingmustmaintainthesafetyandqualityofthecontainedfood.Otherfunctionsincludingpropercontainment,convenience,andinformationregardingthefoodarerequired,
whilemostimportantlythepackagingmustlookaestheticallypleasing.Table 2 listssome ofthecategoriesinvestigatedwhenstudyingthepropertiesofpackagingmaterials[81].
Oneprimaryconcernisthestructuralaspectsofthepackagingmaterialincluding tensileandtear,strength,bending,compression,punctureandfoldingparametersthat needtowithstanddifferentloadingconditionsduringstacking,transferandtransportation. Thestrengthofnaturalfibre-reinforcedcompositesrelatestotwofactors:(a)thestiffness andstrengthofthenaturalfibresand(b)compatibilitybetweenthefibresandthematrix. Strengthandstiffnessdependonthearrangementofcellulosicfibrilsinthemicrofibrils presentinthefibres,whilethemechanicalpropertiesofnaturalfibresarecontingentonthe partofthetreeorplantfromwhichthefibrehasbeencollected.Crystallineandamorphous fibrecharacteristicsdifferbetweenpartsofthetreeandbetweentrees.Previousstudies suggestedthatfibreswithfeweramorphouscontentssuchashemicellulose,ligninand pectinpossessbettermechanicalproperties[82,83].
Theconcentrationofnaturalfibresincorporatedintocompositesalsoimpactsthe mechanicalproperties.Anincreaseinfibrecontentincreasesmechanicalpropertiesupto anoptimalconcentrationbeyondwhichthemechanicalstrengthstartstoshowadecrease trend[84].Taoetal.[85]studiedtheeffectofjuteandramiefibreloadinginPLAcompositesandfoundthat30%naturalfibrecontentinPLAprovidedtheoptimalmechanical properties.Anotherfactoraffectingthepropertiesofnaturalfibre-reinforcedcomposites iscompatibility,whereinteractionbetweenthefibresandthematrixplaysanimportant roleinuniformlydistributingtheappliedloadintothematrix.Kamarudinetal.[86] reportedthatPLA/kenafcompositesshowedexcellentmechanicalstrengthatupto40% fibreloadingduetogoodfibre–matrixinterfacialinteraction.Beyondthiscriticalfibre loadingvalue,poorfillermatrixcompatibilityresultedinearlierfractureofthecomposite. Severalsurfacemodificationtechniques(bothphysicalandchemical)havebeenstudiedto improvethecompatibilityofnaturalfibresandmatrixmaterials.
Compositespreparedfromnaturalfibresshowpromiseappliedasfoodpackaging materials.However,theroleoffoodpackagingmaterialsisnotlimitedtoprotecting productsfromphysicalandmechanicaldamageduringdistribution[87].Foodpackaging mustalsocontrolthetransferofwatervapour,oxygenand/orcarbondioxide,which impactratesofoxidation,microbialdevelopmentandphysiologicalreactionsoffood degradation.Plasticsarecommonlypermeabletosmallvolatilessuchasgases(O2 ,CO2 ), watervapour,organicvapoursandliquids[88,89]andwaterabsorptionbarrierproperties areessentialbasicrequirementswhenpackingfood.Themoisturebarrierpropertyis importantinfoodpackagingasthispreservesthetextureinbothdryandmoistfoodand controlsmicrobialgrowthofaerobicspoilage.Importantparametersresponsibleforthe controlwatervapourpermeability(WVP)arefibrecontentandsize,fibre/matrixadhesion andcrystallinityandplasticisationofthematrix[90–92].Thedispersionoffibresinthe matrixcanevokeimpermeabilityduetothetortuosityeffect.However,theWVPofnatural fibre-reinforcedcompositessignificantlyincreasesduetothehygroscopicnatureofthe fibresandpoordispersioninthematrix.Bycontrast,hydrophilicpolysaccharidematrices havelowWVPproperties.Sirvioetal.[93]observedthatincorporationofupto50wt%of cellulosemicrofibrilsinalginatefilmsdecreasedtheWVPduetoanincreaseintortuosity. However,theaggregationandpercolationofsmallnaturalfibresinpolymermatricescan resultfrompoorfibre/matrixadhesion,leadingtovoidsinthepolymerswhichencourage thetransportofwatermolecules[94].OtherwaystoimprovetheWVPofnaturalfibres includecoatingwithPLA[95].Dasetal.[96]observedenhancedvapourpermeability andabsorptioncapacityof15.9%and48.1%,respectively,inshreddedbetelnutcomposite sheetscomparedwithcardboardsheets.Foodmustalsobeprotectedfromoxygenand carbondioxide,whichcausemanydegradationreactions.HighlevelsofCO2 inchilieslimit theKrebscycle,whereaslowlevelsofO2 decreasetheactivationofcytochromeoxidase, polyphenoloxidase,glycolicacidoxidaseandascorbicacidoxidase[97].
Migrationintofoodisanotherparametertobeconsideredwhenchoosingmaterialsfor foodpackagingapplications[98].Toxicologicalsubstancessuchaspesticideresiduessuch
asherbicides,fungicidesandinsecticidesandotherpollutantsintheenvironmentssuch aspolycyclicaromatichydrocarbonsmightbepresentinnaturalfibres.Specialadditives suchasplasticisers,includingphthalates,arealsoaddedinformulationsofpackaging materials.Theseunnaturalsubstancesmightmigrateintofoodduringstoragecausing spoilage.Temperature,activationenergyandmicrostructuresofthepackagingfilmscan alsorestrictdiffusionofunwantedsubstancesintofood[99,100].Thus,itisnecessaryto decontaminatenaturalfibresduringextractionbeforecompositepreparation.
Finally,thebiodegradability/compostabilityofthepackagingmaterialsisalsoof interesttoconsumers.Usingfullbioplasticsasmatricesandnaturalfibresproduces eco-friendlypackagingwithlowcarbonfootprints.Biodegradationratesofnaturalfibre compositesdependonthenatureofthefillers,reinforcementsandthematrixaswellasthe compositeratios.
Table2. Propertiesofpackagingmaterials.ReprintedwithpermissionfromRef.[81]Copyright2008 ElsevierLtd.
PropertyExamples
Structuralproperties
Barrierandabsorptionproperties
Tensilestrength,tearproperties,compressionproperties,bendingstiffness, edgecrushresistance,burststrength,punctureresistance,foldingendurance, wetstrengthanddelamination
Oxygenpermeability(OP),watervapourpermeability(WVP),Volatile permeabilityandwaterabsorptioncapacity
ManufacturabilityandmanufacturingqualityUniformityofthickness,densityandmoisturecontent
MigrationintofoodToxicologyparametersandmigrationstudies
Non-structuralfunctionalityAbrasionresistanceandstaticandkineticfriction
Degradability/compostabilityCompostabilityinbiodegradationtestsanddisintegrationtests
3.PhysicalandChemicalModificationsofFibresforFoodPackaging
Numerousstudieshaveinvestigatednaturalfibre-reinforcedpolymersbecauseof theirimprovedstrengthandstiffnesswiththelowcost,biodegradability,renewabilityand abundancyofnaturalfibres[101,102].However,mixingnaturalfibrewithapolymermatrix commonlycausespoormechanicalcompositepropertiesbecauseof(a)poorcompatibility betweenthepolarhydrophilicnaturalfibreandthenon-polarhydrophobicpolymermatrix and(b)non-homogeneousdispersionoffibreandwoodpowderinthePPmatrix[103,104]. Themodificationofnaturalfibrescanreducetheirhydrophilicityand,thereby,increasetheir compatibility.Theremovalofunwantedwaxandincreasingsurfaceroughnessincreases thecontactsurfaceareaofthefibres,whichinturnincreasesthetransferofstressuniformly intothematrix.Severalchemicalandphysicaltreatmentstoimprovethecompatibilityof naturalfibresareasfollows.
3.1.ChemicalModificationTechniques
Compositesreinforcedwithchemicallytreatednaturalfibresgenerallyshowenhanced mechanicalpropertiesbecauseofimprovedinterfacialadhesionbetweenthefibreandthe matrix[82].Numeroussurfacetreatmentmethodsareavailableforthemodificationof naturalfibres.Alkaline(NaOH)treatment/mercerisationisthesimplest,mosteffectiveand commonlyusedchemicaltreatment.Traditionally,mercerisationisatechniquetomodify surfaceofcotton.Strongcausticsodasolutionsareusedtotreatmaterialsfor1–3min undertensionandlowtemperatures,followedbywashing.Holdingcottonfabricunder tensioninthecausticsolutionhelpstomaintainitsoriginaldimensions.Asaresult,the fibreshavemorearoundedstructureinthecrosssection,reflectinglighttoimprovelustre. Mercerisedcottonalsoinvolvesachangeincrystallinestructureanddegreeofcrystallinity, therebyreducingstressesandincreasingthestrengthoftheweakpointsinthefibre[105].
ImmersioninNaOHaqueoussolutionremoveshemicellulose,lignin,pectinandother impuritiesfromthefibresurface.Thisresultsinaroughersurface,whichinturnimproves themechanicalinterlockingofthefibreswiththematrix.Borahetal.[106]foundthat alkalitreatmentofbetelnutfibresbeforecompositeformationimprovedtensionstrength by18%,elongationatbreakby6%,bendingstrengthby11%andimpactstrengthby18%. Thereactionbetweenthefibreandalkalisolutioncanberepresentedbytheequation below[107].
Theutilisationofoxidisingagentssuchashydrogenperoxide(H2 O2 )innaturalfibres canalsoeliminatethecementingsubstancesfromsurfaceofthefibres,whichhinder adhesionwiththepolymermatrix.Fornaturalfibres,alkalitreatmentresultsinthe formationofanalkali-resistantlinkagebetweenligninandhemicellulosethatmayimpede theremovaloflignin.UsingH2 O2 breaksthesebondsanddelignifieslignocellulosic fibre,whichenhancestheinterfacialadhesionwiththepolymermatrices[108,109].The acetylationoffibrealsoimproveshydrophobicity,whichenhancesinterfacialadhesionby reducingthemoistureabsorptionofthecellulosecomponents.Thisincludestreatmentsof aceticorpropionicacidatelevatedtemperatureswithorwithoutthecombinationofan acidcatalyst[110].Acetylationofthecellulosecomponentssubstituteshydroxylgroups ofthecellwall,whichincreasesthehydrophobicityofthenaturalfibres.Thismethod improvescompatibilitywiththepolymermatrixbydecreasingwaterabsorption.
Finally,couplingagentsalsoreduceinherentincompatibilitybetweenthepolymer matrixandnaturalfibres,whichenhancestheinterfacialadhesion.Polymersconsistof bifunctionalgroupswhicheffectivelyreactwithboththefibreandthematrix.Organofunctionalsilanecouplingagentsformcovalentbondswiththehydroxylgroupsofcellulose. Alkoxygroupsarehydrolysable.Moisturefacilitateshydrolysisandformssilanolswhich furtherreactwiththehydroxylgroupsofthefibre.Consequently,stablecovalentbonds areformedwiththecellwallthatarechemisorbedontothefibresurface[110–112].This chemisorptioncommonlyimprovesthedegreeofcrosslinkingatinterface,whichimproves affinityoforganophilicpolymers[110].Addinghydrocarbonchainsbythemodificationof naturalfibrewithsilanesmodifiestheirwettabilityandreduceswateruptakeascovalent bondingformscross-linkingbetweenthefibreandthematrix.
However,theuseofalkalineoranyotherchemicaltreatmentsadverselyimpacts productsustainability,withgreentechniquespreferredfornaturalfibremodification. Smithetal.[113]preparedasustainablegreencompositebasedonagavefibre(Agavetequilana) modifiedwithpoly(3-hydroxybutyrate)(PHB)inthepresenceofasmallquantity(0.1phr) oforganicperoxidethroughone-stepreactiveextrusionprocessing.Resultsshowedthat 25wt%agavefibrewith0.1phrperoxideimprovedflexuralstrengthby46%,impact strengthby45%andheatdeflectiontemperature(HDT)by39%comparedwithneat PHB.Thesefindingssuggestedthatthepresenceofperoxideprovidesacost-effectiveand sustainablealternativetopetroleum-basedconventionalplasticsforfoodpackaging.
Mohantyetal.[114]chemicallymodifieddatepalmleaf(DPL)usingacrylicacid andtestedthedispersionandcompatibilitywithpolyvinylpyrrolidonecompositesfor packagingapplications.Preparedbiocompositesreinforcedwith26wt%DPLfibreloading showedpromiseforuseaswater-andchemical-resistanthydrophobicpackagingmaterials. Nazrinetal.[115]studiedtheincorporationofnanocellulosetoenhancetheproperties ofthermoplasticstarch(TPS),polylacticacid(PLA)andpolybutylenesuccinate(PBS)for foodpackaging.TheyreportedthattheadditionofnanocelluloseinTPSimprovedthelow waterbarrierandtensileproperties,whiletheadditionofnanocelluloseintoPBSandPLA enhancedtheoxygenbarrierpropertiesandmechanicalstrength.
Naturaljutefibreincorporatedwitharedgrapepomaceextract(RGPE)hasbeen developedforactivepackaging.TheRGPEwasderivedfrompressurisedliquidextraction (PLE)andenhancedsolventextraction(ESE)techniques[116].Thepackagingshowed excellentantibacterialactivitiesagainst E.coli, S.aureus and Pseudomonasaeruginosa.The RGPEextractfromPLEusingC2 H5 OH:H2 O(asasolvent)had11majorphenoliccom-
Fibre OH + NaOH → Fibre O Na+ + H2 O
pounds.Jara-Palaciosetal.[117]foundquercetin-3-O-glucosideasthemostabundant compoundinRGPEextractedbyC2 H5 OH:H2 O.Wangetal.[118]modifiedhempfibre withalysine-graftedN-halamineorganicasanantibacterialagentinhempfibreusing amildSchiffbasereaction.Thematerialstotallyeliminated Staphylococcusaureus and Escherichiacoli in5min,whiletheinhibitionzoneincreasedto18.4mm.
3.2.PhysicalModificationTechniques
Previousstudiesmainlyfocusedontheeffectsofcouplingagentsandcompatibilisers totailorthemechanicalpropertiesofnaturalfibre-reinforcedcomposites.Mostchemical treatmentsweresuccessfulandresultedinincreasedthermalandmechanicalproperties. However,somemajorproblemsassociatedwithchemicaltreatmentsarethehighcost andpollutionfromthedisposalofthechemicalsaftertreatment[119].Plasmatreatment introducesfunctionalgroupsontonaturalfibresthatformstrongcovalentbondswith thematrix,leadingtoastrongfibre/matrixinterface.Plasmatreatmentissimple,shortduration,consumeslittleenergy,andlowcost.Thetechniquerequiresnowaterorany potentiallyhazardouschemicals.Surfaceetchingimprovesthesurfaceroughnessofnatural fibresandresultsinbetterinterfacialinteractionwiththematricesthroughmechanical linking[120–124].
3.2.1.ColdPlasmaTreatments
Coldplasmatechniquesaredry,cleanprocesseswithlessenvironmentalconcerns. Suchamodificationoccursonlyonthesurfacewithnointerferenceonthebulkproperties. Figure 3 showsaschematicrepresentationoftheeffectsofplasmaandcationisingprocesses ofcellulose-constitutingcottonfibres[125].Sinhaetal.[122]studiedtheinfluenceofphysicaltreatmentonthemorphology,wettabilityandimpactofthefinestructureoffibreson interfacialadhesionofnaturalfibre-reinforcedcomposites.Theyfoundthatplasmatreatmentreducedfibrehydrophilicityduetothedecreaseinphenolicandsecondaryalcoholic groupsandoxidationofthebasicstructuralligninandhemicellulosescomponents.Plasma treatmentimprovedfibre/matrixadhesion,asrevealedbyscanningelectronmicroscopy (SEM)morphology.Figure 4 demonstratestheetchedsurfacesandincreasednumbersof newoxygenfunctionalgroupspresentonthesurfaceofsisalandcoconutfibresrevealed usingSEManalysis[126].

Figure3. Theeffectsofplasmaandcationisingprocesses.ReprintedwithpermissionfromRef.[125]. Copyright2011SpringerNatureLtd.

Figure4. Theeffectofplasmatreatmenton(a)thesurfaceroughnessoffibresand(b)theinterfacial interactionbetweenthefibreandmatrix[126].
Combiningchemicaltreatmentswithphysicalplasmatreatmentswasstudiedonflax fibresbyGiepardaetal.[127]tounderstandthesynergisticeffects.Theauthorsused silanisationandplasmatreatmentbothindividuallyandincombination.Theresults revealedanincreasedthermalstabilitywithasignificantimpactonfibrediameterand specificsurfacearea.Erwinetal.[128]studiedliquidplasmatreatmentoncoirfibre withmicrowaveplasmaintheliquid.Themediumswerewaterandsodiumbicarbonate (NaHCO3 )solution.Theinterfacialshearstrengthofthecoirfibre–epoxymatrixincreased afterliquidplasmatreatmentwithbothwaterandsodiumbicarbonatebecauseofchemical adhesionwhichfacilitatedmechanicalinterlocking.
3.2.2.SteamExplosion
Steamexplosionisanotherphysicalmodificationtechniquefornaturalfibres.Thisinvolvesheatingthefibresatahightemperatureandpressure,causingmechanicaldisruption ofthecellularmaterialthatundergoesfibrillation.Theselectionofsteamingtemperature andexposuretimeisveryimportanttoachieveoptimalfibreproperties.Hanetal.[129] studiedtheeffectsofsteamtreatmentonwheatstrawunderdifferentpressuresandtimes. Theyreportedthatthetreatmentenhancedthedimensionalstabilitywiththeremovalof lignin,ashandextracts.
4.ProductionTechnology
Naturalfibre-reinforcedhybridcompositesarenowextensivelyappliedtodealwith technologicalproblems[130–132].Table 3 listscompositesmadeofnaturalfibresthathave widespreadapplicationsinareaswherethecostofreinforcementslimitstheutilisation ofconventional,lightweight,reinforcedplasticmaterials[133–135].Cabedoetal.[136] comparedalmondshell,ricehuskandseagrassasfillersinPHB/fibrecompositesprepared bythemelt-blendingprocess.Theystudiedtheinfluenceoffibretypeandfibrecontenton morphology,thermal,mechanicalandbarrierproperties,compostabilityandprocessability. Theyconcludedthatallthreefibresweresuitableforthedevelopmentoffullycompostable biocompositesforpackagingapplications.Rawietal.[75]studiedtheeffectsofcompressionmouldingparametersonthemechanicalpropertiesofbamboofabric,poly(lacticacid) (PLA)compositesforpackagingapplications.Theyreportedthatthecompositeswiththe highestcompressionpressureof1.01MPaat3minexhibitedasuperiortensilestrengthof 80.71MPaandflexuralpropertiesof124MPa.They[137]alsocomparedpolypropylene (PP)andbamboofabricPLAcompositestoinvestigatetheuseofenvironmentallyfriendly
compositesforpackagingapplications.Thefindingsindicatedthatbamboofabric/PLA compositesenhancedPLAimpactstrengthby117%,withcomparativelylowerimpact strengthobservedforPP/bamboofibrecomposites.Thermalstabilityintermsoftheheat deflectiontemperature(HDT)ofPPandPLAmatriceswasincreasedbytheadditionof bamboofabric.Thehighheatresistancepropertyofcompositesissuitableforpackaging applications.Nabels-Sneidersetal.[138]studiedlaminationtechnologyofcasthemppaper withbio-basedplasticsusingacompressionmouldingprocesstoreplaceconventionalplasticsandsolvetheexistingwastedisposalproblems.Theycomparedpolyhydroxyalkanoate (PHA),polylacticacid(PLA),polybutylenesuccinate(PBS)andpolybutylenesuccinate adipate(PBSA)laminatespreparedatthreedifferentcompressionpressures.Thedesired pressureonporouscastpaper,impregnationandexcellentlayeradhesionwasproposed intheirstudy.Jietal.[139]preparedchitosan-basedcompositefilmsreinforcedbyramie fibreandlignin,asshowninFigure 5,forfoodpackagingapplications.Theadditionof 20%ramiefibreand20%ligninimprovedthemechanicalpropertiesandwaterresistance byupto29.6%and41%,respectively.Foodpackagingstudiesshowedextendedshelflife inmeatproductssuchaschickenbreastscomparedwithfruitssuchascherrytomatoes.

Figure5. Preparationofchitosan/ramiefibre/lignincompositefilms.Reprintedwithpermission from[139].Copyright2022ElsevierLtd.
Tawakkaletal.[140]usedathymolextractwithkenaffibrestostudythemigrationof thymolextractfromPLA/kenafcomposites.Melt-blendingwasusedtopreparethefilms inaninternalmixer(155 ◦ Cfor8minand50rpm)followedbyheatpressing.Thematerials weremeltedbypreheating(150 ◦ Cfor3min)withoutapplyingpressureandthenpressedat thesametemperaturefor2minwithaforceof20kNbeforequenchcoolingto30 ◦ Cunder pressure.Tawakkaletal.[141]alsostudiedtheantimicrobialactivityofPLA/kenaf/thymol against Escherichiacoli bacteriaandnaturallyoccurringfungi.Filmswithhigherthymol concentrationsandhigherkenafloadingexhibitedexcellentantibacterialpropertiesagainst fungalgrowthduetothereleaseofthymolintotheheadspacesurroundingthesamples; however,theshelflifeafterstoragefor3monthsatambienttemperatureshowedonly aslightdecreaseinantimicrobialproperties.
2023 , 15 ,1393
Polymers
MajorFindingsRef.
[ 138 ]
Biodegradationinacontrolledcompost at58 ◦ Cresultedinfulldegradation within40to80days,withPLAandPHA laminatesshowing40and50days, respectively.
Methodof Packaging Production
Table3. Summaryofnaturalfibre-reinforcedcompositesforfoodpackagingapplications.
Packaging Form
RoleofFibrein Packaging
Typeofmatrix/OtherPolymerBlend(IfAny)
FibrePrepara- tion/Treatment
PartofPlant
Source ofFibre
[ 142 ]
Oilpalmemptyfruitbunchfibre-based trayswerebelowtheallowablelimit specifiedbyCommissionRegulation (EU)No10/2011.
Theresinhadfavourablecharacteristics intermsofelasto–plasticand stress–strainbehaviour,suitablefor storageandtransportation.
Directmeltcoating
Sodiumhydroxide (NaOH)treatment
HempStraw
[ 140 , 141 ]
Solventcasting
MatrixTray
Emptyfruit bunchOilpalmemptyfruit bunch+Formaldehyde
Oilpalm
LaminateCasting
PolyesterresinReinforcement
[ 96 ] Kenaf
BetelnutSeed
AddingkenaffillertothePLAenhanced thereleaseofthymolfromthePLA matrix,reducedproductioncostsand increasedmechanicalstrength. Thecompositefilmsreduced Escherichiacoli inoculatedonthesurface ofprocessedslicedchickensamplesafter 30daysat10 ◦ Cbothindirectcontact andinthevapourphase.
Meltblendingand heatpressing
ReinforcementFilm
[ 143 ]
Flexuralstrengthimprovedby28% afteracetylationtreatment.
LaminateCasting
[ 144 ]
Theintroductionofplasticisersreduced brittlenessandenhancedflexibilityand peelabilityoffilms.
Solution-casting technique
Heated hydraulicpress
PolyesterFiller
Matrix Film
FillerFilm
Acetylation treatment
Plantain pseudostem
SugarpalmTrunkSugarpalm+glycerol andsorbitol
[ 137 ]
Theimpactstrengthwasenhanced by117%.
Film-stackingand compression moulding
Laminate
Reinforcement
A3.5-foldincreaseinwatervapour permeabilitywasrecorded. [ 145 ] Bamboo Stem-PLA
Wheatstraw Straw-PHBV
2023 , 15 ,1393
MajorFindingsRef.
Biocompositesreinforcedwith26wt% DPLfibreloadingcanbeusedaswater- andchemical-resistantpackaging materialsduetotheir hydrophobicnature.
Alkalitreatmentinthepresenceof asilane-couplingagentcausedmatrix skinformationandtheformationof flower-likestructuresonthesurfaceof thefabric,suggestinggoodbonding betweenthereinforcementand thematrix.
Thehighestcompressionpressureof 1.01MPaat3minexhibitedasuperior tensilestrengthof80.71MPaand flexuralpropertiesof124MPa.
Sizeandshapeirregularitiesofthefibres playedadominantroleinthe ultimateproperties.
Methodof Packaging Production
Meltmixing fabrication technique
Packaging Form
RoleofFibrein Packaging
Typeofmatrix/OtherPolymerBlend(IfAny)
Table3. Cont.
FibrePrepara- tion/Treatment
PartofPlant
Source ofFibre
DatepalmLeaffibreAcrylicacidPolyvinylpyrrolidoneReinforcement
poly(lacticacid)(PLA)Reinforcement LaminateHotpressing
Alkalitreatment and silane-coupling agent
Film-stackingand compression moulding
Sterculiaurens
References
5.ConclusionsandFuturePerspectives
Inthelastdecade,numerousstudieshavebeenconductedontheutilisationofnatural fibrestoreplaceconventionalpolymerapplications.Severalfibreshavebeenextracted fromplantresourcessuchashemp,sisal,kenaf,bamboo,jute,flax,bananaandramie. Chemicalextractionsandtreatmentsincludingalkalinesolutions,oxidisingagentsand couplingagentshavebeendemonstratedtopurifyandimprovethestrengthoffibre. Alternatively,physicaltreatmentssuchascoldplasmatreatmentsandsteamexplosion enhancethepropertiesandpurificationsofextractedfibre,removinglignin,ashandother substanceswhileincreasingdimensionalstability.Thesefibreshavebeenrecentlyutilised infoodpackagingasmatrices,fillersandreinforcementsbysolutioncasting,meltmixing, hotpressing,compressionmoulding,injectionmoulding,etc.Theincorporationofthese naturalfibreseffectivelyimprovedthemechanicalstrengthofthepackaging.Further developmentofnaturalfibre-basedfoodpackagingmaterialscanbeproposedasfollows:
• Thevalorisationofnaturalfibresinthefoodpackagingsectorexhibitedpromisingresults. However,along-lastingsupplyofrawmaterialsisessentialtoensuresustainability.
• Environmentallyfriendlyextraction/purificationisidealfortheproductionofuniformqualityfibres.Themodificationofnaturalfibresneedstoaddressenvironmentalissues impliedbychemicalmethods.
• Naturalfibresensurethesafetyandprotectionoffoodbyenhancingthemechanical propertiesoffoodpackagingtoresistphysicaldamage.However,severalotherfactors mustbeconsidered.Thepackagingmustbedesignedtoovercomedegradation reactionsandalsobeabletoregulategasandwaterbarrierproperties.Theselectionof naturalfibrescombinedwiththeuseofappropriatemodificationmethodscanprevent theformationofdefectsthatwoulddegradethemechanicalproperties,whilealso enhancingpackagingpermeability.
• Thedecontaminationofnaturalfibresshouldcomplywiththeregulationsonfood contactmaterialstoguaranteethehealthoftheconsumer.Thisaspectischallenging whenusingnaturalfibresduetothepresenceoftoxicologicalsubstancessuchas pesticidesthatcouldmigratetofoodfromthepackagingmaterials.
• Consumerwillingnesstopurchaseeconomicallycompetitivefullybiocompositealternativesisstilluncertain.Thecostofbiocompositesinfoodpackagingmaterialsneeds toberegulatedtoimprovethedemandinlocalmarkets.Thefutureuseofnatural fibresishighlyrecommendedforpackagingmaterialsduetotheircost-effectiveness andavailabilitythroughouttheyear.
AuthorContributions: Conceptualisation,H.P.andN.H.;methodology,H.P.andN.H.;validation, N.H.;investigation,H.P.andN.H.;writing—originaldraftpreparation,H.P.andN.H.;writing— reviewandediting,H.P,S.A.V.,V.C.,T.N.,L.J.andN.H.;supervision,N.H.;fundingacquisition,N.H. Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding: ThisresearchwasfundedbyKasetsartUniversityResearchandDevelopmentInstitute, KURDIgrantno.FF(KU)17.65withfinancialsupportfromtheOfficeoftheMinistryofHigher Education,Science,ResearchandInnovation;andtheThailandScienceResearchandInnovation throughtheKasetsartUniversityReinventingUniversityProgram2022.
InstitutionalReviewBoardStatement: Notapplicable.
DataAvailabilityStatement: Notapplicable. ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.
1. Wang,X.;Pang,Z.;Chen,C.;Xia,Q.;Zhou,Y.;Jing,S.;Wang,R.;Ray,U.;Gan,W.;Li,C.;etal.All-Natural,Degradable,Rolled-Up StrawsBasedonCelluloseMicro-andNano-HybridFibers. Adv.Funct.Mater. 2020, 30,1910417.[CrossRef]
2. Geyer,R.;Jambeck,J.R.;Law,K.L.Production,use,andfateofallplasticsevermade. Sci.Adv. 2017, 3,e1700782.[CrossRef] [PubMed]
3. Jeevahan,J.;Chandrasekaran,M.Nanoediblefilmsforfoodpackaging:Areview. J.Mater.Sci. 2019, 54,12290–12318.[CrossRef]
4. Al-Oqla,F.M.;Almagableh,A.;Omari,M.A.DesignandFabricationofGreenBiocomposites.In GreenEnergyandTechnology; Springer:Cham,Switzerland,2017;pp.45–67.
5. Mastura,M.T.;Sapuan,S.M.;Mansor,M.R.;Nuraini,A.A.Environmentallyconscioushybridbio-compositematerialselectionfor automotiveanti-rollbar. Int.J.Adv.Manuf.Technol. 2016, 89,2203–2219.[CrossRef]
6.Porta,R.ThePlasticsSunsetandtheBio-PlasticsSunrise. Coatings 2019, 9,526.[CrossRef]
7. Welsh,B.;Aherne,J.;Paterson,A.M.;Yao,H.;McConnell,C.SpatiotemporalvariabilityofmicroplasticsinMuskoka-Haliburton headwaterlakes,Ontario,Canada. Environ.EarthSci. 2022, 81,551.[CrossRef]
8. Kutralam-Muniasamy,G.;Pérez-Guevara,F.;Elizalde-Martínez,I.;Shruti,V.C.Brandedmilks—Aretheyimmunefrommicroplasticscontamination? Sci.TotalEnviron. 2020, 714,136823.[CrossRef][PubMed]
9. Amran,N.H.;Zaid,S.S.M.;Mokhtar,M.H.;Manaf,L.A.;Othman,S.ExposuretoMicroplasticsduringEarlyDevelopmentalStage: ReviewofCurrentEvidence. Toxics 2022, 10,597.[CrossRef]
10.Molina-Besch,K.Fooddeliverypackagingandtablewarewaste. Nat.Food 2020, 1,531–532.[CrossRef]
11. Zhou,Y.;Shan,Y.;Guan,D.;Liang,X.;Cai,Y.;Liu,J.;Xie,W.;Xue,J.;Ma,Z.;Yang,Z.Sharingtablewarereduceswastegeneration, emissionsandwaterconsumptioninChina’stakeawaypackagingwastedilemma. Nat.Food 2020, 1,552–561.[CrossRef]
12. Srisa,A.;Promhuad,K.;San,H.;Laorenza,Y.;Wongphan,P.;Wadaugsorn,K.;Sodsai,J.;Kaewpetch,T.;Tansin,K.;Harnkarnsujarit,N.Antibacterial,AntifungalandAntiviralPolymericFoodPackaginginPost-COVID-19Era. Polymers 2022, 14,4042. [CrossRef]
13. Laorenza,Y.;Chonhenchob,V.;Bumbudsanpharoke,N.;Jittanit,W.;Sae-Tan,S.;Rachtanapun,C.;Chanput,W.P.;Charoensiddhi, S.;Srisa,A.;Promhuad,K.;etal.PolymericPackagingApplicationsforSeafoodProducts:Packaging-DeteriorationRelevance, TechnologyandTrends. Polymers 2022, 14,3706.[CrossRef]
14. Jiang,S.;Zou,L.;Hou,Y.;Qian,F.;Tuo,Y.;Wu,X.;Zhu,X.;Mu,G.Theinfluenceoftheadditionoftransglutaminaseatdifferent phaseonthefilmandfilmformingcharacteristicsofwheyproteinconcentrate-carboxymethylchitosancompositefilms. Food Packag.ShelfLife 2020, 25,100546.[CrossRef]
15.Kabasci,S.Biobasedplastics.In PlasticWasteandRecycling;AcademicPress:Cambridge,MA,USA,2020;pp.67–96.
16. Majeed,K.;Jawaid,M.;Hassan,A.;AbuBakar,A.;AbdulKhalil,H.P.S.;Salema,A.A.;Inuwa,I.Potentialmaterialsforfood packagingfromnanoclay/naturalfibresfilledhybridcomposites. Mater.Des. 2013, 46,391–410.[CrossRef]
17. Yu,L.;Dean,K.;Li,L.Polymerblendsandcompositesfromrenewableresources. Prog.Polym.Sci. 2006, 31,576–602.[CrossRef]
18. Pulikkalparambil,H.;Parameswaranpillai,J.;George,J.J.;Yorseng,K.;Siengchin,S.Physicalandthermo-mechanicalpropertiesof bionanoreinforcedpoly(butyleneadipate-co-terephthalate),hemp/CNF/Ag-NPscomposites. AIMSMater.Sci. 2017, 4,814–831. [CrossRef]
19. Singh,M.K.;Tewari,R.;Zafar,S.;Rangappa,S.M.;Siengchin,S.AComprehensiveReviewofVariousFactorsforApplication FeasibilityofNaturalFiber-ReinforcedPolymerComposites. SSRNElectron.J. 2023, 17,100355.[CrossRef]
20. Tserki,V.;Matzinos,P.;Panayiotou,C.Novelbiodegradablecompositesbasedontreatedlignocellulosicwasteflourasfiller.Part II.Developmentofbiodegradablecompositesusingtreatedandcompatibilizedwasteflour. Compos.PartAAppl.Sci.Manuf. 2006, 37,1231–1238.[CrossRef]
21. Contat-Rodrigo,L.;RibesGreus,A.BiodegradationstudiesofLDPEfilledwithbiodegradableadditives:Morphologicalchanges. I. J.Appl.Polym.Sci. 2002, 83,1683–1691.[CrossRef]
22. Kim,H.-S.;Kim,H.J.;Lee,J.W.;Choi,I.G.Biodegradabilityofbio-flourfilledbiodegradablepoly(butylenesuccinate)biocompositesinnaturalandcompostsoil. Polym.Degrad.Stab. 2006, 91,1117–1127.[CrossRef]
23. Varghese,S.A.;Pulikkalparambil,H.;Rangappa,S.M.;Siengchin,S.;Parameswaranpillai,J.Novelbiodegradablepolymerfilms basedonpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)andCeibapentandranaturalfibersforpackagingapplications. Food Packag.ShelfLife 2020, 25,100538.[CrossRef]
24. BernstadSaraiva,A.;Pacheco,E.B.;Gomes,G.M.;Visconte,L.L.;Bernardo,C.A.;Simoes,C.L.;Soares,A.G.Comparativelifecycle assessmentofmangopackagingmadefromapolyethylene/naturalfiber-compositeandfromcardboardmaterial. J.Clean.Prod. 2016, 139,1168–1180.[CrossRef]
25. Mushtaq,B.;Ahmad,S.;Ahmad,F.;Nawab,Y.AlternativeNaturalFibersforBiocomposites.In NaturalFiberstoComposites; Springer:Cham,Switzerland,2023;pp.1–18.
26. Puttegowda,M.;Pulikkalparambil,H.;Rangappa,S.M.TrendsandDevelopmentsinNaturalFiberComposites. Appl.Sci.Eng. Prog. 2021, 14,543–552.[CrossRef]
27. Yorseng,K.;Sanjay,M.R.;Tengsuthiwat,J.;Pulikkalparambil,H.;Parameswaranpillai,J.;Siengchin,S.;Moure,M.M.Information inUnitedStatesPatentsonworksrelatedto‘NaturalFibers’:2000–2018. Curr.Mater.Sci. 2019, 12,4–76.[CrossRef]
28. Moudood,A.;Rahman,A.;Öchsner,A.;Islam,M.;Francucci,G.Flaxfiberanditscomposites:Anoverviewofwaterandmoisture absorptionimpactontheirperformance. J.Reinf.Plast.Compos. 2018, 38,323–339.[CrossRef]
29.Zini,E.;Scandola,M.Greencomposites:Anoverview. Polym.Compos. 2011, 32,1905–1915.[CrossRef]
30. Summerscales,J.;Dissanayake,N.P.;Virk,A.S.;Hall,W.Areviewofbastfibresandtheircomposites.Part1—Fibresas reinforcements. Compos.PartAAppl.Sci.Manuf. 2010, 41,1329–1335.[CrossRef]
31. Mittal,V.;Saini,R.;Sinha,S.Naturalfiber-mediatedepoxycomposites—Areview. Compos.PartBEng. 2016, 99,425–435. [CrossRef]
32. TheGuaridan.Hemp:HowOneLittlePlantCouldBoostAmerica’sEconomy.Availableonline: https://www.theguardian.com/ society/2017/feb/04/hemp-plant-that-could-boost-americas-economy (accessedon28February2023).
33. BBC.HempFibres’BetterthanGraphene’.Availableonline: https://www.bbc.com/news/science-environment-28770876 (accessedon28February2023).
34. Picturethisai.Sisal.Availableonline: https://www.picturethisai.com/wiki/Agave_sisalana.html (accessedon28February2023).
35. ExportersIndia.UGSisalFiber.Availableonline: https://www.exportersindia.com/minerals-handling-shipping-company/ugsisal-fiber-3117510.htm (accessedon28February2023).
36. InMatteria.Kenaf:ALivingMaterialforConstruction.Availableonline: https://www.inmatteria.com/2014/09/29/kenaf-aliving-material-for-construction/kenaf-2/ (accessedon28February2023).
37. CarriageHousePaper.KenafFiber(Cutinto1/4InchLengths).Availableonline: https://carriagehousepaper.com/kenaf-fiber (accessedon28February2023).
38. TextileLearner.Features,CharacteristicsandApplicationofJuteFiber.Availableonline: https://textilelearner.net/featuresproperties-and-uses-of-jute-fiber/ (accessedon28February2023).
39. MillerWasteMills.JuteFiber.Availableonline: https://www.millerwastemills.com/products/jute-fiber/ (accessedon28 February2023).
40. Colegiogamarra.Availableonline: www.colegiogamarra.com%2F2016%2F11%2Fcolegiogamarra.com%2Fpolitica-decookies%3Fss%3D741_4_26_24%26pp%3Dlinen%2Bis%2Bobtained%2Bfrom%2Bwhich%2Bplant%26ii%3D1040613&psig= AOvVaw1BWIJES1DqhEPbFzQoN1bG&ust=1677556113274000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCJjO3dLltP0 CFQAAAAAdAAAAABAE (accessedon28February2023).
41. Istockphoto.FlaxFiber,RawStockPhoto.Availableonline: https://www.istockphoto.com/th/%E0%B8%A3%E0%B8%B9%E0 %B8%9B%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/%E0%B9%80%E0%B8%AA%E0%B9%89%E0%B8%99%E0%B9 %83%E0%B8%A2%E0%B8%A5%E0%B8%B4%E0%B8%99%E0%B9%80%E0%B8%9C%E0%B9%87%E0%B8%81%E0%B8%94% E0%B8%B4%E0%B8%9A-gm646167566-117200491 (accessedon28February2023).
42. GardeningKnowHow.WhattoFeedBananaPlants–HowtoFertilizeaBananaTreePlant.Availableonline: https://www. gardeningknowhow.com/edible/fruits/banana/feeding-banana-plants.htm (accessedon28February2023).
43. TextileCoach.BANANAFIBER|TextileFibers.Availableonline: https://www.textilecoach.net/post/banana-fiber (accessedon 28February2023).
44. NortheastNow.Meghalaya’sOrganicTextileFabricRamieMakesaSplashinIndianFashionIndustry.Availableonline: https://nenow.in/environment/meghalayas-organic-textile-fabric-ramie-makes-splash-indian-fashion-industry.html (accessed on28February2023).
45. TextilewithMe.Ramie.Availableonline: http://textilewithme.blogspot.com/2015/04/ramie.html (accessedon28February2023).
46. Teles,M.C.A.;Glória,G.O.;Altoé,G.R.;Netto,P.A.;Margem,F.M.;Braga,F.O.;Monteiro,S.N.EvaluationoftheDiameter InfluenceontheTensileStrengthofPineappleLeafFibers(PALF)byWeibullMethod. Mater.Res. 2015, 18,185–192.[CrossRef]
47. WorldWildlife.SUSTAINABLEAGRICULTURECOTTON.Availableonline: https://www.worldwildlife.org/industries/cotton (accessedon28February2023).
48. FibretoFashion.NaturalCottonFibreSupplier.Availableonline: https://www.fibre2fashion.com/fibres/cotton-fibre-suppliers20181615 (accessedon28February2023).
49. BonniePlants.GROWINGCORN.Availableonline: https://bonnieplants.com/blogs/how-to-grow/growing-corn (accessedon 28February2023).
50. Berliandika,S.;Yahya,I.;Ubaidillah.Acousticperformanceofcornhuskfiber(Zeamays L)wastecompositeassoundabsorber withlatexadhesive. AIPConf.Proc. 2019, 2088,050001.
51. PlantsGuru.WaterBambooPlant-EquisetumHyemale,RoughHorsetail.Availableonline: https://www.plantsguru.com/waterbamboo (accessedon28February2023).
52. BambooTechnologyNetworkEurope.OrganicBambooFiberManufacturing.Availableonline: https://www.btn-europe.com/ organic-bamboo-fiber-manufacturing.php (accessedon28February2023).
53. GardeningSolutions.Roselle.Availableonline: https://gardeningsolutions.ifas.ufl.edu/plants/edibles/vegetables/roselle.html (accessedon28February2023).
54.Tamta,M.;Kalita,B.B.PropertiesofRoselleanditsBlends. Int.J.Curr.Microbiol.Appl.Sci. 2020, 9,3616–3621.[CrossRef]
55. GingerHillfarm.TheManyUsesoftheCoconutTree.Availableonline: https://gingerhillfarm.com/the-many-uses-of-thecoconut-tree/ (accessedon28February2023).
56. Alibaba.COIRFIBER,COCONUTFIBER,COIRFIBERWITHCHEAPPRICEFROMVIETNAM.Availableonline: https://thai. alibaba.com/product-detail/COIR-FIBER-COCONUT-FIBER-COIR-FIBER-62005347723.html (accessedon28February2023).
57. ArchitecturalPlants.AGAVEAMERICANA(CENTURYPLANT).Availableonline: https://www.architecturalplants.com/ product/agave-americana/ (accessedon28February2023).
58. Jani,S.P.;Sajith,S.;Rajaganapathy,C.;Khan,M.A.Mechanicalandthermalinsulationpropertiesofsurface-modifiedAgave Americana/carbonfibrehybridreinforcedepoxycomposites. Mater.Proc. 2021, 37,1648–1653.[CrossRef]
59. StockAdobe.SugarcaneField.Availableonline: https://stock.adobe.com/th/search?k=%22sugarcane+field%22&asset_id=4890 68318 (accessedon28February2023).
2023, 15,1393
60. PetfoodIndustry.SugarcaneFiberPetFoodIngredientMadebyPartnership.Availableonline: https://www.petfoodindustry. com/articles/6189-sugarcane-fiber-pet-food-ingredient-made-by-partnership (accessedon28February2023).
61. Promhuad,K.;Srisa,A.;San,H.;Laorenza,Y.;Wongphan,P.;Sodsai,J.;Tansin,K.;Phromphen,P.;Chartvivatpornchai,N.; Ngoenchai,P.;etal.ApplicationsofHempPolymersandExtractsinFood,TextileandPackaging:AReview. Polymers 2022, 14,4274.[CrossRef]
62. Khan,B.A.;Warner,P.;Wang,H.AntibacterialPropertiesofHempandOtherNaturalFibrePlants:AReview. BioResources 2014, 9,3642–3659.[CrossRef]
63. Cassano,R.;Trombino,S.;Ferrarelli,T.;Nicoletta,F.P.;Mauro,M.V.;Giraldi,C.;Picci,N.Hempfiber(Cannabissativa L.)derivatives withantibacterialandchelatingproperties. Cellulose 2013, 20,547–557.[CrossRef]
64. Appendino,G.;Gibbons,S.;Giana,A.;Pagani,A.;Grassi,G.;Stavri,M.;Smith,E.;Rahman,M.M.AntibacterialCannabinoids from Cannabissativa:AStructure ActivityStudy. J.Nat.Prod. 2008, 71,1427–1430.[CrossRef]
65. Vaquero,M.J.R.;Alberto,M.R.;deNadra,M.C.M.Antibacterialeffectofphenoliccompoundsfromdifferentwines. FoodControl 2007, 18,93–101.[CrossRef]
66. Khan,B.A.;Wang,J.;Warner,P.;Wang,H.Antibacterialpropertiesofhemphurdpowderagainst E.coli J.Appl.Polym.Sci. 2015, 132.[CrossRef]
67. Teixeira,F.P.;Gomes,O.D.F.M.;deAndradeSilva,F.Degradationmechanismsofcuraua,hemp,andsisalfibersexposedto elevatedtemperatures. BioResources 2019, 14,1494–1511.[CrossRef]
68. Jener,D.G.S.;Branco,A.;Silva,A.F.;Pinheiro,C.S.;Neto,A.G.;Uetanabaro,A.P.;Queiroz,S.R.;Osuna,J.T.Antimicrobialactivity ofAgavesisalana. Afr.J.Biotechnol. 2009, 8,6181–6184.[CrossRef]
69. Ribeiro,B.D.;Alviano,D.S.;Barreto,D.W.;Coelho,M.A.Z.Functionalpropertiesofsaponinsfromsisal(Agavesisalana)andjuá (Ziziphusjoazeiro):Criticalmicellarconcentration,antioxidantandantimicrobialactivities. ColloidsSurf.APhysicochem.Eng.Asp. 2013, 436,736–743.[CrossRef]
70. Pulikkalparambil,H.;Nandi,D.;Rangappa,S.M.;Prasanth,S.;Siengchin,S.Polymercompositesfromnaturalfibersandrecycled wastesurgicalmasksduringCOVID-19pandemic. Polym.Compos. 2022, 43,3944–3950.[CrossRef][PubMed]
71. Asyraf,M.R.M.;Rafidah,M.;Azrina,A.;Razman,M.R.Dynamicmechanicalbehaviourofkenafcellulosicfibrebiocomposites: Acomprehensivereviewonchemicaltreatments. Cellulose 2021, 28,2675–2695.[CrossRef]
72. GiwaIbrahim,S.A.;Karim,R.;Saari,N.;WanAbdullah,W.Z.;Zawawi,N.;AbRazak,A.F.;Hamim,N.A.;Umar,R.U.A.Kenaf (Hibiscuscannabinus L.)SeedanditsPotentialFoodApplications:AReview. J.FoodSci. 2019, 84,2015–2023.[CrossRef][PubMed]
73. AbdulKhalil,H.P.S.;Bhat,I.U.H.;Jawaid,M.;Zaidon,A.;Hermawan,D.;Hadi,Y.S.Bamboofibrereinforcedbiocomposites: Areview. Mater.Des. 2012, 42,353–368.[CrossRef]
74. Rawi,N.F.M.;Jayaraman,K.;Bhattacharyya,D.Aperformancestudyoncompositesmadefrombamboofabricandpoly(lactic acid). J.Reinf.Plast.Compos. 2013, 32,1513–1525.[CrossRef]
75. Afrin,T.;Kanwar,R.K.;Wang,X.;Tsuzuki,T.Propertiesofbamboofibresproducedusinganenvironmentallybenignmethod. J.Text.Inst. 2014, 105,1293–1299.[CrossRef]
76. Bavasso,I.;Sergi,C.;Valente,T.;Tirillò,J.;Sarasini,F.RecycledMulti-MaterialPackagingReinforcedwithFlaxFibres:Thermal andMechanicalBehaviour. Polymers 2022, 14,4423.[CrossRef]
77. Srinivasan,V.S.;Boopathy,S.R.;Sangeetha,D.;Ramnath,B.V.Evaluationofmechanicalandthermalpropertiesofbanana–flax basednaturalfibrecomposite. Mater.Des. 2014, 60,620–627.[CrossRef]
78. Rana,R.S.;Rana,S.;Nigrawal,A.Preparationandmechanicalpropertiesevaluationofpolyvinylalcoholandbananafibres composite. Mater.TodayProc. 2020, 26,3145–3147.[CrossRef]
79. Rangappa,S.M.;Siengchin,S.;Parameswaranpillai,J.;Jawaid,M.;Ozbakkaloglu,T.Lignocellulosicfiberreinforcedcomposites: Progress,performance,properties,applications,andfutureperspectives. Polym.Compos. 2021, 43,645–691.[CrossRef]
80.Dallyn,H.;Shorten,D.Hygieneaspectsofpackaginginthefoodindustry. Int.Biodeterior. 1988, 24,387–392.[CrossRef]
81. Pickering,K.L.PropertiesPerformanceofNatural-FibreComposites.In PropertiesandPerformanceofNatural-FibreComposites; Pickering,K.L.,Ed.;WoodheadPublishing:Cambridge,UK,2008;pp.xi–xiv.
82. Ramalingam,K.;Thiagamani,S.M.K.;Pulikkalparambil,H.;Muthukumar,C.;Krishnasamy,S.;Siengchin,S.;Alosaimi,A.M.;Hussein,M.A.;Rangappa,S.M.NovelCellulosicNaturalFibersfromAbelmoschusFiculneusWeed:ExtractionandCharacterization forPotentialApplicationinPolymerComposites. J.Polym.Environ. 2022,1–12.[CrossRef]
83. Rao,H.J.;Singh,S.;Pulikkalparambil,H.;Ramulu,P.J.;Rangappa,S.M.;Siengchin,S.ExtractionofCellulosicFillerfrom Artocarpusheterophyllus(Jackfruit)asaReinforcementMaterialforPolymerComposites. J.Polym.Environ. 2022, 31,479–487. [CrossRef]
84. Ku,H.;Wang,H.;Pattarachaiyakoop,N.;Trada,M.Areviewonthetensilepropertiesofnaturalfiberreinforcedpolymer composites. Compos.PartBEng. 2011, 42,856–873.[CrossRef]
85. Yu,T.;Li,Y.;Ren,J.Preparationandpropertiesofshortnaturalfiberreinforcedpoly(lacticacid)composites. Trans.Nonferrous Met.Soc.China 2009, 19,s651–s655.[CrossRef]
86. Kamarudin,S.H.;Abdullah,L.C.;Aung,M.M.;Ratnam,C.T.;Jusoh,E.R.Astudyofmechanicalandmorphologicalpropertiesof PLAbasedbiocompositespreparedwithEJOvegetableoilbasedplasticiserandkenaffibres. Mater.Res.Express 2018, 368,085314. [CrossRef]
2023, 15,1393
87. San,H.;Laorenza,Y.;Behzadfar,E.;Sonchaeng,U.;Wadaugsorn,K.;Sodsai,J.;Kaewpetch,T.;Promhuad,K.;Srisa,A.; Wongphan,P.;etal.FunctionalPolymerandPackagingTechnologyforBakeryProducts. Polymers 2022, 14,3793.[CrossRef]
88. Sonchaeng,U.;Promsorn,J.;Bumbudsanpharoke,N.;Chonhenchob,V.;Sablani,S.S.;Harnkarnsujarit,N.PolyestersIncorporating GallicAcidasOxygenScavengerinBiodegradablePackaging. Polymers 2022, 14,5296.[CrossRef]
89. Kaewpetch,T.;Pratummang,A.;Suwarak,S.;Wongphan,P.;Promhuad,K.;Leelaphiwat,P.;Bumbudsanpharoke,N.;Lorenzo, J.M.;Harnkarnsujarit,N.Ylang-ylang(Canangaodorata)essentialoilswithfloraodorantsenhancedactivefunctionofbiodegradablepolyesterfilmsproducedbyextrusion. FoodBiosci. 2023, 51,102284.[CrossRef]
90. Sanchez-Garcia,M.D.;Gimenez,E.;Lagaron,J.M.Morphologyandbarrierpropertiesofsolventcastcompositesofthermoplastic biopolymersandpurifiedcellulosefibers. Carbohydr.Polym. 2008, 71,235–244.[CrossRef]
91. Ludueña,L.;Vázquez,A.;Alvarez,V.Effectoflignocellulosicfillertypeandcontentonthebehaviorofpolycaprolactonebased eco-compositesforpackagingapplications. Carbohydr.Polym. 2012, 87,411–421.[CrossRef][PubMed]
92. Promhuad,K.;Bumbudsanpharoke,N.;Wadaugsorn,K.;Sonchaeng,U.;Harnkarnsujarit,N.Maltol-IncorporatedAcetylated CassavaStarchFilmsforShelf-Life-ExtensionPackagingofBakeryProducts. Polymers 2022, 14,5342.[CrossRef][PubMed]
93. Sirviö,J.A.;Kolehmainen,A.;Liimatainen,H.;Niinimäki,J.;Hormi,O.E.Biocompositecellulose-alginatefilms:Promising packagingmaterials. FoodChem. 2014, 151,343–351.[CrossRef]
94. Thiagamani,S.M.K.;Pulikkalparambil,H.;Siengchin,S.;Ilyas,R.A.;Krishnasamy,S.;Muthukumar,C.;Radzi,A.M.;Rangappa, S.M.Mechanical,absorption,andswellingpropertiesofjute/kenaf/bananareinforcedepoxyhybridcomposites:Influenceof variousstackingsequences. Polym.Compos. 2022, 43,8297–8307.[CrossRef]
95. Cetin,M.S.;Aydogdu,R.B.;Toprakci,O.;KarahanToprakci,H.A.Sustainable,Tree-Free,PLACoated,Biodegradable,Barrier PapersfromKendir(TurkishHemp). J.Nat.Fibers 2022, 19,13802–13814.[CrossRef]
96. Das,S.;Rani,P.;Tripathy,P.P.DevelopmentandCharacterizationofBetelNutFiberCompositeasaFoodPackagingMaterial. J.Nat.Fibers 2020, 19,747–760.[CrossRef]
97. Sanchez-Garcia,M.D.;Lopez-Rubio,A.;Lagaron,J.M.Naturalmicroandnanobiocompositeswithenhancedbarrierproperties andnovelfunctionalitiesforfoodbiopackagingapplications. TrendsFoodSci.Technol. 2010, 21,528–536.[CrossRef]
98.Phothisarattana,D.;Harnkarnsujarit,N.Migration,aggregationsandthermaldegradationbehaviorsofTiO2 andZnOincorporatedPBAT/TPSnanocompositeblownfilms. FoodPackag.ShelfLife 2022, 33,100901.[CrossRef]
99. Promsorn,J.;Harnkarnsujarit,N.Pyrogallolloadedthermoplasticcassavastarchbasedfilmsasbio-basedoxygenscavengers. Ind.CropsProd. 2022, 186,115226.[CrossRef]
100. Promsorn,J.;Harnkarnsujarit,N.Oxygenabsorbingfoodpackagingmadebyextrusioncompoundingofthermoplasticcassava starchwithgallicacid. FoodControl 2022, 142,109273.[CrossRef]
101. Peterson,S.;Jayaraman,K.;Bhattacharyya,D.Formingperformanceandbiodegradabilityofwoodfibre–Biopol™ composites. Compos.PartAAppl.Sci.Manuf. 2002, 33,1123–1134.[CrossRef]
102. Gassan,J.;Bledzki,A.K.Theinfluenceoffiber-surfacetreatmentonthemechanicalpropertiesofjute-polypropylenecomposites. Compos.PartAAppl.Sci.Manuf. 1997, 28,1001–1005.[CrossRef]
103. Kim,B.S.;Nguyen,M.H.;Hwang,B.S.;Lee,S.Effectofplasmatreatmentonthemechanicalpropertiesofnatural fiber/polypropylenecomposites.In NaturalFillerandFibreComposites;WITPress:Southampton,UK,2015;pp.27–35.
104. Varghese,S.A.;Pulikkalparambil,H.;Rangappa,S.M.;Parameswaranpillai,J.;Siengchin,S.Antimicrobialactivepackagingbased onPVA/Starchfilmsincorporatingbasilleafextracts. Mater.TodayProc. 2023, 72,3056–3062.[CrossRef]
105. Sun,D.SurfaceModificationofNaturalFibersUsingPlasmaTreatment.In BiodegradableGreenComposites;Wiley:Hoboken,NJ, USA,2016;pp.18–39.
106. Borah,J.;Dutta,N.DevelopmentandPropertiesEvaluationofBetelNutFibresCompositeMaterial. Mater.TodayProc. 2018, 5, 2229–2233.[CrossRef]
107. Senthilkumar,K.;Saba,N.;Chandrasekar,M.;Jawaid,M.;Rajini,N.;Siengchin,S.;Ayrilmis,N.;Mohammad,F.;Al-Lohedan, H.A.Compressive,dynamicandthermo-mechanicalpropertiesofcellulosicpineappleleaffibre/polyestercomposites:Influence ofalkalitreatmentonadhesion. Int.J.Adhes.Adhes. 2021, 106,102823.[CrossRef]
108. Ciannamea,E.M.;Stefani,P.M.;Ruseckaite,R.A.Medium-densityparticleboardsfrommodifiedricehusksandsoybeanprotein concentrate-basedadhesives. Bioresour.Technol. 2010, 101,818–825.[CrossRef]
109.Salam,A.;Reddy,N.;Yang,Y.BleachingofKenafandCornhuskFibers. Ind.Eng.Chem.Res. 2007, 46,1452–1458.[CrossRef]
110. Kalia,S.;Kaith,B.S.;Kaur,I.Pretreatmentsofnaturalfibersandtheirapplicationasreinforcingmaterialinpolymercomposites—A review. Polym.Eng.Sci. 2009, 49,1253–1272.[CrossRef]
111. Li,X.;Tabil,L.G.;Panigrahi,S.ChemicalTreatmentsofNaturalFiberforUseinNaturalFiber-ReinforcedComposites:AReview. J.Polym.Environ. 2007, 15,25–33.[CrossRef]
112. Agrawal,R.;Saxena,N.S.;Sharma,K.B.;Thomas,S.;Sreekala,M.S.Activationenergyandcrystallizationkineticsofuntreated andtreatedoilpalmfibrereinforcedphenolformaldehydecomposites. Mater.Sci.Eng.A 2000, 277,77–82.[CrossRef]
113. Smith,M.K.M.;Paleri,D.M.;Abdelwahab,M.;Mielewski,D.F.;Misra,M.;Mohanty,A.K.Sustainablecompositesfrompoly(3hydroxybutyrate)(PHB)bioplasticandagavenaturalfibre. GreenChem. 2020, 22,3906–3916.[CrossRef]
114. Mohanty,J.R.;Das,S.N.;Das,H.C.;Swain,S.K.Effectofchemicallymodifieddatepalmleaffiberonmechanical,thermaland rheologicalpropertiesofpolyvinylpyrrolidone. FibersPolym. 2014, 15,1062–1070.[CrossRef]
2023, 15,1393
115. Nazrin,A.;Sapuan,S.M.;Zuhri,M.Y.M.;Ilyas,R.A.;Syafiq,R.;Sherwani,S.F.K.NanocelluloseReinforcedThermoplasticStarch (TPS),PolylacticAcid(PLA),andPolybutyleneSuccinate(PBS)forFoodPackagingApplications. Front.Chem. 2020, 8,213. [CrossRef][PubMed]
116. Cejudo-Bastante,C.;Arjona-Mudarra,P.;Fernández-Ponce,M.T.;Casas,L.;Mantell,C.;MartínezdelaOssa,E.J.;Pereyra,C. ApplicationofaNaturalAntioxidantfromGrapePomaceExtractintheDevelopmentofBioactiveJuteFibersforFoodPackaging. Antioxidants 2021, 10,216.[CrossRef]
117. Jara-Palacios,M.J.;Gonçalves,S.;Heredia,F.J.;Hernanz,D.;Romano,A.ExtractionofAntioxidantsfromWinemakingByproducts: EffectoftheSolventonPhenolicComposition,AntioxidantandAnti-CholinesteraseActivities,andElectrochemicalBehaviour. Antioxidants 2020, 9,675.[CrossRef]
118. Wang,R.;Xue,H.;Leng,J.;Zhang,J.;Yan,Z.;Liu,X.;Feng,H.;Xiao,L.;Zhu,W.Preparationandantibacterialpropertiesofhemp cellulose-basedmaterialbasedonSchiffbasebetweenlysinegraftedN-halamineanddialdehydehemp. Ind.CropsProd. 2022, 176,114388.[CrossRef]
119. Yuan,X.;Jayaraman,K.;Bhattacharyya,D.Effectsofplasmatreatmentinenhancingtheperformanceofwoodfibre-polypropylene composites. Compos.PartAAppl.Sci.Manuf. 2004, 35,1363–1374.[CrossRef]
120. Parida,D.;Jassal,M.;Agarwal,A.K.FunctionalizationofCottonbyIn-SituReactionofStyreneinAtmosphericPressurePlasma Zone. PlasmaChem.PlasmaProcess. 2012, 32,1259–1274.[CrossRef]
121. Barani,H.;Calvimontes,A.EffectsofOxygenPlasmaTreatmentonthePhysicalandChemicalPropertiesofWoolFiberSurface. PlasmaChem.PlasmaProcess. 2014, 34,1291–1302.[CrossRef]
122. Sinha,E.;Panigrahi,S.EffectofPlasmaTreatmentonStructure,WettabilityofJuteFiberandFlexuralStrengthofItsComposite. J.Compos.Mater. 2009, 43,1791–1802.[CrossRef]
123. HariPrakash,N.;Sarma,B.;Gopi,S.;Sarma,A.SurfaceandmoisturecharacteristicsofjuteusingaDCglowdischargeargon plasma. Instrum.Sci.Technol. 2015, 44,73–84.[CrossRef]
124. Bozaci,E.;Sever,K.;Sarikanat,M.;Seki,Y.;Demir,A.;Ozdogan,E.;Tavman,I.Effectsoftheatmosphericplasmatreatmentson surfaceandmechanicalpropertiesofflaxfiberandadhesionbetweenfiber–matrixforcompositematerials. Compos.PartBEng. 2013, 45,565–572.[CrossRef]
125. Patino,A.;Canal,C.;Rodríguez,C.;Caballero,G.;Navarro,A.;Canal,J.M.Surfaceandbulkcottonfibremodifications:Plasma andcationization.Influenceondyeingwithreactivedye. Cellulose 2011, 18,1073–1083.[CrossRef]
126. Valášek,P.;Müller,M.;Šleger,V.InfluenceofPlasmaTreatmentonMechanicalPropertiesofCellulose-basedFibresandTheir InterfacialInteractioninCompositeSystems. BioResources 2017, 12,5449–5461.[CrossRef]
127. Gieparda,W.;Rojewski,S.;Róza´nska,W.EffectivenessofSilanizationandPlasmaTreatmentintheImprovementofSelectedFlax Fibers’Properties. Materials 2021, 14,3564.[CrossRef][PubMed]
128. Putra,A.E.E.;Renreng,I.;Arsyad,H.;Bakri,B.Investigatingtheeffectsofliquid-plasmatreatmentontensilestrengthofcoir fibersandinterfacialfiber-matrixadhesionofcomposites. Compos.PartBEng. 2020, 183,107722.[CrossRef]
129. Han,G.;Cheng,W.;Deng,J.;Dai,C.;Zhang,S.;Wu,Q.Effectofpressurizedsteamtreatmentonselectedpropertiesofwheat straws. Ind.CropsProd. 2009, 30,48–53.[CrossRef]
130. Kamath,S.S.;Sampathkumar,D.;Bennehalli,B.Areviewonnaturalarecafibrereinforcedpolymercompositematerials. Ciênc. Tecnol.DosMater. 2017, 29,106–128.[CrossRef]
131. Omrani,E.;Menezes,P.L.;Rohatgi,P.K.Stateoftheartontribologicalbehaviorofpolymermatrixcompositesreinforcedwith naturalfibersinthegreenmaterialsworld. Eng.Sci.Technol.Int.J. 2016, 19,717–736.[CrossRef]
132. Cheung,H.-Y.;Ho,M.P.;Lau,K.T.;Cardona,F.;Hui,D.Naturalfibre-reinforcedcompositesforbioengineeringandenvironmental engineeringapplications. Compos.PartBEng. 2009, 40,655–663.[CrossRef]
133. Nunna,S.;Chandra,P.R.;Shrivastava,S.;Jalan,A.K.Areviewonmechanicalbehaviorofnaturalfiberbasedhybridcomposites. J.Reinf.Plast.Compos. 2012, 31,759–769.[CrossRef]
134.Santulli,C.Impactpropertiesofglass/plantfibrehybridlaminates. J.Mater.Sci. 2007, 42,3699–3707.[CrossRef]
135. Harish,S.;Michael,D.P.;Bensely,A.;Lal,D.M.;Rajadurai,A.Mechanicalpropertyevaluationofnaturalfibercoircomposite. Mater.Charact. 2009, 60,44–49.[CrossRef]
136. Sánchez-Safont,E.L.;Aldureid,A.;Lagarón,J.M.;Gámez-Pérez,J.;Cabedo,L.Biocompositesofdifferentlignocellulosicwastes forsustainablefoodpackagingapplications. Compos.PartBEng. 2018, 145,215–225.[CrossRef]
137. Rawi,N.F.M.;Jayaraman,K.;Bhattacharyya,D.Bamboofabricreinforcedpolypropyleneandpoly(lacticacid)forpackaging applications:Impact,thermal,andphysicalproperties. Polym.Compos. 2014, 35,1888–1899.[CrossRef]
138. Nabels-Sneiders,M.;Platnieks,O.;Grase,L.;Gaidukovs,S.LaminationofCastHempPaperwithBio-BasedPlasticsfor SustainablePackaging:Structure-ThermomechanicalPropertiesRelationshipandBiodegradationStudies. J.Compos.Sci. 2022, 6,246.[CrossRef]
139. Ji,M.;Li,J.;Li,F.;Wang,X.;Man,J.;Li,J.;Zhang,C.;Peng,S.Abiodegradablechitosan-basedcompositefilmreinforcedbyramie fibreandligninforfoodpackaging. Carbohydr.Polym. 2022, 281,119078.[CrossRef]
140.Tawakkal,I.S.M.A.;Cran,M.J.;Bigger,S.W.Releaseofthymolfrompoly(lacticacid)-basedantimicrobialfilmscontainingkenaf fibresasnaturalfiller. LWTFoodSci.Technol. 2016, 66,629–637.[CrossRef]
141. Tawakkal,I.S.M.A.;Cran,M.J.;Bigger,S.W.EffectofPoly(LacticAcid)/KenafCompositesIncorporatedwithThymolonthe AntimicrobialActivityofProcessedMeat. J.FoodProcess.Preserv. 2017, 41,e13145.[CrossRef]
2023, 15,1393
142. Naziruddin,M.A.;Jawaid,M.;Yusof,N.L.;Abdul-Mutalib,N.A.;Ahmad,M.F.;Sanny,M.;Alzahari,A.Assessmentanddetection ofthepotentialcontaminantsfromoilpalmemptyfruitbunchfiber-basedbiodegradabletray. FoodPackag.ShelfLife 2021, 29,100685.[CrossRef]
143. CadenaCh,E.M.;Jawaid,M.;Yusof,N.L.;Abdul-Mutalib,N.A.;Ahmad,M.F.;Sanny,M.;Alzahari,A.NaturalFibersfrom PlantainPseudostem(Musaparadisiaca)forUseinFiber-ReinforcedComposites. J.Nat.Fibers 2017, 14,678–690.[CrossRef]
144. Sanyang,M.L.;Sapuan,S.M.;Jawaid,M.;Ishak,M.R.;Sahari,J.Effectofplasticizertypeandconcentrationonphysicalproperties ofbiodegradablefilmsbasedonsugarpalm(Arengapinnata)starchforfoodpackaging. J.FoodSci.Technol. 2015, 53,326–336. [CrossRef][PubMed]
145. Berthet,M.-A.;Angellier-Coussy,H.;Machado,D.;Hilliou,L.;Staebler,A.;Vicente,A.;Gontard,N.Exploringthepotentialitiesof usinglignocellulosicfibresderivedfromthreefoodby-productsasconstituentsofbiocompositesforfoodpackaging. Ind.Crops Prod. 2015, 69,110–122.[CrossRef]
146. Jayaramudu,J.;Reddy,G.S.M.;Varaprasad,K.;Sadiku,E.R.;Ray,S.S.;Rajulu,A.V.Structureandpropertiesofpoly(lactic acid)/Sterculiaurensuniaxialfabricbiocomposites. Carbohydr.Polym. 2013, 94,822–828.[CrossRef][PubMed]
147. Rosa,M.F.;Chiou,B.S.;Medeiros,E.S.;Wood,D.F.;Mattoso,L.H.;Orts,W.J.;Imam,S.H.Biodegradablecompositesbasedon starch/EVOH/glycerolblendsandcoconutfibers. J.Appl.Polym.Sci. 2008, 111,612–618.[CrossRef]
Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM THE PUBLISHERS OF PAPER
Volume 10, Number 3, 2024

PAPERmaking!




A critical review of test methods and alternative scientific approaches to compliance and safety evaluation of paper and board for food contact
Paper Technology
International® PITA Annual Review
Essential Guide to Aqueous Coating
TYPE Review
PUBLISHED 11July2024
DOI 10.3389/fchem.2024.1397913
Acriticalreviewoftestmethods
OPENACCESS
EDITEDBY EmmanouilTsochatzis, EuropeanFoodSafetyAuthority(EFSA),Italy
REVIEWEDBY RaquelSendon, UniversityofSantiagodeCompostela,Spain FátimaPoças, EscolaSuperiordeBiotecnologia-Universidade CatólicaPortuguesa,Portugal
*CORRESPONDENCE
AngelaStörmer, angela.stoermer@ivv.fraunhofer.de †Theseauthorshavecontributedequallyto thiswork
RECEIVED 08March2024
ACCEPTED 21May2024
PUBLISHED 11July2024
CITATION
StörmerA,HetzelLandFranzR(2024),Acritical reviewoftestmethodsandalternativescientific approachestocomplianceandsafety evaluationofpaperandboardforfoodcontact. Front.Chem. 12:1397913. doi:10.3389/fchem.2024.1397913
COPYRIGHT
©2024Störmer,HetzelandFranz.Thisisan open-accessarticledistributedundertheterms ofthe CreativeCommonsAttributionLicense (CCBY).Theuse,distributionorreproductionin otherforumsispermitted,providedtheoriginal author(s)andthecopyrightowner(s)are creditedandthattheoriginalpublicationinthis journaliscited,inaccordancewithaccepted academicpractice.Nouse,distributionor reproductionispermittedwhichdoesnot complywiththeseterms.
andalternativescientific approachestocomplianceand safetyevaluationofpaperand boardforfoodcontact
AngelaStörmer*†,LisaHetzelandRolandFranz† FraunhoferInstituteProcessEngineeringandPackaging,Freising,Germany
Paperandboardarewidelyusedasfoodcontactmaterials.Forsuchsensitive applications,consumersafetyregardingthetransferofchemicalcomponents andcontaminantstothefoodneedstobeestablished.Suchsafetyassessments arebecomingincreasinglychallengingnotonlyduetointentionallyadded substancesbutalsonon-intentionallyaddedsubstances.IntheEuropean Union,compliancetestingandsafetyevaluationofpaperinfoodcontactare largelybasedonnationallegislationandstandards.Theunderlyingtestsare conventionalmethods,oftenoverestimatingandsometimesunderestimatingthe migrationintofood.Inthisarticle,therelevantstandardtestmethodsare contrastedwithcurrentlyavailablescientificknowledge.Thescientific approachestodevelopandidentifysuitabletestmethodsarecritically reviewed.Furthermore,theoreticalpredictionsviamathematicalmodeling, withtheaimtorealisticallysimulatetransfertofood,arepresentedand discussedincomparisonwithavailablemigrationstudieswithfoods. Objectivesareto(i)summarizetheactualscientificknowledgeinthe fieldand drawconclusionsregardingthepotentialandlimitationsoftheexistingtest methodsand(ii)identifyresearchgapstowardabetterqualitativeandquantitative understandingoftransportprocessesofvolatileandnon-volatilesubstances frompaperandboardintofoods.
KEYWORDS
foodcontactmaterials,paperandboard,migration,paperextracts,foodsafety,dry foods,fattyandwettingfoods,migrationmodeling
1Introduction
Paper includingcardboard isincreasinglyusedasfoodcontactmaterial(Technavio, 2023).ThisisbecauseitseemstoalmostperfectlyservetheobjectivesoftheEU sustainabilitystrategy(CommissionEuropean,2024a; CommissionEuropean,2024b), giventhatitisbasedonrenewablerawmaterialsandislargelyrecyclableor compostable.Meanwhile,productionofpaperishighlyenergyandwaterconsumptive (CEPI,2023).Theuseofrecycled fibersreducestheenvironmentalimpact(Deshwaletal., 2019; Wellenreutheretal.,2022).However,withrecycled fibers,unwantedsubstancesare introducedintothematerial.Thesemaybesuchvariedthatitseemsimpossibletocover themwithrelativelysimplemethodsandensureconsumersafety,exceptforapplications
withfunctionalbarrierslikeinnerbags,barriercoatings,orindirect contactforpackinginsensitivefoodslikesalt(Biedermannand Grob,2013; Geuekeetal.,2018).
Incontrasttoplasticfoodcontactmaterials(FCM),whichare subjecttoaspecificanddetailedEUlegislation(EU,2023)ina systematicandlargelyscience-basedway,paper-basedfoodcontact materialsstilllacksuchdetailedspecificregulationsataharmonized Europeanlevel(Simoneauetal.,2016).Onemajorreasonisthatfor paper,duetotheinherentstructuralandchemicalcompositional complexity,theknowledgebaseforproperriskassessmentisnotas advancedasitisforplastics.Nevertheless,thesafetyofpaper applicationsinfoodcontactneedstobeensurede.g.,inthe EuropeanUnionaccordingtoArticle3oftheFramework Regulation1935/2004(EU,2004).
Generally,thetransferofsubstancesfrompackagingmaterialsto foodsmustbeevaluatedtoensureconsumersafetyandthisatbest, asrealisticscenarios.However,tocoveralargenumberofpossible foodsas fillinggoodsandavoidanalyticaldifficultieswithcomplex foodmatrices,simulantsandstandardizedcontactconditionsare typicallyused.
Foodcontactcompliancetestingandsafetyevaluationofpaper arestilllargelybasedonstandardmethods,whicharerather conventionaltestproceduresthansimulatingtransfertoreal foods.Asystematicandholisticapproachsimilartoplasticfood contactmaterialsisstillmissingbutwouldbeneededasabasisfor thefutureEUlegislationandframingbetterrulesforthepaper packagingindustry(Lestido-Cardamaetal.,2020; Kourkopoulos etal.,2022).Therequirementstoensureconsumersafetyinfood contactapplicationshavebeenadvancingduringthelastfew decades,especiallywithnon-intentionallyaddedsubstances emergingtotheforefront(Kosteretal.,2015; LeemanandKrul, 2015; EP,2016; CoE,2020; Nerinetal.,2022).Paperfoodcontact materialshavebeenreportedinamultitudeofscientificarticlesas potentialsourcesforreleasing/migratingchemicalcontaminantsof knownandunknownidentityandtoxicityintothefoodswhenin contactwiththem.Inparticular,foodcontactmaterialshaving recycledpaperqualitiesraiseconcerns(Jickellsetal.,2005; Sturaroetal.,2006; Begleyetal.,2008; Zhangetal.,2008; Gärtneretal.,2009; Vollmeretal.,2011; EFSA,2012a; Pivnenko etal.,2015; Canavaretal.,2018; Deshwaletal.,2019; Conchione etal.,2020; Zabaletaetal.,2020; Panetal.,2021).
Substanceswithonlyscarceornotoxicologicaldatacanbe evaluatedassafeonlyatlowmigrationlimits,e.g.,byapplying ThresholdofToxicologicalConcern(EFSA,2012b; CoE,2020).Test methods whichhighlyoverestimaterealmigrationinto foods maytriggereitherprematurenegativeevaluationsand unjustifiednon-complianceassessmentsofpapermaterialsorthe needforelaborateandcostlymigrationtestsincontactwith representativeorworst-casefoodstuffsthemselves(“food prevails”).Thisriskusuallyincreaseswithdecreasing migrationlimits.
Overall,thereisahighnumberandvariabilityofapplicabletests andevaluationmethodsinEurope.Thereisalotofdiscussioninthe scientificliterature,whichmethodstoapplyforvariouspurposes, andtherelateduncertaintiesandinterpretationgaps.
Theobjectiveofthisarticleisto(i)provideanoverviewof available,legallybinding,andnormativetestprocedures,including guidancedocumentsinEurope;(ii)compilealternativescientific
approachespublishedinthescientificliterature;and(iii)explainand criticallydiscussthepresentedtestmethodsandapproaches concerningtheirobjectives,potentials,andlimitations.The overarchingintentionistoidentifyandhighlighttheresulting conclusionsforfutureresearchtowardabetterharmonizedruleandscience-basedevaluationschemeforpaper-basedfood contactmaterials.
Thispaperfocusesonsimulatingthetransferprocessestofood. Workaboutmethodstodetectandidentifypossiblymigrating substancesaswellasbioassays,althoughbelongingtotheareaof newalternativeapproaches,areintentionallyexcludedfrom thisreview.
2Ashortviewonthediversityofpaper foodcontactapplications
Paperiscommonlyusedasapackagingmaterialforawiderange offoodproducts,includingdrygoods(e.g., flour,cereals,snacks,and pasta),bakedgoods(e.g.,breadandpastries),andfreshproduce (e.g.,fruitsandvegetables).Importantproductsforfoodprotection duringtransportandstoragearebags,boxes,andtrays.Forhightemperatureapplications,e.g.,baking,parchmentpaperorbaking cupsformuffinsareusedtopreventfoodfromstickingtosurfacesin commercialandhomebakingsettingsandteabagsorcoffee filters forhotaqueouscontact.Infoodserviceareaswithinthecommercial andresidentialsettings,disposabletableware suchascups,plates, bowls,napkins,andstraws ismadefrompaper.Otherapplications comprisewrappingmaterials includingwaxedpaper foravariety offoodproducts,suchasmeatproductsandsandwiches.Papercan beusedasitisorcoatedwithavarietyofbarriermaterialstoprevent moisture,oxygen,andaromacompoundsfromenteringorleaving thepackageandimprovegreaseresistance.Barriersmightbe coextruded films(e.g.,polyethylene),lacquers,orcoatingsfrom petrochemicalorbiobasedsources.Finally,labelsandtags applied tofoodpackagesorfoodproductsforidentificationorpromotional purposes areoftenbasedonpaper.Acomprehensiveoverviewof papercategoriesandpaper-basedfoodpackagingmaterialscanbe foundintheliterature(Simoneauetal.,2016; Deshwaletal.,2019). Inconclusion,theuseofpaperishighlydiverse,coveringawide rangeofproductsandfoodcontactapplications.Thepapertypes anddesignsdependontheparticularapplicationneedsandthe relevantregulatorystandards.Demonstratingorprovingthe chemicalsafetyofsuchlargevarietyofapplicationsposea seriouschallengetoindustrial,contract,andcontrollaboratories, particularlywhenrecycled fiberscarryingpotentiallynumerous chemicalcontaminantsenterproductionlines.Undoubtedly,this situationindicatesaneedforbetterscience-basedmethodological supporttowardthesafetyassessmentofpaperfoodcontact materials,asindicatedby Grob(2022)
3EUlegislationof fiber-basedfood contactmaterialsandrelated(supra) nationalprovisions
Aswithanyotherfoodcontactmaterial,paperforfoodcontact issubjecttotheoverarchingEuropeanFrameworkRegulation(EC)
No.1935/2004(EU,2004)andtheGoodManufacturingRegulation (EC)No.2023/2006(EU,2006).Inshort,theseregulationslaydown generalprinciplestoensurethatanyfoodcontactmaterialissafefor theconsumerandmanufacturedunderquality-controlled conditions.PapermaterialsarelistedinAnnex1of1935/2004as materials,whichmaybecoveredbyspecificEUmeasuresbutarenot harmonized.Therefore,Article7ofthatRegulationforeseesthat nationalprovisionscanbemaintainedoradoptedbyMemberStates intheabsenceofEU-specificmeasures.Atotalof10MemberStates (Belgium,CzechRepublic,Estonia,Greece,Germany,France, Croatia,Italy,theNetherlands,andSlovakia)havesetouttheir provisionsandsafetycriteriainnationalregulationsor recommendations.Thelatter,suchassetoutbytheGermanBfR, arelegallynotbindingbuthavealmostthestrengthoflegislationby theforceofthemarket.Asummary includingthelimitsfor specificsubstances isgiveninAnnex16of Simoneauetal. (2016).Thereisahighvarietyofrules,requirements,and substancelistswithonlylittlecongruencebetweentheMember States(Simoneauetal.,2016).TheCouncilofEuropehasrecently releasedthegeneralresolutionCM/Res(2020)9onthesafetyand qualityofmaterialsandarticlesincontactwithfood(CoE,2020), whichisapplicabletonon-harmonizedmaterialsinEU,giving detailedbutnotlegallybindingrequirementsregardingconsumer safety.Aspecifictechnicalguideonpaperandboard(CoE,2021) supplementsthisgeneralresolution.AnnexIIgivessome restrictionstospecificsubstancesoccurringwithinpaper. ComprehensiveanddetailedoverviewsofthepaperEU regulatorysituationalongwithextensivelistsofnational provisionsandmeasurescanbefoundinthebaselinestudy (Simoneauetal.,2016)andinreviewarticlesby Kourkopoulos etal.(2022) and Oldringetal.(2023).Amatterofconcerninthelast decadewasthepresenceofmineraloilcomponents,especially aromatichydrocarbons(MOAH)inpaperswithrecycled fibers, orfromprintinginksonfoodcontactmaterials.TheGerman FederalMinistryofFood,AgricultureandConsumerProtection (BMEL)proposedspecificmigrationlimitsforMOAHtobe undetectableinfoodandfoodsimulantsatdetectionlimitsof 0.5and0.15mg/kgfoodsimulant.Therespectivenationaldecree wasnotsetintoforcependingafutureEuropeanmeasure(BMEL, 2022b;a).Limitsformineraloilcomponentsinfoodarestill discussedinEU(EC,2023).
4Normativeframeworkofstandard testmethodsandguidelines
SupportingandenforcingtheEuropeanandnationallegislation forpaper,morethan20standardtestmethodsandproceduresare availableonEuropeanandnationallevels(Simoneauetal.,2016; CoE,2021; Oldringetal.,2023).Thesestandardscoverarangeof testprinciples(determinationofresidualcontent,extraction,and migration),specifictargetsubstancesorsubstancegroups(suchas bisphenolA,anthraquinone,andphthalates),andotherpaper materialparameters,includingorganoleptictesting,fastnessof colors,oropticalbrighteners.
Testingthetransferofsubstancesfrompaperincludesthestepof transfer(migration,gasphasetransfer,orextraction)andaspecific analyticalmethodforthetargetsubstances(BfR,2015).For
simulatingthetransfer,conventionalproceduresareusually applied,whichshallcovertheworstcase(BfR,2015).Thefour mostimportantandrelevantbasictestproceduresarecoldwater extract,hotwaterextract,organicsolventextract,andmigration testingusingmodifiedpolyphenyleneoxide(MPPO,poly2,6diphenyl-p-phenyleneoxide,e.g.,Tenax®)asasimulant.All proceduresarepublishedasEuropeanStandards.Theextractsare carriedoutunderdefinedconditions(sampleweight,water/solvent volume,andcontacttime/temperature; Table1).GermanBfR recommendedslightmodificationstoincreasetheintra-and inter-laboratoryreproducibilityofthewaterextracts.
Coldandhotwaterextractsareconsideredtosimulatedirect aqueousfoodcontact;thecoldwaterextractrepresentsaqueous foodsandbeveragesatallapplicationsexcepthotandbaking applications.Forthesetwoapplications,thehotwaterextractis usedforwater-solubleandhydrophilicsubstances.Theorganic solventextractsimulatescontactwithfattyfoodsbyusing95% ethanolandisooctaneassolvents.Theseextractionsarecarriedout withcutsamples.
Onthecontrary,theMPPOtestisamigrationtest,inwhich theadsorbentMPPOisspreadonthefoodcontactsurface.MPPO simulatescontactwithdryfoodsandathightemperatureswithall foods(microwaveandbakingapplications).Thetestconditions areusuallytakenfromAnnexVofthePlasticsRegulation(EU)10/ 2011( EU,2011).TheEURL-FCMguidelinefortestingconditions ofkitchenwarestatesexamplesforavarietyofapplications( Beldi etal.,2023).Forhigh-temperatureapplications(microwaveand oven),therecommendedtemperaturesvary.EN14338givesa maximumtemperatureof175 °Cforthetestbutdoesnotgive adviceontheselectionoftestconditions.CoETechnicalGuide proposes2hat175 °Cforovenapplicationsand30minat150°Cfor microwave( CoE,2021 ).EURL-FCMguideline preparedbythe EUreferenceandnationalsurveillancelaboratories recommends conditionsupto2hat200°C,dependingontheapplicationinthe ovenand30minat121°Cforwarmingupordefrostingorat175°C forcookinginthemicrowave(Beldietal.,2023).Accordingto GermanBfRatcontactof2hat220 °Cnodegradationforbaking papersshouldoccur,and30minat150°Cformicrowave applicationsshouldbeapplied(BfR,2015 ).EURL-FCM guidelinedistinguishesbetweencoatedortreatedpaperarticles, whichdonotabsorbmoistureoroilandwithstandmigrationtests basedontheconditionsfromRegulation10/2011,andotherpaper articles.Fortheformer,theconditionsforplasticmaterialsare givenintable5Aoftheguideline,andforthelatter,theextraction andMPPOtestsasdescribedabove(table5B,there).Plastic migrationprocesseshavecompletely differentcharacteristics comparedwithpaper.Consequently,thecontactconditionsare notnecessarilyapplicabletopaperasdiscussedindepthbelowin Section5 .Inadditiontothesetests,CouncilofEuropeTechnical Guide( CoE,2021 )recommendsusing3%aceticacidfor estimatingthereleaseofmetalsintoacidicfoods.Generally,for thecontacttestconditions,theguidereferstoEURLFCMguideline.
Theresultsofcoldandhotwaterextractsinmg/Lareconsidered conventionallyequivalenttomigrationinmg/kgfood(CoE,2021). CoETechnicalGuidestatesthattherealratioofsurfaceareatothe amountoffoodmustbeusedorthemaximumallowablesurface-tofoodratioshouldbedeclared.Bycontrast,theEURL-FCMguideline
TABLE1RelevantEuropeanStandardsfortheextractionormigrationtestingofpaper Standard
EN645:1993ColdwaterextractSample,cutorrippedinpieces,extractedwithwater10g/200mLat 23 C±2 Cfor24h,shakingoccasionally;the filtrate(filledupto 250mL)usedforanalysis CEN (1993a)
Modification byBfR
Samplecut(notripped),shakingnotnecessary,vacuum filtrationwitha glass fiber filter(1.2μm)insteadofglassdrip(10–16μm),andpressing ofthe filtercakeincaseofhighwaterabsorption BfR (2022a)
EN647:1993HotwaterextractExtractedwithwaterat80°C±2°Cfor2h.Theprocedurewassimilarto thatofthecoldwaterextract CEN (1993b)
Modification byBfR
Similartothatforthecoldwaterextractbutnocommentonshaking BfR (2022b)
EN15519:2007OrganicsolventextractSamplecut,extractionwithethanolorisooctane10g/200mLcontact timeandtemperaturedependingonapplication2hor24h/20 C(shortorlong-termcontact)and2h/60°C(forhotcontact),shaking occasionally; filtrate(filledupto250mL)usedforanalysis
EN14338:2003Migrationusingmodifiedpolyphenyleneoxide(MPPO)asthe simulant
CEN/TS14234: 2002 Polymericcoatingsonpaperandboard guidetotheselectionof conditionsandtestmethodsforoverallmigration
referstoArticle17ofPlasticsRegulation10/2011andthe exemptionsforsmall(<500gormL)andverylargepackages (>10kgorL)forwhichtheconventionalratioof6dm2/kgis used.Thisconceptcanalsobeappliedtopaper(Beldietal.,2023). Thus,coldandhotwaterextractresultsarerecalculatedtothe surfaceareaofthesampleandthe filling.Thenewer(oralteratively: morerecent)organicsolventstandardEN15519:2007already requiresreportingtheresultsrelatedtothesurface.
Contrarytotheirname,thewaterandsolventextraction methodsarenotnecessarilyexhaustive(BfR,2015).The extractivepowerwilldependonthetypeandnatureofthetarget substance(organic-polar,organic-unpolar,orinorganic),its physical–chemicalproperties,anditsinteractionswiththepaper sample.Thename “extraction,” whichisusuallyreservedfor exhaustivemethods,maycauseconfusion(Oldringetal.,2023). Takingthesestandardstodepict “worstcase” migrationintofood (BfR,2015),itneedstobestatedthattheseconventionalmethods mightnotmatchtherealconditionsofuse.Confederationof EuropeanPaperIndustries(CEPI)seeshotwaterextracttesting asaclosecopyoftheintended finaluseandotherextractiontestsas mostlyoverestimating(CEPI,2019/2021).AlthoughCoETechnical Guidereferssolelytothesestandardtests,German BfR(2015) recognizesthispointandrecommendsatieredapproachusing representativerealfoodsincaseofdoubtorknown overestimationorunderestimation.Testingresultsinfoodhave priorityforthefoodregulatoryassessment.Forplastics,general testingrequirementsshallcoverworstcaseoffoodcontact applicationsandbeevenmoresevere,asspecifiedinAnnexesIII andVofEURegulation10/2011.Similarly,themethodsforpaper areintendedtosimulatetransferintorealfoodsconservativelyand areslightlyoverestimating.However,forplastics,tooseveretestscan showconformitybutnotdisapprovethem.Thisisthecasefor alternativemethods theso-calledscreeningmethods butmight alsobefor(overestimating)conventionaltestingresults.EU
AdsorbentMPPO(Tenax®)isspreadonthesurfaceofthesample(4g/ dm2),contactconditionsaccordingtoapplication,andsolvent extractionofMPPO
Rapidextractionmethodswithisooctaneand/or95%ethanol24hat 40°Cor50°Cdependingonthepolymerofthefoodcontactlayer;for polymerlayerthicknessesupto300μm
CEN (2007)
CEN (2003)
CEN (2002b)
Regulation10/2011initsArticle18statesthat “theresultsof specificmigrationtestingobtainedinfoodshallprevailoverthe resultsobtainedinfoodsimulant.” Thismeanssimulationor predictionofmigrationshoulddepictthesituationwithfoodas closelyaspossible,ideallymatchingwiththeupperboundmarginof thedeterminationinthefood.
Theconventionalassumptionthattheextractionvaluescorrelateto migrationintofoodholdsanon-negligibleconflictpotentialas migrationintofoodunderrealisticconditionsmaydifferfromthe extractresults.Thisbecomesobviousforcutsamples,whichpartially disintegrateduringextraction.However,thediscrepancymayoccurin bothdirections:overestimationandunderestimation.Theexampleof perfluorocompounds whichdonot fitintothesimulantschemeasa worsecase(Begleyetal.,2008) isgiveninBfRguideline(BfR,2015). Merkeletal.(2018) comparedthemigrationofprimaryaromatic amines(PAAs)fromthreepapernapkinsintofourdifferentfood categories(wet,dry,acidic,andfatty)withthecoldwaterextractresults. Inthefoodcategorypickledgherkins(aqueous–acidic),coldwater seemedtobeinsevenofninetestcasessufficientlyrepresentativeor evenoverestimatingwithameasuredtransferintofood(expressedas% ofextract)rangingfrom62%to115%,dependingmainlyonthespecific amines,butwasseverelyunderestimativeintwocaseswith224%and 271%(PAAinbothcases:aniline).Significantlyless,orevenno migrationcouldbefoundintorice(dry),buttercookies(fatty),and cucumber(wet),respectively,withtransferrangingfrom2%to79%and manynon-detects.Particularlystrikingisthedifferencebetweenthe resultsofcoldwaterextractandbuttercookies(fattyfoods):onlyin threeofninetestcases,PAAsweredetectableinthefoodand,inwhich measurabletransferwasrangingfrom2%to43%ofcoldwaterextract value,i.e.,withextremeoverestimationbytheextract.Coldwater extractisthesamplepreparationmethodproposedintherecently publishedstandardEN17163:2019(CEN,2019)fortestingPAAs. Fortheorganicsolventextract,thequestionarisesastowhether thesurface-relatedsolventextractionvaluescanbedirectly
understoodasrepresentativesofthefattyfoodstobesimulated. Lestido-Cardamaetal.(2020) showedthatthesolventextractcould bestronglyoverestimatingforlipophilicsubstancegroupslike dialkylketones.Solventextractsinisooctaneanddichloromethane werecomparedwithmigrationintotwovegetableoilsandthreefatty foods(croissant,salami,andtwokindsofcheese)underdifferent conditions.Themigrationintothesolventsandoilsexceededthe migrationintotherealfoodsbyroughlyfourordersofmagnitude, suggestingthatthesolventandoilsarefarmoreextractivethanthe realfoods.Itseemsthatsolventextractsconstituteanappropriate andcorrecttooltodeterminethemigrationpotentialofsubstances frompapersbuttheobtainedresultsinmasspersurfaceunit cannotbetakenasdirectmeasuresforconsideringrealtransfer tofood.However,thispracticeisstillapplied.The dialkylketones forwhichGermanBfRhassetamigrationlimit of5mg/kgfood areusuallydirectlycontrolledonthebasisofthe organicsolventextract.
Fromtheindustryside,CEPIreleasedanupdatedguideline regardingcomplianceworkforfoodcontactpapermaterials(CEPI, 2019/2021).Theguidelineisaddressedtoallparticipantsinthe manufacturingchainaswellastotheconsumersandregulators. CEPIguidelinereferstothecurrentstandardproceduresfortesting, includingcoldwater,hotwater,andsolventextractsaswellasmigration intoMPPO.Itgivesrecommendationsonhowtohandlelimitationsof thesestandards,likethepossibleoverestimationofmigrationthrough extracts,e.g.,casesinwhichcertainsolvent–materialcombinations couldfalselyleadtofailingresults.Thesolutionwillbeacase-by-case approach,focusingontheriskassessmentoftheusedrawmaterialsin thecontextoftheintendeduseofthematerial.
Scientificguidancefortheoreticallyassessing,measuring,and estimatingthetransferofmineraloilcomponentswaspublishedby GermanFederationforFoodLawandFoodScience(Gruberetal.,2019).
5Scientificstudiesandalternative approachesincluding migrationmodeling
5.1Introductoryremarksanddescriptionof thekeychallenges
Thetransferofamigrantfromapackagingmaterialisdetermined byitsmobility/speed(diffusionrate)insidethematerialand,inthecase ofsemisolidandsolidfoods,additionallyinsidethefood.Thesecond mainparameteristhepartitioningbetweenthepackagingmaterialand thefood,inthecaseofseverallayers,additionallybetweenthelayers. Forcompliancetestingofplastics,inmostcases,liquidsimulantsare usedwhichshallroughlyrepresentthesolubilitypropertiesofthefood forthemigrants.Concerningdiffusionandtheuseofsimulants,plastics appearasasimplermatrixcomparedwithpaper.Thesimulantliquids usuallydonotpenetratetheplasticmatrixsoakineticmigrationtest willmonitorthetime-dependentdevelopmentofthemigrant’stransfer process,ideallyinawaythatiscomparabletotheprocessesoccurringin contactwithfood.NormallymigrationfollowsFickiansecondlaw. Therefore,fromkineticdatausingcurve fitting,thephysico-chemical keyparameters;thediffusioncoefficient,DP,inpolymer;andthe partitioncoefficientpolymer-food,KP/F,canbederived.Bothare fundamentalformigrationpredictionandmodeling(Mercea,2008).
Incontrasttoplastics,theliquidsimulantsusedinthe conventionaltestmethodsinthepapersector,i.e.,coldorhot waterorsolventssuchasisooctaneand95%ethanol,penetrate uncoatedandevenoftencoatedpapertestsamples,thusheavily impairingtheirfunctionalconsistency.Thiscancausephysical disintegrationofthepaper fibernetwork.Therefore,theobtained valuesareratherresultsofanextractionprocessandnotofa migrationmechanismintofood.Consequently,thisleadsin manyorevenmostcasestooverestimationsbecausethesomeasuredvaluesrepresentanequilibriumbetweentheused (extraction)solventandthepapermaterial.Thisdiffersfromreal foodcontactapplications,inwhichtheequilibriumisnotreached duringthecontacttime.Migrationcanbesloweddownbythe diffusionpropertiesofthefooditself,especiallyinthecaseof semisolidorsolidfoods.Additionally,thesolubilityofthe migrantsinrealfoodmaybelowerthaninsimulants, i.e.,partitioningismoreonthefoodcontactmaterialside. However,testsinfoodcannotbeseenasanalternativeto routinetestingastheyarenotpossibleforallsubstancesand may findtheirlimitationsintheanalyticalfeasibilityforusually verycomplexfoodmatricesoreveninthechoiceofrepresentative foodsfortheintendedapplications.Awayoutoratleasta supportingtoolisthedevelopmentanduseofpredictive mathematicalmigrationmodels,whichneedtobedesignedsuch thattheydepictrealityascloselyaspossible.
Numerousscienti fi cpapersaddressedthedevelopmentof analyticalmethodsforkeymigrantsandcontaminantsin paperforfoodcontactaswellasalternativemigrationtest procedures.Thelatteraimstode fi necrucialphysico-chemical parametersformasstransferfrompaperandto fi ndrelationships betweenpapermaterialproperties,migrants,testconditions,and migrationlevels.Inthefollowingsections,anoverviewwillbe givenofpublishedexperimentalandtheoreticalscienti fi c approachestowardabetterunderstandingandevaluationof masstransferfrompaperfoodcontactmaterialsintofoods andtheirsafetyinuse.Thisoverviewisnotquantitatively exhaustivebutclaimstoaddressthemostrelevant publicationswithregardtotheintentionofthisarticle.The conclusionsofthestudiesmaydependontheconsidered migratingsubstancesandtheirproperties,e.g.,volatility.The substancesusedintherespectivepublicationsarecompiledinthe SupplementaryTableS1
5.2Experimentaltestapproachesand key findings
Thescientificeffortsinthepublishedliteraturearelargelyvaried andhavemanifolddetails.Inprinciple,theycanbedividedinto threemajorresearchdirectionswiththefollowingobjectives:
(i)Exploringanddevelopingalternativefoodsimulantssuitable tomimicfoodincontactwithpaper;
(ii)Comparisonofmigrationresultsobtainedfromsimulated migrationtestingwithrealisticmigrationlevelsinfoods themselves;
(iii)Deriving/definingmigrationtestconditionstobetter simulatefoodcontact.
5.2.1Migrationintodryfoods
Migrationintodryfoodshasbeenatopicformostofthese scientificpublicationsbecausecontactwithdryfoodsrepresentsa majorapplicationofpaperinfoodcontact. UrbelisandCooper (2021) publishedacomprehensivesummaryreviewof162studies thatexaminedmigrationintodryfoodsanditssimulants,an importantdatasource.Thefocusofthisstudywastheextentof migrationintodryfoodsandnotspecificallyfrompaperpackaging butanytypeoffoodcontactmaterial.However,thelargestpartis paperrelevant.Thismightcorrelatewiththefactthatmost packagingfordryfoodsispaper.Thisreviewdealswiththe analysisofmarketfoodproducts,aswellasoffoodproductsand foodsimulantsincontactwithfoodcontactmaterial,after experimentalfortificationwithknownquantitiesofamigrant. Thediscussionontesting,informationgaps,andremaining questionscoincideswiththisreviewbutisdonefromadifferent perspective.
5.2.2MPPOasasimulantfordryfood
MPPOistheofficialEUfoodsimulant(simulantE)fordry foodsintheEUPlasticsRegulation(EU,2023).Thedevelopment anduseofMPPOasasimulantfordryfoodsgobacktothe1990s. Piringeretal.(1993) publishedthemethodforthe firsttimeasa convenientapproachfordeterminingtheoverallmigrationathigh temperaturessuchasfromnon-stickcoatingsonfryingpansand bakingpapers.Themethodwasalsoapplicabletothedetermination ofspecificmigrationoforganicsubstancesfromadhesivesinpaper foodcontactmaterial(GrunerandPiringer,1999).Sincethen,the so-calledTenaxmethodhasbeenincreasinglyusedandhasreached aEurope-wideofficialstatuswithCENEN1186:2002-Part13(CEN, 2002a)fortheoverallmigrationtestingofplasticfoodcontact materialathightemperature(>100°C)andtheimplementationof MPPOasfoodsimulantEfordryfoodsinEURegulation10/2011 (EU,2023).Inparallel,themethodwasstandardizedforpaperfood contactmaterialtesting(CEN,2003).
TheuseandappropriatenessofMPPOasasimulantfordry foodswerereviewedby VanDenHouweetal.(2018).Themajority ofcollecteddataandcitedreferencesrelatetopapermaterials.The performanceofMPPOasafoodsimulantfordryfoodsisdiscussed basedoncomparisonswithrealfoodsandotherfood-simulating adsorbents.MPPOsimulationcomparedwiththerealmigration conditionsintoseveralfoodstuffs(suchassugar, flour,cakeand certainpastries,semolina,instantbabyformula,milkpowder,rice, salt,cerealsandevenmeat,chocolate,sweetmatrices,freshfruits, andvegetables)showednounderestimationsoftherealconditions. VanDenHouweconcludedthatMPPOissuitableasasimulantfor dryfoodstuffs.Moreover,intheirview,theonlysuitablesimulantfor thesimulationofdryfoodstuffs.
5.2.3MPPOsimulantversusdryfoods:recycling componentsotherthanmineraloil
In1999–2002,anearlyandessentialscientificinitiativewas takenbyEUProjectFAIRCT98–4318 “Recyclability” withinits Section2 “PaperandBoard” (RaffaelandSimoneau,2002; Castle andFranz,2003).Migrationkineticsfrom15differentpapersample typeswerecomparativelyinvestigatedbetweendryfoods(cookies, flour,milkpowder,noodles,salt,semolina,souppowder,sugar,and icingsugar)andMPPOattemperaturesrangingfromroom
temperatureupto100°C.Aselectionof12surrogates[suchas acetophenone,diphenylether,diisobutylphthalate(DiBP),and diisopropylnaphthalene(DIPN)isomers; SupplementaryTable S1]ofdifferentchemicalstructuresandvolatilitieswasspiked intothepapersamplesbeforetesting.Furthermore,partition coefficientsbetweenpaperandfood(simulant)asacrucialmass transferparameterformigrationmodelingpurposeswere determined.Transferfromthepaperrapidlyreachedits equilibrium,dependingonsubstanceandtemperature,e.g.,after 1hat100°Cand2–10daysat23°C.MigrationtoMPPOwasin almostallcaseshigherthanintofoods.The finalpartitionining coefficientbetweenpaperandMPPOsimulantwasalwaysatleast oneorderofmagnitudelessthantheonebetweenpaperand foodstuff.Thus,MPPOwasfoundtobemoreseverethanfood concerningtheadsorption/uptakeofmigrantsfrompaper; therefore,itwasconsideredtobeagoodsimulantfordryfoods. Diisopropylnaphthalene,intrinsicallypresentintherecycledboard, displayedadifferentkineticbehaviorcomparedwiththespiked-in experiments,whichwasexplainedby “native” DIPNbeingpresent intheencapsulatedform(fromtherecyclingofcarbonlesscopy papers).Thisexplanationisnotnecessarilycorrectbecauseothers founddifferencesbetween “native” andfortifiedsubstancesalsofor othercomponentslikephthalates(ZülchandPiringer,2010; Bradley etal.,2015).
Aurelaetal.(1999) comparedthereleaseoftwophthalates (diisobutylphthalateanddibutylphthalate)frompaperpackagesinto (crystal)sugarwiththoseintoMPPO.Themeasuredmigrationwas similarinsugarstoredfor4monthsatroomtemperatureandin MPPOstoredfor10daysat40°Cor2hat70°C.Alkylbenzenes (C10–C13alkylchain)at30minat70°Cshowedanoverestimation factorof3.8inMPPOcomparedwithhamburgerrollsunderthe samecondition(Aurelaetal.,2002).
Baeleetal.(2020) observedastrongoverestimationforvolatile substances(1,3,5-tri-tert-butylbenzene,n-hexadecane,and n-heptadecane)byMPPO(indirectcontact,22°C,16weeks)in comparisontostarchy,low-fatfoods(noodleswithandwithout eggs,wheat,andricesemolina)butsimilarmigrationasinto chocolate.Thedifferencedecreasedwithdecreasingvolatilityof themigrants. SummerfieldandCooper(2001) comparedthe migrationofdibutylphthalate,diisobutylphthalate,and diisopropylnaphthalenefromrecycledboardintovariousdry foodsandMPPO.Inidenticalconditions(10days/40°C), migrationintoMPPOwassimilarorevenlowerthanmigration intoricebutsimilar(diisobutylphthalate)ordistinctlyhigher (diisopropylnaphthalene)whenricewerestoredfor6monthsat 20°C.Diisopropylnaphthalenemigratedinsimilarorevenhigher amountsinMPPOthanin flourandpastryat40°C.Migrationin flour storedfor6monthsat20°C wassimilartothatafter10days at40°C.
5.2.4Mineraloilcomponents(MOSHandMOAH)in marketsamples
Aseriesofpublications(2010–2016)dealtwiththemigrationof mineraloilhydrocarbons(MOH,saturated:MOSH,aromatic hydrocarbons:MOAH)frompaperfoodpackagingintofoods. Themajorfocuswasondryfoodsandtheunderlying mechanisms.Theauthorshipvariedbutcenteredaroundthe CantonalFoodControlLabofZurich.Thestartingpointwas
SwissandItalianmarketsurveys,showingthepresenceof considerableamountsofMOHinfoodboxes,whichbecauseof thepresenceofalargefractionofvolatileMOH,gaverisetosafety concernsowingtotheirpotentialtogasphasetransferintothe packedfoods(Lorenzinietal.,2010).Thiswasconfirmedbya follow-upGermanmarketsurveyof119samplesofdryfoods,such ascereals,biscuits,andrice,packedinprintedpaperboard boxes withandwithoutinternalbags andintendedforlonger storageatambienttemperature.Inthissurvey,predominantly saturatedhydrocarbons(MOSH),uptoapproximatelyC24,were foundindryfoods(Vollmeretal.,2011),showingthatsubstances withboilingpointsuptoapproximately400°Ccanbetransferredvia gasphaseatambienttemperaturesfrompaperintodryfoods.This fitswiththe findingsofJickellsetal.regardingtransferfrom secondarypackagingusingpolarcontaminants(Jickellsetal., 2005).EvenuptoC28isexpectedtobetransferredintodry foodlikericeinlong-termstorage(BiedermannandGrob,2010; 2012).Themeasurementsofreplicatesfromthesamesamplesofthe surveywererepeatedafterfurther4monthsandanother12months ofstoragetime(Biedermannetal.,2013a).Migrationincreasedfrom firstmeasurementtothirdmeasurement(onaverageby60%); however,morethanhalfofthetransferwasalreadyfoundinthe firstfewmonths.Exceptfortablesalt(non-adsorptivefoodmatrix) andnoodles(lowadsorptive;notspecifiedbutmostprobably withouteggs),themigrationrangedbetween40%and84%ofthe potential,after16monthsofstoragewithsemolina,asthemost potentadsorbent.Thedifferencesbetweenthefoodtypeswere consideredmodest.Differenceswererelatedmoretothe packagingmaterialsthantothefoods.
5.2.5Migrationstudieswithmineraloil componentsundercontrolledconditions
Theabove-summarizedstudieswerecarriedoutwithmarket samplesfromtheGermansurvey,inwhichstoragetimesand temperaturesbeforepurchasingwerenotknown(Biedermann etal.,2013a).Additionalstudieswereperformedwithcontactto thefoodinthelaboratoryorsamplestakendirectlyfromtheline after fillingundercontrolledconditions.
Dimaetal.(2011) exploredpossibilitiesforadequatetestingof paperpartyplates,whicharecoveredbyathinpolyethyleneor polypropylenelayertomakethemresistliquidsfromfoods. Althoughthereisnodirectfoodcontactwithpaper,including thisstudyhereisworthwhilebecauseoftheevaluationapproach. Furthermore,thethinpolymerlayersdonotactasfunctional barriersagainstorganicmolecules.Theauthorscompared migrationofthesumofMOSHandpolyolefinoligomers (POSH)ofthecoatingfrom16partyplatesusinganedibleoilas asimulantat70°C,withmigrationintoavarietyoffattyfoodsunder foreseeablecontactconditionsrangingfrom60minto1dayatroom temperatureandforsomefoodswithprecedinghotcontact.The latterwasthecaseforahotmeatloaf,whichwasfreshlyfried,placed for1hontheplate,andcooleddowntoroomtemperature.Fromthe kineticmeasurementsat70°Cincontactwithoilover120min,the timepointof30minwasfoundtoreasonablycovertheworstcase determinedinfoods.Forsubstancesotherthanmineraloil,edibleoil isacomplicatedanalyticalmatrixinmanycasestomeasure migrantsatlowlevelsandduetopenetrationintopapernot suitablefornon-coatedmaterials.
Inthreeotherstudiesofthisauthorconsortium,themigrationof MOSHfrompaperfoodcontactmaterialintodryfoods,suchas noodles,rice,andmuesli,wasinvestigated(BiedermannandGrob, 2012; Biedermannetal.,2013b; Lorenzinietal.,2013).Animportant aimwastobetterunderstandthetransfermechanismsandthe influenceofthetypeandnatureofdryfoodsonmigration.Kinetic studiesintoeggpastaandmuesliat fivedifferenttemperatures(4°C, 20°C,30°C,40°C,and60°C)upto400dayswereperformed (Lorenzinietal.,2013).Bothfoodtypesshowedquitesimilar migrationcurveswithverysteepincreasesat60°Candwithslow migrationratesatthelowtemperatures.However,migrationwas increasingevenafter300and400days.Itappearedthatallmigration pointsarelikelytoapproachthesameorsimilarmigrationlevelsin foodsataninfinitetime.
Inthefollowingstudy(Zurfluhetal.,2013), “conventional” migrationtestingofarecycledpapertosimulatelong-termstorage atambienttemperaturewasstudiedusingMPPO(simulantE). “Conventional” testingwasunderstoodtoapplytestconditions fromEURegulation10/2011(forplastics),i.e.,10daysat60°C; however,10daysat40°Cwerealsoapplied.Inaddition,polenta (maizesemolina)wasusedatthesameconditionsasMPPO.The resultswerecomparedwiththemigrationintotestfoods(biscuits containing18%fat,polenta,noodles,rice,breadcrumbs,and oatmeal)incontactwiththesamepaperpackagingmaterial storedformorethan9months(sameexperimentas Biedermann etal.,2013b).SimulationwithMPPOafter10daysat60°Cledto almostfull “extraction” ofmigratableMOSH(i.e.,uptoC24), overestimatingthemaximummigrationofMOSHinthereal packsby73%.Tendaysofcontactwithpolentaat60°Cgavea similarmigrationofMOSHastheaverageofthetestedfoods.At 40°C,10daysofcontactwithpolentaunderestimatedtheaverage migrationinthetestedfoods.Increasingthetemperaturenotonly acceleratedthemigrationofgivensubstancesbutalsobroadenedthe rangeofmigratingsubstancesinthedirectionoflowervolatiles.The authorsconcludedthatsimulationwithMPPOwastoo overestimativebecauseoftheadsorbentandtheaccelerated conditionsoftesting.Therefore,MPPOfailedintestingthe migrationofmineraloilfrompaperboardpackaging.Theauthors questionedthesuitabilityofsuchsimulationforthepredictionof long-termmigrationandproposeddeterminationinpaperby definingconventionaltransferratestofood(70%–80%).
Thefooddataundercontrolledconditionsindirectpaper contactcomparedwithindirectcontact(behindpolyolefinlayers) wereseparatelypublished(Biedermannetal.,2013b).Inadditionto MOSH,specificsubstanceslikeDIPN,phthalatessuchasDiBP,and severalphotoinitiators,e.g.,benzophenone,weremeasuredastarget migrants.Thisisusefultolearnmoreaboutthetransport mechanismsfrompaper.Forthisreview,wereferonlytothe resultsobtainedfromdirectpaperfoodcontact.Thefoods (chocobiscuits,polenta,noodles,rice,breadcrumbs,andoatmeal) werestoredfor9monthsatambienttemperaturewithin-between measurementsat2and4months.Forthelevelofmigration,there wasnoseveredependencyonthefoodtype(mostly <2factor), particularlywhileconsideringsinglespecificsubstancesratherthan thewholegroupofMOSH.Thefastestandhighestmigrationwas shownintooatmeal;however,forthearomaticcompounds,MOAH andDIPNoatmealandbiscuitsweresimilar.After9months,forall sixfoods,themigrationrangedforMOSH <C24groupfrom50%to
80%oftheinitialconcentrationinpaper;however,forspecific substances,therangeswerenarrower:DIPN37%–49%(with26% forbreadcrumbs).MigrationofDiBPrangedfrom0.22mg/kgfood to0.54mg/kgfood(withan “outlier” of0.06forriceandbiscuitsas thehighest)andofbenzophenone(asthemostprominent photoinitiator)from24 μg/kgfoodto59 μg/kgfood(with 6 μg/kgasthelower “outlier” fromnoodlesandoatmealasthe highest).Theauthorscommentedthis: “Migrationseemedtobe influencedmorebytheporosityofthefoodthanbythefatcontent (forinstance,MOSHmigrationintooatmealwasclearlyhigherthan intofattybiscuits).” Thisindicatesthatadsorptionratherthan dissolutioninthefatphaseconstitutesthedrivingmechanism formigrationofsubstanceswithsufficientvolatility(accordingto theauthorswhencomparedwithC24orasimilarsubstance).The steepestincreaseforMOSHwasinthe first2monthsofstorage (approximately40%ofpotential,between22%fornoodlesand57% foroatmeal),whichincreasedto50%–80%after9months.Asa potentiallylogicalnextstep,thisauthorconsortiumstudiedthe differenceofmorevolatileversusnon-volatilemigrantsfrompaper intodryfoods(Eicheretal.,2015).Inthisstudyofmechanistic character,datafrommigrationexperimentsusingnewspaperas contactwithdryfoods(rice,polenta,bakingmix,andbreadcrumbs) andMPPOwasreported.Thenewspaperwaschosenbecauseit containedvolatileMOSH(<C24)andnon-volatile polyalphaolefines(PAO,branchedalkanes,characterizedbythe retentiontimeoftherespectiven-alkanes)fromtheprintingink. Theauthorshavedifferentiatedbetween “direct” (touching)and indirect(gasphase)contacts.Theyconcludedthatmigrationinto dryfoodsviatouchingcontactisnotnecessarilynegligibleandcould evenreachconsiderablelevels.Oneoftheseveralkeyexperiments wasacomparisonof10and20daysofcontactatroomtemperature withMPPO,polenta,andrice.Themigrationfocusedonthree substanceclasses:MOSH < C24,PAO29,andPAO35,representing increasingmolecularweightsanddecreasingvolatility.Migrationof MOSH < C24was100%onMPPO,92%forpolenta,and71%for rice.Migrationofthenon-volatilesPAO29/PAO35wasmuchlower: 46%/20%forMPPO,39%/20%forpolenta,and4%/2%forrice. Decreasingtheparticlesizeofthepolentafrom2mmto1mmledto anincreaseinPAOmigrationbyfactor2.5butnotofMOSH. Furthersizereductionto0.5mmhadonlylittleeffect.Thiswas relatedtothedensityofcontactpointsinthepaper.Migrationinto MPPOatidenticalconditionsatroomtemperature(10days)wasin thesameorderofmagnitudeaspolentayetlowerthanbakingmix andlargelyhigherthanintorice.However,inlonger-term(45days) migrationofPAOintorice(higherfatcontent)passedthatofthe finerbreadcrumbsincontrasttotheresultafter8days,inwhich migrationintobreadcrumbswashigher.Migrationinbothriceand breadcrumbswaslowerthanintopolenta.Consideringall findings, theauthorsexpressedtheirconcernastowhetherMPPOtestwould besuitableforpapertosimulatetouchingcontact:elevating temperaturemayvolatilizenon-volatilesubstancesatroom temperature,andtheparticlesizeofthefoodmaybefarfrom thatofMPPO.
TheuseofsurrogatesforMOAHwhilecomparingmigration testingwithMPPOversusthedryfoodspolentaandcouscouswas themaintopicofresearchby Jaénetal.(2022).Forthesekinetic experiments(at60°C:3,6,and10daysand70°C:2h)cardboard sampleswerepreviouslyfortifiedwith16aromaticmodel
substances,suchas2-methylnaphthalene,2,6-DIPN,and perylene,representingMOAHinawiderangeofmolecular masses,chemicalstructures,andmostimportantly,volatilities (boilingpointrangesfrom240°Cto467°C).Migrationreached equilibriumafter3–6daysat60°C.FormorevolatileMOAH substances,theequilibriumlevelsobtainedat60°Cwerealready reachedafter2hat70°C.Thiscoincideswiththe findingsof Aurela etal.(1999).Ingeneral,themigrationvalueswerehigherinMPPO thanincouscousandpolenta,whichwashighlydistinctiveforthe morevolatilesurrogatesandlessdistinctiveoreventhesameforthe heaviersurrogates.TheauthorsconcludedthatMPPOcanbe consideredastheworstcaseofthesimulationofmigration todryfood.
5.2.6Additionalalternativesimulantsfordryfoods InadditiontoMPPO(Tenax®)andpolenta(asamodelfood), otheradsorbentshavealsobeenstudiedaspotentialdryfood simulants: Nerínetal.(2007) performedcomprehensivekinetic migrationstudiesonthreepapersampleswithdifferentrecycled pulpcontentusingPorapak(aporouscopolymer,notfurther specifiedinthepublication)asasolid-foodsimulant.Target migrantswereDIPN,DiBP,anddiethylhexylphthalate.Thetest setupwasdirect(“touching”)contact.Testtemperatureswere25°C, 50°C,75°C,and100°Cwithcontacttimesrangingfrom5minto 10days.Inafewselectedcases,migrationintoMPPOandmilk powderwascarriedoutforcomparison.Porapakwasfoundtoallow solidandreproduciblemeasurementofmigrationkinetics comparablewiththoseobtainedwithMPPO.Notably,bothsolid simulantscoveredreasonably,i.e.,withaslightoverestimation,and themigrationintomilkpowderoccurredat25°Cand50°C. Fengler andGruber(2022) studiedSorb-Starasanotheralternativedryfood simulant.Sorb-StarisnotporouslikeMPPObutrod-shaped polydimethylsiloxane(20mm,ø2mm),whichishighly adsorptivetowardlowandmediumvolatilelipophilicorganic compounds.Thestudycomparedmigrationkinetics(at20°C, 40°C,and60°Cupto12days)forMOHusingSorb-Starversus MPPOin “touching” versus “gasphase” contact.Thecarbon fractionsC10–C16,C16–C20,C20–C25,C25–C35,and C35–C50wereinvestigatedtoobtainbettervolatility-resolved information.Furthermore,migrationofrepresentativesinglesubstancesurrogatesforeachfraction alkanesandaromatic compounds wascompared.MorepolarMOAHmigratedslower thanMOSH.MPPOin “touchingcontact” showedthehighest values.Undergasphasecontactconditions(withoutdirect contact),migrationratesintoMPPOwerelowercomparedwith Sorb-Star.InC25-C35,migrationwasfoundonlyinMPPOtouchingcontactandSorb-Starat60°CforMOSH.Theauthors concludedthatthemigrationbehaviorofMOHcanbedepictedby theuseofsuitablyrepresentativesurrogates,whichwillhelpeasethe analyticaltasks.Migrationtestswiththesesimulants(MPPOand Sorb-Star)at20°Cand40°Ccancoverawiderangeofreal-life migrationprocessesfrompaper-basedfoodcontactmaterialsinto foods,providedthatappropriateconditionsarechosen.
5.2.7Impactofhumidity
Asapotentiallyimportantfactor,relativehumidity(rH) which couldaffecttheextentofmigrationandthetypeofmigrantsfrom paperqualitatively wasstudiedusingMPPOby Barnkoband
Petersen(2013) and Wolfetal.(2023).In2013,benzophenone transferfromapapersampleafter30daysat34°Cunderthree differentrHconditions(43%–73%),increasedbyafactorupto 7.3withincreasingrH.Wolfetal.investigatedtheeffectofrHonthe transferof59volatileorganiccompoundsfromapaperatdifferent rHsetupsandtemperaturesbygaschromatography–mass spectroscopybycomparingpeakareasandbysensorytests. FurthermoretheycompareddirectcontactofMPPOwiththe indirectcontactwiththepapersample.Transferofvolatile substancesincreasedwithincreasingrH,alsodependingonthe polarityofthesubstances.Theauthorsconcludedand recommendedthatadefinedrHlevelneedstobeestablished beforestartingmigrationorsensoryteststoensuresufficient repeatabilityandcomparabilityofsuchtests.Ingeneral,touching contactofMPPOwithpaperledtoconsiderablyhighermigration valuesthanindirectones.Theinfluenceofhumidityfromfoodstuffs incontactortheenvironmentofstoragewasalsoreportedby Zülch andPiringer(2010) and Hauderetal.(2013)
5.2.8Otherfoods
Bradleyetal.(2014; 2015) comparedthemigrationfrompaper intoMPPOwithfreshfruit(applesandbananas),potatoes, mushrooms,andraisins,whichhavedifferentcharacteristicsthan typicaldryfoodssuchaspolenta.Storagetestswithfreshfoodswere performedunderrealistictime–temperatureconditions,e.g.,5days atroomtemperature,withraisinsandMPPOunderstandard conditionsof10daysat40°C.Targetmigrantswere contaminants,intrinsicallypresentinthepapersamplessuchas DIPNorDiBP,aswellassurrogatessuchasbenzophenoneand dodecane,previouslyspikedintothepapersamples.Themajor objectiveofthesestudieswas firsttoassesstherelationshipbetween migrationfrompaperintothefoodsversusintoMPPOandsecond tostudythemigrationofintrinsicallypresentmigrantsversusspiked ones.Migrationlevelsdependedstronglyonthenatureofthe substance.MigrationfromspikedP/Bsampleswasmore extensive(asapercentageoftheavailablemigrants)thanthatof intrinsicmigratablesubstances,suchasDIPNandDiBP.Thiswas explainedbyastrongerbondingintothe fibernetworkby manufacturingthanthespikingprocess.Thisdifferenceappears tobecomerelevantforcomplianceandfoodsafetyassessment versusrealexposureestimation.Inanycase,studyingspiked samplestendstobeconservative.Thenatureofthesubstances andofthefoodsinfluencedthemigrationlevelsmuchmorethanthe characteristicsofthepapersamples.MigrationintoMPPOwasupto afactorof62(potatoes)butatleastbyafactorof10higher comparedwiththefreshfoodsstoredfor5daysatroom temperature;however,itwascomparableoronlyslightlyhigher comparedwithraisins,whichduetotheirlongshelf-life,were storedatthesametime –temperatureconditionsasMPPO.The authorsdiscussedthepotentialuseandthelimitationsof correctionfactorstocorrelateMPPOvaluesunderstandard conditionstorealisticfoodconditions.Theyconcludedthat simplecorrectionfactorswouldapproximateonlythefood characteristicsbutwouldnotre fl ectthesubstance-speci fi c natureofchemicalmigration.Furthermore,theyaddressed ongoingdevelopmentstowardacomprehensivemigration modelforpaperthattakesintoaccountsubstance-andfoodspeci fi ccharacteristicsasmodelingparameters( Section5.3 ).
Correctionfactorswerededucedfrommigrationdataand proposedby Castle(2015)
Consideringmigrationintofattyorhumidfoods,onlyafew publicationsareavailable:dialkylketonesintosalami,cheese,and croissant(Lestido-Cardamaetal.,2020);recyclingcontaminants intobutter(ZülchandPiringer,2010);andPAAsintohumidfoods (Merkeletal.,2018).
5.3Predictivemigrationestimation andmodeling
5.3.1Comparisonofmodelinginplasticswiththat inpaper
Forplasticspackaging,migrationmodeling-basedconformity assessmenthasbeenofficiallyrecognizedsince2001(EUDirective 2001/62/EC),proposedinArticle18ofthecurrentEUPlastics Regulation10/2011(EU,2023)anddescribedinaJRCguideline (Hoekstraetal.,2015).Sincethen,thistoolhasbeenincreasingly usedbyindustry,testinglaboratories,andauthorities(e.g.,EFSA andFDA)toevaluatepolymerpackagingquicklyandinexpensively, aswellastocross-checkexperimentaldesignandresultsfor plausibility.Thediffusionoforganicsubstancesinplastics generallyfollowsFick’ssecondlaw(Crank,1975).Theplastic layerisconsideredisotropicandhomogeneouswithaninitially homogeneousdistributionofthemigrantsinthelayer.The differentialequationfromFick’slawcanbesolvedusing numericalsimulation(Roduitetal.,2005; Tosaetal.,2008; Nguyenetal.,2013)andisimplementedincommercialorfree software.Thediffusioncoefficient(s)DP ofamigrantintheplastic layer(s)andpartitioncoefficientsKbetweenthelayersarerequired asinputparameters.Inplastics,DP dependsmainlyonitsmolecular size,whichallowstheestimationofDP usingrelativelysimple formulas(Begleyetal.,2005; Piringer,2008; Welle,2013; Hoekstraetal.,2015; Merceaetal.,2018).Aspartition coefficientsintofood(simulant),ifknownvaluesarenot available,defaultvaluesforhigh(KP,F =1)orlow(KP,F =1,000) solubilityinfoodareemployed(Hoekstraetal.,2015).
Theassumptionofthehomogeneityandisotropyofthelayer losesitsvalidityinthecaseof fiber-basedpackagingmaterials.Paper mainlyconsistsofcellulose fibers,creatingaporousstructure,and maycontainotheradditives, fillers,and finishingagents.The transportmechanismcanessentiallybeunderstoodasasequence ofdesorption/evaporationstepsintothevaporphaseofthepores andadsorption/condensationofthemigratingsubstances(Aurela andKetoja,2002; ZülchandPiringer,2010).Nevertheless,various authorsconsideredpapermaterialsasaquasi-homogeneous, isotropiclayeranddescribedmigrationkineticswiththe simplifiedmodelforplastics.
5.3.2ModelsfollowingFick’ssecondlaw ofdiffusion
TheextensivekineticmigrationdatasetelaboratedinEUProject FAIR-CT98-4318(RaffaelandSimoneau,2002; CastleandFranz, 2003)wasusedtoexplorewhethertheexistingmigrationmodelfor plasticsaccordingtoFick’slawcoulddescribethemasstransferfrom paperwhileassumingthepapermatrixasahomogeneousisotropic layer.Theexperimentalmigrationcurvescouldbewell-fittedbased
ontheeffectivediffusionconstantsDpaper (understoodastheoverall diffusioneffectwithinthepapermatrix)andpartitioncoefficients Kpaper/food orKpaper/MPPO.EffectiveDpaper andKpaper/food valueswere obtainedfrommigrationexperimentsintoMPPOanddryfoodsat temperatures50°C,60°C,and70°C,witheightdifferentpapertypes spikedandasetofeightmigrants.Thepartitioncoefficients confirmedthatMPPOservesasamoresevereadsorbentthan foods.FromtheDpaper values,theeffectivediffusionbehaviorof thepapersampleswasfoundtobesimilartoLDPEpolymer.In general,attemperaturesof40°Candabove,migrationwas dominatedbypartitioningduetotherelativelyrapidachievementof equilibrium.Atroomtemperature,diffusionplayedabiggerrole, especiallyforlargermolecules.Therefore,thekineticmodel appearedtobemoreusefulindescribingshort-termcontactat ambienttemperatureandabove,e.g.,fastfoods,andatlow temperatures,e.g.,chilledandfrozenfoods.Animportant finding wasthatnoconsiderablekineticdifferenceswerenotedbetweenthe differentpapermaterials,asknownfordifferentplastictypes.
ZülchandPiringer(2010) developedanadaptationofthe plasticsmigrationmodelforpaper.Theystudiedthemigration behaviorfromdifferentpapersamples,spikedwithmodel substancesandnon-spikedwithfoodstuffsandMPPOasfood simulantat 18.5°Cand22°C,andablottingpaperasthe acceptorat40°C.From fittingthemigrationcurveusingthe plasticsmultilayermodeofthemodel(Tosaetal.,2008),they foundthatinthistemperaturerangetransferfrompaperwillbebest describedbyconsideringpaperasatwo-layersystem,whichis representedbyacorelayerB1withrelativehighdiffusionratesanda thinsurfacelayerB2withdifferentmigrationbehavior.Effective diffusioncoefficientswereestimatedinanalogytotheAP value approachforplastics(Begleyetal.,2005),basedonthemolecular massofthemigratingsubstanceupto400gmol 1.Forpaper,AB1 andAB2 areusedasspecificparameterswithconstantAB1 =6.AB2 valueofthevirtualsurfacelayerdependedonthepolarity,humidity inthepaper,thewateractivityofthefood,andpropertiesofthe migrantrangingbetween 10and 1forcontactwithdryfoodand upto6.0forcontactwithbutter.Thistwo-layerapproachis particularlyrelevantinthecaseoflowtemperaturesand migrantswithhighmolecularweight.Athightemperatures,the best fitofpredictedversusexperimentalmigrationdatawas obtainedwithaone-layerapproachandacommonvalueof AB1 =AB2 =AB = 2.Theauthorsconcludedthatthe differentiationbetweenthediffusioninB1andB2isunnecessary formigrantswithlowpolarity,molecularweightsbelow350gmol 1 athightemperatures(≥40°C),andhighhumidityduetothestrongly increaseddesorptionrate.Withthismodel,theauthorspresentafull migrationmodelintofoodforfoodslikebutter,chocolate,pasta, wheat flour,andbiscuitsatlowtemperatures(5°C,22°C).In2013, thesamegroup(Hauderetal.,2013)publishedfurtherworkto betterunderstandthenecessityofthechangingthemodelbehavior fromatwo-toaone-layerapproach,dependingonthetemperature andtorefinethemodel.Thespecificdiffusionbehaviorinpaperand migrationmodelingfromrecycledboardintodryfoodstuffsusing n-alkaneswith15–35carbonatomsandothersubstancesinthe board(nospiking)wasstudied.Forthesurfaceregion(B2) determiningthediffusionrate,thediffusioncoefficientsofthese migrantsdecreasedproportionallytotheirvaporpressures.Based onthese findings,theauthorsmodifiedthediffusioncoefficient
equationforB2withfunctionalconsiderationofthevaporpressure ofthemigrantsandprovidedageneralmigrationmodelforspecific andglobalmasstransferofimpuritiesfromtherecycledboardinto thedryfood. BarnkobandPetersen(2013) studiedtheapplicability ofthepapermigrationmodelby fittingthemigrationof benzophenonefrompaperatseveralhumidities(40%to >73% rH)at34°C,usingtheapproachof ZülchandPiringer(2010) Theauthorsfoundsomedifferencesconcerningtheapplicabilityof theone-andtwo-layerapproaches,whichweresmallwithinthe qualityofthe fitsbetweenbothapproaches. Hanetal.(2016) investigatedthemigrationofphotoinitiatorsintoMPPOat 50°C–100°Candderivedeffectivediffusionandpartition coefficientsby fittingtheexperimentalcurvestoFickiansecond law. Huangetal.(2013) includedatermforthepaperporosityinto theirmodelaccordingtoFickiansecondlaw.
5.3.3Othermodels
Contrarytotheabove-describedwork, Poçasetal.(2011) reportedthatFick’ssecondlawofdiffusiongavepoor fitsin somecases.Theystudiedthemigrationofseveralsubstances withdifferentchemicalfunctionalitiesfrom fivedifferentpaper materialstoinvestigatetheinfluenceofmolecularsize,chemical characteristicsofthemigrants,andpapercharacteristics(suchas type,thickness,andrecyclingcontent).To fitthemigrationcurves, theyexploredthepotentialofWeibullmodel,whichisbasedona distributionfunctiontriggeredbytwoparameters(scaleandshape parameter).Itcanbeempiricallyappliedwithouttheuseof physical–chemicalparameters,suchasDpaper andKpaper/food Migrationfrompaperwasfoundtobemuchfasterthanthose fromplastics.Thevolatilityandpolarityofthemigrantsdetermined theirtransferintofood(simulant)andthelossesfromthesystem duetoevaporation.Theauthorsconcludedthatthissimplemodel allowsthemtodescribethepatternofmigrationcurvesforawide rangeofmigrantvolatilities. Guazzottietal.(2015) appliedthe Weibullmodelto fitkineticmigrationcurvesobtainedfrompaper, spikedwithaseriesofn-alkanesat40°Cand60°Cincontactwith MPPO,confirmingthatthismodelcaneffectivelybeusedto describeadiffusionalprocessofthepaper.Anotherstatistical approachtocorrelatephysical–chemicalpropertieswith migrationbehaviorwasrecentlypublishedby Jaénetal.(2022) usingMOAHsurrogates(experimentaldetailsaregivenin Section 5.2).Theauthorsappliedmultivariateanalysisalgorithmsto correlateandgroupthemigrationofmodelsubstancesandbuilt apartialleastsquaresregressionmodeltopredicttheworstcase MOAHmigration.Themigrationpatternsshowedstrong correlationsalongwiththevolatilityofthesurrogates.The elaboratedmodelwascapableofpredictingmigrationvalues fromthephysical–chemicalsubstancepropertiesandwasauseful tooltobefurtherexplored.
AurelaandKetoja(2002) studiedthediffusionofvolatile compoundsin fibernetworksbyexperimentaldeterminationand modelingusingrandomwalksimulation,whichisbasedonthe porosityofthepapersampleandthediffusionspeedthroughthe pores assumedtobethediffusionconstantinfreeair.The compoundswerevolatilesolvents,suchasethanolandbutyl acetate.TheexperimentalandmodeledeffectiveDpaper values matchedandwereintherangeofapproximatelyE-7m2/s (E-3cm2/s)atambienttemperature.Theestimateofeffective
diffusionconstantswasbasedonlyonthatofthecompoundpresent infreeair. Laineetal.(2016) addedatermdescribingsorptiontoa one-dimensionaldiffusionequationtosimulatemigrationinto MPPOthroughcardboardinindirectcontactandsolelythrough air.Thesimulateddata fittedwellwithexperimentaldataon migrationintoMPPOduringanindirectcontactinanair-filled chamberandafterpermeationthroughcardboardusingMOSHand MOAHsurrogates.
Serebrennikovaetal.(2022) describedthetransportbypartial differentialequationsfortransportingwithinthegasphaseofthe poresinthepapercoupledtothosedescribingthesorptionprocess. Thetransportprocessesaredeterminedbycomplexinteractions. Diffusioncoefficientsandsorptionconstantscannotbeeasily derivedfromexperimentsbutby fittingtheparametersofthe modeltotheexperimentaldata(solutionofaninverseproblem). Theexamplewasthediffusionofdimethylsulfoxideinastackof paper(23°C,50%rH),measuredatfourtimepointsandspatially dissolvedin fivepapersheets.Forsolvingthecomplexdifferential equations(derivedfrommodelsforwatervaportransport), fittingto theexperimentaldata,andobtainingtheparameters,theyused physics-informedneuralnetworks(PINNs)andsuccessfully comparedwith finiteelementmethods.In Serebrennikovaetal. (2024),thedimethylsulfoxideexperiment(polarcomponent), extendedto12weeks,andanotheronewithtetradecane(nonpolar)werecomparedwith fivedifferentmathematicalmodels, whichwereevaluatedbyPINN.Threeofthemwerebasedon Fick’slawofdiffusion,withandwithoutaspecifictermfor sorptionanddesorption.Inaddition,pseudo-first-order adsorptionandsecond-orderreversiblesorptionmodelswere included.TheFickianbehaviormodelsdidnot fitthedata.The best fitwasobservedforapseudo-first-orderadsorptionmodel (withoutdesorptionfromthe fiber);however,afurthersearchfora suitablefunctionwascalledfor.Ingeneral,theauthorsconcluded thatPINNsrepresentaversatilemathematicaltooleithertovalidate ortorefutethecapabilityoftheoreticalmodelstodescribe experimentaldata.
5.4Partitioncoefficients
Althoughmainlythediffusionprocessesandestimationof diffusioncoefficientsDpaper areaddressedforthemigration modeling,accesstoothercrucialparameter thepartition coefficientKpaper/food isalsolimited.Thepartitioncoefficients describetheconcentrationratio(mass/volume)inthe equilibrium.Forvolatiles,apromisingapproachdeterminesthe partitioncoefficientsofpaperandfoodorMPPOversusair.From thequotientofboth,thepartitioncoefficientsKpaper/food canbe derived. Haack(2006) determinedtheadsorptionisothermsofthe volatilemodelsubstancessuchashexanolandothersintopaper material(at40°C–120°C),aswellasintothefoodstuffchocolate, cookies,andpasta includingMPPOasfoodsimulantat 100°C andcalculatedpartitioncoefficientsfromthedata.For hexanol,butylacrylate,nonanal,anddiphenyloxide,Kpaper/food valuesforthethreefoodsrangedfrom0.03to0.88andKpaper/MPPO forMPPOfrom0.02to0.08,beingstronglyonthefoodside.For butanol,Kpaper/food wasbetween1and4.3forfoodsandKpaper/MPPO was3.3.Overall,thesedatademonstratethehighoratleast
comparableadsorptivepropertiesofMPPOversusdryfoods. TheseKvalueslargelyoverlappedwiththoseobtainedbycurve fittingofmigrationkineticswithinFAIR-CT98-4318(Raffaeland Simoneau,2002; CastleandFranz,2003). Triantafyllouetal.(2005) determinedpartitioncoefficientsofadditionalsubstancesbetween paperandairat70°Cand100°C.Migrationkineticsatthese temperaturesintoTenax(Triantafyllouetal.,2002)and semolina,instantbabycream,andmilkpowder(Triantafyllou etal.,2007)uptoequilibriumarereportedfromthisgroup; however,partitioncoefficientswerenotcalculated.
WithintheGermanresearchprojectIGF19016N(Fengleretal., 2019),partitioncoefficientsformineraloilcomponents(MOSHand MOAH)weredeterminedandpublishedintheguidelinedocument (Gruberetal.,2019).PartitioncoefficientsofMOSHandMOAH betweenpaperandfoodrangebetween1,000(crystalizedsugaror honey)and1(chocolateorchoppednuts).
6Discussion
Fromthepublishedresults,key findings,andinterpretations summarizedunder Sections4 and 5,severaldiscussionpointsarise, whicharepresentedinthefollowing,conciseway:
Standardmethodstoestimatethetransfertofoodsare extractswithwater(coldandhot),solvents(ethanoland isooctane),andmigrationtestingintoMPPO.Froma physical –chemicalpointofview,theextractsdetermine concentrationsatpartitioningequilibriuminwaterorsolvent. Thesestandardmethodshavebeenfoundtoholdpotentialfor overestimationand,insomecases,underestimationofmigration intofoods,eitherduetodifferencesinpartitioningcoef fi cientsof paperversusfoodorextractan tand/orbeingfarawayfrom reachingequilibriuminrealapplications.Therefore,the extractscannotbeconsideredtoreliablyrepresentthereal exposureoftheconsumerfrompaperfoodcontactmaterials inmostcases.However,onlyalittlestudyeffortsweremade towardwettingoraqueousandfattycontacts.
MigrationintoMPPOisusedforsimulatingdryfoods(EUfood contactmaterialsimulantE)andheatcontactinovenapplications. Forthelatter,therearedivergingprotocolsregardingthetest temperaturebetweenMemberStates,EUreferencelaboratories, andCouncilofEuropeTechnicalGuidethatwillneed harmonization.However,fortheevaluationofthesehightemperatureapplications,noscientificworkwasfound.Fora sounddecision,notonlyoventemperaturesbutalsotheusually lowertemperaturesatthedirectcontactareainrealbaking applicationsforlargefoodpieces(cakesandroast)ortheshorter timesatthesehightemperaturesforcookiesshouldbeconsidered. Furthermore,forsettingharmonizedtestconditions,temperature limitationstoMPPOshouldbetakenintoconsideration.At temperaturesof200°Candhigherandinthepresenceofoxygen fromair,MPPOstartstodegradeoxidatively,whichlimitsthe numberofpossiblereusesafterreconditioning.
Toexperimentallysimulatemigrationfrompaperintodry foods,thereisabroaddiscussioninthereviewedliteratureif MPPOissuitableatall,orsuitableunderwhichtestconditions. MPPOhasahighlyadsorptivepowerduetoitsporositywithalarge innersurfaceanditschemistry.IfcomparingMPPOanddryfoods
atidenticaltestconditions,MPPOoftenhighlyoverestimates migrationintofoodsbutmayalsobeinthesamerange (chocolate)orevenlesssevere(milkpowder).However,this conclusiondependsnotonlyonthepropertiesofthefoodbut alsoonthatofthesubstances,mainlythevolatility.Forroom temperatureapplications,migrationmayincreaseovermonthsor years,withoutreachingequilibrium.Thus,acceleratedtestsare necessary.However,becauseofthecompletelydifferenttransport mechanismofgasphasetransfer,desorption,andadsorptiononthe paper fibersincomparisontoplasticpolymers,anincreasein temperaturenotonlyacceleratesthediffusionratebutalso mobilizessubstancesoflowervolatilitythatwouldnotmigrateat detectableamountsatroomtemperature.Thecombinationofthe highadsorptivepowerofMPPOandaccelerationbyincreased temperatureinmanycasesleadstoahighoverestimationof migration,asshowninmanyofthereviewedpapers.The conclusionsdiffer:someappreciatetheconservative characteristics(VanDenHouweetal.,2018),whereasothers judgeMPPOasunsuitablebecauseoftheoverestimative characteristic(Zurfluhetal.,2013; Eicheretal.,2015).
Oneapproachtoovercomethisproblemistode fi neacertain time –temperatureconditionformigrationtests(e.g.,30minat 70 °Cforshort-termcontacts),whichcoversthemigrationinto foodinaslightlyoverestimatingway( Dimaetal.,2011 ).Such approacheswillneedagoodstatisticalbasis.Becauseofthe manifoldin fl uencefactorsonmigration,acertain time –temperatureconditionisexpectedtobevalidfora restrictedrangeofsubstancesandfoodapplications.Another approachistode fi neconventionaltransferratesintofoods (i.e.,typicalorworsecasepercentageofconcentrationin material)andanalyzethepapermaterial( Zur fl uhetal.,2013 ). Suchaconceptignoresthein fl uenceofthematerialthicknesson thetransferrate.Furthermore,andmoreimportantly,itwill impededevelopmentsfortheimplementationofbarrier propertieswithinthepapermakingprocess.Reductionfactors appliedtotheresultofmigrationintoMPPOareafurther possibility( Castle,2015 ).Fromcomparativedataofmigration intocertainfoodgroupsorstorageapplications,typical overestimatingfactorsofMPPOtestwerederivedand conservativefactorswerede fi ned,whichshallbeappliedfor theevaluationofMPPOtestresults.However,thismustbe differentiatedbasedonthevolatilityofthemigrating substanceandthetypeoffood.Simplereductionfactorswill betoocrude.Therefore, Bradleyetal.(2014) proposedfurther developmentofmodelingasthebettersolution.Adaptingthe geometryofthesimulanttothatoffoodsusingrodsinsteadof fi neparticulateadsorbentsisanexperimentalwaytoreducethe differencestorealfoods( FenglerandGruber,2022 )orusingreal foods( Eicheretal.,2015 ; VanDenHouweetal.,2018 ).
Acceptedandvalidatedmodels whichcansimulatethe migrationoutofpaperboardsintovariousfoodsconsidering thepropertiesofthesubstances,in fl uencesofhumidity,paper andfoodproperties,andtemperature willbeasolutionto overcomealltheseshortcomingsoftheexperimentaltests. However,thereisahighdemandforresearch.Inthewordsof Nguyen,themechanismsandrelationshipsarestillpoorly understood( Nguyenetal.,2017 ).Atroomtemperatureand below,anon-Fickianbehaviorwasmainlyobserved.Piringer
introducedavirtualsurfacelayertodescribetheexperimental databyFickiandiffusion( ZülchandPiringer,2010 ),allowingthe useofthesamesoftwareestablishedforplastics.Thediffusion coef fi cientsareestimatedfromasemiempiricalequationusing 95%con fi denceupperboundparameters.Thisandother statisticalapproaches(Weibullandpartialleastsquare regression)mightbeapplicablewaysforconformitytesting butwouldneedfurtherexplorationonapplicabilityoutside thedatasetsusedforestablishmentoftheparameters.The majorresearchfocusedonrelativelyvolatilesubstances ( SupplementaryTableS1 ).Fornon-volatilesandtransfer mechanismsotherthanthosevia thegasphase,onlylittle workispublished.
Forunderstandingtheimpactsofin fl uencingparameters, de fi ningoverestimatingparametersisnotsuf fi cient.Transport inthegasphaseoftheporesanddesorptionandadsorptionon the fi bersneedtobeconsidered.Thesehighlycomplex interactionscannotbesimplyderivedfromexperiments. However,initialstepsarealreadytaken: Hauderetal.(2013) implementedatermforthevaporpressure; Huangetal.(2013) introducedpaperporosityinthemodelingequation.For volatiles,therandomwalksimulationinthepores( Aurela andKetoja,2002 )willbeapplicablebutforlessvolatiles, adsorptionanddesorptiononthe fi berswillplayanonnegligiblerole.Computationalapproachesbymultivariate dataanalysisandneuronalnetworks,incombinationwith physicalconsiderations,arepromising.Thesecanhelp identifytheinterrelationsofvariousparametersandtestthe applicabilityofproposeddifferentialequationsandboundary conditionstoexperimentaldata.However,thetestedmodelsin Serebrennikovaetal.(2024) couldnotyetsuf fi cientlydescribe theprocessesanddemandforfurtherwork.
7Conclusion
Numerousscientificattemptshavebeenmade andarestill ongoing toexplorethedeficienciesareandthealternativescientific solutionstoovercometheshortcomingsofexistingtesting approachesanddatagaps.Thescientificeffortswerefocused,in the firstplace,onthetransferfrompaperintodryfoodsundertwo aspects:(i)howandunderwhichtime–temperatureconditions migrationintodryfoodscouldbesimulatedand(ii)whatwould beanappropriatemodeltosimulateandpredict migrationintofood.
Aspect(i):MPPOseemstobethemostsuitabledryfood simulantduetoitshighadsorptiveproperties,whichmakesita moreseveretestmediumthananydryfoodbutinmanycases,a toosevereone.Forspeci fi capplications,representativemodel foodslikepolentaoradsorbingrodsmayserveasoptions. However,whenitcomestothechoiceoftime –temperature contactconditions,thereisnotenoughclarityandtargeted precisiontomatchexactlyor,atleast,verycloselythefood contactapplicationtobesimulated.Severaloptionsarediscussed butageneralapproachseemstobedif fi cult.Mostofthemare relatedtospeci fi csubstancegroupsorvolatilityrangesand applications.Itneedstobeexploredifthehumidity conditionsintheexperimentsneedtobede fi nedornot,and
ifyes,thenatwhichlevel.Fromalegalcompliancepointofview, harshandveryseveretime –temperatureconditionscanbe selected,buttheresultsarelikelytoallowonlyprovingbut notdisapprovingcomplianceandthereforeunnecessarily disqualifypaperfoodcontactmaterials.Estimationof exposurewouldfailanyway.
Aspect(ii):Outofthedifferentmodelingapproaches,a physical–chemicalmodelbasedontheknowledgeofthe underlyingmasstransportmechanismsandprocesses,aswellas onthedeterminingparameters,suchasdiffusionconstantsand partitioncoefficients,are,inouropinion,themostpromisingand sustainableapproach.However,thereisalackofqualitativeand quantitativeunderstandingofthefactorsanddeterminantsof transportandpartitioningprocessesinandfrompaper.For complianceevaluations,itwillbeadvantageousiftheplastics modelcanserveastheformattobeadaptedtopaperalongwith themainpaper-relatedcharacteristics,inwhichthevaporpressure ofmigrantsplaysanimportantrole,aswasfoundinalmostall studies.Forunderstandingtheprocesses,modelsmustbemore complex.Towardwettingorfattycontact,moreresearchis alsoneeded.
Overall,thepublishedscientificdataandcollectiveknowledgein thisarea,alongwithmodernmoleculardynamicsscience,forma promisingsolidbasisforfutureworkto filltheopendatagapsand generatetheneededknowledge,thusendingupwithamigration modelofbroadapplicabilityandgeneralacceptance.
Authorcontributions
AS:Conceptualization,fundingacquisition,writing–original draft,andwriting–reviewandediting.LH:Fundingacquisition andwriting–originaldraft.RF:Conceptualizationand writing–originaldraft.
References
Aurela,B.,andKetoja,J.A.(2002).Diffusionofvolatilecompoundsin fibrenetworks: experimentsandmodellingbyrandomwalksimulation. FoodAddit.Contam. 19, 56–62.doi:10.1080/02652030110083711
Aurela,B.,Kulmala,H.,andSoderhjelm,L.(1999).Phthalatesinpaperandboard packagingandtheirmigrationintotenaxandsugar. FoodAddit.Contam. 16,571–577. doi:10.1080/026520399283713
Baele,M.,Vermeulen,A.,Claes,M.,Ragaert,P.,andDeMeulenaer,B.(2020). Migrationofsurrogatecontaminantsfrompaperboardtofoods:effectoffoodand surrogateproperties. FoodAddit.Contam.PartA 37,2165–2183.doi:10.1080/ 19440049.2020.1778184
Barnkob,L.L.,andPetersen,J.H.(2013).Effectofrelativehumidityonthe migrationofbenzophenonefrompaperboardintothefoodsimulantTenax ® and modellinghereof. FoodAddit.Contam.PartA 30,395 –402.doi:10.1080/19440049. 2012.741717
Begley,T.,Castle,L.,Feigenbaum,A.,Franz,R.,Hinrichs,K.,Lickly,T.,etal. (2005).Evaluationofmigrationmodelsthatmightbeusedinsupportof regulationsforfood-contactplastics. FoodAddit.Contam. 22,73 –90.doi:10. 1080/02652030400028035
Begley,T.H.,Hsu,W.,Noonan,G.,andDiachenko,G.(2008).Migrationof fl uorochemicalpaperadditivesfromfood-contactpaperintofoodsandfood simulants. FoodAddit.Contam.PartA 25,384 –390.doi:10.1080/ 02652030701513784
Beldi,G.,Senaldi,C.,Robouch,P.,andHoekstra,E.(2023). Testingconditionsfor kitchenwarearticlesincontactwithfoodstuffs:plastics,metals,siliconeandRubber, paperandboard-theEURL-FCMharmoisedapproachseries,” in JRCtechnicalreport (Luxembourg:PublicatonsOfficeoftheEuropeanUnion).doi:10.2760/80698
Funding
Theauthorsdeclarethat financialsupportwasreceivedforthe research,authorship,and/orpublicationofthisarticle.Thework waspartlyfundedbyIndustrievereinigungLebensmitteltechnologie undVerpackung,85354Freising(www.ivlv.org withinIVLVproject “Migrationfrompaperandboard2”).Projectcanbefoundin projectdatabase https://www.ivlv.org/en/project/migration-frompaper-and-board-2/
Conflictofinterest
Theauthorsdeclarethattheresearchwasconductedinthe absenceofanycommercialor financialrelationshipsthatcouldbe construedasapotentialconflictofinterest.
Publisher’snote
Allclaimsexpressedinthisarticlearesolelythoseoftheauthorsand donotnecessarilyrepresentthoseoftheiraffiliatedorganizations,or thoseofthepublisher,theeditors,andthereviewers.Anyproductthat maybeevaluatedinthisarticle,orclaimthatmaybemadebyits manufacturer,isnotguaranteedorendorsedbythepublisher.
Supplementarymaterial
TheSupplementaryMaterialforthisarticlecanbefoundonline at: https://www.frontiersin.org/articles/10.3389/fchem.2024.1397913/ full#supplementary-material
SUPPLEMENTARYTABLES1 Substancesusedinpapermigrationstudies.
BfR(2015). “UntersuchungderStoffübergängevonBedarfsgegenständenausPapier, KartonundPappe.LeitfadendesBfRvom26, in Methodensammlungzur UntersuchungvonPapier,KartonundPappefürdenLebensmittelkontakt
BfR(2022a). “1AllgemeineMethodenzurUntersuchungvonPapier,Kartonund Pappe1.2HerstellungeinesKaltwasserextraktes,” in Methodensammlungzur UntersuchungvonPapier,KartonundPappefürdenLebensmittelkontakt
BfR(2022b). “ 1.AllgemeineMethodenzurUntersuchungvonPapier, KartonundPappe.1.3HerstellungeinesHeißwasserextraktes, ” in MethodensammlungzurUntersuchungvonPapier,KartonundPappefürden Lebensmittelkontakt
Biedermann,M.,andGrob,K.(2010).Isrecyclednewspapersuitableforfoodcontact materials?Technicalgrademineraloilsfromprintinginks. Eur.FoodRes.Technol. 230, 785–796.doi:10.1007/s00217-010-1223-9
Biedermann,M.,andGrob,K.(2012).On-linecoupledhighperformance liquidchromatography –gaschromatographyfortheanalysisofcontamination bymineraloilPart2:migrationfrompaperboardintodryfoods:interpretation ofchromatograms. J.Chromatogr.A 1255,76 –99.doi:10.1016/j.chroma.2012. 05.096
Biedermann,M.,andGrob,K.(2013).Assuranceofsafetyofrecycledpaperboardfor foodpackagingthroughcomprehensiveanalysisofpotentialmigrantsisunrealistic. J.Chromatogr.A 1293,107–119.doi:10.1016/j.chroma.2013.04.009
Biedermann,M.,Ingenhoff,J.-E.,Dima,G.,Zur fl uh,M.,Biedermann-Brem, S.,Richter,L.,etal.(2013a).Migrationofmineraloilfromprintedpaperboard intodryfoods:surveyoftheGermanmarketPartII:advancementofmigration duringstorage. Eur.FoodRes.Technol. 236,459 –472.doi:10.1007/s00217-0121909-2
Biedermann,M.,Ingenhoff,J.-E.,Zurfluh,M.,Richter,L.,Simat,T.,Harling,A.,etal. (2013b).Migrationofmineraloil,photoinitiatorsandplasticisersfromrecycled paperboardintodryfoods:astudyundercontrolledconditions. FoodAddit. Contam.PartA 30,885–898.doi:10.1080/19440049.2013.786189
BMEL(2022a) EinschwarzerTagfürdenVerbraucherschutz(16Dez2022) BundesministeriumfürErnährungundLandwirtschaft(Deutschland).Availableat: https://www.bmel.de/SharedDocs/Meldungen/DE/Presse/2022/221216-mineraloelbelastungen.html
BMEL(2022b). “VerordnungdesBundesministeriumfürErnährungund Landwirtschaft:ZweiundzwanzigsteVerordnungzurÄnderungder(notsetinto force!),” in BundesratDrucksache,390/22.(19.08.229).(Germany).
Bradley,E.L.,Castle,L.,andSpeck,D.R.(2014).Modelstudiesofmigrationfrom paperandboardintofruitandvegetablesandintoTenaxasafoodsimulant. FoodAddit. Contam.PartA 31,1301–1309.doi:10.1080/19440049.2014.914633
Bradley,E.L.,Castle,L.,andSpeck,D.R.(2015).Acomparisonofthemigrationof ‘spiked’ and ‘intrinsic’ substancesfrompaperandboardintoraisinsandintotenaxasa foodsimulant. Packag.Technol.Sci. 28,509–517.doi:10.1002/pts.2117
Canavar,Ö.,Kappenstein,O.,andLuch,A.(2018).Theanalysisofsaturatedand aromaticmineraloilhydrocarbonsindryfoodsandfromrecycledpaperboardpackages byonlineHPLC–GC–FID. FoodAddit.Contam.PartA 35,2471–2481.doi:10.1080/ 19440049.2018.1543955
Castle,L.(2015). “SystematicderivationofCorrectionFactors(CFs)torelate chemicalmigrationlevelsfrompaperandboardintofoods,withthemigrationor extractionvaluesobtainedusingfoodsimulantsorsolvents,” in Cepi.Orginal2014, 2015modifiedafterCEPIreview.Brussels:CEPIPublications.
Castle,L.,andFranz,R.(2003) EU-projectFAIR-CT98-4318 ”recyclability”."Programmeon therecyclabilityoffoodpackagingmaterialswithrespecttofoodsafetyconsiderationspolyethyleneterephthalate(PET),paperandboardandplasticscoveredbyfunctionalbarriers Section2.PaperandBoard.Consolidatedprojectreportfortheperiod01-01-99to30-04-02.
CEN(1993a) EN645:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofacoldwaterextract
CEN(1993b) EN647:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofahotwaterextract
CEN(2002a) EN1186-13:2002Materialsandarticlesincontactwithfoodstuffsplastics-Part13Testmethodsforoverallmigrationathightemperatures
CEN(2002b) TechnicalSpecificationCEN/TS14234:2002Materialsandarticlesin contactwithfoodstuffs-polymericcoatingsonpaperandboard-guidetoselectionof conditionsandtestmethodsforoverallmigration
CEN(2003) EN14338:paperandboardintendedtocomeintocontactwithfoodstuffsconditionsfordeterminationofmigrationfrompaperandboardusingmodified polyphenyleneoxide(MPPO)asasimulant
CEN(2007) EN15519:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofaorganicsolventextract
CEN(2019) EN17163:2019Pulp,paperandboard – determinationofprimary aromaticamines(PAA)inawaterextractbyaLC-MSmethod
Cepi(2023) AChecklistforEUClimateandEnergyPolicies-thewayforwardforthe pulpandpaperindustry.Availableat: https://www.cepi.org/a-checklist-for-eu-andclimate-policies/:ConfederationofEuropeanPaperIndustries Cepi2019(2021). “Foodcontactguidelinesforthecomplianceofpaperandboard materialsandarticles(03/2019);corrigendum(02/2021),” inCEPIpositionpaper. ConfederationofEuropeanpaperindustries
CoE(2020) ResolutionCM/Res(2020)9onthesafetyandqualityofmaterialsand articlesforcontactwithfood(AdoptedbytheCommitteeofMinisterson7October 2020atthe1385thmeetingoftheMinisters’ Deputies).Strasbourg:CouncilofEurope, CommitteeofMinisters.Availableat: https://rm.coe.int/09000016809fe04a CoE(2021).Paperandboardusedinfoodcontactmaterialsandarticles.Availableat: https://freepub.edqm.eu/publications/:EuropeanDirectoratefortheQualityofMedicines& HealthCareoftheCouncilofEurop e(EPDQM),EuropeanCommitteef orFoodContact MaterialsandArticles(CD-P-MCA) Commission,European(2024a).ChemicalsStrategy:theEU’schemicalstrategyfor sustainabilitytowardsatoxic-freeenvironment.Availableat: https://environment.ec. europa.eu/strategy/chemicals-strategy_en (AccessedFebruary12,2014).
Commission,European(2024b).TheEuropeangreendeal.Availableat: https:// commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-greendeal_en (AccessedFebruary12,2014).
Conchione,C.,Picon,C.,Bortolomeazzi,R.,andMoret,S.(2020).Hydrocarbon contaminantsinpizzaboxesfromtheItalianmarket. FoodPackag.ShelfLife 25,100535. doi:10.1016/j.fpsl.2020.100535
Crank,J.(1975) Themathematicsofdiffusion.Oxford:OxfordUniversityPress. Deshwal,G.K.,Panjagari,N.R.,andAlam,T.(2019).Anoverviewofpaperandpaper basedfoodpackagingmaterials:healthsafetyandenvironmentalconcerns. J.FoodSci. Technol. 56,4391–4403.doi:10.1007/s13197-019-03950-z
Dima,G.,Verzera,A.,andGrob,K.(2011).Migrationofmineraloilfromparty platesofrecycledpaperboardintofoods:1.Isrecycledpaperboard fi tforthe
purpose?2.Adequatetestingprocedure. FoodAddit.Contam.PartA 28, 1619 –1628.doi:10.1080/19440049.2011.590457
EC(2023).Europieancommissionfood,farming, fisheries-foodsafety:contaminants catalogue-mineraloilhydrocarbons(MOH).Availableat: https://food.ec.europa.eu/ safety/chemical-safety/contaminants/catalogue_en (AccessedMarch06,2024).
EFSA(2012a)ReportofESCOWGonnon-plasticfoodcontactmaterials. EFSA SupportingPublications,EN-139.doi:10.2903/sp.efsa.2011.EN-139
EFSA(2012b).ScientificOpiniononExploringoptionsforprovidingadviceabout possiblehumanhealthrisksbasedontheconceptofThresholdofToxicological Concern(TTC). EFSAJ. 10,103.doi:10.2903/j.efsa.2012.2750
Eicher,A.,Biedermann,M.,Zurfluh,M.,andGrob,K.(2015).Migrationby ‘direct’ or ‘indirect’ foodcontact? ‘Dry’ and ‘wetting’ foods?Experimentaldatafor ‘touching’ contactofdryfoodswithpaperandboard. FoodAddit.Contam.PartA 32,110–119. doi:10.1080/19440049.2014.975753
EP(2016).P8_TA(2016)0384Europeanparliamentresolutionof6october2016on theimplementationofthefoodcontactmaterialsregulation(EC)No1935/2004(2015/ 2259(INI)). OfficialJ.Eur.Union 19(6),215/57–64.
EU(2004).REGULATION(EC)No1935/2004OFTHEEUROPEAN PARLIAMENTANDOFTHECOUNCILof27October2004onmaterialsand articlesintendedtocomeintocontactwithfoodandrepealingDirectives80/590/ EECand89/109/EEC. OfficialJ.Eur.Union
EU(2006).COMMISSIONREGULATION(EC)No2023/2006of22December 2006ongoodmanufacturingpracticeformaterialsandarticlesintendedtocomeinto contactwithfood. OfficialJ.Eur.Union
EU(2011).COMMISSIONREGULATION(EU)No10/2011of14January2011on plasticmaterialsandarticlesintendedtocomeintocontactwithfood. OfficialJ.Eur. Union
EU(2023).Consolidatedtext:COMMISSIONREGULATION(EU)No10/2011of 14January2011onplasticmaterialsandarticlesintendedtocomeintocontactwith food.Availableat: https://eur-lex.europa.eu/eli/reg/2011/10/2023-08-31
Fengler,R.,andGruber,L.(2022).Migrationofmineraloilhydrocarbonsfrom contaminatedpaperboardintothefoodsimulantsTenaxandSorb-Star acomparison. Packag.Technol.Sci. 35,603–620.doi:10.1002/pts.2671
Fengler,R.,Gruber,L.,Kirse,C.,andSchmidt,P.(2019).AbschlussberichtzuAiF 19016N-MessungundVorhersagederMigrationvonMineralölkomponenten(MOH) ausVerpackungeninLebensmittelalsBeitragzurMinimierungderKontamination. Availableat: https://www.fei-bonn.de/gefoerderte-projekte/projektdatenbank/aif19016-n.projekt
Gärtner,S.,Balski,M.,Koch,M.,andNehls,I.(2009).Analysisandmigrationof phthalatesininfantfoodpackedinrecycledpaperboard. J.Agric.FoodChem. 57, 10675–10681.doi:10.1021/jf902683m
Geueke,B.,Groh,K.,andMuncke,J.(2018).Foodpackaginginthecirculareconomy: overviewofchemicalsafetyaspectsforcommonlyusedmaterials. J.Clean.Prod. 193, 491–505.doi:10.1016/j.jclepro.2018.05.005
Grob,K.(2022).Howtomaketheuseofrecycledpaperboard fitforfoodcontact?A contributiontothediscussion. FoodAddit.Contam.PartA 39,198–213.doi:10.1080/ 19440049.2021.1977853
Gruber,L.,Fengler,R.,Franz,R.,Welle,F.,Briesen,H.,Kirse,C.,etal.(2019) GuidelinefortheasessmentofMOSH/MOAHmigrationfrompackagingintofoodwith theaimofminimization.Berlin:BundfürLebensmittelkundeundLebensmitelkunde. V.BLL.Availableat: https://www.fei-bonn.de/download/leitlinie-moh-minimierungengl.pdf
Gruner,A.,andPiringer,O.G.(1999).Componentmigrationfromadhesivesusedin paperandpaperboardpackagingforfoodstuffs. Packag.Technol.Sci. 12,19–28.doi:10. 1002/(sici)1099-1522(199901/02)12:1<19::aid-pts445>3.0.co;2-3
Guazzotti,V.,Limbo,S.,Piergiovanni,L.,Fengler,R.,Fiedler,D.,andGruber,L. (2015).Astudyintothepotentialbarrierpropertiesagainstmineraloilsofstarch-based coatingsonpaperboardforfoodpackaging. FoodPackag.ShelfLife 3,9–18.doi:10.1016/ j.fpsl.2014.09.003
Haack,G.(2006) UntersuchungenzuWechselwirkungenzwischenLebensmittelverpackungen aufKartonbasismitderenFüllgütern – BestimmungundAbschätzungvon VerteilungskoeffizientenzwischenKartonsundLebensmittel(simulantien).München:TU München.Availableat: https://mediatum.ub.tum.de/603778
Han,B.,Ding,L.,Su,R.,Chen,L.,Wang,L.,Qi,W.,etal.(2016).Migrationof photoinitiatorsfrompapertofattyfoodsimulants:experimentalstudiesandmodel application. FoodAddit.Contam.PartA 33,876–884.doi:10.1080/19440049.2016.1166524
Hauder,J.,Benz,H.,Rüter,M.,andPiringer,O.G.(2013).Thespecificdiffusion behaviourinpaperandmigrationmodellingfromrecycledboardintodryfoodstuffs. FoodAddit.Contam.PartA 30,599–611.doi:10.1080/19440049.2012.762605
Hoekstra,E.,Brandsch,R.,Dequatre,C.,Mercea,P.,Milana,M.-R.,Störmer,A.,etal. (2015) Practicalguidelinesontheapplicationofmigrationmodellingfortheestimationof specificmigration
Huang,C.-X.,Duan,D.-D.,Yan,M.-M.,andWang,S.-F.(2013).Migrationprediction modelofresidualcontaminantsfromfoodpackagingpaperanditsexperimental verification. Packag.Technol.Sci. 26,59–69.doi:10.1002/pts.2005
Jaén,J.,Domeño,C.,Úbeda,S.,Aznar,M.,andNerín,C.(2022).Migrationofmineral oilaromatichydrocarbons(MOAH)fromcardboardcontainerstodryfoodand predictiontool. Foodcontrol. 138,109016.doi:10.1016/j.foodcont.2022.109016
Jickells,S.M.,Poulin,J.,Mountfort,K.A.,andFernandez-Ocana,M.(2005). Migrationofcontaminantsbygasphasetransferfromcartonboardandcorrugated boardboxsecondarypackagingintofoods. FoodAddit.Contam. 22,768–782.doi:10. 1080/02652030500151992
Koster,S.,Bani-Estivals,M.-H.,Buonumo,M.,Bradley,E.L.,Chagnon,M.-C.,Garcia, L.,etal.(2015). “GuidanceonthebestpracticesontheriskassessmentofNon IntentionallyAddedSubstances(NIAS)infoodcontactmaterialsandarticles,” in ILSIEuropereportseries (Brussels:InternationalLifeSciencesInstitute(ILSI),ILSI EuropePackagingMaterialsTaskForce).
Kourkopoulos,A.,Sijm,D.T.H.M.,andVrolijk,M.F.(2022).Currentapproaches andchallengesofsamplepreparationproceduresforthesafetyassessmentofpaperand cardboardfoodcontactmaterials:acomprehensivereview. Compr.Rev.FoodSci.Food Saf. 21,4108–4129.doi:10.1111/1541-4337.13009
Laine,C.,Pitkänen,M.,Ohra-Aho,T.,Gestranius,M.,andKetoja,J.A.(2016).Noveltest approachforevaluatingandmodellingbarrierpropertiesoffoodcontactmaterialsagainst mineraloilcontaminants. Packag.Technol.Sci. 29,571–583.doi:10.1002/pts.2239
Leeman,W.,andKrul,L.(2015).Non-intentionallyaddedsubstancesinfoodcontact materials:howtoensureconsumersafety. Curr.Opin.FoodSci. 6,33–37.doi:10.1016/j. cofs.2015.11.003
Lestido-Cardama,A.,Störmer,A.,andFranz,R.(2020).Dialkylketonesin paperboardfoodcontactmaterials-methodofanalysisinfattyfoodsand comparativemigrationintoliquidsimulantsversusfoodstuffs. Molecules 25, 915.doi:10.3390/molecules25040915
Lorenzini,R.,Biedermann,M.,Grob,K.,Garbini,D.,Barbanera,M.,andBraschi,I. (2013).Migrationkineticsofmineraloilhydrocarbonsfromrecycledpaperboardtodry food:monitoringoftworealcases. FoodAddit.Contam.PartA 30,760–770.doi:10. 1080/19440049.2013.766765
Lorenzini,R.,Fiselier,K.,Biedermann,M.,Barbanera,M.,Braschi,I.,andGrob,K. (2010).Saturatedandaromaticmineraloilhydrocarbonsfrompaperboardfood packaging:estimationoflong-termmigrationfromcontentsinthepaperboardand dataonboxesfromthemarket. FoodAddit.Contam.PartAChem.Analysis,Control, Expo.RiskAssess. 27,1765–1774.doi:10.1080/19440049.2010.517568
Mercea,P.(2008). “Modelsfordiffusioninpolymers,” in Plasticpackaging: interactionswithfoodandpharmaceuticals EditorsO.G.PiringerandA.L.Baner2 (WeinheimWiley-VCH),123–162.
Mercea,P.V.,Kalisch,A.,Ulrich,M.,Benz,H.,Piringer,O.G.,Toşa,V.,etal.(2018). Modellingmigrationofsubstancesfrompolymersintodrinkingwater.Part1-diffusion coefficientestimations. Polym.Test. 65,176–188.doi:10.1016/j.polymertesting.2017. 11.025
Merkel,S.,Kappenstein,O.,Sander,S.,Weyer,J.,Richter,S.,Pfaff,K.,etal.(2018). Transferofprimaryaromaticaminesfromcolouredpapernapkinsintofourdifferent foodmatricesandintocoldwaterextracts. FoodAddit.Contam.PartA 35,1223–1229. doi:10.1080/19440049.2018.1463567
Nerin,C.,Bourdoux,S.,Faust,B.,Gude,T.,Lesueur,C.,Simat,T.,etal.(2022). Guidanceinselectinganalyticaltechniquesforidentificationandquantificationofnonintentionallyaddedsubstances(NIAS)infoodcontactmaterials(FCMS). FoodAddit. Contam.PartA-Chem.AnalysisControlExpo.RiskAssess. 39,620–643.doi:10.1080/ 19440049.2021.2012599
Nerín,C.,Contín,E.,andAsensio,E.(2007).KineticmigrationstudiesusingPorapak assolid-foodsimulanttoassessthesafetyofpaperandboardasfood-packaging materials. Anal.Bioanal.Chem. 387,2283–2288.doi:10.1007/s00216-006-1080-3
Nguyen,P.M.,Goujon,A.,Sauvegrain,P.,andVitrac,O.(2013).Acomputer-aided methodologytodesignsafefoodpackagingandrelatedsystems. AIChEJ. 59, 1183–1212.doi:10.1002/aic.14056
Nguyen,P.-M.,Julien,J.M.,Breysse,C.,Lyathaud,C.,Thébault,J.,andVitrac,O. (2017).ProjectSafeFoodPackDesign:casestudyonindirectmigrationfrompaperand boards. FoodAddit.Contam.PartA 34,1703–1720.doi:10.1080/19440049.2017. 1315777
Oldring,P.,Faust,B.,Gude,T.,Lesueur,C.,Simat,T.,Stoermer,A.,etal.(2023). “An overviewofapproachesforanalysingNIASfromdifferentFCMs,” in ILSIEuropereport series(blackandwhitereport) (Brussels:Zenodo).doi:10.5281/zenodo.7801292
Pan,J.J.,Chen,Y.F.,Zheng,J.G.,Hu,C.,Li,D.,andZhong,H.N.(2021).Migration ofmineraloilhydrocarbonsfromfoodcontactpapersintofoodsimulantsand extractionfromtheirrawmaterials. FoodAddit.Contam.PartAChem.Anal. ControlExpo.RiskAssess. 38,870–880.doi:10.1080/19440049.2021.1891300
Piringer,O.,Wolff,E.,andPfaff,K.(1993).Useofhightemperature-resistant sorbentsassimulantsfortesting. FoodAddit.Contam. 10,621–629.doi:10.1080/ 02652039309374189
Piringer,O.G.(2008).Predictionofdiffusioncoefficientsinplasticmaterials. Rev. Chim. 59,1186–1189.doi:10.37358/rc.08.11.1996
Pivnenko,K.,Eriksson,E.,andAstrup,T.F.(2015).Wastepaperforrecycling: overviewandidentificationofpotentiallycriticalsubstances. WasteManag. 45, 134–142.doi:10.1016/j.wasman.2015.02.028
Poças,M.D.F.,Oliveira,J.C.,Pereira,J.R.,Brandsch,R.,andHogg,T.(2011). Modellingmigrationfrompaperintoafoodsimulant. Foodcontrol. 22,303–312.doi:10. 1016/j.foodcont.2010.07.028
Raffael,B.,andSimoneau,C.(2002) Proceedingsofthe finalEUProjectworkshop FAIRCT-98-4318 “Recyclabilityoffoodpackagingmaterialswithrespecttofoodsafety considerations:polyethyleneterephthalate(PET),paperandboardandplasticscovered byfunctionalbarriers”
Roduit,B.,Borgeat,C.H.,Cavin,S.,Fragniere,C.,andDudler,V.(2005).Application ofFiniteElementAnalysis(FEA)forthesimulationofreleaseofadditivesfrom multilayerpolymericpackagingstructures. FoodAddit.Contam. 22,945–955. doi:10.1080/02652030500323997
Serebrennikova,A.,Teubler,R.,Hoffellner,L.,Leitner,E.,Hirn,U.,andZojer,K. (2022).Transportoforganicvolatilesthroughpaper:physics-informedneuralnetworks forsolvinginverseandforwardproblems. Transp.PorousMedia 145,589–612.doi:10. 1007/s11242-022-01864-7
Serebrennikova,A.,Teubler,R.,Hoffellner,L.,Leitner,E.,Hirn,U.,andZojer,K. (2024).Physicsinformedneuralnetworksrevealvalidmodelsforreactivediffusionof volatilesthroughpaper. Chem.Eng.Sci. 285,119636.doi:10.1016/j.ces.2023.119636
Simoneau,C.,Raffael,B.,Garbin,S.,Hoekstra,E.,Mieth,A.,AlbertoLopes,J.F.,etal. (2016) Non-harmonisedfoodcontactmaterialsintheEU:regulatoryandmarket situation:baselinestudy: finalreport
Sturaro,A.,Rella,R.,Parvoli,G.,Ferrara,D.,andTisato,F.(2006).Contaminationof dryfoodswithtrimethyldiphenylmethanesbymigrationfromrecycledpaperandboard packaging. FoodAddit.Contam. 23,431–436.doi:10.1080/02652030500526052
Summerfield,W.,andCooper,I.(2001).Investigationofmigrationfrompaperand boardintofood-developmentofmethodsforrapidtesting. FoodAddit.Contam. 18, 77–88.doi:10.1080/02652030010004674
Technavio(2023).Foodcontactpapermarketbymaterial,typeandgeographyforecastandanalysis2023-2027.Availableat: https://www.technavio.com/report/foodcontact-paper-market-industry-analysis (AccessedFebruary12,2024).
Tosa,V.,Kovacs,K.,Mercea,P.,andPiringer,O.G.(2008). A finitedifference methodformodelingmigrationofimpuritiesinmultilayersystems,” in Numerical analyisisandappliedmathematics,internationalconference2008 EditorsT.F.Simos, G.Psihoyios,andC.Tsitouras(AmericanInstituteofPhysics),802–805.
Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2002).Migration studiesfromrecycledpaperpackagingmaterials:developmentofananalyticalmethod forrapidtesting. Anal.Chim.Acta 467,253–260.doi:10.1016/s0003-2670(02)00189-7
Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2005).Determination ofpartitionbehavioroforganicsurrogatesbetweenpaperboardpackagingmaterialsand air. J.Chromatogr.A 1077,74–79.doi:10.1016/j.chroma.2005.04.061
Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2007).Astudyonthe migrationoforganicpollutantsfromrecycledpaperboardpackagingmaterialstosolid foodmatrices. FoodChem. 101,1759–1768.doi:10.1016/j.foodchem.2006.02.023
Urbelis,J.H.,andCooper,J.R.(2021).Migrationoffoodcontactsubstancesintodry foods:areview. FoodAddit.Contam.PartA 38,1044–1073.doi:10.1080/19440049. 2021.1905188
VanDenHouwe,K.,VanLoco,J.,Lynen,F.,andVanHoeck,E.(2018).Theuseof Tenax® asasimulantforthemigrationofcontaminantsindryfoodstuffs:areview. Packag.Technol.Sci. 31,781–790.doi:10.1002/pts.2320
Vollmer,A.,Biedermann,M.,Grundböck,F.,Ingenhoff,J.-E.,Biedermann-Brem,S.,Altkofer, W.,etal.(2011).Migrationofmineraloilfromprintedpaperboardintodryfoods:surveyofthe Germanmarket. Eur.FoodRes.Technol. 232,175–182.doi:10.1007/s00217-010-1376-6
Welle,F.(2013).Anewmethodforthepredictionofdiffusioncoefficientsinpoly(ethylene terephthalate). J.Appl.Polym.Sci. 129,1845–1851.doi:10.1002/app.38885
Wellenreuther,F.,Detzel,A.,Krüger,M.,andBusch,M.(2022). “"Updatedlife-cycle assessmentofgraphicandtissuepaper-spotlightreport,” inTEXTE. Umweltbundesamt(Germanenvironmentagency)
Wolf,N.,Hoyer,S.,andSimat,T.J.(2023).Effectofrelativehumidityonthe desorptionofodour-activevolatileorganiccompoundsfrompaperandboard:sensory evaluationandmigrationtoTenax® FoodAddit.Contam.PartA 40,1096–1113.doi:10. 1080/19440049.2023.2238845
Zabaleta,I.,Blanco-Zubiaguirre,L.,Baharli,E.N.,Olivares,M.,Prieto,A.,Zuloaga, O.,etal.(2020).Occurrenceofper-andpolyfluorinatedcompoundsinpaperandboard packagingmaterialsandmigrationtofoodsimulantsandfoodstuffs. FoodChem. 321, 126746.doi:10.1016/j.foodchem.2020.126746
Zhang,K.,Noonan,G.O.,andBegley,T.H.(2008).Determinationof2,6diisopropylnaphthalene(DIPN)andn-dibutylphthalate(DBP)infoodandpaper packagingmaterialsfromUSmarketplaces. FoodAddit.Contam.PartA 25, 1416–1423.doi:10.1080/02652030802163380
Zülch,A.,andPiringer,O.(2010).Measurementandmodellingofmigrationfrom paperandboardintofoodstuffsanddryfoodsimulants. FoodAddit.Contam.PartA 27, 1306–1324.doi:10.1080/19440049.2010.483693
Zurfluh,M.,Biedermann,M.,andGrob,K.(2013).Simulationofthemigrationof mineraloilfromrecycledpaperboardintodryfoodsbyTenax? FoodAddit.Contam. PartA 30,909–918.doi:10.1080/19440049.2013.790089

FROM
Volume 10, Number 3, 2024

PAPERmaking!




Heart-healthy diet: 8 steps to prevent heart disease
Paper Technology
International® PITA Annual Review
Essential Guide to Aqueous Coating

Volume 10, Number 3, 2024


FRUITS AND VEGETABLES TO CHOOSE
FRUITS AND VEGETABLES TO LIMIT
GRAIN PRODUCTS TO CHOOSE







Volume 10, Number 3, 2024
GRAIN PRODUCTS TO LIMIT OR
AVOID
WHITE, REFINED FLOUR.

FATS TO CHOOSE
FATS TO LIMIT

Volume 10, Number 3, 2024



PROTEINS TO CHOOSE
PROTEINS TO LIMIT OR AVOID






Volume 10, Number 3, 2024

LOW-SODIUM ITEMS TO CHOOSE
HIGH-SODIUM ITEMS TO LIMIT OR AVOID

FROM
Volume 10, Number 3, 2024


PAPERmaking!




Negotiation Skills?
1. Create lasting relationships

2. Offer long-term actionable solutions 3. Avoid future issues


4. Improve reputation
5. Deliver value
1. Active listening
2. Emotional intelligence 3. Specific questions 4. Planning 5. Adaptability







Integrity 7. Communication
8. Patience 9. Problem-solving 10. Decision-making


FROM
Volume 10, Number 3, 2024


PAPERmaking!




Secret Windows Keyboard Shortcuts
Technology International® PITA Annual Review Essential Guide to Aqueous Coating








































































PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T
Volume 10, Number 3, 2024


Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating






Volume 10, Number 3, 2024








Volume 10, Number 3, 2024







Volume 10, Number 3, 2024








Volume 10, Number 3, 2024








Volume 10, Number 3, 2024
Installed quickly – time saved
Compact design – space saved
Strong in use – productivity increased







Volume 10, Number 3, 2024
Safety locking device PSENmlock mini in detail








Volume 10, Number 3, 2024
Safeguarding of swing gates and sliding gates with PSENslock 2







Volume 10, Number 3, 2024








Volume 10, Number 3, 2024








Volume 10, Number 3, 2024








Volume 10, Number 3, 2024








Volume 10, Number 3, 2024








Volume 10, Number 3, 2024







Volume 10, Number 3, 2024







Volume 10, Number 3, 2024







Volume 10, Number 3, 2024







Volume 10, Number 3, 2024







Volume 10, Number 3, 2024


Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


CALENDAR OF EVENTS – 2025
PITA TRAINING COURSES
Cristina Lugli
Food Contact (1 day)
11 Feb.
This course will focus on the scenario of paper and board materials and articles for Food Contact (P&B FCMs), and it is intended specifically for all operators along the paper and board supply chain: producers, converters and retailers; providing essential training for operators who wish to develop a better understanding of technical and legislative requirements in the Food Contact materials market
Jo Thorne
EPR Permits (1 day)
15 Oct.
This intensive one-day course will provide an understanding of the environmental impacts of paper making within the UK and the applicable regulatory landscape. It covers the day-to-day practicalities of compliance with these regulatory requirements, specifically including Best Available Techniques for minimising environmental impact, covering areas such as environmental management systems, waste management, control of emissions to air and water, and water abstraction/efficiency, Climate Change Adaptation and Fire Prevention Planning.
Ian Padley
Modern Papermaking (2 days)
TBA
This two-day course will provide an introduction to papermaking in the 21st Century. The course will be of relevance to any paper industry operative or supplier – no previous academic knowledge required. The course will cover all the basics: from fibres, and how they are treated and prepared; to papermachines and how they transform these fibres into the paper web. Ancillary services are also looked at in relation to papermaking, along with an introduction to finishing and converting practices
Mark Smith
Introduction to Wet End Chemistry (2 days)
TBA
This essential course provides an understanding of how colloidal materials can be used and controlled to give you desired paper properties and improved paper machine efficiency. Vital knowledge for anyone operating a paper machine.
Papierzentrum Gernsback
Fundamentals of Papermaking (2½)
TBA
This course provides a fast-track introduction to papermaking (limited to operations between ‘Mixing Chest’ & ‘Reel up’). The intention is to raise the knowledge of process, technician & support staff to an intermediate level or shared understanding regarding modern Paper Machine Operations
We also have the possibility of running the following courses, if there is sufficient interest expressed by companies or individuals (please email daven@pita.org.uk):
Peter Luimes
Fundamentals of Wastewater Treatment (2 days)
This course will focus on optimising biological treatment plants to meet BAT, reduce operating costs and generate revenue. The course will be of relevance to any paper industry site operating or considering investment in an activated sludge plant, a biological filter or anaerobic digestion plant. BAT8 covers the monitoring of ‘key process parameters and of emissions to water and air’. Make sure you are ready for it with this course!






Ian Padley

Paper Appreciation (1 day)
This course is aimed at new-starters to the paper industry, and not necessarily those working in production or technical roles. It provides a general overview of the industry, and introducers attendees to the wide range of products that can be made from cellulose fibre.
Ian Padley
Introduction to Tissue (2 days)
This Introductory course provides an insight into the modern tissue mill and the peculiarities of tissue when compared with conventional paper products. It is similar to the Modern Papermaking course, but slanted towards the hygiene sector.
Ian Padley
Holistic Tissue Quality Workshop (2 days)
This is a completely new course, aimed at reviewing how tissue process management influences quality off the machine. The workshop assumes a basic working knowledge of tissue industry process. For completely new starters we suggest our 2-day introduction to tissue as a precursor. The targets are as follows:
Tissue industry suppliers, especially for consumables from fibre to chemicals Familiarisation training for people new to operations roles and general interest for anyone wanting an overview of a balanced, multi-platform approach to tissue quality ex-machine.
Alternatively, for an experienced production/operations team, we would suggest a bespoke approach based on the customers own process and incorporating stakeholder interviews, audit and a more interactive workshop/problem solving approach. Please contact us to discuss this option.
INTERNATIONAL CONFERENCES & EXHIBITIONS






CPI LAUNCHES PAPER INDUSTRY GOLD AWARDS FOR 2025

The Confederation of Paper Industries (CPI), in partnership with the Paper Gold Medal Association (PGMA), is delighted to launch the 2025 Paper Industry Gold Awards.
The annual awards will be held on Tuesday 17th June 2025 at the prestigious and historic Stationers’ Hall in London.
Now in their 4th year, the Paper Industry Gold Awards are back once again to celebrate and recognise excellence and achievement in the UK’s Paper -based Industries. This year sees the return of seven main awards categories. The Sustainable Innovation and Net Zero awards have been combined and we are delighted to announce the launch of a brand-new award for 2025 for Young Talent, a reward that will be presented to an individual who demonstrates innovation, commitment, and leadership. The Young Talent Award seeks to inspire the next generation and highlight the Paper Industry’s dedication to fostering future leaders by positioning the industry as an attractive and dynamic career choice for ambitious young people.
The Awards were first launched in 2022 and are becoming a well- established event in the UK’s Paper-based Industries calendar.
The 2025 Awards have officially been launched today, marking an exciting new chapter in recognising outstanding achievements. This year, they feature s even distinct categories, highlighting various talents and contributions. Notably, there is a brand-new award dedicated to Young Talent, designed to celebrate the exceptional skills and creativity of emerging individuals in their respective fields.
The awards categories are:
1. Recycling Award,
2. Community Engagement Award,
3. Health and Safety Award,
4. Sustainable Innovation & Net Zero Award,
5. Skills Award,
6. Equality, Diversity, and Inclusion (EDI) Award, and
7. Young Talent Award
The Paper Gold Medal will also be awarded at the ceremony - this award will recognise an outstanding, lifelong contribution to this industry.
At the ceremony, CPI will also present certificates to the first cohort of apprentices to complete their three years in the relaunched CPI Papermaking Apprenticeship Scheme.
You can find the criteria and entry forms for these awards, and the nomination form for the Paper Gold Medal at www.paper.org.uk/awards.
The awards are free to enter and provide a great opportunity to promote the UK’s Paperbased Industries and give companies and individual staff members the recognition they deserve.







Andrew Large, the Director General of CPI, said: “The Paper Industry Gold Awards are a fantastic opportunity to recognise the outstanding contributions of individuals and companies within the UK's Paper-based Industries. We encourage nominations from across the sector to help us celebrate the innovation, dedication, and talent that drive our industry forward.
We look forward to receiving the entries and showcasing the incredible talent and dedication that define the future of the Paper Industry.”
The deadline to enter is Friday 28th March 2025
For further information contact Elisse Hare ( mailto:ehare@paper.org.uk).

Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


The following pages contain a summary of the various installations and orders from around the world of papermaking, wood panel and saw mills, and bio-power generation, received between the start of July 2024 and mid-November 2024. Paper Technology International PITA Annual Review Essential Guide to Aqueous Coating








Volume 10, Number 3, 2024











Volume 10, Number 3, 2024











Volume 10, Number 3, 2024











Volume 10, Number 3, 2024

PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T


Most journals and magazines devoted to the paper industry contain a mixture of news, features and some technical articles. Very few contain research items, and even fewer of these are peer-reviewed.
This listing contains the most recent articles from three of the remaining specialist English language journals alongside one Korean journal and one Japanese journal, all of which publish original peer-reviewed research:
IPPITA JOURNAL (Peer-reviewed and other)
JAPAN TAPPI JOURNAL (English abstract only)
JOURNAL OF KOREA TAPPI (English abstract only)
NORDIC PULP & PAPER RESEARCH JOURNAL
TAPPI JOURNAL
JAPAN TAPPI JOURNAL
JOURNAL OF KOREA TAPPI
Paper Technology
International PITA Annual Review
Essential Guide to Aqueous Coating – which is now available in digital formal






Energy Saving I
Topics & Information
Introduction of Research Laboratories 157

Energy Saving Carbon Neutral






Volume 10, Number 3, 2024

Topics & Information
Introduction of Research Laboratories 157
Pulp
Topics & Information
Introduction of Research Laboratories 158
Papermaking Technology






10, Number 3, 2024
Topics & Information
Papermaking Technology II
Topics & Information
Introduction of Research Laboratories 159

Pulp and Paper Mills in Japan 107
Pulp and Paper Research Conference/Patent






Volume 10, Number 3, 2024

Topics & Information
Research Report






Volume 10, Number 3, 2024







Volume 10, Number 3, 2024







Volume 10, Number 3, 2024




PAPERmaking!


FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T
Volume 10, Number 3, 2024


The general peer-reviewed scientific and engineering press consists of several thousand journals, conference proceedings and books published annually. In among the multitude of articles, presentations and chapters is a small but select number of items that relate to papermaking, environmental and waste processing, packaging, moulded pulp and wood panel manufacture. The abstracts contained in this report show the most recently published items likely to prove of interest to our readership, arranged as follows:
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 9
Page 10
Page 11
Page 13
Coating
Environment
Fillers
Moulded Pulp
Nano-Science
Packaging Technology
Paper Chemicals Papermaking
Pulp Testing
Tissue
Waste Treatment
Wood Panel
Paper
Technology International® PITA Annual Review
Essential Guide to Aqueous Coating






10, Number 3, 2024
Conversion and Biorefinery

Biomass
Materials Today Communications
Environmental
Engineering & Management Journal (EEMJ)







Industrial Crops and Products
Journal of Applied Polymer Science







Journal of Bioresources and Bioproducts







Journal of Natural Fibers
Polymer
Cellulose






Progress in Organic Coatings

Waste Management






10, Number 3, 2024

Journal of Dispersion Science and Technology
Drying Technology: An International Journal






IEEE Transactions on Automation Science and Engineering

Machine Learning, Multi Agent and Cyber Physical Systems







Russian Journal of Nondestructive Testing
Environmental Science and Pollution Research
Cellulose






BioResources








Cellulose Chemistry And Technology
European Journal of Wood and Wood Products
BioResources






Journal of Materials Science & Engineering








Bio-Based Building Materials
Environmental & Social Management Journal
European Journal of Wood and Wood Products







Journal of Green Technology and Environment
Wood Material Science & Engineering


PRODUCTION ENGINEER
Your next workplace
Holmen Board and Paper is a Swedish company and a member of the Holmen Group. The Workington Mill produces premium paperboard under the brand Incada. Our paperboard is an integral part of the shopping experience for our clients’ customers. Since 2013 we have powered the mill almost entirely by fossil fuel free energy. We value our employees and products highly. Today we are approximately 340 co-workers. Our integrated pulp and paperboard mill is located to the west of the beautiful Lake District in the north of England.
Your future challenge
Are you proactive, analytical and quality focussed? Someone who enjoys developing processes and driving improvements? We are looking for a Production Engineer who can lead on all development activities on the Board Machine, including capital investments, in line with the area KPI’s and Holmen success of the business.
If you’re looking for the opportunity to be part of a great work community, looking to develop yourself, engage and make a positive impact with a pioneering customer and employee orientated business, we’d love to hear from you.
Reporting to the Production Manager - Paperboard, the successful candidate will: Drive health and safety, environmental and food safety improvements across all shifts. Proactively identify and lead on process improvement and development projects to increase
Lead and contribute to capital investment projects.
Be the area representative on cross-functional project groups and report into cross-functional meetings. Be involved in customer and quality related improvements and problem-solving activities (RCA).
The successful Production Engineer will possess:
An excellent knowledge of the pulp and papermaking processes. Have strong analytical and problem-solving skills.
The following are also desired:
Degree level education in a relevant engineering/science or papermaking discipline, or equivalent experience.
Appropriate training in Health & Safety. A proactive approach to improvement activities.
A competitive salary.
Fantastic Contributory pension plan.
Private Health Insurances. Life assurance.
33 days annual leave (inclusive of bank holidays) and the option to buy additional holidays every year.
Opportunities to develop and grow.
Full PPE and annual uniform/PPE allowance.
On site Occupational Health.
Cycle to work scheme.
Social Club with regular events throughout the year.
Family friendly procedures including enhanced maternity leave and menopause procedure.
To apply, please click the “Apply for this position” link at the end of the advert and upload your CV to arrive by 1600 hours on Friday 20th December 2024.
Holmen is an equal opportunities employer that values diversity and is strongly committed to providing equal opportunities for all candidates and employees.
Employment level: Permanent employment
Working hours: Day
Occupation degree: Full time Location: Workington
Last day of application: 20 December, 2024
Val Warren
Human Resources Advisor
T: 01900 600127
E: val.warren@holmen.com
Gary Pickering
Production Manager Paperboard
T: 01900 600351
E: gary.pickering@holmen.com
