PAPERmaking! Vol10 No3 2024

Page 1


making!

The e-magazine for the Fibrous Forest Products Sector

Produced by: The Paper Industry Technical Association

Publishers of:

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

CONTENTS:

FEATURE ARTICLES:

1. Coatings: Functional surfaces, films and coatings with lignin – a review.

2. Nanocellulose: Fit-for-use nanofibrillated cellulose from recovered paper.

3. Chemistry: Boosting inorganic filler retention.

4. Tissue: Evaluation of special pulps for greener tissue paper.

5. Water Treatment: Degradation of lignin-containing wastewaters with bacteria.

6. Sustainability: Which wastepaper should not be processed?

7. Wood Panel: Wood-based panels from recycled wood – a review.

8. Packaging: Recent advances in fibre-based packaging for food applications.

9. Food Contact: Critical review of test methods.

10. Heart Health: Heart-heathy diet – 8 steps to prevent heart disease.

11. Negotiation: Ten simple tips to improve negotiating skills.

12. Computers: Keyboard shortcuts.

SUPPLIERS NEWS SECTION:

News / Products / Services:

Section 1 – PITA CORPORATE MEMBERS

AFT / PILZ / VALMET

Section 2 – PITA NON-CORPORATE MEMBERS ANDRITZ / VOITH

Section 3 – NON-PITA SUPPLIER MEMBERS

BTG / POWER ADHESIVES / SIEGWERK / VISION ENGINEERING

Advertisers: ABB / FINBOW / VAKUO

DATA COMPILATION:

Events: PITA Courses & International Conferences / Exhibitions & Gold Medal Awards

Installations: Overview of equipment orders and installations between Jul. and Nov.

Research Articles: Recent peer-reviewed articles from the technical paper press.

Technical Abstracts: Recent peer-reviewed articles from the general scientific press.

Career Opportunity: Production Engineer at Holmen, Workington Mill

The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry. Formed in 1960, it serves the Industry, both manufacturers and suppliers, by providing a forum for members to meet and network; it organises visits, conferences and training seminars that cover all aspects of papermaking science. It also publishes the prestigious journal Paper Technology International® and the PITA Annual Review , both sent free to members, and a range of other technical publications which include conference proceedings and the acclaimed Essential Guide to Aqueous Coating.

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Functional surfaces, films, and coatings with lignin – a critical review

Paper Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

RSCAdvances

REVIEW

Citethis: RSCAdv.,2023, 13,12529

Received22ndDecember2022

Accepted3rdMarch2023

DOI:10.1039/d2ra08179b

rsc.li/rsc-advances

1.Introduction

View Article Online View Journal | View Issue

Functionalsurfaces, films,andcoatingswithlignin

Ligninisthemostabundantpolyaromaticbiopolymer.Duetoitsrichandversatilechemistry,many applicationshavebeenproposed,whichincludetheformulationoffunctionalcoatingsand films.In additiontoreplacingfossil-basedpolymers,theligninbiopolymercanbepartofnewmaterialsolutions. Functionalitiesmaybeadded,suchasUV-blocking,oxygenscavenging,antimicrobial,andbarrier properties,whichdrawonlignin'sintrinsicanduniquefeatures.Asaresult,variousapplicationshave beenproposed,includingpolymercoatings,adsorbents,paper-sizingadditives,woodveneers,food packaging,biomaterials,fertilizers,corrosioninhibitors,andantifoulingmembranes.Today,technical ligninisproducedinlargevolumesinthepulpandpaperindustry,whereasevenmorediverseproducts areprospectedtobeavailablefromfuturebiorefineries.Developingnewapplicationsforligninishence paramount – bothfromatechnologicalandeconomicpointofview.Thisreviewarticleistherefore summarizinganddiscussingthecurrentresearch-stateoffunctionalsurfaces, films,andcoatingswith lignin,whereemphasisisputontheformulationandapplicationofsuchsolutions.

Ligninisthesecondmostabundantbiopolymeronearth,aer cellulose.Naturalligninissynthesizedfromthethreemonolignolprecursors,namely p-hydroxyphenyl(Hunit),guaiacyl(G unit),andsyringyl(Sunit)phenylpropanoid.1 Ligninfrom sowoodconsistsprimarilyofGunits,whereashardwood lignincontainsbothGandSunits.2 Moreover,ligninfrom annualplants,suchasgrassorstraw,cancontainallthree monolignolunits.

RISEPFIAS,Høgskoleringen6B,Trondheim7491,Norway.E-mail:jostru.chemeng@ gmail.com

DrJostRuwoldtisaresearch scientistatRISEPFI,Norway. HegraduatedwithaPhDin ChemicalEngineeringfromthe NorwegianUniversityofScience andTechnology(NTNU)in 2018,andanMScinChemical andBioprocessEngineering fromHamburgUniversityof Technology(TUHH)in2015.His currentworkincludeslignin technology,thermoformingof woodpulp,andbiomass conversionandutilization.InadditiontohisworkatRISEPFI,he isavisitingresearcherandlectureratTUBerlin,Germany.

Technicalligninistheproductofbiomassseparation processesandhencediffersfromnaturalorpristinelignin,asit isfoundinlignocellulosebiomass.3 Thecompositionand propertiesoftechnicalligninarelargelydeterminedbytheir botanicalorigin,extractionprocess,purication,andpotential chemicalmodication.4 Presently,therearesome50–70million tonstechnicalligninavailablefrompulpingorbiorenery operations.Mostisburnedtoproduceenergyinbiorenery processesandonlyapprox.2%issoldcommercially.5 Technical ligninisolatedfrompulpingprocessesincludesKra andsoda ligninfromalkalipulping,lignosulfonatesfromsultepulping, andorganosolvligninfromsolventpulping.6 Thetwomain typesoftechnicalligninarelignosulfonates(approx.1million

DrFredrikHeenBlindheimis aPostdoctoralresearcherat RISEPFI.HereceivedaPhDin OrganicChemistryatthe NorwegianUniversityofScience andTechnology,specializingin medicinalchemistryandthe developmentofsmall-molecule bacterialkinaseinhibitors.In hiscurrentposition,heworks withchemicalmodication, quantication,andcharacterizationoftechnicalligninsfor greenapplicationsinindustry.Hismaininterestsareinorganic synthesisandspectroscopicanalysis.

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12529

tonsperyear)andkra lignin(<100000tonsperyear).In addition,theadventofhydrolysisandsteam-explosionlignin havecreatednewtypesoftechnicallignin.7,8 Theuseofionicliquidsorsupercriticalsolventshavefurthermoreyieldedthe productsionosolvligninandaquasolvlignin,respectively,with newandinterestingfeatures.9,10

Ligninispolyaromaticandduetothisstructure,itisless hydrophilicthanpolysaccharidicbiopolymers, e.g.,cellulose, hemicellulose,starch,alginateorchitosan.11 Itishence apromisingcandidateinvariousapplications,including:(i) reductionofwettabilityofhydrophilicmaterials,(ii)additionof functionalities,suchasprotectionfromUVlight,antioxidant andantimicrobialproperties,and(iii)tailoringofmaterialsand formulations, e.g.,forcontrolledsubstancerelease,adsorption, orantifoulingmechanisms.12–16 However,chemicalmodicationisrequiredformostapplicationsoflignin.Suchmodicationsfrequentlymakeuseoflignin'shydroxylgroups,for example,bygraingreactionsduringphosphorylation,sulfomethylation,esterication,oramination.17 Thearomatic moietiesinlignincanfurthermorebetargetedfor, e.g.,replacingphenolinformaldehyderesins.18 Atlast,thecarboxylgroups inligninmayalsoserveasreactivesitesforpolyesters.19

Interesthasalsobeenstrongfortheuseoftechnicalligninin polymericmaterials, e.g.,forthermoplasticsorthermosets.20 Processabilityoflignininthermoplasticscanbedonewithout modication,asligninisaninherentlythermoplasticmaterial.21,22 Lignin'sglasstransitiontemperaturecanrangefrom about60–190°Candmaydependonmanyfactors,including thebotanicaloriginandpulpingtype,moisturecontent,and chemicalmodication.23,24 Lignincanalsobechemically modiedtoimprovetheapplicationofligninasspecialty chemicalsorinpolymericmaterials.25–27 Additionally,the utilizationofligninasmacromonomer, i.e.,thermoset precursor,canbedoneaspartofpolyurethanes,polyesters, epoxideresins,andphenolicresins.11 End-usesincludethe productionofrigidorelasticfoams,rigidandself-healing materials,adhesives,biocomposites,andcoatings.19,28–33

DrGaryChingaCarrascowas borninChileandmovedtoNorwayin1987.Hegraduatedwith aCand.scient.degreeincell biology(1997)andDringin chemicalengineering(2002).He wasoneoftworecipientsofthe NorwegianWoodProcessing AssociationAward2019for nanocelluloseresearchand winnerofthe2021 – TAPPI's InternationalNanotechnology DivisionMid-CareerAward.Heis AssociateEditoroftheBioengineeringJournal,andEditor-in-Chief oftheSection – NanotechnologyApplicationsinBioengineering. Currently,heisleadscientistatRISEPFIintheBiopolymersand Biocompositesarea.

Onelong-heldbeliefisthatligninprovideswater-proongin thewoodcellwalltosupportwater-transport.34 Despiteyielding acontactanglebelow90°,whichwouldberequiredtoposeas ahydrophobicmaterial,variousresearchershaveshownthat lignincanreducethewettabilityandwater-uptakeofwoodand pulpproducts.18,35–37 Hence,bothtechnicalandchemically modiedligninhavebeenproposedasadditivesforpackaging materials.38 Reductionofwettabilityof ber-basedpackingis aparticularlyinterestingapplication,consideringenvironmentalandsocietaldriversregardingreductionofsingle-use plasticsandenvironmentalpollution.Lignincouldthusform thebasisofcoatingsorimpregnationblends,providedthatthe lignin-coatingcomplieswithfoodcontactrequirements.One exampleforlignin-blendsisthecombinationwithstarch duringsurface-sizingofpaper,whichcanimproveextensibility andreducewettingofthestarch-matrix.35,39 Layer-by-layer assemblywithmultivalentcationsorpolycationicpolymers hasalsobeendone,whichcanimprovethestrengthand hydrophobicityofcellulose.40,41

Otherapplicationsoflignin,itsderivativesandmixtures includetheuseforcontrolled-releasefertilizers,antifouling membranes, reretardancy,dyesorption,wastewatertreatment,andcorrosioninhibitors.14–16,42–44 Onepublicationeven reportedanunintentionalbutyetadvantageouscoatingofcoir bers,wherethelignindelayedoxidationandthermaldegradationofthe bersinapolypropylenecomposite.45

Majordriversforusingligninareeconomicalaspectsby attributingvaluetoaby-productfrompulpingorbiorenery operations,andsustainabilitybyreplacingfossil-basedmaterialswithbiopolymers.Manyapplicationscanthusbenetfrom theinclusionoflignininfunctionalsurfaces, lms,andcoatings.Themechanismofactionandapplicationmodecan herebydiffergreatly.Thisreviewthereforerepresentsaneffort tostructureandsummarizerecentprogress,whereemphasisis putonboththeprocessand naluseforlignininsurfacesand coatings.

2.Fundamentals

2.1.Structureandcompositionofnaturallignin Ligninispartofthelignin-carbohydratecomplexes(LCC)that arefoundincellwallsofplantsandwoodymaterials,asillustratedinFig.1.Thecellulose bersaretightlyboundto acomplexnetworkofhemicelluloseandlignin,andthethree biopolymersprovidestrengthandstabilitytothecellwalls.In additiontoprovidingstructuralintegrity,ligninhelpsbuilding hydrophobicsurfaceswhichareimportantintransportchannelsforwaterandnutrients.46

Thecomplexligninnetworkconsistsofthethree4-hydroxyphenylpropyleneunits,ormonolignols,formedfromthe parentcompounds p-coumaryl-(p-hydroxyphenyl,H-unit), coniferyl-(guaiacyl,G-unit)andsinapylalcohol(syringyl,Sunit),seeFig.2.47 Themonolignolsdifferonlyinthepresence orabsenceofoneortwoaromaticmethoxygroups ortho tothe hydroxylgroup.Thesearesynthesized invivo fromthearomatic aminoacidphenylalanine,formedintheshikimicacidpathway inplants.48 Theresultantmonolignolsundergoavarietyof

12530 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Fig.1 Compositionoflignocellulosicbiomassandthestructuralrolesofcellulose,hemicellulose,andlignin.46

Fig.2 Monolignolstructureandpositionsindicatedbybluenumbersandletters.

radicalcross-couplingreactionswhichresultsinthecomplex, andvaried,ligninnetwork.Theratiosofthethreemonolignols inligninfromdifferentsourcescanvaryquitesignicantly, hardwoodligninscontainG-(25–50%)andS-units(50–70%), sowoodligninscontainmostlyG-units(80–90%),whilegrass lignincontainsmixturesofS-(25–50%),G-(25–50%)andHunits(10–25%).49

Themonolignolcomposition(H:G:Sratio)canalsovary betweentissuetypesinthesameorganism,whichhasbeen illustratedinthecorkoak, Quercussuber.Ligninfromthexylem (1:45:55)andphloem(1:58:41)differlessincomposition thanthetwocomparedtothephellem(cork-part,2:85:13).

Thesedifferencesaffecttheoccurrenceofspecicinterunit linkages,whereanincreaseinS-unitsleadtoanincreasein alkyl–arylether(b-O-4)bonds:68%incork,71%inphloem, 77%inxylem.50

Thedifferenceinabundanceofthethreemonolignolslead tomanydifferenttypesofinterunitlinkagesinlignin,specicallybetweenangiosperm(hardwoodandgrass)andgymnosperm(sowood)lignin.51 Themostcommoninterunitlinkage isthe b-O-4alkyl–aryletherbond(Fig.3),whichoccursbetween 45–50%or60–62%ofphenylpropyleneunit(C9 units)in

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

sowoodsandhardwoods,respectively.Asthisisthemost commonlinkage,manydelignicationprocessestargetthis speciclinkage.Forsowoods,the5–5linkageisalsoimportant,andhasanabundanceof18–25%per100C9 units,while thislinkageoccursonlyaround3–9%inhardwoods.52

Intheprocessofisolatingtechnicallignins,boththelabile aryl-alkyland b-O-4bondsaremostpronetocleavage.53 This resultsintechnicalligninshavingmorecondensedandvariable structuresthannativelignin,andawidevarietyinmolecular weight(Mw).Massaveragevalues(Mw)of1000–15000gmol 1 forsodalignin,1500–25000gmol 1 forKra lignin,and1000–150000gmol 1 forlignosulfonateshavebeenreported, dependingonbotanicaloriginandprocessconditions.54 Native ligninisavirtuallyinnitemacromerthatisbothrandomlyandpoly-branched.55 Thebondsbetweentheligninand surroundinghemicelluloseandcellulosefoundinLCChave recentlybeenreviewed.56 Allsowoodlignin,and47–66%of hardwoodlignin,isreportedlyboundcovalentlytocarbohydrates,andmainlytohemicellulose.Themostcommontypesof linkagesfoundinLCCsarebenzylether-,benzylester-,ferulate ester-,phenylglycosidic-anddiferulateesterbonds.57 Notethat duetothehighdegreeofvariabilityininter-unitandLCC

Fig.3 Commonlinkagesbetweenmonolignolsidentifiedinlignins.51,52

linkages,Fig.4shouldonlybetakenasanillustrativeexample. Theligninmacromoleculeispolydisperseandmayexhibit variouslinkagesandfunctionalgroups.4 Inotherwords,lignin shouldbeconsideredasstatisticalentitiesratherthandistinct polymers.

2.2.Isolationoftechnicallignin

Lignocellulosicbiomassconsistsofcellulose(30–50%),hemicellulose(20–35%)andlignin(15–30%),wheretheligninactsas a “glue” withintheLCCs.58,59 Theactuallignincontentofthe biomassishighlyinuencedbyitsbotanicalorigin e.g.,28–32%

Fig.4 AdaptationofAdler'srepresentationofsoftwood(spruce)ligninwithcolor-codedmonolignols: p-hydroxyphenyl(H-unit)inblack, guaiacyl(G-unit)inblueandsyringyl(S-unit)inred.55

12532 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

isfoundinpineandeucalyptuswood,whileswitchgrass containsonly17–18%lignin,60 andlessthan15%istypically foundinannualplants.61 The rststepinligninvalorizationis biomassfractionation,wherethecellulose,hemicellulose,and ligninareseparatedfromeachother.Severaltechniqueshave beendeveloped,whichcanbegroupedintosulfurandsulfurfreepulpingfromthepaperandpulpindustry,andbioreneryprocessesthataimtoproduceofmaterials,chemicals, andenergyfrombiomass.59 Thelattermayspecicallybe designedtoisolateligninofhighpurityandreactivity,whereas pulpingoriginallyproducedligninasaby-orwaste-product.An overviewisgiveninFig.5.

Thethreeindustrialextractionmethodsforligninarekra, sulteandsodapulping.Inaddition,organosolvpulpinghas beendevelopedtoextractligninandseparatethepulp bers. Commercializationofthisprocesshasnotyetbeendone,but interesthasrisenrecentlyinthistechnology,asorganosolv pulpingproducesatechnicalligninofhighpurityandreactivity.Severalothermethodsalsoexist,butthesearemainly usedinlab-scaleandarereferredtoasbioreneryconcepts,or “pretreatments” 62 IntheKra pulpingprocess,thelignocellulosicbiomassismixedwithahighlyalkalinecookingliquid containingsodiumhydroxide(NaOH)andsodiumsulte (Na2S),atelevatedtemperaturesof150–180°C.Fromthe resultingblackliquor,kra lignincanbeprecipitatedoutby loweringthepHtoaround5–7.5.46 IntheLignoBoostprocess, thisprecipitationisdonebyadding rstCO2 andthensulfuric acid.Kra ligninhasasulfurcontentof1–3%,ishighly condensed,containslowamountsof b-O-4linkages,andis frequentlyburnedforenergyandchemicalrecoveryatthe mills.63–65 IntheKra process,ligninisfragmentedthrough aaryletheror b-aryletherbonds,whichresultsinincreased phenolicOHcontentintheresultantlignin.66 Thesulte processisanotherspecializedpulpingtechnique,whichutilizes acookingliquorcontainingsodium,calcium,magnesiumor ammoniumsulteandbisultesalts.65 Treatmentsaretypically conductedat120–180°Cunderhighpressures,whichgives lignosulfonatesthatcontain2.1–9.4%sulfur,mostlyinthe benzylicposition.67 Lignosulfonatesarecleavedmainlythrough

sulfonationatthe a-carbon,whichleadstocleavageofaryletherbondsandsubsequentcrosslinking.68 BothKra and sulteblackliquortypicallycontainsignicantamountsof carbohydrateandinorganicimpurities.64 Thesodaanthraquinoneprocessismostlyappliedinthepaperindustry onnon-woodymaterialslikesugarcanebagasseorstraw.64 The materialistreatedwithanNaOHsolution(13–16wt%)athigh pressuresandtemperaturesof140–170°C,whereanthraquinoneisaddedtostabilizehydrocelluloses.64,69 Theresulting sodaligninissulfur-freeandcontainslittlehemicelluloseor oxidizedmoieties.Organosolvligninisproducedinanextractionprocessusingorganicsolventsandresultsinseparationof dissolvedanddepolymerizedhemicellulose,celluloseas residualsolids,andligninthatcanbeprecipitatedfromthe cookingliquor.65 Varioussolventcombinationsarepossible, suchasethanol/water(Alcellprocess)ormethanolfollowedby methanolandNaOHandantraquinone(Organocellprocess), whichwillaffectstructureoftheresultantmaterials.51 Common forallorganosolvligninsisthattheirstructuresarecloserto thatofnaturallignins,inparticularcomparedtoKra ligninor lignosulfonates.Theyareadditionallysulfur-freeandtendto containlessthan1%carbohydrates.65

Severalothermethodsofbiomassprocessinghavebeen developedthataretargetedatligninextraction,ratherthan producingcellulose bers,whereligninisasabyproduct.64 Milledwoodlignin(MWL)canbeproducedtocloselyemulate nativelignin,butattheexpenseofprocessyields.70 Thismethod isconsideredgentlebuttimeconsuming,oenrequiringweeks ofprocessing,makingitviableonlyinalaboratorysetting.58 Othertechniquesthataimtoproducenativeligninanalogues includecellulolyticenzymaticlignin(CEL)andenzymaticmild acidolysislignin(EMAL).TheCELprocedurewasdevelopedas animprovementoftheMWLprocess,wherehigheryieldswere obtainedwithoutincreasingmillingduration.46 Byaddingan additionalacidolysisstep,Guerra etal. wereabletoagain improveontheyield,whilestillproducingligninthatclosely resembledthenativestructure.70 Thephysicochemical pretreatmentsaimtoreduceligninparticlesizethrough mechanicalforce,extrusion,orother.Thesetechniquesinclude

Fig.5 Ligninextractionprocessesandtheirproducts.3

steamexplosion,CO2 explosion,ammonia berexpansion (AFEX)andliquidhotwater(LHW)pretreatments.46 Ionic liquidshavealsobeensuccessfullyusedforligninisolation. Fivecationswithgoodsolubilizingabilitieswereidentied:the imidazolium,pyridinium,ammoniumandphosphonium cations,whilethetwolargeandnon-coordinatinganions[BF4] and[PF6] werefoundtodisruptdissolutionofthelignin.46 The chosenextractivemethodwillnotonlyaffectthecharacteristics oftheresultinglignin,butalsotheamountthatisextracted. Severalmethodshavebeendevelopedforthedelignicationof sugarcanebagasse, e.g.,milling,alkalineorionicliquid extraction,whereyieldsof17–32%wereobtaineddependingon themethodofchoice.71

2.3.Chemicalmodication

Chemicalmodicationoftechnicalligninsiswellexploredand includeahugevarietyoftechniques(seeFig.6forillustrative examples).Technicalligninshavebeenmodiedbyamyriadof techniques,suchasesterication,phenolationandetherication.6 Urethanizationwithisocyanateshasbeenexplored towardspolyurethanproduction,72 andallylationofphenolic OHgroupsenabledClaisenrearrangementintothe ortho-allyl regioisomerwhichisofinterestforitsthermoplasticproperties.73 Thesolubilityandchargedensityoftechnicalligninscan beaffectedbysulfomethylationorsulfonation,17,74 andmethylationofthephenolicOHgroupshaveledtoligninwithan increasedresistancetoself-polymerization17 Thethermal stabilityofligninshasalsobeenimprovedbysilylatingthe

hydroxylgroupswithTBDMS-Cl,andtheresultingmaterial couldbeincorporatedintolow-densitypolyethylene(LDPE) blendsformingahydrophobicpolymermatrix.75 Ligninis aversatilescaffoldfordifferentmodicationsdependingonthe desiredapplication.Fortheproductionofepoxyresins,epoxidationwithepichlorohydrinisacommontechnique.This approachhasalsobeencombinedwithCO2 xationresultingin cycliccarbonatesbeingincorporatedinthelignin.76

2.4.Analysistechniques

Techniquestoassessligninsandlignocellulosicbiomasshave longbeenatopicofgreatinterest,bothforquantitativeand qualitativecharacterization.Suchtechniquesarealsocriticalto probeandassesschemicalmodications.Asummaryof commonmethodsisgiveninTable1.

Differenttechniquesareoencombinedtoprovideabetter overallpicture.Forexample,chemicalmodicationoflignin maybeprobedintermsofmolecularweight, i.e.,byusingsizeexclusionchromatography,andabundanceoffunctional groups,asdeterminedbyFTIRor2DNMRanalysis.Thetechniqueofchoicecandependonfactorssuchasthetargetgroups ofinterest,butalsoonavailabilityandcost.Thepolydisperse natureoftechnicallignincansometimesmakeaccurate measurementsdifficult.Thisismanifested,forexample,inthe incompleteionizationofphenolicmoietiesduringtitrationor UVspectrophotometry,asthecongurationandsidechainsof phenolicmoietiesinducevaryingdegreesofresonance stabilization.

Fig.6 Examplesofchemicalmodificationsoftechnicallignin. 12534 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Table1 Characterizationtechniquestoassessligninsquantitativelyandqualitatively

MethodDescriptionLimitationsRef.

FTIRspectroscopyPopulartechniquetocombinewith chemometricmethodssuchas principalcomponentregression (PCR)orpartialleastsquares(PLS) regression.Havebeenusedfor successfullydetermininglignin contentinbiomasssamples

1H/13C2DNMRExtremelydetailedinformation aboutinter-unitlinkagescanbe obtained.Hasallowedforthe assignmentandquanticationof over80%oflinkagesinligninoil fromreductivecatalytic fractionationofpinewood

31PNMRDifferentiationofthephenolicOH contentofthethreemonolignolsis possiblefromexperimentsaer derivatizationoftheOHgroups

UV-visspectroscopyCruderdeterminationofphenolic OHcontentispossibleby comparingthedifferencesin absorptionatspecicmaxima betweenneutralandalkaline solutions

Simultaneousconductometricand acid–basetitrations

Sizeexclusionchromatography (SEC)

Gaschromatography – pyrolysis (GC-Py)

Coherentanti-StokesRaman scattering(CARS)microscopy

Time-of-ightsecondaryionmass spectrometry(ToF-SIMS)

Afastandcheapalternativetowetchemicalmethodsfordetermining bothphenolicOHgroupand carboxylicacidcontents

Populartechniqueforobtaining weightandnumberaverage molecularweights, Mw and Mn,and forfurthercalculatingthe polydispersityindex(PI)ofsamples

Analysisofbiomasscomposition, quanticationofvolatiles,bio-oil andbiochar.Canbecoupledwith TGAandFTIR.

Label-freemethodwithhigh sensitivityandchemicalselectivity forimagingofligninin e.g. plant cellwalls

Visualizationofmonolignol distributiononplantsamplecrosssections

3.Formulationsandapplicationsof lignin-basedsurfacesandcoatings

Thecoatingsandsurfacemodicationsinthisreviewmost oenfullloneoftwopurposes.Firstly,theymayseekto protecttheunderlyingsubstrate, e.g.,frommechanicalwear, chemicalattack(corrosion),orUVradiation.Secondly,theyadd functionalitysuchasantioxidant,controlledsubstancerelease, orantimicrobialproperties.Reducedwettingand

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Calibrationrequiredwithsamples ofknownconcentrations.Large dataset(trainingandtestsets) neededforreliablequantication. Trainingsamplesandprediction samplescannotdiffergreatly.

Analysesaresensitivetosample preparationtechniques

NMRexperimentsareexpensive, instrumentsfoundatspecialized institutionsanduniversities.Both experimentsanddataprocessing canbehighlytime-consuming

FullderivatizationofOH-groupsis essentialforproperquantication. Inversegateddecouplingpulse sequenceneededforquantication: reducedsensitivityandincreases relaxationtimeofanalysis

Lessaccuratethan 31PNMR. Affectedbyincompleteionizationof functionalgroups.Presenceofother ionizablegroupscanaffectresults

HeterogeneityofCOOH-andOHgroupsdistortsinectionpoint. LimitedtoquanticationofCOOHandOH-groups(andpossiblyother ionizablegroups)

Timeconsumingcalibration required.Samplesmustbewithin linearrange.Acetylationisoen usedforincreasedsolubilitypriorto analysis

78and79

78

78and80

81and82

78and83

Variationsininherentmetal contentsgreatlyaffectsthepyrolysis reactionofthebiomass 84and85

Interferencefromotheraromatic compounds(phenylalanine, tyrosine)candistortimage.Not suitedforimagingalltissuetypes 58and86

Pronetoartefact-generationarising fromsamplepreparation.

Fragmentationofligninduring imagingduetohigh-energyion bombardment

hydrophobizationarefrequentlymentionedforlignin,34,77,78 whichwouldnormallyfallintothesecondcategory,unlessthe purposeistoprotecttheunderlyingsubstratefromdegradation bywater.Thedifferentapplicationswillbediscussedmorein detailinthischapter.

Theend-useusuallydeterminesthemanner,inwhich mixturesandcoatingsmustbeformulated.Inprinciple,four differentapproachescanbedistinguished,whichare(1) applicationofneatlignin,(2)blendsofligninwithotheractive

Overviewofdifferentapplicationmodesforproducingfunctionalsurfacesandcoatingswithlignin.

orinertmaterials,(3)theblendingoflignininthermoplastic materials,and(4)theuseofligninasaprecursorforsynthesizingthermosetpolymers.Anoverviewofthedifferent approachesforformulationandapplicationisgiveninFig.7. Thesewillbediscussedinmoredetailfurtheron.

Whilesurfacelayerorcoatingareusuallyappliedonto anothermaterial,therearealsoimplementationsthatinclude ligninaspartoftheoverallbase-matrix.Examplesforthelatter includelignin-derivedbiocarbonparticlesforCO2 captureor wastewatertreatment,polyurethanefoams,andligninasan internalsizingagentinpulpproducts.36,43,79,80 Thepredominant wayofusinglignininfunctionalsurfacesisbyblendingwith othersubstances.Suchformulationsoenincludeagents, whichareestablishedforaparticularapplication, e.g.,starch forpapersizingorclayforcontrolled-releaseureafertilizers.81,82

Formulationsinpolymersynthesisusuallydrawonspecic functionalgroupsthatarefoundinlignin,forexample,the hydroxylgroupsaspolyolreplacementinpolyurethaneorthe aromaticmoietiesasphenolreplacementinphenolformaldehyderesins.18,33

3.1.Surfacesandcoatingswithneatlignin

Applyingtechnicalligninbyitselfisasimpleapproach,asno co-agentsarerequired.Whilesomedegreeofadhesiontothe substrateisoengiven,pressureandheatmaybeappliedin addition.Publicationspertainingtothistopiccanbegrouped intotwocategories, i.e.,fundamentalresearchstudyingthe formationandpropertiesoflignin-based lmsandcoatings,as wellasappliedresearch,whichisusuallyfocusedonaspecic end-use.

3.1.1.Fundamentalresearch. Afundamentalstudywas performedbyBorrega etal.,whopreparedthinspin-coated lmsfromsixdifferentligninsamplesinaqueousammoniummedia.83 The lmsexhibitedhydrophilicitywithcontact

anglesrangingfrom40–60°.Despitewidelydiversecompositions,thesolubilityinwaterwasfoundtobetheparameter governingthepropertiesofthethin lms.Similarresultswere obtainedbyNotleyandNorgren,whofoundthatlignincoatings preparedfromdiiomethaneorformamideyieldedevenlower contactanglesatabout20–30°.34 Theapproachwasfurther renedbySouza etal.,whotreatedthespin-coatedlignin lms via UVradiationorSF6plasmatreatmentinaddition.84 While theUVtreatmentreducedthecontactanglefromabout90°to 40°,theplasmatreatmentproducedsuperhydrophobicsurfaces withcontactanglesexceeding160°.Thelatterwasalsoshownto inducemajorsurfacerestructuringwithastrongincorporation ofCFx andCHx groups,whichwouldaccountforthelarge increaseincontactangle.Coatingswithlignin-basednanoparticlescanalsobemadebyevaporation-inducedselfassembly,whosepropertiesandmorphologyarestronglygovernedbythedryingconditionsandevaporationrate.85 An exampleoftheobtainedmorphologiesisshowninFig.8.Based onthesereports,researchisgenerallyconcurringonthefact thatligninbyitselfisnotahydrophobicsubstance.Harsh treatments,chemicalmodications,or ne-tuningofsurface morphologyarenecessarytoinvokehydrophobicity.

Spin-coated lmsofmilled-woodligninhavefurthermore beeninvestigatedforenzymeadsorption.86 Similarly,the adsorptionofproteinsoncolloidalligninhasbeenstudiedby Leskinen etal.,whoproducedproteincoronasonthelignin particles via self-assembly.87 Theauthorsfurthershowedthat thisdepositionwasgovernedbytheaminoacidcompositionof theprotein,aswellasenvironmentalparameterssuchasthepH andionicstrength.Theuseofligninforprotein-adsorptionis aninterestingimplementation,asitcanprovidedifferent surfacechemistriesthanitslignocellulosiccounterparts.Still, thecompatibilitywith invivo environmentsisquestionable,as biodegradationisnotgivenhere.

Fig.7

3.1.2.Appliedresearch. Anexampleforappliedresearch wouldbepaperandpulpproducts,whichcanberenderedless hydrophilicbysurface-sizing.Applicationofthelignincanbe done via anaqueousdispersionoralternativelybyimpregnationaerdissolutioninasolvent.35,88 Asimilarapproachwas usedtotreatbeechwoodwithligninnanoparticle via dipcoating,whichimprovedtheweatheringresistanceofthe wood.89 Suchdip-coatingmaypreservebreathabilityofthe substrateduetotheporousstructure.Inthiscontext,thepatent applicationWO2015054736A1shouldbementioned,which disclosesawaterproofcoatingonarangeofsubstrates includingpaper.90 Inthisinvention,theligniniscoatedonto thesubstrateaeratleastpartialdissolution,followedbyheat oracidtreatment.However,asdiscussedabove,theligninby itselfisnotahydrophobicmaterial.Whilelignin-nanoparticles mayalterthesurfacemorphologyofpulpproducts,an improvementinlong-termwater-resistancemaybemostly determinedbyaffectingmass-transferkinetics.

Depositionoflignosulfonatesonnylonhasbeendemonstrated,whichimprovedtheultravioletprotectionabilityofthe fabric.91 Thisdepositiontookplacefromaqueoussolutionand underheating,reportedlyyieldingachemicalbondingof lignin'sOHgroupstotheNHgroupsofnylon6.Suchbonding wouldindeedbenecessary,asthelignosulfonatewouldotherwisebeeasilywashedaway.

Zheng etal. coatedmicrobrillatedcellulosewithKra ligninandsulfonateKra lignin,whichpromoted reretardancyofthematerial.42 Atlast,iron-phosphatedsteelwas renderedmoreresistanttocorrosionaerspraycoatingwith lignin,whichwas rstdissolvedinDMSOandothercommerciallignin-solvents.92 Whileproveninthelab,thesetwoapplicationsmustbeconsideredwithcare,asunmodiedligninis abrittlematerial,whichcanlimitthelong-termdurabilityof suchproducts.

3.2.Theuseofchemicallymodiedlignin

Chemicalmodicationofligninisfrequentlydonetoimprove orenabletheprocessabilityinblendswithmaterials.Inaddition,chemicalmodicationmayaddoralterfunctionalitiesas requiredinspecicapplications.

3.2.1.Lignin-esterderivatives. Estericationofligninwith fattyacidshasbeeninvestigatedbyseveralauthors.This approachbearspotential,asitcombinedtwobio-derived (macro-)molecules.Thelignincontributesabackbonefor graingandmayimprovedispersibilityandadhesionofthe fattyacidsonlipophobicsurfaces.Thefattyacidscaninturn rendertheligninmorehydrophobic,improvingthewater barrier, e.g.,onpapersubstrates.Toimprovethereactionyield, reactiveintermediatesarefrequentlyused.Severalpublications havestudiedtheuseofligninesteriedwithfattyacid-chlorides ashydrophobizationagentsforpaperandpulpproducts.78,93 Thecoatingaffectedboththesurfacechemistryand morphology,asillustratedinFig.9.Theresultisusually adecreaseinwater-vaportransmissionrate(WVTR),oxygen transmissionrate(OTR),andanincreaseinaqueouscontact angle.Oxypropylationwithpropylenecarbonatehasbeenused asanalternativeestericationapproach,whichyielded asimilarhydrophobizationandbarriereffectonrecycled paper.94 Adownsideofoxypropylationistheuseoftoxicreactants, i.e.,propyleneoxide,andtherequirementforhighpressureduringthereaction.Whilefattyacidchloridesdonotneed highpressures,thesechemicalsarehighlycorrosiveandrequire theabsenceofwater.Allmentionedaspectscanstandinthe wayofcommercialimplementation.

Hua etal. reactedsowoodKra ligninwithethylene carbonatetoconvertphenolichydroxylunitstoaliphaticones,95 astheseareconsideredmorereactive.Thesampleswerefurther esteriedwitholeicacidandspin-orspray-coatedontoglass, wood,andKra pulpsheets.Theauthorsshowedthathydrophobicsurfaceswithcontactanglesrangingfrom95–147°were possible.Thepulpboardsfurthermoreshowedamoreuniform surfaceaerthecoating.Estericationwithlauroylchloride wasalsousedbyGordobil etal.,whostudiedtheirapplication aswoodveneerbypress-moldinganddip-coating.96

Whilethefeasibilitytotreatwoodandwood-basedproducts wasdemonstratedonatechnologicallevel,thecomparisonto establishedtreatmentagentsisfrequentlylacking.Forexample, linseedoilisanestablishedwood-treatmentagent,which undergoesself-polymerizationinthepresenceofair.Papersizingagentscanbebasedoncompoundsthataresimilarin

Coatingscomprisingligninparticlesproducedbyevaporation-inducedself-assembly(a)andverticalcross-sectionoftheobtainedlayers (b).85 ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Fig.8

functiontofattyacids,suchasresinacidsoralkenylsuccinic anhydride.Consideringtheseexamples,thequestionsarises whethermodifyingligninbearsanadvantageoverusing establishedcoatingsorsizingagents.Inthelightofthis discussion,theacid-catalyzedtransestericationofligninwith linseedoilshouldbementioned.77 Accordingtotheauthors, asuberin-likelignin-derivativewasproduced,whichintroduced hydrophobicityonmechanicalpulpsheets,whilebeingmore compatiblewiththe bersthanlinseedoilalone.Theproposed processissimpleinsetupandreactants,whichfacilitatesease ofimplementation.Inaddition,theligninisprescribedakey function, i.e.,actingasacompatibilizerbetweenthe bersand thetriglycerides.

Atlast,controlled-releasefertilizerswithlignin-fattyacid gra polymershavebeenproposed.Wei etal. crosslinked sodiumlignosulfonatewithepichlorohydrin,followedby estericationwithlauroylchloride.97 Sadehi etal. reacted lignosulfonatewithoxalicacid,proprionicacid,adipicacid, oleicacid,andstearicacid.98 Themodiedligninwasfurther usedtospray-coatureagranules.Bothimplementations showedenhancedhydrophobicityandtheabilitytocoaturea forslowerreleaseofnitrogen.Still,itwouldbeimportantto comparesuchapproacheswithestablishedcoatingorblendsof ligninandnaturalwaxesortriglycerides,whichdonotrequire anelaboratedsynthesis.

3.2.2.Enzymaticmodication. Enzymaticmodicationof ligninhastheadvantageofcomparablymildreactionsconditions,whichcanhaveapositiveimpactonprocesseconomics. Onthedownside,enzymesarecomparablyexpensiveand imposeshighertechnologicaldemands.Inaddition,thevariety oflignin-compatibleenzymesissomewhatlimited.Enzymatic treatmentcaninduceanumberofchangestolignin,suchas oxidation,depolymerization,polymerization,andgraingwith othercomponents.99 Forexample,Mayr etal. coupledlignosulfonateswith4-[4-(triuoromethyl)phenoxy]phenolusing laccaseenzymes.100 Aersuccessfulcoupling,thelignosulfonate lmsexhibitedreducedswellingandanincreasein aqueouscontactangle.Fernandez-Costas etal. performed laccase-mediatedgraingofKra ligninonwoodasapreservativetreatment.101 Whilethereactionitselfwasdeemed asuccess,thedesiredantifungaleffectwasonlyobtainedaer inclusionofadditionaltreatmentagents,suchascopper.Itis hencequestionableifenzymaticallycoupledligninposesas acompetitivewood-treatmentagent,asthelignincouldalsobe

usedinwood-varnishformulationswithahighertechnological maturity.

3.2.3.Otherapproaches. Avarietyofothermodications hasbeenproposedtodevelopcoatingsfromlignin.For example,Dastpak etal. reactedligninwithtriethylphosphateto spray-coatiron-phosphatedsteelforcorrosionprotection.44 CoatingofaminosilicagelwithoxidatedKra ligninwasperformedbyelectrostaticdeposition,whichimprovedthe adsorptioncapacityfordyesfromwastewater.102 Wang etal. phenolatedlignosulfonate,followedbyMannichreactionwith ethylenediamineandformaldehydetoproduceslow-release nitrogenfertilizers.103 The nalproductexhibitedelevated contactangles,however,anincreasedsurfaceroughnesslikely alsocontributedtothiseffect,asthephenolatedandaminated ligninexhibitednanoparticlestructures.Adifferentapproach wastakenbyBehinandSadeghi,whoacetylatedligninwith aceticacidtocoatureaparticlesinarotarydrumcoater.104 The useoflignininslow-releasefertilizerscanbeuseful,aslignin canhaveasoil-conditioningeffect.However,biodegradability alsomustbeconsidered,whichcanbenegativelyaffectedby chemicalmodication.

Self-healingelastomersweresynthesizedbyCui etal.,who graedligninwithpoly(ethyleneglycol)(PEG)terminatedwith epoxygroups.31 Theauthorsconcludedthatanewmaterialwas developedwithpotentialapplicationforadhesives,butthe ultimatestresswascomparablylowat10–12MPa.Thematerial wasnamedasaself-healingelastomer;however,theappearanceandrheologicalpropertiessuggestathixotropicgel instead.

3.3.Blendsofligninwithothersubstances

Inthecontextofthisreview,thelargestnumberofpublications wasfoundforlignin-blendswithothersubstances.Theadvantageofthisapproachliesintheeaseofimplementation, exibilityforlateradjustments,andpotentialsynergieswithother co-agents.Theligninandotheradditivesmaybemixedright beforeorduringsurfacemodication,hencenotrequiring lengthypreparationssuchasthesynthesisofchemically modiedligninorapre-polymer.Tofacilitatebetteroverview, thissectionwassubdividedintoseveralsub-section,whichwere distinguishedbytheapplicationareaorformulation-approach.

3.3.1.Cellulose bersandotherwood-basedproducts. The useofligninincombinationwithcellulose bers, brils,or derivativeshasreceivedconsiderableattention,asthiscanyield

Fig.9 SEMimagesof(a)uncoatedpaperboardand(b)paperboardcoatedwithlignin-fattyacidester.This figurehasbeenadapted/reproduced fromref.78withpermissionfromElsevierB.V.,copyright2013. 12538 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

all-biobasedmaterialsandcoatings.Forexample,eucalyptus Kra ligninandcelluloseacetatewerecombinedinsolution andcastontobeech-wood,whichproducedaprotectivecoating similartobark.37 However,theauthorsdidnotdeterminethe mechanicalpropertiesoftheproduct,whichwouldbeimportanttoaddress,asthepotentialbrittlenesscouldimpartpracticaluse.Ontheotherhand,thebiodegradationofligninis indeedmorechallengingthanthatofcelluloseandhemicellulose,105 whichmayhencecontributetoanimprovedresistanceagainstcertainfungiandbacteria.Inaddition,theligninbasedveneermayaddfunctionalitiessuchaswater-repellence, UV-protection,andimprovedabrasionresistance,106 butstill acomparisonwithestablishedtreatmentagentsislacking.

Cellulosenanobrils(CNF)and(cationic)colloidallignin particleswascastinto lmsbyFarooq etal.,yieldingimproved mechanicalstrengthascomparedtotheCNFalone.107 AschematicoftheproposedinteractionsisgiveninFig.10.The authorsconcludedthattheligninparticlesactedaslubricating andstresstransferringagents,whichadditionallyimprovedthe barrierproperties.Thediscussedeffectscouldalsobeinduced bytheligninactingasabinder,hence llinggapsandproviding anoveralltighternetwork.36,88 Riviere etal. combinedligninnanoparticlesandcationicligninwithCNF,however,the oxygenbarrierandmechanicalstrengthwerelowerthanthe CNFwithoutaddedlignin.108 Thiseffectwaslikelydueto adisruptionofthebindingbetweenCNFnetworks.Thepolyphenolicbackboneofligningenerallyprovideslessopportunitiesforhydrogenbondingthancomparedtothecellulose macromolecule.Theauthorsworkonsolventextractionof ligninfromhydrolysisresiduesisnoteworthy,however,andthe workshowedpromisingpotentialforantioxidantuse.

LCCwerecombinedwithhydroxyethylcellulose,producing free-standingcomposite lms.109 Inthisstudy,theadditionof LCCenhancedtheoxygenbarrierpropertiesandcouldalso improvethemechanicalstabilityandrigidity.Abettereffectof LCCwasnotedthancombininglignosulfonateswithhydroxyethylcellulosealone.Synergiescouldhencearisefromcarbohydratesthatarecovalentlybondontothelignin.

AninterestingapproachwastakenbyHambardzumyan etal.,whoFenton'sreagenttopartiallygra organosolvlignin

ontocellulosenanocrystals.110 Theproductwascastintothin lms,whichshowednanostructuredmorphologieswith increasedwaterresistanceandtheabilitytoformselfsupportedhydrogel-lms.Inanotherpublication,Hambardzumyan etal. simplymixedthecellulosenanocrystalswith lignininsolution,aerwhich lmswerecastontoquartzslides anddriedbyevaporation.111 Theauthorsfoundthatoptically transparent lmswithUV-blockingabilitycouldbeproduced.It wasconcludedthatincreasingtheCNFconcentrationallowed forbetterdispersionoftheligninmacromolecules,dislocating the p–p aromaticaggregatesandhenceyieldingahigher extinctioncoefficient.

Anelaborateworkonlignin-starchcomposite lmswas conductedbyBaumberger.39 The lmswereproduced via oneof twomethods:(1)powderblendingofthermoplasticstarchand lignin,followedbyheatpressingandrapidcooling,and(2) dissolutioninwaterordimethylsulfoxidefollowedbysolventcastingandsolventevaporation.Theauthorconcludedthat theligninactedeitheras llerorasextenderofthestarch matrix,wherethecompatibilitywasfavoredbymediumrelative humidity,highamylopectin/amyloseratios,andlowmolecular weightlignin.Lignosulfonatesformedgoodblendsand impartedahigherextensibilityontothestarch lms,likelydue tobenecialinteractionsbetweensulfonicandhydroxylgroups. Non-sulfonatedlignin,ontheotherhand,improvedwaterresistancetoagreaterextent.

Threerecentstudieshavefoundthatincorporatinglignin intoamoldedpulpmaterialscanreducethewettabilityofthe material,aswitnessedbyanincreaseincontactangleor adecreaseinwater-uptake.8,36,88 Theadvantageofsuchimplementationisthathightemperatureandpressurewillpromote densication,asthelignincan owintocavities.Highdensities ofupto1200kgm 3 werereported,wheretheuptakeofwateris hinderednotonlybylimitingmass-transport,butalsoby conningtheswellingofcellulose bers.88

Variousresearchershaveincludedligninintheformulation ofpaper-sizingagents.Inoneimplementation,Javed etal. blendedKra ligninwithstarch,glycerol,andammonium zirconiumcarbonatetoproduceself-supporting lmsand paperboardcoatings.112 Themechanical lmstabilitywasbetter

Fig.10 SchematicillustrationofproposedinteractionbetweenCNFanddifferentligninmorphologies.107

whenusingammoniumzirconiumcarbonateasacross-linking agent,inadditiontoreducingthewater-transmissionrate.Both theligninandtheammoniumzirconiumcarbonatealso reducedleachingofstarchwhenincontactwithwater.In asecondpublication,theauthorfurtherdevelopedtheformulation'suseinpilottrials.81 Johansson etal. coatedpaperboard, aluminiumfoil,andglasswithmixturesoflatex,starch,clay, glycerol,laccaseenzyme,andtechnicallignin.113 Theauthors foundthattheoxygenscavengingactivitywasgreatestfor lignosulfonates,ascomparedtoorganosolv,alkaliorhydrolysis lignin.Thiseffectwasexplainedbyagreaterabilityofthelaccasetointroducecross-linkingonthelignosulfonatemacromolecules.Inanotherpublication,Johansson etal. also combinedlignosulfonateswithstyrene-butadienelatex,starch, clay,glycerol,andlaccaseenzyme.114 Theresultsshowedthat bothactiveenzymeandhighrelativehumiditywerenecessary forgoodoxygenscavengingactivity.Laccase-catalyzedoxidation oflignosulfonatesfurthermoreresultedinincreasedstiffness andwater-resistanceofthestarch-based lms.Winestrand etal. preparedpaperboardcoatingsusingamixtureoflatex,clay, lignosulfonates,starch,andlaccaseenzyme.115 The lms showedimprovedcontactanglewithactiveenzymeandoxygenscavengingactivityforfood-packagingapplications.Whilethe resultsforpaper-sizingwithadditionofligninshowpromising potential,foodpackagingapplicationsmayimposeadditional requirements.Forexample,stabilityofthecoatingsmaynotbe giveninenvironmentsthatcontainbothmoistureandlipids.In addition,tothebestofourknowledge,nostudyaddressedthe migrationofsizing-agentsintofood.Still,theutilizationof ligninasoxygenscavengerispromising,asthisutilizesoneof ligninsinherentproperties,whicharefoundinfewother biopolymers.

Asanalternativetotechnicallignin,Dong etal. applied alkalineperoxidemechanicalpulpingeffluentinpaper-sizing, whichcomprised20.1wt%ligninand16.5wt%extractives basedondrymatterweight.116 Blendedwithstarch,theeffluent improvedthetensileindexandreducetheCobbvalueofpaper, whileprovidingcontactanglesof120°andhigher.Such implementationcan,however,alsoaggravatecertainproperties

ofthepaper,asagingandyellowingmaybepromotedbythe presenceofacidsandchromophores.

Layer-by-layerself-assemblywasusedbyPeng etal. to producesuperhydrophobicpapercoatedwithalkylatedlignosulfonateandpoly(allylaminehydrochloride).40 Alternatively, Lit etal. depositedsuchlayersoncellulose bersbycombining lignosulfonateswiththedivalentcoppercationinsteadof apolycation.41 Asimilareffectonsurfacemorphologywas noted,whilecontactangleswithinthehydrophobicregime couldbeachieved.Theutilizationoflignosulfonate-polycation assembliesforcellulosehydrophobizationissomewhatcounterintuitive,sincepolyelectrolytecomplexestendtobehydrophilicandcanswellinwater.Thelong-termstabilityofsuch coatingsinwaterishencequestionable,stillforshortcontact timesthemodulationofsurfaceroughnessandchemistrycan bebenecial.

SolventcastingwasemployedbyWu etal.,usingionic liquidstodissolvecellulose,starch,andlignin.117 Thebiopolymerswerecoagulatedbyadditionofthenon-solventwater, furtherbeingprocessedinto exibleamorphous lms.The processappearssimilartotheproductionofcelluloseregenerates.Utilizingotherbiopolymersthancellulose, i.e.,lignin, hemicellulose,andstarch,isaninterestingapproachfor netuningthedesired lmproperties.

Zhao etal. usedevaporationinducedself-assemblyoflignin nanoparticlesandCNF,whichweresubsequentlyoxidizedat 250°Candthencarbonizedat600–900°C.79 Thesenano-and micro-sizedparticlescouldbeusedforCO2 adsorption,where synergisticeffectsbetweentheCNFandligninnanoparticles werenoted.AnillustrationoftheparticlesisshowninFig.11. Agrochemicalformulationswithlignin-basedcoatings predominantlyinvolvefertilizerformulations, i.e.,for controlledreleaseofnutrients.Thelignincanbepartof acoating,whichthenactsasamass-transferbarrierthatdelays thedissolutionofnutrients.82,118,119 Thefocusisusuallyonurea asnitrogenfertilizerorcalciumphosphateassuperphosphate fertilizers.82,118–120 Anadvantageofusinglignin,apartfrom beingbiodegradableandwater-insoluble,isthepotential functionassoilamendment.121

Fig.11 Lignin-basedporousparticlesobtainedbyoxidationandcarbonizationforcarboncapture.SEMimagesofligninparticlescarbonizedat low(a)andhigh(b)pre-oxidationrate,yieldingtwodistinctmorphologies.This figurehasbeenadapted/reproducedfromref.79withpermission fromElsevierB.V.,copyright2017.

12540 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Twoapproachescangenerallybedistinguished,basedon eithertheuseofneatorchemicallymodiedlignin.Properties suchaswater-permeabilityandnitrogenorphosphorrelease canbepositivelyaffected;however,chemicalmodicationmay impairbiodegradation.Withthatsaid,theworkofFertahi etal. shouldbenoted,whocoatedtriplesuperphosphatefertilizers withmixturesofcarrageenan,PEG,andlignin.118 Thelatterhad beenobtainedfromalkalipulpingofolivepomace.Thethree mentionedcoating-materialsareinprincipleallbiodegradable. BlendingligninwithcarrageenanorPEGimprovedthe mechanicalstabilityofthe lmscomparedtoligninalone, whilealsoincreasingtheswellingofthecoatings.Similar blendswerestudiedbyMulder etal.,whofoundthatglycerolor polyolssuchasPEG400couldimprovethe lmformingproperties.120 Thewaterresistance,ontheotherhand,wasimproved byusinghighmolecularweightPEGorcrosslinkingagentssuch asAcronalorStyronal(commercialname).Onthedownside, thebiodegradabilitywillbenegativelyaffectedbysuchcrosslinkingagents,especiallyacrylatesorstyrene-based chemistries.

ChemicalmodicationofligninforcoatingofsuperphosphatefertilizerswasalsoconductedbyRotondo etal., 119 where thetechnicalligninwaseitherhydroxymethylatedoracetylated. Apartfromutilizingtoxicchemicalsinthesynthesis,these modicationsalonedonotposeasadetrimenttobiodegradability.However,theRotondo etal. alsosynthesizedphenolformaldehyderesintocoatthefertilizercores,whichcouldbe troubling,astheauthorsbasicallysuggestedaddingplasticsto thesoil.Zhang etal. furthermoremodiedligninbygraing quaternaryammoniumgroupsontoit.82 Whilethequaternary ammoniummayconvenientlybindanionsandaddnitrogento thesoil,someofitsdegradationproductsarehighlytoxicand henceconcerning,unlessthegoalistoaddbiocidestothesoil. AsimilarapproachwasdonebyLi etal., 14 whosynthesized multifunctionalfertilizers.First,alkaliligninandNH4ZnPO4 weremixedanddissolvedtoproducefertilizercores,which werefurthercoatedwithcelluloseacetatebutyrateandliquid paraffin.Asecondcoatingwasthenappliedasasuperabsorbent,whichwasbasedonalkaliligningraedwithpoly(acrylic acid)inablendwithattapulgite.Boththeparaffinandpoly(acrylicacid)gra shouldhavebeenavoidedduetoenvironmentalincompatibilities.

Atlast,adifferentapplicationwasexploredbyNguyen etal., i.e.,theencapsulationofphoto-liablecompoundswithalignin coatinglayer.122 Inparticular,theauthorsemulsiedthe insecticidedeltamethrininacornoilnanoemulsionwith polysorbate80andsoybeanlectinasemulsier.Thedroplets werefurthercoatedwithchitosanandlignosulfonate.The lignincontributedherebytoboththeUV-protectionofthe emulsiedinsecticide,aswellastoitscontrolledrelease.This approachispositiveinseveralregards,asonlybiobasedagents wereusedintheformulation,thelignosulfonateswerenot chemicallymodied,andtheapplicationdrewonsomeof lignin'sinherentproperties.

3.3.2.Biomaterialsandbiomedicalapplications. A biomaterial, i.e.,amaterialintendedforuseinoronthehuman body,mustcomplywithcertainrequirements.Thisimpliesthat

thematerialshouldbebiocompatibleandshouldnotcausean unacceptableeffectonthehumanbody.123 However,thedenitionofbiocompatibilityhasbeendebatedintheliterature.In additiontoamodieddenitionof “biocompatibility”,Ratner proposed “biotolerability” todescribebiomaterialsinmedicine.124 Biocompatibilitywasdenedby “theabilityofamaterial tolocallytriggerandguidenonbroticwoundhealing,reconstructionandtissueintegration”,whilebiotolerabilitywas proposedtobe “theabilityofamaterialtoresideinthebodyfor longperiodsoftimewithonlylowdegreesofinammatory reactions”.Novelbiomaterialsdevelopedforbiomedicalapplicationscouldbedenedbythesetermswiththetargetof limited broticreactions,125 andligninmaybewithinthisgroup ofbiomaterials.Ligninisamaterialderivedfrombiobased resources,withattractivepropertiesforbiomedicaluse, primarilywithantioxidantandantibacterialcharacteristics. Theantioxidantpropertyofligninisdependentonthephenolic hydroxygroupscapableoffree-radicalscavenging.Theantimicrobialeffectisalsocausedbythephenoliccompounds.126 As expected,theantibacterial,antioxidantandcytotoxicproperties mayalsodependonthetypeoflignin.127,128 Forexample,kra ligninhasbeenfoundtohavelessantibacterialproperties comparedtoorganosolvligninduetothelargermethoxyl contentinorganosolvlignins.127

Severalauthorshaveattemptedtodrawonlignin'santibacterialandantiviralproperties,whichcouldbeusefulinsurfaces forbiomaterialsandbiomedicalapplications.Antimicrobial coatingswere,forexample,preparedbyLintinen etal.via deprotonationandionexchangewithsilver,129 asshownin Fig.12.Jankovic etal. alsodevelopedsuchsurfacesby ashfreezingadispersionoforganosolvligninandhydroxyapatite withorwithoutincorporatedsilver.130 Aerfreezing,the samplesweredriedbycryogenicmultipulselaserirradiation, producinganon-cytotoxiccomposite,whichwerefurthertested ontheirinhibitoryactivity.Asimilarapproachwastakenby Erakovi´ c etal.131 Theauthorspreparedsilverdopedhydroxyapatitepowder,whichwasthensuspendedinethanolwith organosolvligninandcoated via electrophoreticdeposition ontotitanium.131 Thiscompositeshowedsufficientreleaseof silvertoimposeantimicrobialeffect,whileposingnon-toxicfor healthyimmunocompetentperipheralbloodmononuclearcells attheappliedconcentrations.However,theuseofsilverhas causedsomeenvironmentalconcernsthatshouldbe addressed.132 Asanalternative,copperhasbeenreportedwith betterantibacterialeffectthansilver,whichtoourknowledgeis currentlyunexploredinantimicrobiallignincomplexes.133

Lignin-titaniumdioxidenanocompositeswerepreparedby precipitationfromsolutionandtestedfortheirantimicrobial andUV-blockingproperties.134 Theauthorsconcludedthatthe lignincouldfunctionasthesolecappingandstabilization agentforthetitaniumdioxidenanocomposites.Betterperformanceofthenanocompositesforantioxidant,UV-shielding, andantimicrobialpropertieswasreported,ascomparedto theligninortitaniumdioxidealone.

Kra ligninandoxidizedKra ligninwereprocessedinto colloidalligninparticlesandcoatedwith b-casein,whichwas furthercross-linked.29 Thisworkaimedtoproducebiomaterials ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Simplifiedschematicoftheproductionofsilver-dopedligninnanoparticles.129

andbio-adhesives,wherethecolloidalligninactedasthescaffoldintendedforthesynthesisofbio-compatibleparticles. However,noassessmentofbiocompatibilityofthegenerated complexeswasperformed.Hence,thequestionremains whetherthisapproachmaybesuitableforbiomedical applications.

AccordingtoDominguez-Robles,therearevariousadditionalbiomedicalapplications,inwhichlignincouldbe promising, e.g.,ashydrogels,nanoparticlesandnanotubes,for woundhealingandtissueengineering.135 Theinterestinlignin forbiomedicalapplicationswasalsoemphasizedbythe increasingamountofpublicationsrelatedtoligninappliedas afunctionalmaterialfortissueengineering,drugdeliveryand pharmaceuticaluse.135,136 However,thereportedstudieson ligninforbiomedicalapplicationsisstilllimitedandvarious challengeswillneedtobeovercometoadvanceinthisarea. Theseareespeciallyregardingrelevantassessmentoflignins toxicologicalproleandbiocompatibility.Nottomentionthe largevariabilityofligninswhenitcomestothesourceoflignin, thefractionationprocessesandposteriormodication,which mayaffectthechemicalstructure,homogeneity,andpurity.

3.3.3.Wastewatertreatment. Differentresearchershave formulatedlignin-basedmaterials,whichweredesignedforthe puricationofdyecontainingwastewater.16,102,137 Suitabilityfor suchapplicationsisprincipallyderivedfromthechemical similarities,whichexistbetweenligninandmanydyes, i.e.,an abundanceofheteroatomsandaromaticmoieties.Such adsorbentscanbeproduced via depositiononsilicagel,102 coatingontocarbonparticles,16 carbonization,43 sorptionand co-precipitation.138 Developmentofsuchmaterialsisgenerally positive,asitdrawsontheuniquecompositionoflignin.

Adifferenttechnologicalapproachwithinthesamearea wouldbemembranes.Layer-by-layerassemblyisafrequently usedtechnique,inwhichpolyanioniclignosulfonatesor sulfonatedKra ligninarecombinedwithapolycation. Multiplebilayersaremadebystepwiseapplicationofthepolyelectrolytes, e.g.,byimmersioninasolutionofpolyanion rst, followedbydryingandimmersioninasolutionofpolycation. ThisapproachwasusedbyShamaei etal. asanantifouling

coatingformembranes,improvingthetreatmentofoily wastewater.139 Gu etal. usedlignosulfonatesandpolyethyleneimineonapolysulfonemembrane,whichsuccessfully repelledtheadsorptionofproteins.15 Whilethepreparationis straight-forward,thelong-termstabilityofsuchcoatingsalso mustbedemonstrated.Boththeligninand(poly-)cationwere water-soluble,sothecoatingwouldbepointlessifwashedaway withtheretentate.

3.3.4.Packagingapplications. Packagingapplicationscan benetfromlignin-containingsurfacesinvariousregards. Improvementsinthewater-resistance,waterandoxygen barrier,andmechanicalstrengthofcellulose-basedsubstrates havebeenreported.35,107,108,140 Amoredetailedsummaryofthese materialsisgiveninSection3.3.1.Theligninmayalsoserveas anoxygenscavenger.Toimplementthis,severalauthorshave formulatedcoatingsthatincludebothligninandlaccase enzyme.113–115 Atlast,theantibacterialandUV-shieldingpropertiesofligninhavebeenmentionedasbenecialcontributors.83,107,110 Whilethestudiesdemonstratefeasibilityon atechnologicallevel,thereareotherfactorsthatmustbe consideredaswell.Long-termstabilityandmigrationofthe coatingsisrarelyaddressed,despitethisbeingacrucial parameterinfoodpackaging.Inotherwords,onemustbesure thatnodetrimentalsubstancesaretransferredtothefood. Somefoodsreleasebothwaterandfat,forwhichligninisin theoryagoodmatch,asitissolubleinneither.Packagingof non-foodsgenerallyposeslessharshrequirements.The requirementsonpricepervolumearegreater;however,the pricingoftechnicalligninshouldbecompetitive.

3.3.5.UV-protection. Thepolyaromaticbackboneoflignin providesextendedabsorptionatsub-visiblewavelengthsof light.UV-shieldingapplicationshencedrawononeofthe intrinsicpropertiesoflignin.Oneexamplewouldbethe developmentofnaturalsunscreens via hydroxylationoftitaniumoxideparticles,duringwhichlignosulfonateswere added.141 Unsurprisingly,itwasconcludedthatthelignin enhancedtheUV-blockingeffectofthetitaniumoxideparticles. Anotherpublicationexploredsunscreens,wherenanoparticlesizeligninwasaddedtocommerciallotionformulations.142

Fig.12

TheUVabsorbancewasimprovedbybothnanoparticle formationandpretreatmentwiththeCatLigninprocess.The latterwasexplainedbypartialdemethylationandboostingof chromophoricmoieties.Whileligninmayconvenientlyreplace fossil-basedandnon-biodegradableUVactives,otherfactors alsoneedtobetestedforsuchaproducttobecomefeasible, e.g.,non-hazardousness,safetyforhumancontact,andskin tolerance.

Otherapplicationsthatcanprotfromthispropertyinclude UV-protectiveclothing,91 packagingmaterials,83,107 agrochemicalformulations,122 andpersonalprotectiveequipment.134 It shouldbementioned,however,thatenhancedUVabsorbance isnotalwaysbenecial,asitcanalsoleadtofasterdegradation ofthelignin-containingmaterials.12

3.4.Ligninaspartofthermoplasticmaterials

Ligninisathermoplasticmaterialwithglass-transition temperaturesintherangeof110–190°C.24 Assuch,itis straightforwardtousetechnicalligninasa llermaterialin, e.g.,thermoplasticsorbitumenadmixtures.38 Potentialadvantagesoflignininthermoplasticpolymercoatingshavebeen discussedbyParitandJiang,21 i.e.,byaddingUV-blockingand antioxidantactivityasrequiredinpackagingapplications.In general,theadditionoflignininthermoplasticscanincrease stiffness,butattheexpenseofextensibility.38 Chemicalmodication(alkylation)mayberequiredtoimprovebothtensile stiffnessandstrengthofolenicpolymers.26 Ontheotherhand, lignin'samphiphilicmake-upcanimpartadvantages, e.g.,by improvingtheadhesionofpolypropylenecoatings.143 Another examplewouldbetheuseoflignininbiocompositesfrom polypropyleneandcoir bers.45 Whilenosignicanteffecton tensilestrengthofthecompositeswasfound,addinglignin reportedlydelayedthethermaldecomposition.

Coatingswithpolymersarefrequentlyusedtoprotectthe mechanicalintegrityoftheunderlyingsubstrate.Foradded lignintobeadvantageous,themechanicalcharacteristicsofthe polymerblendmusthencebeimproved.Whilepublicationsin thisareafrequentlyfocusontheaddedfunctionalities,some alsoreportedimprovementsinthemechanicalstrengthofthe coatings.12,26 Onthedownside,theadditionofligninisoen limitedtolowratiosandchemicalmodicationmaybe required.12 Thesefactorscanlimittheoverallsustainability

gain,whichbiopolymershaveoverfossil-basedpolymersand llers.

Atlast,slow-releasefertilizerscanbepreparedfromthermoplasticsandlignin.Li etal. blendedpoly(lacticacid)(PLA) withKra ligninsamples,someofwhichhadbeenchemically modiedbyestericationorMannichreaction.144 Ureaparticles werethencoatedbysolventcastingordip-coating,wherethe alkylatedligninyieldedimprovedbarrierpropertiesandbetter compatibilitywithPLA.Microscopeimagesofthecoatedurea particlesareshowninFig.13.Whilelignin-PLAblendscan potentiallybemorebiodegradablethanlignin-basedresins,the biodegradationinsoilmaystillbeinsufficient.Ourrecommendationishencetofavorblendsofunmodi edligninwith biopolymers,suchasstarch,cellulose,orcarrageenan,asthis willnotcontributetomicroplasticspollution.

3.5.Ligninasaprecursortothermosets

Thefourmostcommonapplicationsoflignininthermosetsare polyurethane,epoxideresins,phenolicresins,andpolyesters.11 Unsurprisingly,formulationsoflignin-basedthermosetcoatingsareoenderivedfromsuchchemistries.Thelignincan alsoberenderedcompatiblewithotherformulations, e.g.,with polyacrylatesbygraingwithmethacrylicacid.145 Suchgraing reactionsareindeedinstrumentaltoovercomesomeofthe traditionalchallengesoflignin;146 however,theycanalsobe accompaniedbyunwantedside-effects,suchaspoor biodegradability.

3.5.1.Lignin-basedpolyurethanecoatings. Ligninutilizationinpolyurethanesisdoneaspolyolreplacement,where lignin'shydroxylgroupsarereactedwithisocyanategroups actingascross-linker.Theligninmayevenbesolubleinthe polyol,whichaidsstraight-forwardsubstitution.Ligninderivatizationtoimprovethecompatibilityandperformance includeshydroxyalkylation(e.g.,withpropyleneoxide, propylenecarbonate,orepichlorohydrin),estericationwith unsaturatedfattyacids,methylolation,anddemethylation.28

Chen etal. blendedalkaliligninandPEG,whichwerefurther polymerizedwithhexamethylenediisocyanateinpresenceof silicaaslevelingagent.147 Experimentswerelimitedto60wt% lignin,ashigherratiosyieldedanembrittlement.Themixtures wereprocessedinto lms,whichshowedsomepotentialfor biodegradation.Theseresultsindeedcorroboratedbyother authors,whichalsostatethatligninincorporationin

polyurethanesyieldedalimiteddegreeofbiodegradability.148 A differentapproachwasmadebyRahman etal., 149 whosynthesizedwaterbornepolyurethaneadhesiveswithaminatedlignin. ThetensilestrengthandYoung'smodulusimprovedwith increasingratiosofaminatedlignin,whichcouldbeduetoan increasedcross-linkingdensity.Still,theoverallpercentagesof lignininthecoatingswerecomparablylow,astheauthors addedonlybetween0–6.5mol%lignin.Itiscurioustonotethat theauthorsproclaimedbetterstoragestabilityofaminated lignindispersions,yetonlytheweatheringresistanceofthe nalcoatingwasmeasured.

Someofthechallengeswithlignininpolyurethanematerials includereactivityandahighcross-linkingdensity.Duetothe latter,polyurethaneformulationsarefrequentlylimitedtolow percentagesoflignin,typically20–30wt%atmax,ashigher ratioscanyieldbrittleandlow-strengthmaterials.150 One approachistoincreasethedegreeofsubstitutionisdepolymerizationoflignin,butotherchemicalmodicationsorfractionationsmaybeequallyapplicable.Inthiscontext,thework byKlein etal. shouldbementioned,whoreportedpolyurethane coatingswithligninratiosofupto80%.151 Acomparablylow curingtemperatureof35°Cwasused,whichcouldalsoentail incompletereaction.Curiously,thereisnodataonthe mechanicalstrengthofthe lms.Inaddition,theauthors measurementsofhydroxylgroups via ISO14900and 31p-NMR arewidelydivergent.Intwootherpublicationsbythesame author,theantioxidantpropertiesandantimicrobialeffectof such lmswerestudied.13,152 Inadifferentstudy,methyltetrahydrofuranwasusedtoextractthelow-molecularweight portionfromKra lignin.153 Theauthorsusedbetween70to 90wt%lignininthe nalformulationatNCO/OHmolarratios of0.16–0.04.Whileprovidingagoodadhesivestrength,the lmselasticmodulusiswithinthesamerangeofthefractionatedlignin,whereasnoinformationonthematerialstrength wasprovided.Itwouldthusappearthattheelevatedcrosslinkingdensitymaybecircumvented, i.e.,simplybyreacting onlyasub-fractionoftheavailablehydroxylgroupsoflignin. Still,ithasyettobedemonstratedthatsuchcoatingsarealso competitiveinmechanicalstrengthandabrasionresistance.

3.5.2.Lignin-basedphenolicresincoatings. Ligninmay alsobeusedasaphenol-substituentinphenol-formaldehyde resins.20 ThisapproachwasutilizedbyPark etal. toproduce cardboardcompositesbyspraycoating.154 Theauthorsreported thatligninpuricationbysolventextractionyieldedbetter resultsthanbyacidprecipitation.Substitutingwith20–40wt% ligninsurprisinglyacceleratedthecuringkinetics,comparedto thelignin-freecase.Thecoatedcardboardshowedlowerwater absorption;however,thecontactanglewasalsolower,which couldbeduetoachangeinsurfacechemistryandmorphology. Itwouldbeinterestingtostudyevenhigherdegreesofsubstitutionandtodelineatewiththemechanicalstrength.Still,it appearsthatcoatingswithlignin-phenol-formaldehydehaveso farbeenaimedatprovidingawater-barrier.Forexample,the workbyRotondo etal. coatedsuperphosphatefertilizerswith hydroxymethylatedligninresins,119 whichsignicantlyslowed thephosphaterelease.

3.5.3.Lignin-basedepoxyresincoatings. Similartolignincontainingpolyurethanes,epoxyresinsalsotargetareaction withthehydroxylgroups.Inanalogytothat,chemicalconditioningsuchasdepolymerizationcanpotentiallyimprovethe nalmaterial.Forexample,Ferdosian etal. testeddifferent ratiosofdepolymerizedKra ororganosolvlignininconventionalepoxyresinformulations.155 Theauthorsshowedthat largeamountsofligninretardedthecuringprocessparticularly inthelatestageofcuring.Attherightdosage(25%),theligninbasedepoxyexhibitedbettermechanicalpropertiesthanthe neatformulation,whileimprovingadhesiononstainlesssteel. Botheffectsappearplausibleconsideringligninsmacromolecularandpolydispersecomposition.Inthiscontext,arecent patentbyAkzoNobelshouldalsobementioned,which describestheuseofligninandpotentialepoxycrosslinkerfor functionalcoatings.156 AdifferentapproachwaschosenbyHao etal.,whocarboxylatedKra lignin rst,followedbyitsreaction withPEG-epoxy.157 Thecoatingspossessedalignincontentof 47%.Inaddition,theself-healingabilitywasdemonstratedby transestericationreactioninpresenceofzincacetylacetonate catalyst.

Crosslinkingofnanoparticlesisaninterestingapproach,as thecoagulationtonanoparticlesmayfavoradifferentratioof functionalgroupsatthesurfacethaninthebulklignin.In addition,thisapproachcanproducecompositematerials, whichexhibitdifferentcharacteristicsthanahomogeneous polymer.Forinstance,Henn etal. combinedligninnanoparticleswithanepoxyresin, i.e.,glyceroldiglycidyl ether,totreatwoodsurfaces.106 Thecoatingsshowednanostructuredmorphology,whichstillpreservedthebreathability ofthewood,hencedrawingadvantagefromlignin'snanoparticleformation.Zou etal. coprecipitatedsowoodKra lignintogetherwithbisphenol-a-diglycidylethertoproduce hybridnanoparticles.158 Theparticleswereeithercuredin dispersionforfurthercationizationordirectlytestedintheir functionaswoodadhesives.Theuseoflignin-basednanoparticlesincurableepoxyresinsishencepromising,asitcan generatenewfunctionalities,butthematurityofthistechnologystillneedstobeadvanced.

3.5.4.Lignin-basedpolyestercoatings. Whiletheuseof lignininpolyestercoatingsistechnologicallyfeasible,few publicationswerefoundtothistopic.Onereasonforthiscould betheslowreactionkineticsofdirectesterication.Coupled withlignin'sstructureandchemistry,polyester-basedcoatings wouldbelessstraightforwardthanpolyurethanesorepoxy resins,whichinvolvehighlyreactivecouplingagents.Asdiscussedpreviously,chemicalmodicationofligninmayimprove thiscircumstance,forexamplebydepolymerizationorintroductionofnewreactivesites.Assuch,oxidativedepolymerizationandsubsequentmembranefractionationhasbeen suggestedtoproducearawmaterial,whichcanbeutilizedin subsequentpolyestercoatings.159 Asecondexamplewouldbe solvent-fractionatedlignin,whichhasbeencarboxylatedby estericationwithsuccinicanhydride.19 AsillustratedinFig.14, themodiedligninreportedlyunderwentself-polymerization, wherethegraedcarboxylgroupsreactedwithresidual

hydroxylgroupsonthelignin.Developmentinthisareahas potential,aspolyesterstendtoexhibitbetterbiodegradability thanpolyolens.

3.5.5.Lignin-basedacrylatecoatings. Lignin-basedacrylatesrelyonthegraingofacrylatemoieties,asthesearenot inherenttolignin.Forexample,methacrylationofKra lignin wasdonetoproduceUV-curablecoatings.145 Theauthors concludedthatincorporatingligninintotheformulation improvedthermalstability,curepercentage,andadhesive performance.Anelaboratestudyonagingoflignin-containing polymermaterialswasconductedbyGoliszek etal.30 The authorsgraedKra ligninwithmethacrylicanhydrideand furtherpolymerizedtheproductwithstyreneormethylmethacrylate.Lowamountsoflignin(1–5%)showedincorporation intothenetwork,whereashigherconcentrationsshowed aplasticizingandmoreheterogeneouseffect.Highlignin loadingsalsoenhancedthedetrimentaleffectsofaging,which mayseemcounterintuitive,asotherreportsfrequentlystate aUV-protectiveabilityoflignin.Still,increaseabsorptionofUV lightcanalsoamplifythedetrimentaleffectsthereof.A combinationofepoxyandacrylatewasusedtodevelopdualcuredcoatingswithorganosolvlignin.160 Theligninwas rst reactedwithepoxyresinandsubsequentlywithacrylatetoform aprepolymer.Inasecondstep,theprepolymerwasmixedwith initiatorsanddiluenttobecoatedontotinplatesubstrates.All inall,lignin-basedacrylatecoatingsappeartohavereached sufficienttechnologicalmaturity,yettheadvantageofadding ligninissometimesunclear.

3.5.6.Otherapproaches. Szabo etal. graedKra lignin with p-toluenesulfonylchloride,whoseproductwasthengraftedontocarbon bers.161 Theresultssuggestedanimproved sheartoleranceofthemodiedcarbon bersinepoxyor cellulose-basedcomposites.SilylationwasfurthermoreperformedofKra lignin,whichwasfurtherco-polymerizedwith

permissionfromAmericanChemicalSociety,copyright2018. ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

polyacrylonitrile.162 Theauthorsconcludedthatsilylation improvedthecompatibilityforsurfacecoatingsand lms.

4.Ligninintechnicalapplications –acriticalcommentary

Thedevelopmenthigh-valueproductsfromligninhasbeen atopicofgreatinterestforsomeyears,andisstillgaining popularity.163 Added-valueapplicationsarebeingpursued, rangingfromasphaltemulsiersorrubberreinforcingagents, totheproductionofaromaticcompounds via thermochemical conversion.164 Thequestionarises,however,ifincludinglignin inacoatingcanreallyleadtoabetteroverallproduct? Comparisonwithstate-of-the-artformulationsisfrequently omitted,benchmarkinglignin-basedsolutionsonlytoareferencecasewithlowperformance. “Attributingvaluetowaste” is oneoftheprimarymotivationsbehindlignin-orientedresearch. Forexample,bioethanolproductionfromlignocellulose biomassoengivesrisetoalignin-richbyproduct.Theoverall economicsofsuchbioreneriescouldbeimprovediftheligninrichresiduecouldbemarketedatavalue.Still,toestablish anewproductonthemarket,thisproductalsoneedsto competewithexistingsolutionsintermsofperformanceand price.Thispointisoenoverlookedinliterature,inparticular concerninglignin-basedsurfacesandcoatings.

Harnessinglignin'sinherentpropertiesiskey,asthiscan createsynergiesandyieldanadvantageoverotherbiopolymers. Itcomestonosurprisethatthedominantuseoftechnical ligninisinwater-solublesurfactants,aspolydispersityisakey featurehere.3 Ashasbeenpointedout,theperformanceof surfactant-blendsoenoutperformssinglesurfactantsinrealworldapplications,sincethemixturecanpreserveitsfunction overawiderrangeofenvironmentalconditions.Asecond exampleofkeypropertieswouldbelignin'spolyphenolic

Fig.14 Schematicofproducinglignin-basedthermosettingpolyestercoatings.This figurehasbeenadapted/reproducedfromref.19with

structure,whichisnotfoundincommonpolysaccharides. LigninhashencebeeninvestigatedasaUVblockingadditivein e.g.,sunscreenproductsorpackaging.165 However,compatibilityoftheresultingproductwithhuman-orfood-contactis addressedinsufficientlybymanyauthors.Asimilarsituation wasgivenincaseofligninasantioxidantadditivein cosmetics,166 wherethedarkcolorandsmellmaylimitthe nal use.

Comparedtocelluloseorhemicellulose,ligninhasahigher carbon-to-oxygenratio.Duetothisanditspolyaromaticstructure,itwouldindeedbeabetterrawmaterialforproducing carbonaceousmaterials.Researchonactivatedcarbon, graphiticcarbon,andcarbon bershasindeedbeingconducted.167 Akeysteptowardlignin-basedcarbon berproduction wasidentiedasremovalof b-O-aryletherbonds.60 Inaddition, thecharringabilityofligninhasbeenproposedasabenetin reretardants.168 Still,lignin-based reretardantsoenuse chemicalmodications,suchasphosphorylation.Ifchemical modicationisnecessary,thequestionarisesifsuchchemistriesreallyneedtobebasedonlignin,sinceotherbiomacromoleculesmaypossessahigherreactivityandnumberof reactivesites.

Lignincanbereadilyprecipitatedfromsolutionintonanoparticlesandnanospheres.Variousapplicationshavebeen suggestedbasedonthis,suchasfunctionalcolloidsand compositematerialswithusesin ameretardancy,foodpackaging,agriculture,energystorage,andthebiomedical eld.169 A morespecicexamplewouldbenanoparticulatedligninin poly(vinylalcohol) lmswithincreasedUVabsorption.170 While thistechnologyappearsstraight-forward,its nalusehasyetto beproven.

Atlast,technicalligninisusuallythermoplastic,exhibiting glass-transitiontemperaturesintherangeof110–190°C.24 The useofligninaspolymeric llerorinthermoplasticblendsis hencepromising.Insomecases,chemicalmodicationmaybe necessarytoimprovecompatibility, e.g.,withpolyolens;26 however,theuseassimple llermaterialwouldnotnecessitate modication.Additionalstrengthcouldalsobederivedfrom addedcellulose bers,whichcouldpotentiallybenetfrom addedligninascompatibilizer.

Insummary,oneneedstobuildontheinherentpropertiesof lignin,suchaspolydispersity,poly-aromaticity,ahigherC/O ratiothanforpolysaccharides,andthermoplasticity.Onlyby utilizingcharacteristicsthatsetligninapartfromother biopolymers,cansolutionsbedevelopedthatareinnovative andmarketcompetitive.Chemicalmodicationisausefultool fortailoring;however,eachprocessingstepwilladdan economicalandenvironmentalcosttothe nalproduct.In otherwords,thesimplestapproachisoenthebest – somethingthatisfrequentlydisregardedwhendevelopingcomplex synthesisprotocolsforlignin.

5.Summaryandconclusion

Functionalsurfacesandcoatingscanbeformulatedinavariety ofways,whichincludestheuseofneat,chemicallymodied, blended,andcross-linkedlignin.Thisreviewprovides

asummaryofthecurrentdevelopmentsinresearch,where focuswasplacedontheformulationand nalapplications. Overall,coatingswithneatligninorblendsofligninwith otheractiveingredientsappearthemostpractical.Reduced wettingisherebyachieved,asthelignincanalterthesurface morphology,hindermass-transport,andconneswellingof enclosed bers.Theligninitselfisnotconsideredahydrophobicmaterial,becausethecontactangleisusuallybelow90°. Ontheotherhand,hydrophobicitycanbeinducedbyplasma surfacetreatment,blendingwithotheragents,orchemical modication.Forthelatter,graingorestericationoflignin withalkyl-containingmoietiesisafrequentlytakenapproach. Chemicalmodicationmayalsobeusedtoimprovethe compatibilitywitholenicthermoplastics.Additionoflignin can ne-tunethecharacteristicsthermoplasticsandimprove adhesiontoothermaterials.Onthedownside,embrittlement frequentlylimitsthistechnologytolowpercentagesoflignin. Thermosetcoatingswithlignincanbebasedonchemistries suchaspolyurethanes,phenolicresins,epoxyresins,polyesters, andpolyacrylates.Varioussynthesisrouteshavebeenproposed inliterature,whichcanbenettosomedegreeoftheinherent propertiesoflignin.

Boththeformulationandprocessingdependonthe nal applicationofthecoatingorsurfacefunctionalization.Theuse ofligninwithcellulose-basedsubstratesisfrequentlysuggested,asthiscanyieldall-biobasedmaterials.Lignincan improvetheresistancetowettingofpaperandpulpproducts.In addition,itcanaddUVprotectionandoxygen-scavenging capabilitiesinpackagingapplications.Lignin-basedsurfaces havealsobeenproposedforadsorbentsforwastewatertreatment,woodveneers,andcorrosioninhibitorsforsteel.The biomedical eldhasalsoexploredlignin-basedbiomaterials, whichdrawonitspotentialantimicrobialproperties.Agreat numberofpublicationsalsoreportsonagriculturaluses,where alignin-basedcoatingmayaccountforslowerreleaseoffertilizer.Atlast,general-purposepolymercoatingscanbetailored via theinclusionoflignin,andtheresistancetofoulingof membranescanbeimproved.Allmentionedapplicationswere discussedcriticallyinthisreview,placingemphasisonthe benetthataddingligninmayprovide.Whileintroductionof functionalitiesmaybepossible,publicationsfrequentlydonot comparetoawell-performingreferencecase,hencelimitingthe assessmentofthetruepotential.Inaddition,theratiooflignin inthermosetcoatingsisusuallyquitelow.Higherlevelsmaybe achievedaerchemicalmodication,butsuchsynthesiscan alsohavenegativeimplicationsontheeconomicandenvironmentalcostofthe nalproduct.

Inconclusion,theadvancementoffunctionalsurfacesand coatingswithligninhasyieldedpromisingresults.However, therealsomustbeabenetofusinglignincomparedtoother biopolymersorexistingpetrochemicalsolutions.Onlybyharnessinglignin'sinherentproperties,cansolutionsbedeveloped thatarecompetitiveandvalue-creating.Theseproperties includelignin'spolyphenolicstructure,ahigherC/Oratiothan, e.g.,polysaccharidebiopolymers,itsabilitytoself-associateinto nano-aggregates,anditsthermoplasticity.Thesepropertiesare

utilizedinsomeofthereviewedliterature,henceprovidingthe groundfornewandpromisingtechnologyinthefuture.

Authorcontributions

JostRuwoldt:conceptualization,writingoriginaldra,review, editing&visualization.FredrikHeenBlindheim:writing& visualization.GaryChinga-Carrasco:writing,review,editing, visualization,supervision.

Conflictsofinterest

Theauthorsdeclarenoconictofinterest.

Acknowledgements

TheauthorsthanktheResearchCouncilofNorwayforfunding partofthiswork.

References

1W.Boerjan,J.RalphandM.Baucher,LigninBiosynthesis, Annu.Rev.PlantBiol.,2003, 54,519–546,DOI: 10.1146/ annurev.arplant.54.031902.134938

2H.H.Nimz,D.Robert,O.FaixandM.Nemr,Carbon-13 NMRSpectraofLignins,8.StructuralDifferencesbetween LigninsofHardwoods,Sowoods,Grassesand CompressionWood, WoodResTechnol,1981, 35(1),16–26, DOI: 10.1515/hfsg.1981.35.1.16

3J.Ruwoldt.EmulsionStabilizationwithLignosulfonates, Lignin – ChemStructAppl.,2022,DOI: 10.5772/ intechopen.107336.

4J.Ruwoldt,ACriticalReviewofthePhysicochemical PropertiesofLignosulfonates:ChemicalStructureand BehaviorinAqueousSolution,atSurfacesandInterfaces, Surfaces,2020, 3(4),622–648,DOI: 10.3390/ surfaces3040042

5I.F.Demuner,J.L.Colodette,A.J.Demunerand C.M.Jardim,Bioreneryreview:Wide-reachingproducts throughkra lignin, BioResources,2019, 14(3),7543–7581, DOI: 10.15376/biores.14.3.demuner

6S.LaurichesseandL.Av´erous,Chemicalmodicationof lignins:Towardsbiobasedpolymers, Prog.Polym.Sci., 2014, 39(7),1266–1290,DOI: 10.1016/ j.progpolymsci.2013.11.004

7S.Shao,Z.Jin,G.WenandK.Iiyama,Thermo characteristicsofsteam-explodedbamboo(Phyllostachys pubescens)lignin, WoodSci.Technol.,2009, 43(7–8),643–652,DOI: 10.1007/s00226-009-0252-7 .

8Y.Zhao,S.Xiao,J.Yue,D.ZhengandL.Cai,Effectof enzymatichydrolysisligninonthemechanicalstrength andhydrophobicpropertiesofmolded bermaterials, Holzforschung,2020, 74(5),469–475,DOI: 10.1515/hf-20180295.

9T.J.Szalaty, Ł.KlapiszewskiandT.Jesionowski,Recent developmentsinmodicationofligninusingionicliquids

forthefabricationofadvancedmaterials–Areview, J.Mol. Liq.,2020,301,DOI: 10.1016/j.molliq.2019.112417 .

10J.Gil-Ch´avez,S.S.P.Padhi,U.Hartge,S.Heinrichand I.Smirnova,Optimizationofthespray-dryingprocessfor developingaquasolvligninparticlesusingresponse surfacemethodology, Adv.PowderTechnol.,2020, 31(6), 2348–2356,DOI: 10.1016/j.apt.2020.03.027 .

11H.Ariffin,S.M.SapuanandM.AliHassa, Lignocellulosefor FutureBioeconomy,2019.

12A.Morales,M. ´ A.Andr´es,J.LabidiandP.Gull´on,UV-vis protectivepoly(vinylalcohol)/bio-oilinnovative lms, Ind. CropsProd.,2019, 131,281–292,DOI: 10.1016/ j.indcrop.2019.01.071 .

13S.E.Klein,J.Rumpf,A.Alzagameem,M.Rehahnand M.Schulze,Antioxidantactivityofunmodiedkra and organosolvligninstobeusedassustainablecomponents forpolyurethanecoatings, J.Coat.Technol.Res.,2019, 16(6),1543–1552,DOI: 10.1007/s11998-019-00201-w .

14T.Li,S.Lü,S.Zhang,C.GaoandM.Liu,Lignin-based multifunctionalfertilizerforimmobilizationofPb(II)in contaminatedsoil, J.TaiwanInst.Chem.Eng.,2018, 91, 643–652,DOI: 10.1016/j.jtice.2018.06.025

15L.Gu,M.Y.Xie,Y.Jin, etal.,Constructionofantifouling membranesurfacesthroughlayer-by-layerself-assembly oflignosulfonateandpolyethyleneimine, Polymers,2019, 11(11),9–11,DOI: 10.3390/polym11111782

16L.Hu,C.Guang,Y.Liu, etal.,Adsorptionbehaviorofdyes fromanaqueoussolutionontocompositemagneticlignin adsorbent, Chemosphere,2020, 246,125757,DOI: 10.1016/ j.chemosphere.2019.125757

17A.EraghiKazzaz,Z.HosseinpourFeiziandP.Fatehi, Graingstrategiesforhydroxygroupsofligninfor producingmaterials, GreenChem.,2019, 21(21),5714–5752,DOI: 10.1039/c9gc02598g .

18N.S.ÇetinandN. Ozmen,Useoforganosolvligninin phenol-formaldehyderesinsforparticleboardproduction: I.Organosolvligninmodiedresins, Int.J.Adhes.Adhes., 2002, 22(6),477–480,DOI: 10.1016/S0143-7496(02)00058-1

19C.Scarica,R.Suriano,M.Levi,S.TurriandG.Griffini, LigninFunctionalizedwithSuccinicAnhydrideas BuildingBlockforBiobasedThermosettingPolyester Coatings, ACSSustainableChem.Eng.,2018, 6(3),3392–3401,DOI: 10.1021/acssuschemeng.7b03583

20B.M.UptonandA.M.Kasko,Strategiesfortheconversion oflignintohigh-valuepolymericmaterials:Reviewand perspective, Chem.Rev.,2016, 116(4),2275–2306,DOI: 10.1021/acs.chemrev.5b00345

21M.ParitandZ.Jiang,Towardsligninderivedthermoplastic polymers, Int.J.Biol.Macromol.,2020, 165,3180–3197,DOI: 10.1016/j.ijbiomac.2020.09.173 .

22M.Tanase-Opedal,E.Espinosa,A.Rodr´ ıguezandC.-C. G.Lignin,Abiopolymerfromforestrybiomassfor biocompositesand3Dprinting, Materials,2019, 12(18),1–15,DOI: 10.3390/ma12183006

23J.Bouajila,P.Dole,C.JolyandA.Limare,Somelawsof aligninplasticization, J.Appl.Polym.Sci.,2006, 102(2), 1445–1451,DOI: 10.1002/app.24299

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12547

24J.Sameni,S.Krigstin,D.dosS.Rosa,A.LeaoandM.Sain, Thermalcharacteristicsofligninresiduefromindustrial processes, BioResources,2014, 9(1),725–737,DOI: 10.15376/biores.9.1.725-737

25A.Kalliola,P.Kangas,I.Winberg, etal.,Oxidationprocess concepttoproducelignindispersantsatakra pulpmill, Nord.PulpPap.Res.J.,2022, 37(2),394–404,DOI: 10.1515/ npprj-2022-0017.

26L.Dehne,C.VilaBabarro,B.SaakeandK.U.Schwarz, Inuenceofligninsourceandestericationonproperties oflignin-polyethyleneblends, Ind.CropsProd.,2016, 86, 320–328,DOI: 10.1016/j.indcrop.2016.04.005 .

27C.A.Cateto,M.F.Barreiro,A.E.Rodriguesand M.N.Belgacem,Optimizationstudyoflignin oxypropylationinviewofthepreparationofpolyurethane rigidfoams, Ind.Eng.Chem.Res.,2009, 48(5),2583–2589, DOI: 10.1021/ie801251r.

28M.Alinejad,C.Henry,S.Nikafshar,A.Gondaliya, S.Bagheri,N.Chen,S.K.Singh,D.B.Hodgeand M.Nejad,Lignin-basedpolyurethanes:Opportunitiesfor bio-basedfoams,elastomers,coatingsandadhesives, Polymers,2019, 11(7),DOI: 10.3390/polym11071202

29M.L.Mattinen,G.Riviere,A.Henn,R.W.N.Nugroho, T.Leskinen,O.Nivala,J.Jos´eValle-Delgado, M.A.KostiainenandM. Osterberg,Colloidallignin particlesasadhesivesforso materials, Nanomaterials, 2018, 8(12),DOI: 10.3390/nano8121001

30M.Goliszek,B.Podko´scielna,O.Sevastyanova,K.Fila, A.ChabrosandP.Pa ˛czkowski,Investigationof acceleratedagingoflignin-containingpolymermaterials, Int.J.Biol.Macromol.,2019, 123,910–922,DOI: 10.1016/ j.ijbiomac.2018.11.141

31M.Cui,N.A.Nguyen,P.V.Bonnesen,D.Uhrig,J.K.Keum andA.K.Naskar,RigidOligomerfromLignininDesigning ofTough,Self-HealingElastomers, ACSMacroLett.,2018, 7(11),1328–1332,DOI: 10.1021/acsmacrolett.8b00600

32X.Zhang,D.Jeremic,Y.Kim,J.StreetandR.Shmulsky, Effectsofsurfacefunctionalizationofligninonsynthesis andpropertiesofrigidbio-basedpolyurethanesfoams, Polymers,2018, 10(7),DOI: 10.3390/polym10070706.

33S.Luo,L.GaoandW.Guo,Effectofincorporationoflignin asbio-polyolontheperformanceofrigidlightweightwood–polyurethanecompositefoams, J.WoodSci.,2020, 66(23), DOI: 10.1186/s10086-020-01872-5 .

34S.M.NotleyandM.Norgren,Surfaceenergyandwettability ofspin-coatedthin lmsofligninisolatedfromwood, Langmuir,2010, 26(8),5484–5490,DOI: 10.1021/la1003337

35S.Kopacic,A.Ortner,G.Guebitz,T.Kraschitzer,J.Leitner andW.Bauer,Technicalligninsandtheirutilizationin thesurfacesizingofpaperboard, Ind.Eng.Chem.Res., 2018, 57(18),6284–6291,DOI: 10.1021/acs.iecr.8b00974 .

36J.RuwoldtandM.Tanase,IndustrialCrops&Products Greenmaterialsfromadded-ligninthermoformedpulps, Ind.CropsProd.,2022, 185,115102,DOI: 10.1016/ j.indcrop.2022.115102.

37S.Barbe,M.Berger,R.Engstler, etal.,One-steppreparation ofbilayered lmsfromkra ligninandcelluloseacetateto

mimictreebark, Eur.J.WoodWoodProd.,2020, 78(4),831–834,DOI: 10.1007/s00107-020-01537-6 .

38M.Kienberger,PotentialApplicationsofLignin,in EconomicsofBioresources,SpringerInternational Publishing,2019,pp.183–193,DOI: 10.1007/978-3-03014618-4_12

39S.Baumberger,Starch-LigninFilms,in Chemical Modication,Properties,andUsageofLignin,2002,pp.1–19.

40L.Peng,Y.MengandH.Li,Facilefabricationof superhydrophobicpaperwithimprovedphysicalstrength byanovellayer-by-layerassemblyofpolyelectrolytesand lignosulfonates-amine, Cellulose,2016, 23(3),2073–2085, DOI: 10.1007/s10570-016-0910-5 .

41H.Li,H.Liu,S.FuandH.Zhan,Surfacehydrophobicity modicationofcellulose bersbylayer-by-layerselfassemblyoflignosulfonates, BioResources,2011, 6(2), 1681–1695,DOI: 10.15376/biores.6.2.1681-1695 .

42C.Zheng,D.LiandM.Ek,Improving reretardancyof cellulosicthermalinsulatingmaterialsbycoatingwith bio-based reretardants, Nord.PulpPap.Res.J.,2019, 34(1),96–106,DOI: 10.1515/npprj-2018-0031

43C.Seto,B.P.Chang,C.TzoganakisandT.H.Mekonnen, Ligninderivednano-biocarbonanditsdepositionon polyurethanefoamforwastewaterdyeadsorption, Int.J. Biol.Macromol.,2021, 185,629–643,DOI: 10.1016/ j.ijbiomac.2021.06.185

44A.Dastpak,B.P.WilsonandM.Lundström,Investigation oftheanticorrosionperformanceoflignincoatingsaer crosslinkingwithtriethylphosphateandtheiradhesion toapolyurethanetopcoat, Agron.Res.,2020, 18(1),762–770,DOI: 10.15159/AR.20.061

45A.A.Morandim-Giannetti,J.A.M.Agnelli,B.Z.Lanças, R.Magnabosco,S.A.CasarinandS.H.P.Bettini,Lignin asadditiveinpolypropylene/coircomposites:Thermal, mechanicalandmorphologicalproperties, Carbohydr. Polym.,2012, 87(4),2563–2568,DOI: 10.1016/ j.carbpol.2011.11.041

46I.Hasanov,M.RaudandT.Kikas,Theroleofionicliquids intheligninseparationfromlignocellulosicbiomass, Energies,2020, 13(18),1–24,DOI: 10.3390/en13184864 .

47R.C.Sun,LigninSourceandStructuralCharacterization, ChemSusChem,2020,4385–4393,DOI: 10.1002/ cssc.202001324

48S.SuzukiandH.Suzuki,Recentadvancesinforesttree biotechnology, PlantBiotechnol.,2014, 31(1),1–9,DOI: 10.5511/plantbiotechnology.13.1203b

49A.EraghiKazzazandP.Fatehi,Technicalligninandits potentialmodicationroutes:Amini-review, Ind.Crops Prod.,2020, 154,DOI: 10.1016/j.indcrop.2020.112732 .

50A.Lourenco,J.Rencoret,C.Chemetova,J.Gominho, A.Guti´errez,J.C.delR´ ıoandH.Pereira,Lignin compositionandstructurediffersbetweenXylem,Phloem andphelleminquercussuberL, Front.PlantSci.,2016, 7, DOI: 10.3389/fpls.2016.01612

51F.G.Calvo-FloresandJ.A.Dobado,Ligninasrenewable rawmaterial, ChemSusChem,2010, 3(11),1227–1235,DOI: 10.1002/cssc.201000157

12548 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

52H.Sadeghifar,H.Sadeghifar,A.Ragauskas,A.Ragauskas, A.RagauskasandA.Ragauskas,PerspectiveonTechnical LigninFractionation, ACSSustainableChem.Eng.,2020, 8(22),8086–8101,DOI: 10.1021/acssuschemeng.0c01348

53K.N.M.Khalili,P.dePeinder,J.Donkers,R.J.A.Gosselink, P.C.A.BruijnincxandB.M.Weckhuysen,Monitoring MolecularWeightChangesduringTechnicalLignin DepolymerizationbyOperandoAttenuatedTotal ReectanceInfraredSpectroscopyandChemometrics, ChemSusChem,2021, 14(24),5517–5524,DOI: 10.1002/ cssc.202101853

54A.VishtalandA.Kraslawski,Challengesinindustrial applicationsoftechnicallignins, BioResources,2011, 6(3), 3547–3568,DOI: 10.15376/biores.6.3.vishtal

55E.Adler,LigninStructure-Past,PresentandFuture, Wood Sci.Technol.,1977, 11(3),169–218.

56D.Tarasov,M.LeitchandP.Fatehi,Lignin-carbohydrate complexes:Properties,applications,analyses,and methodsofextraction:Areview, Biotechnol.Biofuels,2018, 11(1),1–28,DOI: 10.1186/s13068-018-1262-1

57D.Tarasov,M.LeitchandP.Fatehi,Lignin-carbohydrate complexes:Properties,applications,analyses,and methodsofextraction:Areview, Biotechnol.Biofuels,2018, 11(1),1–28,DOI: 10.1186/s13068-018-1262-1 .

58L.Zhou,V.Budarin,J.Fan,R.SloanandD.Macquarrie, EfficientMethodofLigninIsolationUsingMicrowaveAssistedAcidolysisandCharacterizationoftheResidual Lignin, ACSSustainableChem.Eng.,2017, 5(5),3768–3774, DOI: 10.1021/acssuschemeng.6b02545 .

59M.Kropat,M.Liao,H.Park,K.S.Salem,S.Johnsonand D.S.Argyropoulos,APerspectiveofLigninProcessing andUtilizationTechnologiesforCompositesandPlastics withEmphasisonTechnicalandMarketTrends, BioResources,2021, 16(1),2084–2115.

60A.J.Ragauskas,G.T.Beckham,M.J.Biddy, etal.,Lignin valorization:improvingligninprocessinginthe biorenery, Science,2014, 344(6185),1246843.

61A.Tribot,G.Amer,M.AbdouAlio, etal.,Wood-lignin: Supply,extractionprocessesanduseasbio-based material, Eur.Polym.J.,2019, 112,228–240,DOI: 10.1016/ j.eurpolymj.2019.01.007

62J.J.Liao,N.H.A.Latif,D.Trache,N.Brosseand M.H.Hussin,Currentadvancementontheisolation, characterizationandapplicationoflignin, Int.J.Biol. Macromol.,2020, 162,985–1024,DOI: 10.1016/ j.ijbiomac.2020.06.168

63G.Gellerstedt,Sowoodkra lignin:Rawmaterialforthe future, Ind.CropsProd.,2015, 77,845–854,DOI: 10.1016/ j.indcrop.2015.09.040 .

64A.Tribot,G.Amer,M.AbdouAlio, etal.,Wood-lignin: Supply,extractionprocessesanduseasbio-based material, Eur.Polym.J.,2019, 112,228–240,DOI: 10.1016/ j.eurpolymj.2019.01.007

65J.J.Liao,N.H.A.Latif,D.Trache,N.Brosseand M.H.Hussin,Currentadvancementontheisolation, characterizationandapplicationoflignin, Int.J.Biol.

Macromol.,2020, 162,985–1024,DOI: 10.1016/ j.ijbiomac.2020.06.168.

66F.S.ChakarandA.J.Ragauskas,Reviewofcurrentand futuresowoodkra ligninprocesschemistry, Ind.Crops Prod.,2004, 20(2),131–141,DOI: 10.1016/ j.indcrop.2004.04.016

67S.SubramanianandG.Øye,Aqueouscarbonblack dispersionsstabilizedbysodiumlignosulfonates, Colloid Polym.Sci.,2021, 299(7),1223–1236,DOI: 10.1007/s00396021-04840-7

68W.O.S.Doherty,P.MousaviounandC.M.Fellows,Valueaddingtocellulosicethanol:Ligninpolymers, Ind.Crops Prod.,2011, 33(2),259–276,DOI: 10.1016/ j.indcrop.2010.10.022

69W.O.S.Doherty,P.MousaviounandC.M.Fellows,Valueaddingtocellulosicethanol:Ligninpolymers, Ind.Crops Prod.,2011, 33(2),259–276,DOI: 10.1016/ j.indcrop.2010.10.022 .

70A.Guerra,I.Filpponen,L.A.Lucia,C.Saquing, S.BaumbergerandD.S.Argyropoulos,Towardabetter understandingoftheligninisolationprocessfromwood, J.Agric.FoodChem.,2006, 54(16),5939–5947,DOI: 10.1021/jf060722v.

71S.AlArni,Extractionandisolationmethodsforlignin separationfromsugarcanebagasse:Areview, Ind.Crops Prod.,2018, 115,330–339,DOI: 10.1016/ j.indcrop.2018.02.012

72M.Rubens,M.VanWesemael,E.Feghali, etal.,Exploring thereactivityofaliphaticandphenolichydroxylgroupsin ligninhydrogenolysisoiltowardsurethanebond formation, Ind.CropsProd.,2022, 180,114703,DOI: 10.1016/j.indcrop.2022.114703

73L.Zoia,A.Salanti,P.FrigerioandM.Orlandi,Exploring allylationandClaisenrearrangementasanovelchemical modicationoflignin, BioResources,2014, 9(4),6540–6561.

74T.AroandP.Fatehi,ProductionandApplicationof LignosulfonatesandSulfonatedLignin, ChemSusChem, 2017, 10(9),1861–1877,DOI: 10.1002/cssc.201700082

75P.Buono,A.Duval,P.Verge,L.AverousandY.Habibi,New InsightsontheChemicalModicationofLignin: Acetylation versus Silylation, ACSSustainableChem.Eng., 2016, 4(10),5212–5222,DOI: 10.1021/ acssuschemeng.6b00903

76A.Salanti,L.ZoiaandM.Orlandi,Chemicalmodications ofligninforthepreparationofmacromerscontaining cycliccarbonates, GreenChem.,2016, 18(14),4063–4072, DOI: 10.1039/c6gc01028h

77S.Antonsson,G.Henriksson,M.Johanssonand M.E.Lindström,LowMw-ligninfractionstogetherwith vegetableoilsasavailableoligomersfornovelpapercoatingapplicationsashydrophobicbarrier, Ind.Crops Prod.,2008, 27(1),98–103,DOI: 10.1016/ j.indcrop.2007.08.006

78E.L.Hult,J.Ropponen,K.Poppius-Levlin,T.Ohra-Ahoand T.Tamminen,Enhancingthebarrierpropertiesofpaper boardbyanovellignincoating, Ind.CropsProd.,2013, 50, 694–700,DOI: 10.1016/j.indcrop.2013.08.013

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12549

79B.Zhao,M.Borghei,T.Zou, etal.,Lignin-BasedPorous SupraparticlesforCarbonCapture, ACSNano,2021, 15(4), 6774–6786,DOI: 10.1021/acsnano.0c10307.

80L.Ignat,M.Ignat,E.Stoica,C.CiobanuandV.I.Popa, Ligninblendswithpolyurethane-containinglactate segments.Propertiesandenzymaticdegradationeffects, Cellul.Chem.Technol.,2011, 45(3–4),233–243.

81A.Javed,H.Ullsten,P.R¨attö,L.J¨arnströmandL.J.Asif JavedHUPRand,Lignin-containingcoatingsfor packagingmaterials – PilotTrials, Nord.PulpPap.Res.J., 2018, 33(3),548–556,DOI: 10.1515/npprj-2018-3042

82S.Zhang,X.Fu,Z.Tong, etal.,Lignin-ClayNanohybrid Biocomposite-BasedDouble-LayerCoatingMaterialsfor Controllable-ReleaseFertilizer, ACSSustainableChem. Eng.,2020, 8(51),18957–18965,DOI: 10.1021/ acssuschemeng.0c06472

83M.Borrega,S.Paarnila,L.G.Greca, etal.,Morphological andwettabilitypropertiesofthincoating lmsproduced fromtechnicallignins, Langmuir,2020, 36(33),9675–9684, DOI: 10.1021/acs.langmuir.0c00826

84J.R.Souza,J.R.Araujo,B.S.ArchanjoandR.A.Simao, Cross-linkedlignincoatingsproducedbyUVlightand SF6plasmatreatments, Prog.Org.Coat.,2019, 128,82–89, DOI: 10.1016/j.porgcoat.2018.12.017 .

85O.Cusola,S.Kivistö,S.Vierros, etal.,ParticulateCoatings via Evaporation-InducedSelf-AssemblyofPolydisperse ColloidalLigninonSolidInterfaces, Langmuir,2018, 34(20),5759–5771,DOI: 10.1021/acs.langmuir.8b00650 .

86A.Pereira,I.C.Hoeger,A.Ferrer, etal.,LigninFilmsfrom Spruce,Eucalyptus,andWheatStrawStudiedwith ElectroacousticandOpticalSensors:Effectof CompositionandElectrostaticScreeningonEnzyme Binding, Biomacromolecules,2017, 18(4),1322–1332,DOI: 10.1021/acs.biomac.7b00071 .

87T.Leskinen,J.Witos,J.J.Valle-Delgado, etal.,Adsorption ofProteinsonColloidalLigninParticlesforAdvanced Biomaterials, Biomacromolecules,2017, 18(9),2767–2776, DOI: 10.1021/acs.biomac.7b00676

88M.TanaseOpedalandJ.Ruwoldt,Organosolvligninas sizingadditiveinthermoformedproducts, ACSOmega, 2022, 7(50),46583–46593.

89F.Zikeli,V.Vinciguerra,A.D'Annibale,D.Capitani, M.RomagnoliandG.S.Mugnozza,Preparationoflignin nanoparticlesfromwoodwasteforwoodsurface treatment, Nanomaterials,2019, 9(2),DOI: 10.3390/ nano9020281

90L.A.EdyeandA.J.Tietz,Lignin-basedWaterproofCoating, WO2015054736A1,2015.

91A.K.SinghGangwar,D.B.Shakyawar,M.K.Singh, P.VishnoiandS.Jose,Optimizationofsodium lignosulfonatetreatmentonnylonfabricusingBox–BehnkenresponsesurfacedesignforUVprotection, Autex Res.J.,2022, 22,248–257,DOI: 10.2478/aut-2021-0011

92A.Dastpak,T.V.Lourenҫon,M.Balakshin,S.Farhan Hashmi,M.LundströmandB.P.Wilson,Solubilitystudy oflignininindustrialorganicsolventsandinvestigation ofelectrochemicalpropertiesofspray-coatedsolutions,

Ind.CropsProd.,2020, 148,112310,DOI: 10.1016/ j.indcrop.2020.112310.

93E.L.Hult,K.Koivu,J.Asikkala, etal.,Esteriedlignin coatingaswatervaporandoxygenbarrierfor ber-based packaging, Holzforschung,2013, 67(8),899–905,DOI: 10.1515/hf-2012-0214

94F.Bardot,E.S.EsakkimuthuandG.Mortha, Aninnovative “green” lignincoatingtoimprovepropertiesofpaperfrom recycled bers,ISWFPC18th,2015.

95Q.Hua,L.Y.Liu,M.A.KaraaslanandS.Renneckar, AqueousDispersionsofEsteriedLigninParticlesfor HydrophobicCoatings, Front.Chem.,2019, 7,DOI: 10.3389/fchem.2019.00515.

96O.Gordobil,R.Herrera,R.Llano-PonteandJ.Labidi, Esteriedorganosolvligninashydrophobicagentforuse onwoodproducts, Prog.Org.Coat.,2017, 103,143–151, DOI: 10.1016/j.porgcoat.2016.10.030 .

97Q.Wei,L.Zhang,J.Chen,Z.Tong,X.Zhou,L.Shao,Z.Wu, P.Zhan,F.Wang,N.Liu,H.LinandH.Dong,Solvent-free coatingofcrosslinkedandhydrophobiclignin-based biocompositeforslow-releasefertilizer, Polym.Test.,2021, 102,DOI: 10.1016/j.polymertesting.2021.107335

98N.Sadeghi,K.ShayestehandS.Lotman,Effectof ModiedLigninSulfonateonControlled-ReleaseUreain Soil, J.Polym.Environ.,2017, 25(3),792–799,DOI: 10.1007/s10924-016-0848-6

99A.Kalliola,M.Asikainen,R.TaljaandT.Tamminen, Experiencesofkra ligninfunctionalizationbyenzymatic andchemicaloxidation, BioResources,2014, 9(4),7336–7351,DOI: 10.15376/biores.9.4.7336-7351

100S.A.Mayr,N.Schwaiger,H.K.Weber,J.Kovaˇ c, G.M.GuebitzandG.S.Nyanhongo,EnzymeCatalyzed CopolymerizationofLignosulfonatesforHydrophobic Coatings, Front.Bioeng.Biotechnol.,2021,1–11,DOI: 10.3389/ioe.2021.697310 .

101C.Fern´andez-Costas,S.Palanti,M. ´ A.Sanrom´anand D.Moldes,Enzymaticgraingofkra ligninasawood bio-protectionstrategy.Part2:Effectivenessagainstwood destroyingbasidiomycetes.Effectofcopperentrapment, Holzforschung,2017, 71(9),689–695,DOI: 10.1515/hf-20160110

102T.M.Budnyak,I.V.Pylypchuk,M.E.Lindströmand O.Sevastyanova,ElectrostaticDepositionoftheOxidized Kra LigninontotheSurfaceofAminosilicas:Thermal andStructuralCharacteristicsofHybridMaterials, ACS Omega,2019, 4(27),22530–22539,DOI: 10.1021/ acsomega.9b03222

103H.Wang,X.Chen,L.Zhang,Z.Li,X.FanandS.Sun, Efficientproductionoflignin-basedslow-releasenitrogen fertilizer via microwaveheating, Ind.CropsProd.,2021, 166,DOI: 10.1016/j.indcrop.2021.113481 .

104J.BehinandN.Sadeghi,Utilizationofwasteligninto preparecontrolled-slowreleaseurea, Int.J.Recycl.Org. WasteAgric.,2016, 5(4),289–299,DOI: 10.1007/s40093016-0139-1.

105M.Tuomela,M.Vikman,A.HatakkaandM.It¨avaara, Biodegradationoflignininacompostenvironment:A

12550 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

review, Bioresour.Technol.,2000, 72(2),169–183,DOI: 10.1016/S0960-8524(99)00104-2 .

106K.A.Henn,N.Forsman,T.ZouandM. Osterberg,Colloidal LigninParticlesandEpoxiesforBio-Based,Durable,and MultiresistantNanostructuredCoatings, ACSAppl.Mater. Interfaces,2021, 13(29),34793–34806,DOI: 10.1021/ acsami.1c06087.

107M.Farooq,T.Zou,G.Riviere,M.H.Sipponenand M. Osterberg,Strong,Ductile,andWaterproofCellulose NanobrilCompositeFilmswithColloidalLignin Particles, Biomacromolecules,2019, 20(2),693–704,DOI: 10.1021/acs.biomac.8b01364 .

108G.N.Rivi`ere,F.Pion,M.Farooq,M.H.Sipponen, H.Koivula,T.Jayabalan,P.Pandard,G.Marlaire,X.Liao, S.BaumbergerandM. Osterberg,Towardwaste valorizationbyconvertingbioethanolproductionresidues intonanoparticlesandnanocomposite lms, Sustainable Mater.Technol.,2021, 28,DOI: 10.1016/ j.susmat.2021.e00269.

109B.Asikanius,A.S.Jaaskelainen,H.Koivula,P.Oinonenand M. Osterberg,DurableBiopolymerFilmsFromLigninCarbohydrateComplexDerivedFromaPulpMillSide Stream, Front.EnergyRes.,2021, 9,DOI: 10.3389/ fenrg.2021.782545.

110A.Hambardzumyan,L.Foulon,N.B.Bercu, etal., Organosolvligninasnaturalgraingadditivetoimprove thewaterresistanceof lmsusingcellulosenanocrystals, Chem.Eng.J.,2015, 264,780–788,DOI: 10.1016/ j.cej.2014.12.004.

111A.Hambardzumyan,L.Foulon,B.ChabbertandV.Agui´eB´eghin,NaturalorganicUV-absorbentcoatingsbasedon celluloseandlignin:Designedeffectsonspectroscopic properties, Biomacromolecules,2012, 13(12),4081–4088, DOI: 10.1021/bm301373b .

112A.Javed,H.Ullsten,P.RattöandL.Jarnström,Lignincontainingcoatingsforpackagingmaterials, Nord.Pulp Pap.Res.J.,2018, 33(3),548–556,DOI: 10.1515/npprj2018-3042

113K.Johansson,T.Gillgren,S.Winestrand,L.Jarnströmand L.J.Jönsson,Comparisonofligninderivativesas substratesforlaccase-catalyzedscavengingofoxygenin coatingsand lms, J.Biol.Eng.,2014, 8(1),1–10,DOI: 10.1186/1754-1611-8-1

114K.Johansson,S.Winestrand,C.Johansson,L.Jarnström andL.J.Jönsson,Oxygen-scavengingcoatingsand lms basedonlignosulfonatesandlaccase, J.Biotechnol.,2012, 161(1),14–18,DOI: 10.1016/j.jbiotec.2012.06.004

115S.Winestrand,L.JarnströmandJ.Leif,Jönsson. FractionatedLignosulfonatesforLaccase-Catalyzed Oxygen-ScavengingFilmsandCoatings, Molecules,2021, (26),6322.

116L.Dong,H.Hu,F.ChengandS.Yang,Thewaterresistance ofcorrugatedpaperimprovedbylipophilicextractivesand lignininAPMPeffluent, J.WoodSci.,2015, 61(4),412–419, DOI: 10.1007/s10086-015-1480-0 .

117R.L.Wu,X.L.Wang,F.Li,H.Z.LiandY.Z.Wang,Green composite lmspreparedfromcellulose,starchandlignin

inroom-temperatureionicliquid, Bioresour.Technol.,2009, 100(9),2569–2574,DOI: 10.1016/j.biortech.2008.11.044 .

118S.Fertahi,I.Bertrand,M.Amjoud,A.Oukarroum,M.Arji andA.Barakat,PropertiesofCoatedSlow-ReleaseTriple Superphosphate(TSP)FertilizersBasedonLigninand CarrageenanFormulations, ACSSustainableChem.Eng., 2019, 7(12),10371–10382,DOI: 10.1021/ acssuschemeng.9b00433.

119F.Rotondo,R.Coniglio,L.Cantera,I.DiPascua,L.Clavijo andA.Dieste,Lignin-basedcoatingsforcontrolledPreleasefertilizerconsistingofgranulatedsimple superphosphate, Holzforschung,2018, 72(8),637–643, DOI: 10.1515/hf-2017-0176 .

120W.J.Mulder,R.J.A.Gosselink,M.H.Vingerhoeds, P.F.H.HarmsenandD.Eastham,Ligninbased controlledreleasecoatings, Ind.CropsProd.,2011, 34(1), 915–920,DOI: 10.1016/j.indcrop.2011.02.011 .

121C.Xiao,R.BoltonandW.L.Pan,Ligninfromricestraw Kra pulping:Effectsonsoilaggregationandchemical properties, Bioresour.Technol.,2007, 98,1482–1488,DOI: 10.1016/j.biortech.2005.11.014

122M.H.Nguyen,I.C.HwangandH.J.Park,Enhanced photoprotectionforphoto-labilecompoundsusing double-layercoatedcornoil-nanoemulsionswithchitosan andlignosulfonate, J.Photochem.Photobiol.,B,2013, 125, 194–201,DOI: 10.1016/j.jphotobiol.2013.06.009

123S.J.Gobbi,V.J.GobbiandY.Rocha,Requirementsfor selection/developmentofabiomaterial, Biomed.J.Sci. Technol.Res.,2019, 14(3),1–6.

124B.D.Ratner,Thebiocompatibilitymanifesto: Biocompatibilityforthetwenty-rstcentury, J.Cardiovasc. Transl.Res.,2011, 4(5),523–527,DOI: 10.1007/s12265-0119287-x.

125A.Rokstad,B.Strand,T.EspevikandT.Mollnes, BiocompatibilityandBiotolerabilityAssessmentof MicrospheresUsingaWholeBloodModel, Micro Nanosyst.,2013, 5(3),177–185,DOI: 10.2174/ 1876402911305030005

126S.Sugiarto,Y.Leow,C.L.Tan,G.WangandD.Kai,Howfar isLigninfrombeingabiomedicalmaterial?, Bioact.Mater., 2022, 8,71–94,DOI: 10.1016/j.bioactmat.2021.06.023

127A.Alzagameem,S.E.Klein,M.Bergs,X.TungDo,I.Korte, S.Dohlen,C.Hüwe,J.Kreyenschmidt,B.Kamm, M.LarkinsandM.Schulze,Antimicrobialactivityof ligninandlignin-derivedcelluloseandchitosan compositesagainstselectedpathogenicandspoilage microorganisms, Polymers,2019, 11(4),DOI: 10.3390/ polym11040670

128V.Ugartondo,M.MitjansandM.P.Vinardell,Comparative antioxidantandcytotoxiceffectsofligninsfromdifferent sources, Bioresour.Technol.,2008, 99(14),6683–6687,DOI: 10.1016/j.biortech.2007.11.038

129K.Lintinen,S.Luiro,P.Figueiredo, etal.,Antimicrobial ColloidalSilver-LigninParticles via IonandSolvent Exchange, ACSSustainableChem.Eng.,2019, 7(18), 15297–15303,DOI: 10.1021/acssuschemeng.9b02498 .

©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry RSCAdv.,2023, 13,12529–12553| 12551

130A.Jankovi´c,S.Erakovi´c,C.Ristoscu,N.Mihailescu,L.Duta, A.Visan,G.E.Stan,A.C.Popa,M.A.Husanu, C.R.Luculescu,V.V.Srdic,Dj.Janackovic,V.MiskovicStankovic,C.Bleotu,M.C.ChiriucandI.N.Mihailescu, Structuralandbiologicalevaluationofligninadditionto simpleandsilver-dopedhydroxyapatitethin lms synthesizedbymatrix-assistedpulsedlaserevaporation, J. Mater.Sci.:Mater.Med.,2015, 26(1),DOI: 10.1007/s10856014-5333-y

131S.Erakovi´c,A.Jankovi´c,I.Z.Mati´c, etal.,Investigationof silverimpactonhydroxyapatite/lignincoatings electrodepositedontitanium, Mater.Chem.Phys.,2013, 142(2–3),521–530,DOI: 10.1016/ j.matchemphys.2013.07.047

132M.BoholmandR.Arvidsson,Controversyover antibacterialsilver:Implicationsforenvironmentaland sustainabilityassessments, J.CleanerProd.,2014, 68,135–143,DOI: 10.1016/j.jclepro.2013.12.058 .

133I.Codip˜ a,D.M.Caplan,E.-C.Dr˜ agulescu,B.-E.Lixandru, I.L.Coldea,C.C.Dragomirescu,C.Surdu-Boband M.Badulescu,AntimicrobialActivityOfCopperAndSilver NanolmsOnNosocomialBacterialSpecies, Rom.Arch. Microbiol.Immunol.,2010, 69(4),204–205.

134R.Kaur,N.S.Thakur,S.ChandnaandJ.Bhaumik, SustainableLignin-BasedCoatingsDopedwithTitanium DioxideNanocompositesExhibitSynergisticMicrobicidal andUV-BlockingPerformancetowardPersonalProtective Equipment, ACSSustainableChem.Eng.,2021, 9(33), 11223–11237,DOI: 10.1021/acssuschemeng.1c03637 .

135J.Dom´ ınguez-Robles, ´ A.C´arcamo-Mart´ ınez,S.A.Stewart, R.F.Donnelly,E.LarrañetaandM.Borrega,Ligninfor pharmaceuticalandbiomedicalapplications – Couldthis becomeareality?, SustainableChem.Pharm.,2020,(18), 100320,DOI: 10.1016/j.scp.2020.100320 .

136S.Sugiarto,Y.Leow,C.L.Tan,G.WangandD.Kai,Howfar isLigninfrombeingabiomedicalmaterial?, Bioact.Mater., 2022, 8,71–94,DOI: 10.1016/j.bioactmat.2021.06.023

137Y.L.Xiao,M.J.Ding,R.J.Wang,H.-L.Sun,J.-G.Zhang, Q.-J.PanandY.-R.Guo,FabricationofmesoporousSiO2 @SLScompositetoremoveorganicpollutants:hydrogen bond-inducedintriguingchangesofsolubility, J. Nanopart.Res.,2019, 21(1),DOI: 10.1007/s11051-019-44620

138S.Sharma,S.SinghandS.J.Sarma,Simultaneous depolymerizationandco-precipitationofligninwithiron oxidetoformferromagnetichybridsforadsorptionof industrialdyes, Int.J.Environ.Sci.Technol.,2022,DOI: 10.1007/s13762-022-04333-2

139L.Shamaei,B.Khorshidi,M.A.IslamandM.Sadrzadeh, Industrialwasteligninasanantifoulingcoatingforthe treatmentofoilywastewater:Creatingwealthfromwaste, J.CleanerProd.,2020, 256,120304,DOI: 10.1016/ j.jclepro.2020.120304

140A.Javed, Effectsofplasticizingandcrosslinkingoncoatings basedonblendsofstarch-PVOHandstarch-lignin,2018.

141J.Yu,L.Li,Y.Qian,H.Lou,D.YangandX.Qiu,Facileand GreenPreparationofHighUV-BlockingLignin/Titanium

DioxideNanocompositesforDevelopingNatural Sunscreens, Ind.Eng.Chem.Res.,2018, 57(46),15740–15748,DOI: 10.1021/acs.iecr.8b04101.

142P.Widsten,T.TamminenandT.Liitia,NaturalSunscreens BasedonNanoparticlesofModi  edKra Lignin (CatLignin), ACSOmega,2020, 5(22),13438–13446,DOI: 10.1021/acsomega.0c01742.

143R.R.DeSousa,J.R.Gouveia,A.M.Nacas,L.B.Tavares, N.M.Ito,E.N.deMoura,F.A.Gaia,R.F.Pereiraand D.J.dosSantos,Improvementofpolypropyleneadhesion byKra LigninIncorporation, Mater.Res.,2019, 22(2), DOI: 10.1590/1980-5373-MR-2018-0123 .

144J.Li,M.Wang,D.SheandY.Zhao,Structural functionalizationofindustrialsowoodkra ligninfor simpledip-coatingofureaashighlyefficientnitrogen fertilizer, Ind.CropsProd.,2017, 109,255–265,DOI: 10.1016/j.indcrop.2017.08.011 .

145S.Hajirahimkhan,C.C.XuandP.J.Ragogna,Ultraviolet CurableCoatingsofModiedLignin, ACSSustainable Chem.Eng.,2018, 6(11),14685–14694,DOI: 10.1021/ acssuschemeng.8b03252

146Y.Han,L.Yuan,G.Li, etal.,Renewablepolymersfrom lignin via copper-freethermalclickchemistry, Polymer, 2016, 83,92–100,DOI: 10.1016/j.polymer.2015.12.010 .

147X.Chen,Z.Li,L.Zhang,H.Wang,C.Qiu,X.FanandS.Sun, Preparationofanovellignin-based lmwithhighsolid contentanditsphysicochemicalcharacteristics, Ind. CropsProd.,2021, 164,DOI: 10.1016/ j.indcrop.2021.113396.

148C.A.Cateto,M.F.Barreiro,C.Ottati,M.Lopretti, A.E.RodriguesandM.N.Belgacem,Lignin-basedrigid polyurethanefoamswithimprovedbiodegradation, J. Cell.Plast.,2014, 50(1),81–95,DOI: 10.1177/ 0021955X13504774.

149M.M.Rahman,H.ZahirandK.H.Do,Synthesisand propertiesofwaterbornepolyurethane(WBPU)/modied ligninamine(MLA)adhesive:Apromisingadhesive material, Polymers,2016, 8(9),DOI: 10.3390/polym8090318

150N.Mahmood,Z.Yuan,J.SchmidtandC.Xu, Depolymerizationofligninsandtheirapplicationsforthe preparationofpolyolsandrigidpolyurethanefoams:A review, RenewableSustainableEnergyRev.,2016, 60,317–329,DOI: 10.1016/j.rser.2016.01.037

151S.E.Klein,J.Rumpf,P.Kusch, etal.,Unmodiedkra ligninisolatedatroomtemperaturefromaqueous solutionforpreparationofhighly exibletransparent polyurethanecoatings, RSCAdv.,2018, 8(71),40765–40777,DOI: 10.1039/C8RA08579J

152S.E.Klein,A.Alzagameem,J.Rumpf,I.Korte, J.KreyenschmidtandM.Schulze,Antimicrobialactivity oflignin-derivedpolyurethanecoatingspreparedfrom unmodiedanddemethylatedlignins, Coatings,2019, 9(8),DOI: 10.3390/coatings9080494

153G.Griffini,V.Passoni,R.Suriano,M.LeviandS.Turri, Polyurethanecoatingsbasedonchemicallyunmodied fractionatedlignin, ACSSustainableChem.Eng.,2015, 3(6),1145–1154,DOI: 10.1021/acssuschemeng.5b00073

12552 | RSCAdv.,2023, 13,12529–12553©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

154Y.Park,W.O.S.DohertyandP.J.Halley,Developingligninbasedresincoatingsandcomposites, Ind.CropsProd., 2008, 27(2),163–167,DOI: 10.1016/j.indcrop.2007.07.021 .

155F.Ferdosian,Y.Zhang,Z.Yuan,M.AndersonandC.C.Xu, Curingkineticsandmechanicalpropertiesofbio-based epoxycompositescomprisinglignin-basedepoxyresins, Eur.Polym.J.,2016, 82,153–165,DOI: 10.1016/ j.eurpolymj.2016.07.014.

156A.Maruhashi,P.Wilson,S.Euclid,G.P.Craunand O.H.Us,LigninBasedCoatingCompositions, USPat, US10913824B2,2021.

157C.Hao,T.Liu,S.Zhang, etal.,AHigh-Lignin-Content, Removable,andGlycol-AssistedRepairableCoatingBased onDynamicCovalentBonds, ChemSusChem,2019, 12(5), 1049–1058,DOI: 10.1002/cssc.201802615

158T.Zou,M.H.Sipponen,A.HennandM. Osterberg,SolventResistantLignin-EpoxyHybridNanoparticlesforCovalent SurfaceModicationandHigh-StrengthParticulate Adhesives, ACSNano,2021, 15(3),4811–4823,DOI: 10.1021/acsnano.0c09500

159O.Fearon,V.Polizzi,P.VandeszandeandA.Kalliola, NordicWoodandBioreneryConference2022, Lignin BasedPolyacidstoSubstituteFossil-BasedMaterialsin CoatingsFormulations,2022,pp.162–166.

160R.Yan,Y.Liu,B.Liu, etal.,Improvedperformanceofdualcuredorganosolvlignin-basedepoxyacrylatecoatings, Compos.Commun.,2018, 10,52–56,DOI: 10.1016/ j.coco.2018.04.006.

161L.Szab´o,S.Imanishi,F.Tetsuo,D.Hirose,H.Ueda, T.Tsukegi,K.NinomiyaandK.Takahashi,Ligninas afunctionalgreencoatingoncarbon bersurfaceto improveinterfacialadhesionincarbon berreinforced polymers, Materials,2019, 12(1),DOI: 10.3390/ ma12010159.

162S.Li,W.Xie,M.Wilt,J.A.WilloughbyandO.J.Rojas, ThermallyStableandToughCoatingsandFilmsUsing

VinylSilylatedLignin, ACSSustainableChem.Eng.,2018, 6(2),1988–1998,DOI: 10.1021/acssuschemeng.7b03387 .

163F.Jos´eBorgesGomes,R.E.deSouza,E.O.Britoand R.C.CostaLelis,Areviewonligninsourcesanduses, J. Appl.Biol.Biotechnol.,2020, 7(C),100–105,DOI: 10.15406/ jabb.2020.07.00222

164L.Cao,I.K.M.Yu,Y.Liu, etal.,Ligninvalorizationforthe productionofrenewablechemicals:State-of-the-artreview andfutureprospects, Bioresour.Technol.,2018, 269,465–475,DOI: 10.1016/j.biortech.2018.08.065

165H.SadeghifarandA.Ragauskas,LigninasaUVLight blocker-areview, Polymers,2020, 12(5),1–10,DOI: 10.3390/POLYM12051134 .

166M.P.Vinardell,V.UgartondoandM.Mitjans,Potential applicationsofantioxidantligninsfromdifferentsources, Ind.CropsProd.,2008, 27(2),220–223,DOI: 10.1016/ j.indcrop.2007.07.011.

167A.M.Puziy,O.I.PoddubnayaandO.Sevastyanova,Carbon MaterialsfromTechnicalLignins:RecentAdvances, Top. Curr.Chem.,2018, 376(4),1–48,DOI: 10.1007/s41061-0180210-7

168L.Ferry,G.Dorez,A.Taguet,B.OtazaghineandJ.M.LopezCuesta,Chemicalmodicationofligninbyphosphorus moleculestoimprovethe rebehaviorofpolybutylene succinate, Polym.Degrad.Stab.,2015, 113,135–143,DOI: 10.1016/j.polymdegradstab.2014.12.015

169E.Lizundia,M.H.Sipponen,L.G.Greca, etal., Multifunctionallignin-basednanocompositesand nanohybrids, GreenChem.,2021, 23(18),6698–6760,DOI: 10.1039/d1gc01684a

170K.Shikinaka,M.NakamuraandY.Otsuka,StrongUV absorptionbynanoparticulatedlignininpolymer lms withreinforcementofmechanicalproperties, Polymer, 2020, 190,122254,DOI: 10.1016/j.polymer.2020.122254 . ©2023TheAuthor(s).PublishedbytheRoyalSocietyofChemistry

Volume 10, Number 3, 2024 Fit-for-Use

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Paper Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

nanomaterials

Article Fit-for-UseNanofibrillatedCellulosefromRecoveredPaper

AnaBalea 1 ,M.ConcepcionMonte 1 ,ElenaFuente 1 ,JoseLuisSanchez-Salvador 1 ,QuimTarrés 2 , PereMutjé 2 ,MarcDelgado-Aguilar 2 andCarlosNegro 1, *

Citation: Balea,A.;Monte,M.C.; Fuente,E.;Sanchez-Salvador,J.L.; Tarrés,Q.;Mutjé,P.;Delgado-Aguilar, M.;Negro,C.Fit-for-Use NanofibrillatedCellulosefrom RecoveredPaper. Nanomaterials 2023, 13,2536.https://doi.org/10.3390/ nano13182536

AcademicEditor:HirotakaKoga

Received:4August2023

Revised:6September2023

Accepted:8September2023

Published:11September2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

1 DepartmentofChemicalEngineeringandMaterials,UniversityComplutenseofMadrid,AvdaComplutense s/n,28040Madrid,Spain;helenafg@ucm.es(E.F.)

2 LEPAMAPResearchGroup,UniversityofGirona,MariaAurèliaCapmany,6,17003Girona,Spain; pere.mutje@udg.edu(P.M.);m.delgado@udg.edu(M.D.-A.)

* Correspondence:cnegro@ucm.es;Tel.:+34-913944242

Abstract: Thecost-effectiveimplementationofnanofibrillatedcellulose(CNF)atindustrialscale requiresoptimizingthequalityofthenanofibersaccordingtotheirfinalapplication.Therefore,a portfolioofCNFswithdifferentqualitiesisnecessary,aswellasfurtherknowledgeabouthowto obtaineachofthemainqualities.Thispaperpresentstheinfluenceofvariousproductiontechniques onthemorphologicalcharacteristicsandpropertiesofCNFsproducedfromamixtureofrecycled fibers.Fivedifferentpretreatmentshavebeeninvestigated:amechanicalpretreatment(PFIrefining), twoenzymatichydrolysisstrategies,andTEMPO-mediatedoxidationundertwodifferentNaClO concentrations.Foreachpretreatment,fivehigh-pressurehomogenization(HPH)conditionshave beenconsidered.Ourresultsshowthatthepretreatmentdeterminestheyieldandthepotentialof HPHtoenhancefibrillationand,therefore,thefinalCNFproperties.Theseresultsenableoneto selectthemosteffectiveproductionmethodwiththehighestyieldofproducedCNFsfromrecovered paperforthedesiredCNFqualityindiverseapplications.

Keywords: recycledfibers;nanocellulose;enzymaticpretreatments;TEMPO-mediatedoxidation; refining;high-pressurehomogenization

1.Introduction

Papermakingisoneofthemostsustainableindustriescontributingtothecircular economy[1].Recoveredpaperiswidelyrecognizedasanefficientandeco-friendlycellulosesourceforpaperandboardproduction.InEurope,55.9%ofrawmaterialscome fromrecoveredpaper,whichcorrespondstoapaperrecyclingrateof70.5%[2].InSpain, thesevaluesareevenhigher(92%and71%,respectively).Theuseofrecoveredpaperas rawmaterialpresentsseveralchallenges,duetotherelativelylowqualityofthesecondary fibersafterseveralrecyclingcycles,whichmainlyaffectthemechanicalpropertiesofthe recycledpaperduetoshorteningandhornificationofthefibersduringeachrecycling process.Toenhancethequalityoftherecycledfibersandachievethedesiredproperties inthefinalproduct,papermakersusefiberrefiningandstrengtheningadditives.Inthis context,extensiveresearchhasbeencarriedoutinthelastdecadetoexplorethepotential ofnanocellulose-basedproductsaspaper-reinforcedadditives.Alotofdifferentnanomaterialshavebeendevelopmentduringthelastthreedecades,suchascarbonnanotubes,2D mono-elementalgraphene-likematerials,and2D β-Indiumsulfidenanoplates[3,4].Some ofthesehavebeencombinedwithnanocellulosetoimprovepaperpropertiesortodevelop newmaterials[5].ItiswellknownthatCNFsimproveinterfiberbonding,significantly increasingthemechanicalpropertiesoftherecycledproducts[6].However,theuseof CNFisstilllimitedatindustrialscale.Thisismainlyduetothehighcostofnanocellulose productsandtosomelimitsintheirapplicationmainlyduetotheireffectondrainage andthedispersiondegreeofthe3Dnetworkashasbeenrecentlydemonstrated[7].To

minimizetheselimitations,newapproachesarebeingdevelopedbasedontheinsitu productionanduseoffit-for-useCNFs.

AlthoughCNFscanbeobtainedfromawidevarietyofcellulosesourcessuchas wood(hardwoodandsoftwood),seedfibers(cotton,coir,etc.),bastfibers(flax,hemp,jute, kenaf,ramie,etc.),grasses(bagasse,bamboo,etc.),marineanimals(tunicate),algae,fungi, invertebrates,andbacteria[8],thetrendforinsituproductionisfocusedontheutilization ofvirginandsecondarypulps,dependingontheplantlocation[6].Althoughvirginpulps havebeenwidelystudiedforCNFproductionatindustrialscale,furtherknowledgerelated totheuseofrecycledpulpisstillnecessary.

ThemethodsusedtoobtainCNFsincludeavarietyoffabricationtechniques,eachof whichiscategorizedusingdifferentlabelsliketop-downandbottom-upapproaches,oraccordingtotheirnature,whichincludesphysical,chemical,andbiologicalmethods,oreven dependingonwhethertheyinvolvespinningornon-spinningtechniques[9].Spinning methodscanbefurthercategorizedintoelectrospinningtechniques,whichutilizeelectric voltageforfibermorphologycontrol;andalternativespinningapproacheswhichemploy forceslikepressurizedair(bubbleelectrospinning)orcentrifugalforces(centrifugalspinning)[10].Amongallofthem,physicalmethods(top-downapproaches)basedonintensive mechanicalpressure(high-pressurehomogenization,microfluidization,grinding,refining, ormilling)arecommonlyusedtoobtainCNFsfromvirginandsecondarycellulosefibers. Priortothismechanicaltreatment,variouspretreatments,includingchemical,enzymatic, mechanical,orcombinedapproaches,canbeemployedtoenhancenanofibrillationand theseparationoftheindividualnanofibers.Furthermore,thepretreatmentscontributeto reducetheenergydemandofthesubsequentmechanicaltreatment[11].

Ontheotherhand,thefinalpropertiesoftheCNFsareinfluencedbyseveralfactors, includingthecelluloserawmaterialused,thetypeandintensityofthepretreatment,and thetypeandseverityofthemechanicaldefibrillationprocess.Thesevariablescollectively determinethefinalcharacteristicsoftheproducedCNFs[12].Differentpropertiesare requiredbasedonthefinalapplication.Forexample,themedicalandelectronicfields requireCNFswithhighpurity,fibrillationyield,andhomogeneity[13,14]andtransparent nanopaperproductionrequireshightransmittance[15],butthesepropertiesarenotalways keyforreinforcingsomecompositesorpaperproducts[6].

ThereareseveralstudiesrelatedtotheuseofrecoveredpapertoobtainCNFsatlab scale.Someresearchershaveemployeddifferenttypesofrecycledcellulosicmaterials, suchasrecyclednewspapers[16];recycledpulp[17];wastepaper[18,19];oldcorrugated boards[20,21]orrecycledmilk-containerboard[22].Inthesestudies,CNFswereobtained throughultrafinegrindingorsonicationasmechanicaltreatments,withouttheapplication ofanypretreatment.OnlyUkkolaetal.(2021)pretreatedthepulpsinadeepeutectic solventsolutionbasedoncholinechlorideandureatoobtainnanofoamsfromcrosslinked CNFs[22].Recentstudieshavefocusedonutilizingdeinkingpulp(DIP)asrawmaterial toobtainCNFs.LeVanetal.(2018)successfullyobtainedCNFsbyemployingTEMPOmediatedoxidationfollowedbyhomogenizationinadigitalhomogenizermixer[23]. Angetal.(2020and2021)producedCNFsthroughacombinationofmechanicalpretreatment(PFIrefining)andhigh-pressurehomogenization(HPH)[24,25].Zambranoetal. (2021)obtainedCNFssolelythroughultrafinegrindingusingDIPasrawmaterial[26]. Baleaetal.(2019)producedCNFsfromtwodifferenttypesofrecycledpulps,oldnewsprint (ONP)andoldcorrugatedcontainer(OCC),atdifferentTEMPO-mediatedoxidationlevelspriortothehomogenizationprocess[6].Thestateoftheartshowsafragmentated knowledgefromwhichisnotpossibletoproducefit-for-useCNFs.

Theeffectofdifferentpretreatmentsandhomogenizationconditionshavebeenstudiedforvirginbleachedsoftwoodandhardwoodchemicalpulps[27]andthermomechanicalpulp[28]whichalsodeterminedtheenergyappliedforthenanofibrillationprocess. However,tothebestofourknowledge,theimpactoftreatmentintensity,involvingvariouspretreatmentmethodsandhomogenizationconditionsappliedtorecoveredpaper-

board,onthepropertiesoftheresultingCNFsandtheassociatedenergyconsumption remainsunexplored.

Recently,Angetal.(2021)producedseveralCNFnanopapersfromDIPusingdifferent combinationsofmechanicalrefining(10,000,30,000,and50,000revolutionsinPFI)and HPHat1000bar(1passand3passes)[24].Theyfoundthatthenanofibrillationefficiency forrecycledfiberswaslowerthanthatforvirginbleachedeucalyptuskraftpulpdue tohornificationduringpapermaking.Therefore,resultsfromvirginpulpscannotbe transferredtorecycledpulp,sincethepulpcompositionisdifferent,aspaperboardcontains moreligninandashes,andthefibersarehornifiedduetothedryingprocess.Therefore, recycledpulpswillbehavedifferentlyduringCNFproduction.

Intermsofenergyconsumption,Jossetetal.(2014)conductedanenergy-related studyonthedirectfibrillationofrecyclednewspaperandwheatstrawthroughagrinding process[16].TheycomparedtheCNFsobtainedfromtheserawmaterialswithCNFs derivedfromableachedwoodpulp(ECF)byevaluatingthemechanicalpropertiesand specificsurfaceareasofthefibrillatedmaterials.Thestudyfoundthattheenergyinputs requiredtoachieveoptimalmechanicalpropertiesinthepreparedfilmsfromrecycled newspaperwerehighercomparedtotheECF,rangingfromapproximately4to5kWh/kg. AnotherstudybyOzolaetal.(2019)estimatedthattheproductionofCNFsfromrecycled pulp,withoutdeinking,hadhigherspecificenergyconsumption(0.865kWh/kgwaste) comparedtotheproductionofotherproductssuchaseggpackagingorcardboard[29]. Overall,thesestudiesdemonstratethattheproductionofCNFsfromdifferenttypesof recycledpapersisfeasibleintermsofimprovingthequalityofthefinalproduct.However, itisimportanttoconsidertheenergyconsumptionassociatedwiththespecificproduction processesforeffectiveresourcemanagementandsustainability.

Thisresearchaimstogeneratenewknowledgeontheeffectsofdifferenttreatment combinationsontheCNFpropertiesobtainedfromrecoveredpaperboard.Fivedifferent pretreatmentsareconsidered,includingamechanicalpretreatmentthroughPFIrefining (20,000revolutions),twoenzymatichydrolysisapproaches(80mg/kgand240mg/kg), andTEMPO-mediatedoxidationundertwodifferentconditions(5molNaClO/kgand 15molNaClO/kg).ThestudyexploresfivedifferentconditionsfortheHPHmechanical processforeachpretreatmentmethod.Furthermore,theenergyrequirementsassociated withthedifferenttreatmentprocessesareassessed.Thisinformationwillfacilitatethe selectionofafibrillationprocessbasedontherequiredCNFproperties.

2.MaterialsandMethods

2.1.Materials

OCCwasselectedastherecycledcellulosesourceasitisoneofthemostsignificant typesofrecoveredpapersforrecycling,anditislistedintheEuropeanListofStandard GradesofRecoveredPaperandBoard(EN643)asGroup1inordinaryqualities(1.05). Linerandfluting,usedinproportionsof35and65%forOCCpulppreparation,were kindlyprovidedbySAICA(Zaragoza,Spain).Thisfluting/linerratioisthemostcommon forcardboardboxes.ThechemicalcompositionoftherecycledpulpispresentedinTable 1 Acommercialmonocomponentenzymecocktail,Novozym476,waskindlysuppliedby NovozymesA/S(Bagsværd,Denmark).Thisenzymecocktailcontains2%(w/v)ofendoβ-1,4-glucanases,withanenzymeactivityof341U/mL.Theotherreagentsutilizedinthis researchwerepurchasedfromSigmaAldrich(Madrid,Spain).

2.2.CelluloseNanofiberProduction

OCCpulpwaspreparedfromamixtureof35%linerand65%flutingOCCpaper bydisintegrationat3%at3000rpmfor20minusingastandardized2Llabpulper.The resultingpulpwasthenadjustedtothedesiredpretreatmentconsistencybydilutingitwith distillatedwaterorfilteringitthroughaqualitativepaperfilterusingaBuchnerfunnel. TheproductionofCNFsinvolvesatwo-stepprocess,beginningwithapretreatmentstage

followedbymechanicaldefibrillationusingHPH.Differentpretreatmentswereexplored, andfivelevelsofHPHenergywereappliedduringtheprocess.

Table1. Chemicalcompositionofrecycledpaperboardpulp.

CompoundPercentage(wt%)

Cellulose56.8 ± 0.4

Hemicelluloses14.0 ± 0.2

Solublelignin4.6 ± 0.2

Klasonlignin11.6 ± 0.2

Extractives1.7 ± 0.1

Ashes11.3 ± 0.4

2.2.1.Pretreatments

ThefivedifferentpretreatmentsconsideredinthestudyaresummarizedinTable 2.

Table2. PretreatmentsstudiedtoproduceCNFsfromrecycledpaperboard.

Pretreatment Identification DescriptionIntensityConditions

Mec

RefiningatPFIrefiner ISOstandard5264-2 (2011) 20,000revolutions

Enz_80 Enzymatichydrolysis

Doseofenzyme: 80mg/kg

PC=5%

pH=7

Time=4h

Enz_240240mg/kg

TEMPO_5

Denaturalization (80 ◦ C,15min) Pulpwashing

T=50 ◦ C

5molNaClO/kg

TEMPO_1515molNaClO/kg

TEMPO-mediated oxidation Pulpwashingwith waterandfiltration uptopH=7

Allthedosesareexpressedasdryagentperkgofdrypulp.PC:Pulpconsistency.

PC=1%

pH=10

T=25 ◦ C

ThemechanicalpretreatmentwasconductedinaccordancewiththeISOstandard 5264-2(2011)[30];theenzymatichydrolysisprocedurefollowedthemethodologyoutlined inTarrésetal.(2016)[31]andTEMPO-mediatedoxidationwasperformedfollowingthe methoddescribedbySaitoetal.(2007)[32].

2.2.2.High-PressureHomogenization

Inthisresearch,atotalof25differenttypesofCNFswereproduced.Thenanofibrillationofthesampleswascarriedoutbypassingthepretreatedpulpsuspensionsat1%of consistencythroughaPANDAPlus2000laboratoryhomogenizer(GeaNiroSoavi,Italy) usingdifferentpressuresequencesasdetailedinTable 3

AllCNFsproducedwerenamedusingthefollowingnomenclature:Pretreatment_doseCNF-HPHsequencenumber.Asanexampleofthis,CNFsproducedthroughenzymatic hydrolysispretreatmentusinganenzymedosageof80mg/kg,followedbyaHPHsequenceofthreepassesat300bar,threepassesat600bar,andthreepassesat900bar,are designatedEnz_80-CNF-5.

TheenergyconsumptionoftheHPHprocesswascontinuouslymonitoredusinga CircutorCVM-C10measuringdevice(Barcelona,Spain),providingreal-timereadingsof

theconsumedenergy.TheenergyconsumptionwasrecordedaftereveryHPHcycleand wasthennormalizedtotheprocesseddrymass.

Table3. HPHconditionstoproduceCNFs.

HPHSequenceNumber

NumberofCycles

2.3.CharacterizationofthePulps

2.3.1.ChemicalComposition

Thecompositionanalysisofbothunpretreatedandpretreatedpulps(Table 4)was conductedaccordingtoTAPPIT204forextractivedetermination,TAPPIT211forashdetermination,andNREL/TP-510-42618foradditionallaboratoryanalytical procedures[33–35] Briefly,theextractivesweredeterminedusingtheSoxhletextractionmethodwithacetone assolvent.Theashcontentwasdeterminedthroughcalcinationat525 ◦ C.Forlignin analysis,thefollowingstepswerefollowed:(i)acidhydrolysisof0.3gofdrypulpusing 3mL of72%H2 SO4 for1hat30 ◦ C,(ii)dilutionwith84gofdistilledwatertoprevent phaseseparationbetweenhighandlowconcentrationacidlayers,and(iii)autoclavingat 121 ◦ Cfor1h,followedbyfiltrationtodetermineKlasonligninbydryingandweighing thefiltrationcake.Thepercentageofsolublelignin,cellulose,andhemicelluloseweredeterminedbyanalyzingthefiltrate;solubleligninwasobtainedbymeasuringtheabsorbance ofthefiltrateat240nmusingaUV–visspectrophotometer.Celluloseandhemicellulose wereanalyzedusinghigh-performanceliquidchromatography(HPLC)ofthefiltrateafter neutralizationwithCaCO3 andmicrofiltrationthrougha0.2 μmfilter.

Table4. Compositionofpretreatedpulps.

ExtractivesAshesSolubleLigninKlasonLigninCelluloseHemi-Cellulose

Thebehaviorofpretreatedpulpsisinfluencedbythefunctionalgroupspresentonthe surfaceofcellulose.Therefore,conductimetrictitrationwasusedtodeterminethecontent ofcarboxylgroupspergramofthepretreatedpulps,byfollowingthemethoddescribed inpreviousstudies.Inthismethod,adriedsampleweighingbetween0.05and0.1gwas suspendedin15mLof0.01NHClsolutionandstirredfor10minandthentakentoa conductivitysensor.Thetitrationwasperformedbyconsecutivelyadding0.1mLof0.05N NaOHsolutiontothesuspensionuntilanoticeableincreaseinconductivitywasobserved. Asthealkalineutralizesthechlorohydricacid,theconductivityinitiallydecreases.Once theacidgroupsareneutralized,theconductivityremainsconstant.Finally,theexcessof NaOHleadstoanincreaseinconductivity.Thenumberofcarboxylgroupswascalculated fromthetitrationcurve,whichrelatesconductivityvs.amount(meq)ofNaOHadded, followingthemethodologydescribedbyHabibietal.(2006)[36].

2.3.2.Morphology

Themorphologicalanalysisencompassedseveralparameters,includingaverage lengthweightedinlength(lengthw ),diameter(d),coarseness,andfinepercentage(%). ThesemeasurementsweredeterminedusingimageanalysisperformedwithaMorFi Compactanalyzer(TechPap,Gières,France).However,astheresolutionofMorFiimages waslimitedandwewereunabletoaccuratelymeasurenanofibers,theaspectratioofthe pretreatedsampleswasestimatedusingthemeasurementofthegelpoint(GP)basedonthe methodologydevelopedbyVaranasietal.(2013)andSanchez-Salvadoretal.(2021)[37,38].

Furthermore,opticalimagesofthepretreatedpulpsweretakenusingaZeissAxio Lab.A1opticalmicroscopeandacolormicroscopecameraZeissAxioCamERc5s(Carl ZeissMicroscopyGmbH,Göttingen,Germany).Subsequently,theopticalimageswere processedusingtheversion1.53iofImageJsoftwarepackagetoenhancetheclarityofthe imagesforfurtheranalysis.

2.4.CharacterizationoftheCNFs

CharacterizationoftheCNFsinvolvedthemeasurementofseveralproperties,includingnanofibrillationyield,transmittanceat600nm,cationicdemand(CD),andaspectratio oftheCNFsuspensions,followingthemethodsdescribedinpreviousstudies[6,27].To determinethenanofibrillationyield,CNFsuspensionwasdilutedto0.1wt.%andcentrifugatedat4500 × g for30mintoisolatenanofibrillatedcellulosefromnon-nanofibrillated components,whichsettledinthesediment.Theweightofthesedimentwasmeasuredto calculatethenanofibrillationyield.AUV–visShimadzuspectrophotometerUV-160Awas usedtomeasurethetransmittanceoftheCNFsuspensionsattwodifferentwavelengths. TheanioniccharacterofCNFscorrelateswiththeirCD,whichwasdeterminedviaback titration,withpolydiallyldimethylammoniumchloride(PDADMAC)andpolyvinylsulfate potassiumsaltusingaMütekPCD04particlechargedetector(BTGInstruments,Weßling, Germany).TheaspectratiooftheCNFswasdeterminedusingarecentlydeveloped methodologybySanchez-Salvadoretal.(2021)[38].Thisapproachmodifiedthetraditional GPmethodologybydyingthefiberswithcrystalviolet,enablingthevisualizationofthe fibrilsedimentationandoptimizingthesedimentationtimetoensurecompletesettling.

AnopticalmicroscopewasusedtoobtainimagesfromCNFhydrogelsforqualitative supportofourresults.Inthiscase,theparametersandmethodusedforobtainingthese imageswereconsistentwiththoseutilizedforthepretreatedpulps.Additionally,the opticalimagesunderwentprocessingwiththeImageJsoftwarepackagetoseamlessly eliminatethecontinuousbackground.Thiswasachievedbyapplyingthe“Process› SubtractBackground”commandfromthemenu,withthespecifiedparametersincludinga rollingballradiusof50pixels,alightbackground,andaslidingparaboloid.

FortheobservationofCNFs,aJEOLJEM1400PLUStransmissionelectronmicroscopy(TEM)device(Tokyo,Japan)wasutilizedattheSpanishNationalCentreof ElectronicMicroscopy(CNME),followingthemethodologydevelopedbyCampanoetal. (2020)[39].TheTEMmicroscopeoperatedat100kVacceleratingvoltage,withanOrius SC200CCDcameramanufacturedbyGatan(Pleasanton,CA,USA),featuringaresolution of2048 × 2048pixelsandapixelsizeof7.4microns.

WiththeTEMimagesobtained,projectedfractaldimension(D2)wasmeasured.D2 givesanideaofthe“treestructure”ofthesample,whichcaninfluencethemechanical propertiesofthematerial[40].Theacquiredimageswerealsoprocessedandanalyzedwith ImageJsoftware,editingimagestoachievegooddefinitionandhighcontrastinCNFsand convertingtheseinto8-bitimages.Theywerebinarizedthroughathresholdandcorrected withaclosefilter.Elementsintheimageswereselectedindividuallyandcopiedintoa separatefile.Thefractalanalysiswasperformedwiththefractalboxcountplugin.To reduceprocessingtimes,thisprocedurewasautomatizedthroughascript[41,42].

3.ResultsandDiscussion

3.1.PretreatmentEffectsonFiberMorphologyandCarboxylContentofthePulp

Table 4 showstheeffectofthedifferentpretreatmentsonthechemicalcomposition ofthepulp.Thewashingstagefollowedtheenzymaticpretreatmentstoremovepart oftheashes,whichexplainsthereductioninashcontent.Thisreductioninashescould notbedetectedbySanchez-Salvadoretal.(2022)becauseofthelowashcontentofthe virginpulps[27].Parketal.(2022)observedthatashinrecycledpaperhasahighaffinity forcellulaseenzymesandattachedtothem,reducingenzymeefficiency[43].Thus,ash attachedtotheenzymeisremovedduringpulpwashing.InthecaseofTEMPOpretreatments,theincreaseinashcontentisattributedtotheproductionofNaClasbyproduct duringtheoxidationprocessandtheadditionofNaBr,bothofwhicharenotcompletely removedduringwashing[44].Partoftheextractivescouldbedegradedorsolubilizedby theenzymes,asshowninTable 4.Consequently,thisledtoanincreaseinthepercentage ofcellulose.However,excessiveamountsofenzymesorNaClO,particularlyatahigh TEMPO-mediatedoxidationdegree(TEMPO_15),couldresultintheexcessivedegradation ofcellulosechains,leadingtotheformationofsolubleoligosaccharidesorsugars,which weresubsequentlyremovedduringthewashingstage.Hemicelluloseseemstoremain intactafterthepretreatmentprocess.

Figure 1 showsthecarboxylcontentofthepretreatedpulps.Thetypeofpretreatment anditsseveritydeterminethefinalquantityofcarboxylgroups.Mechanicalandenzymatic pretreatmentsdonotcontributetothegenerationofcarboxylgroups.Incontrast,the numberofcarboxylgroupsgeneratedthroughTEMPO-mediatedoxidationincreaseswith thedosageoftheoxidant,althoughnottothesameextentastheNaClOdosage.This discrepancyarisesbecauseaportionoftheNaClOisconsumedintheoxidationofother componentsfoundinrecoveredpapers,suchasdissolvedligninandcolloidalmaterial[45]. Therefore,onlyafractionoftheNaClOisavailabletooxidizehydroxylgroupstocarboxyl groups.Furthermore,thereisasaturationphenomenon;whenthedosageofNaClO surpassesathreshold,theoverdosedNaClOremainsinthemediumandcausessecondary reactionsinsteadofeffectivelyoxidizingcellulose.

Figure1. Carboxyliccontentoftherecycledfibersaftereachpretreatment.

Table 5 andFigure 2 presentthemorphologicalparametersofthefibersandtheoptical imagesofthepretreatedfibersproducedbydifferentpretreatments.Table 5 showsfibers andfineswhicharedetectablebytheMorFianalyzer,whosedetectionlimitisaround5 μm (forlength).

Table5. Morphologicalcharacteristicsofthepulpspretreatedwithrefining,enzymatichydrolysis, andTEMPO-mediatedoxidationpriortotheHPH.

Lengthw :lengthweightedinlength.

Figure2. Opticalimagesoftheinitialrecycledpulpwithoutpretreatment(a)andthepulpsafter differentpretreatments:mechanicalpretreatment(refining)(b);enzymatichydrolysiswith80mg/kg (c);enzymatichydrolysiswith240mg/kg(d);TEMPO-mediatedoxidationwith5NaClO/g(e);and TEMPO-mediatedoxidationwith15mmolNaClO/g(f).

Figure 2 showstheopticalimagesoftheoriginalandpretreatedpulps.Theoriginal fibers(Figure 2a)exhibitedasmoothsurface,withoutnotableexternalfibrillation.In contrast,theMecpulpimage(Figure 2b)showsanextremelyhighdegreeoffibrillation, whichfavorsfine-and-fiberinteraction,aswellastheformationofsmallernetworks. Duringmechanicalrefining,fiberhornificationisreversedsincefibersrecoverpartoftheir swellingability,whichincreasestheircoarseness[46].Fibrillationwasalsoobservedin theEnz_80-andEnz_240-pretreatedpulps,albeittoalesserextent(Figure 2c,d).This factwasalsoobservedbyotherauthors[27],soenzymeshavebeenproposedasan alternativetorefiningtoreducethehornificationeffect.ItisnoticeablethatEnz_240 inducedgreaterfibrillationcomparedtoEnz_80,resultinginareductioninfiberlength (Table 5).Incontrast,TEMPO-mediatedoxidationledtothelowestexternalfibrillation, asthisreactionspecificallyoxidizesthecellulosechains,conferringelectrostaticrepulsive forcesoninterfibrilsthatreducetheenergyrequiredfornanofibrillation(Figure 2d,e),but withoutchangingthefibermorphologyduringthechemicaltreatment.However,athigh dosesofNaClO,someexternalmicrofibrillationonthefiberscanbeobservedduetothe highelectrostaticrepulsiveforcesamongchainsduetothegeneratedcarboxylgroupsin combinationwithhydrodynamicforcesduringpulpwashing.ThisproducessomeCNFs

fromthesmallestfines,asshownbythecleanbackgroundoftheopticalimageinFigure 2f. TheseCNFsarenotvisiblewithanopticalmicroscope.Furthermore,somedegradationof theamorphouspartofthefibersbyside-reactionscancontributetotheexternalfibrillation (Figure 2f),whichisinaccordwiththeabove.

Furthermore,theTEMPO-mediatedoxidationprocessresultedintheproductionof asignificantquantityoffinesandmicrofibersthatdecreasedthevaluesofcoarseness anddiameter.Someofthemicrofibersweretoosmalltobeclearlyobservedwithan opticalmicroscopeandappearedasdotsinFigure 2e.TheopticalimagesofTEMPOmediatedoxidizedpulpsrevealthetreatedfibersretaintheirstructurepriortoundergoing mechanicalnanofibrillation.However,theseimagesdonotshowtheelectrostaticrepulsive forcesoccurringwithinthefibers,whichareresponsibleforinducingnanofibrillationwhen shearingforcesareapplied.

3.2.EffectofthePretreatmentonthePropertiesoftheCelluloseNanofibers

Table 6 showstheresultsofthequantitativecharacterizationofdifferentCNFsproducedusingthehighestintensityofHPHthatcorrespondstoSequence5,asindicatedin Table 3.GPwasusedtodeterminetheaspectratioofthefibersusingcrowdingnumber (CN)theory[37,38,47].

Table6. Propertiesofcellulosenanofibersproducedbydifferentpretreatmentsandfollowedby Sequence5HPH(3passesat300bar+3passesat600bar+3passesat900bar).

(GP) Mec16.215.2202173 Enz_8028.026.323391 Enz_24030.028.9228109 TEMPO_541.438.5110847 TEMPO_1562.359.819087.3

Theaspectratioofthenanofibersintheobtainedhydrogelsdependsonthepulp pretreatment.Themechanicallypretreatedfibers(refinedpulp)showedthehighestaspect ratio,approximately173.Figures 3 and 4 providevisualqualitativeevidenceofthesignificantlyhighaspectratioofthispretreatedpulpcomparedtotheothers.Theyareoptical (Figure 3)andTEMmicrographs(Figure 4)ofthetwenty-fiveCNFsproduced.EachCNF producedwasanalyzedbycapturingtwentyimages,andeachimagein Figures 3 and 4 wasselectedasarepresentativefromthosetwentyimages.

Figures 3 and 4 display,inthecaseofCNFsobtainedbyrefining(Mec),thepresence ofhighlyfibrillatedfiberslongerthan500 μm,withastructurethinnerthanthoseobtained throughenzymaticdegradationfollowedbyHPH.Opticalimagesprovideahighervisual field,butwithlowerresolutionthanTEMimages.Forexample,thefluffshowninFigure 3 mustbeinterpretedwiththeinformationgivenbyTEMimages,whichshowthelevelof nanofibrillationachieved.Figure 5 showstheD2ofrefiningpretreatedpulpatdifferent HPHsequencescomparedtotheotherpretreatments.UndersoftHPH,itispossibleto observeahighD2value,near2.0,duetothefibrilsjoiningtothecellulosebackbone, formingbundles.Increasingtheintensityofhomogenization,adecreaseisobservedinthe D2,associatedwithfibrilsseparationfromthemainstructure.

BothenzymatichydrolysisandTEMPO-mediatedoxidationpretreatmentsresultina decreaseinfiberlengthand,consequently,aspectratiocomparedtomechanicallytreated pulp.Enz_80CNFsuspensioncontainsasubstantialamountofshortandthickfibersasD2 showsinFigure 5,withalowervaluethanforMec.Figure 3 showsthelengthandFigure 4 showsthehigherthicknessoffibersthatremainedaftertheHPHprocess.Amoreintense enzymaticpretreatment,Enz_240,reducesthethickness,asevidencedbyFigure 4,andthe

amountofthesefibersthatremainafterHPH,asshownbytheyieldandtransmittance values(Table 6),resultinginincreasedaspectratiovalues.Thiseffectonthicknessisnot observedinpretreatedpulp,becauseitistheresultofthecombinedeffectsofhydrolysis andHPH.Theinternalnanofibrillationcausedbytheenzymefavorsthedeconstructionof fiberinnanofibersduringHPH.ThiseffectisalsoobservedinFigure 5,inwhichtheD2 increaseswiththeseverityofHPH,whichindicatestheformationofmicrofibrilsaround themainstructureswiththemaintreatment.Ontheotherhand,theorangecolorofEnz-80 andEnz-240CNFsinFigure 6,whichisevendarkerthanMecCNFs,couldbeduetothe degradationproductsfromenzymatichydrolysis,whichcanproduceoligosaccharides fromtheamorphouspartofthecellulosechainsdecreasingthepolymerizationdegreeof cellulose[48].

Figure3. OpticalmicroscopyimagesofCNFs(scalebar:500 μm).

Figure4. TEMimagesofCNFs(scalebar:2 μm).

Figure5. Projectedfractaldimension(D2)calculatedfromTEMimagesatdifferentHPHsequences.

Thus,theaspectratioofTEMPOCNFsisnotablylowerthantheothersandisdecreasedwiththeNaClOdose.Figure 3 showsthatonlyafewmicrofibrilsinTEMPOare detectedbyopticalmicroscopyafterHPH(shownassmalldots)andthesebecomefewer andfewerastheintensityofhomogenizationincreases,asD2indicateswithitsdecrease duetofiberindividualization.However,Figure 4 showsaCNFnetworkbeingresponsible forformingagel,asevidencedbythephotographinFigure 6 forTEMPO-15.Thefactthat noneoftheobtainednanocellulosesweretransparentindicatesthatallofthemhavesome microfibrilsornanocelluloseaggregatesthatdispersedvisiblelight.However,Figure 6 shows,theopacityofthegelsuspensionwaslowerinthecaseofTEMPO-15,asexpected fromthelowernumberofmicrofibersandhigheramountofnanofibrillatedcelluloseand nanocrystals.ThethinandshortnanofibersobservedinFigure 4 forTEMPO-15-CNF-5 accountforthelowaspectratiovaluesoftheseCNFs(Table 6).Thesensitivityofcellulose tomechanicalforcesduringtheHPHprocesswasincreasedbythecelluloseoxidationand theremovalofligninduetotheeffectofNaClOduringTEMPO-mediatedoxidation.The softyellowcolorofTEMPO-pretreatedCNFsindicatesligninremovalduringthetreatment. Infact,atthefirststageofthereaction,NaClOismainlyconsumedinligninoxidation[45]. Asaresult,anintenseHPHtreatmentcausedthehighestcuttingeffect,whichaccounts forthelowestaspectratio(around7)obtainedforTEMPO_15-CNF-5,suggestingthat thesufficientlyintenseTEMPO-mediatedoxidationfollowedbyanintenseHPHprocess producescellulosenanocrystals(CNCs),whichhaveloweraspectratiosthanCNFs[42]. AccordingtoSerra-Pararedaetal.2021,CNCshaveD2valuesunder1.4–1.5,whereasCNFs havehigherD2[42].Withthiscriterion,asFigure 5 shows,TEMPO_15-CNF-5isinthe CNCscalewhileTEMPO_15-CNF-3andTEMPO_15-CNF-4rangefromCNCstoCNFs.

3.3.EffectofHomogenizationSequenceonthePropertiesandMorphologyofCelluloseNanofibers Thehomogenizationpressureandcycleswerevariedinthisstudyfortheisolationof differentCNFqualities.ThefinalgoalistooptimizetheproductionofCNFsbasedonthe desiredmorphologyandpropertiesforspecificapplicationsinthefuture.

Figures 3 and 4 showthesignificantinfluenceofpretreatmentonthenanofibrillation processofthepulpsunderdifferentHPHintensities.TheMecpulpsufferedminimal changesduringHPHprocess,exceptforsomeinternalfibrillationasshowninFigure 4. Althoughthefiberwallstructureafterenzymatictreatmentsexhibitedlimitedsignsof externalfibrillation,thisfibrillationnoticeablyincreasedwiththeintensityofsubsequent mechanicaltreatmentusingHPH(Figure 3).Furthermore,Figure 4 showssomeinternal

Figure6. PhotographsofobtainedCNFhydrogels.

fibrillation.ThemostsignificantimpactofHPHonmorphologywasobservedinTEMPO_5 andTEMPO_15CNFs.Inbothcases,thenumberofvisibleelements(Figure 3)decreased withincreasingHPHintensitywhenobservedthroughopticalmicroscopy.Thisreduction wasattributedtotheintenseinternalnanofibrillationresultingfromthecombinationof shearingforcesandelectrostaticrepulsiveforces.

Figure 7 showshowthepretreatmentdeterminesthepotentialofHPHtoenhancethe propertiesofCNFs.Inallcases,CNFsproducedsolelythroughmechanicalpretreatment andHPHexhibitedthelowestvaluesofyield,transmittance,andCD,butthehighest valuesofaspectratio,measuredbyGP.Mechanicalpretreatmentcausedexternalfibrillation andincreasedtheaccessibilityofcelluloseforsubsequenttreatments.However,ithad limitedimpactontheyieldandtransmittanceofCNFs.Theenergyconsumptionforeach HPHsequencedependsontheappliedpretreatment.EnzymatichydrolysisandTEMPOmediatedoxidationaremoreefficientinreducingenergyconsumptionforhomogenization asshownatFigure 7.ThemostefficientwasTEMPO_15,asexpectedfromthehighanionic groupsintroducedonthefibersthatgenerateelectrostaticrepulsiveforcesamongcellulose chainshelpingnanofibrillation.Nanofibrillationyieldandtransmittanceincreasednotably withenergyconsumptionandwithNaClOusedinTEMPO-mediatedoxidation.However, differencescausedfortheenzymedosewerenotsignificantexceptforaspectratio.This couldindicatethattheeffectoftheenzymeislimitedbyothervariables,forexample,due topooraccessibilityoftheenzymetothecellulosechainsduetothelowerswellingability andthepresenceoflignin.Figure 6 showsthatEnz_80andEnz_240CNFshavedifferent behaviorwithwater.ThelattertendstoreleasewaterwhenitisdepositedinaPetridish. TheinteractionwithwateriskeyforGPdeterminationbecauseitaffectsthesettlingprocess. ThisdiffersfromtheresultsobtainedforvirginpulpsbySanchez-Salvadoretal.(2022) whoobservedanotableincreaseintransmittance,yield,andcationicdemandbyincreasing thedoseofenzymethreefold[27].Thisevidencestheeffectofrawmaterialcompositionin CNFproductionbyenzymatichydrolysis.

TheCDofCNFsisnotsolelyattributedtothepresenceofanionicgroupsonthe nanofibrilsurface,butitisalsoinfluencedbythesurfaceareaavailableforPDADMAC adsorption,whichdependsontheexternalspecificsurfaceoftheCNFs.Thisisevidentfrom theincreaseinCDwiththeintensityofHPHtreatmentandwiththeleveloffibrillation. However,themainfactoraffectingCDisthepretreatmentitself.Itisnotpossibletoachieve ahighCDforTEMPOCNFswiththestudiedcombinationsofpretreatmentfollowedby HPH,duetothesubstantialnumberofanionicchargesgeneratedbyTEMPO-mediated oxidation.TEMPOCNFsalsoexhibitedhigheryieldandtransmittancecomparedtoothers.

However,similaryieldsandtransmittancetoTEMPO_5CNFscanbeobtainedusing enzymatichydrolysisfollowedbyamoreintenseHPHtreatmentbutwitharound50% higherenergyconsumption.Evenmechanicalrefiningoftherecycledpulpfollowedby themostintenseHPHstudiedcanproduceCNFsofthesameorderofmagnitudein termsofyieldandtransmittance,althoughwithalowervaluethanthelessfibrillated TEMPO_5CNF.ThesefindingsdifferfrompreviousstudiesonAspenpulp[28],where TEMPO-mediatedoxidationfollowedbyhighlyintenseHPHenabledayieldof100%and atransmittancearound95%,whichweresignificantlyhigherthanthevaluesobtainedwith recoveredpaper.Inthiscase,pulpcompositionisdifferentduetothehigherpercentageof ashesandthepresenceofhornifiedfibers,whichaffectstheircapacityforbeingfibrillated andtheirinteractionwithwaterandchemicalsandsomedissolvedandcolloidalmaterial. TheeffectofHPHonaspectratioisclearlyinfluencedbythepretreatment.Inthe caseofamechanicalpretreatment,theaspectratioofCNFsincreasedwiththeenergyconsumptionofHPH.Asmalleffectonaspectratiowasobservedforenzymaticpretreatments andanegligibleeffectwasobtainedinthecaseofTEMPO_5.However,theaspectratio decreasedwithHPHintensityforTEMPO_15CNF.TheseCNFsformedahydrogelwhose consistencyincreasedwithHPHintensity,whichindicatesthattherewasa3Dnetworkof CNFsinteractingwithwater.IftherealaspectratioofalltheCNFsinTEMPO_15wasas lowasthatshowninTable 6 andFigure 7,theformationofanetworkwouldbeunlikely.

Theaspectratiodecreased(Figure 7)whiletheconsistencyofthegelincreased(Figure 6). Thisisduetothepresenceofnon-settledparticlesduringthesedimentationexperiments. Tobettermeasuretheaspectratio,different,verydilutedsuspensionswerepreparedand thepeakofsedimentwasmeasuredafteralongtime(attheendofsedimentationprocess). InthecaseofTEMPO_15CNF,thereweresomeverystablenanoparticlesinthesuspension thatdidnotsettleevenafterseveralweeks,andthefinalaspectratiowasnotrealsinceit correspondedtothesettleablematerial.TheincreaseinHPHintensityincreasedthedegree ofnanofibrillationandCDvalues,whichimpliesthatahigheranionicchargeisavailable togeneraterepulsiveforcesamongparticles,whichcaninteractmorestronglywithwater, formingastablegel.

Figure7. Nanofibrillationyield(a),transmittance(b)cationicdemand(c)andaspectratio(d)ofthe differentCNFsuspensions.

4.Conclusions

Bycarefullyselectinganappropriatepretreatmentandlevelofseverity,aswellasan optimalHPHintensity,differentCNFqualitiescanbeproducedfromrecoveredpaperboard. BasedonthepretreatmentandHPHintensity,theresultscanbeusedtopredicttheexpected qualityofCNFs.Recycledpaperboardpulpallowsonetoobtaincost-effectivecoloredand turbidhydrogelswithanotablenanofibrillationyield(63%)andtransmittance(60%),which canbeusedasreinforcingaidsinboard-recyclingmills.Thehornificationofthefibersand thepresenceofashesandligninaffectstheefficiencyofenzymatichydrolysis,withadose of80mg/gofpulpbeingenoughtoobtainthemaximalperformanceoftheproducedCNF. ThecharacteristicsoftheproducedCNFsandtheimpactofHPHonnanofibrillationare bothsignificantlyinfluencedbythepulppretreatment.Thisenablesonetochoosethebest

(a)
b)
(c)
d)

productionstrategywiththehighestyieldintermsofproducedCNFfortherequiredCNF qualityinvariousapplications.

AuthorContributions: Conceptualization,C.N.,A.B.,E.F.andM.D.-A.;Methodology,C.N.,M.C.M., A.B.,E.F.,M.D.-A.andQ.T.;Software,J.L.S.-S.;FormalAnalysis,A.B.andJ.L.S.-S.;Investigation,A.B., J.L.S.-S.andM.C.M.;Writing—OriginalDraftPreparation,A.B.,M.C.M.andE.F.; Writing—Review andEditing,C.N.,E.F.,A.B.,M.D.-A.,Q.T.andJ.L.S.-S.;Visualization,A.B.,M.C.M.andE.F.;Supervision,C.N.andM.D.-A.;ProjectAdministration,C.N.andP.M.;FundingAcquisition,C.N.andP.M. Allauthorshavereadandagreedtothepublishedversionofthemanuscript.

Funding: TheauthorsaregratefulforthefinancialsupportbytheSpanishMinistryofScienceand InnovationtotheprojectsCTQ20217-85654-C2-1-RandCTQ2017-85654-C2-2-R(NANOPROSOST) andPID2020-113850RB-C21andPID2020-113850RB-C22(CON-FUTURO-ES)andtheCommunityof Madrid(projectS2018/EMT-4459“RETOPROSOST2-CM”).

DataAvailabilityStatement: Datacanbemadeavailableuponrequesttothecorrespondingauthor.

Acknowledgments: TheauthorsarethankfultotheSpanishNationalCentreofElectronicMicroscopy forthesupportduringTEMimagesacquisition.MarcDelgado-AguilarandQuimTarrésareSerra HúnterFellows.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesign ofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript;or inthedecisiontopublishtheresults.

References

1. Amândio,M.S.;Pereira,J.M.;Rocha,J.M.;Serafim,L.S.;Xavier,A.M.GettingValuefromPulpandPaperIndustryWastes:Onthe WaytoSustainabilityandCircularEconomy. Energies 2022, 15,4105.[CrossRef]

2. CEPI.KeyStatistics2022.EuropeanPulpandPaperIndustry.Brussels,Belgium.2022.Availableonline: https://www.cepi.org/ wp-content/uploads/2023/2007/2022-Key-Statistics-FINAL.pdf (accessedon15July2023).

3. Li,X.;Han,Y.;Shi,Z.;An,M.;Chen,E.;Feng,J.;Wang,Q.J. β-In2S3NanoplatesforUltrafastPhotonics. ACSAppl.NanoMater. 2022, 5,3229–3236.[CrossRef]

4. Zhang,H.;Sun,S.;Shang,X.;Guo,B.;Li,X.;Chen,X.;Jiang,S.;Zhang,H.;Ågren,H.;Zhang,W.Ultrafastphotonicsapplications ofemerging2D-Xenesbeyondgraphene. Nanophotonics 2022, 11,1261–1284.[CrossRef]

5. Trache,D.;Tarchoun,A.F.;Abdelaziz,A.;Bessa,W.;Hussin,M.H.;Brosse,N.;Thakur,V.K.Cellulosenanofibrils–graphene hybrids:Recentadvancesinfabrication,properties,andapplications. Nanoscale 2022, 14,12515–12546.[CrossRef]

6. Balea,A.;Sanchez-Salvador,J.L.;Monte,M.C.;Merayo,N.;Negro,C.;Blanco,A.InSituProductionandApplicationofCellulose NanofiberstoImproveRecycledPaperProduction. Molecules 2019, 24,1800.[CrossRef]

7. Das,A.K.;Islam,M.N.;Ashaduzzaman,M.;Nazhad,M.M.Nanocellulose:Itsapplications,consequencesandchallengesin papermaking. J.Packag.Technol.Res. 2020, 4,253–260.[CrossRef]

8. Pennells,J.;Godwin,I.D.;Amiralian,N.;Martin,D.J.Trendsintheproductionofcellulosenanofibersfromnon-woodsources. Cellulose 2020, 27,575–593.[CrossRef]

9. Barhoum,A.;Pal,K.;Rahier,H.;Uludag,H.;Kim,I.S.;Bechelany,M.Nanofibersasnew-generationmaterials:Fromspinningand nano-spinningfabricationtechniquestoemergingapplications. Appl.Mater.Today 2019, 17,1–35.[CrossRef]

10. Stojanovska,E.;Canbay,E.;Pampal,E.S.;Calisir,M.D.;Agma,O.;Polat,Y.;Simsek,R.;Gundogdu,N.S.;Akgul,Y.;Kilic,A.A reviewonnon-electronanofibrespinningtechniques. RSCAdv. 2016, 6,83783–83801.[CrossRef]

11. DjafariPetroudy,S.R.;Chabot,B.;Loranger,E.;Naebe,M.;Shojaeiarani,J.;Gharehkhani,S.;Ahvazi,B.;Hu,J.;Thomas,S. RecentAdvancesinCelluloseNanofibersPreparationthroughEnergy-EfficientApproaches:AReview. Energies 2021, 14,6792. [CrossRef]

12. Kumar,V.;Pathak,P.;Bhardwaj,N.K.Wastepaper:Anunderutilizedbutpromisingsourcefornanocellulosemining. Waste Manag. 2020, 102,281–303.[CrossRef][PubMed]

13. Moohan,J.;Stewart,S.A.;Espinosa,E.;Rosal,A.;Rodríguez,A.;Larrañeta,E.;Donnelly,R.F.;Domínguez-Robles,J.Cellulose nanofibersandotherbiopolymersforbiomedicalapplications.Areview. Appl.Sci. 2020, 10,65.[CrossRef]

14. Zhang,C.;Cha,R.;Li,R.;Tang,L.;Long,K.;Zhang,Z.;Zhang,L.;Jiang,X.Cellophaneornanopaper:Whichisbetterforthe substratesofflexibleelectronicdevices? ACSSustain.Chem.Eng. 2020, 8,7774–7784.[CrossRef]

15. Liu,W.;Liu,K.;Du,H.;Zheng,T.;Zhang,N.;Xu,T.;Pang,B.;Zhang,X.;Si,C.;Zhang,K.Cellulosenanopaper:Fabrication, functionalization,andapplications. Nano-MicroLett. 2022, 14,104.[CrossRef]

16. Josset,S.;Orsolini,P.;Siqueira,G.;Tejado,A.;Tingaut,P.;Zimmermann,T.Energyconsumptionofthenanofibrillationofbleached pulp,wheatstrawandrecyclednewspaperthroughagrindingprocess. Nord.PulpPap.Res.J. 2014, 29,167–175.[CrossRef]

17. Portela,I.;Alriols,M.G.;Labidi,J.;Llano-Ponte,R.Cellulosenanofibersfromrecycledcellulosepulp. Chem.Eng.Trans. 2015, 45, 937–942.

2023, 13,2536

18. Hietala,M.;Varrio,K.;Berglund,L.;Soini,J.;Oksman,K.Potentialofmunicipalsolidwastepaperasrawmaterialforproduction ofcellulosenanofibres. WasteManag. 2018, 80,319–326.[CrossRef]

19. Yasim-Anuar,T.A.T.;Sharip,N.S.;Megashah,L.;Ariffin,H.;Nor,N.A.M.Cellulosenanofibersfromwastewaperandtheir utilizationasreinforcementmaterialsinpoly((R)-3hydroxybutyrate-co-(R)-3hydroxyhexanoatebionanocomposite. PertanikaJ. Sci.Technol 2020, 28,259–272.[CrossRef]

20. Yousefhashemi,S.M.;Khosravani,A.;Yousefi,H.Isolationoflignocellulosenanofiberfromrecycledoldcorrugatedcontainerand itsinteractionwithcationicstarch–nanosilicacombinationtomakepaperboard. Cellulose 2019, 26,7207–7221.[CrossRef]

21. Dölle,K.;Darius,J.;Medina,R.C.;Henkler,O.;Day,J.AStudyonLaboratoryTypePaperMachineUsingNanoFibrillated CellulosefromRecycledOldCorrugatedContainerboardasBioAdditiveinBoardProduction. J.Eng.Res.Rep. 2023, 24,46–55. [CrossRef]

22. Ukkola,J.;Lampimäki,M.;Laitinen,O.;Vainio,T.;Kangasluoma,J.;Siivola,E.;Petäjä,T.;Liimatainen,H.High-performance andsustainableaerosolfiltersbasedonhierarchicalandcrosslinkednanofoamsofcellulosenanofibers. J.Clean.Prod. 2021, 310,127498.[CrossRef]

23. LeVan,H.A.I.;Kafy,A.;Zhai,L.;Kim,J.W.;Muthoka,R.M.;Kim,J.Fabricationandcharacterizationofcellulosenanofibersfrom recycledandnativecelluloseresourcesusingtempooxidation. Cellul.Chem.Technol. 2018, 52,215–221.

24. Ang,S.;Ghosh,D.;Haritos,V.;Batchelor,W.Recyclingcellulosenanofibersfromwoodpulpsprovidesdrainageimprovements forhighstrengthsheetsinpapermaking. J.Clean.Prod. 2021, 312,127731.[CrossRef]

25. Ang,S.;Haritos,V.;Batchelor,W.Cellulosenanofibersfromrecycledandvirginwoodpulp:Acomparativestudyoffiber development. Carbohydr.Polym. 2020, 234,115900.[CrossRef][PubMed]

26. Zambrano,F.;Wang,Y.;Zwilling,J.D.;Venditti,R.;Jameel,H.;Rojas,O.;Gonzalez,R.Micro-andnanofibrillatedcellulosefrom virginandrecycledfibers:Acomparativestudyofitseffectsonthepropertiesofhygienetissuepaper. Carbohydr.Polym. 2021, 254,117430.[CrossRef]

27. Sanchez-Salvador,J.L.;Campano,C.;Balea,A.;Tarrés,Q.;Delgado-Aguilar,M.;Mutjé,P.;Blanco,A.;Negro,C.Critical comparisonofthepropertiesofcellulosenanofibersproducedfromsoftwoodandhardwoodthroughenzymatic,chemicaland mechanicalprocesses. Int.J.Biol.Macromol. 2022, 205,220–230.[CrossRef][PubMed]

28. Balea,A.;Tarrés,Q.;Pèlach,M.;Mutjé,P.;Delgado-Aguilar,M.;Blanco,A.;Negro,C.Influenceofpretreatmentandmechanical nanofibrillationenergyonpropertiesofnanofibersfromAspencellulose. Cellulose 2021, 28,9187–9206.[CrossRef]

29. Ozola,Z.U.;Vesere,R.;Kalnins,S.N.;Blumberga,D.Paperwasterecycling.circulareconomyaspects. RigasTeh.Univ.Zinat. Raksti 2019, 23,260–273.[CrossRef]

30. ISO5264-2:2011;Pulps—Laboratorybeating—Part2:PFIMillMethod.ISO:Geneva,Switzerland,2011.

31. Tarrés,Q.;Saguer,E.;Pèlach,M.;Alcalà,M.;Delgado-Aguilar,M.;Mutjé,P.Thefeasibilityofincorporatingcellulosemicro/nanofibersinpapermakingprocesses:Therelevanceofenzymatichydrolysis. Cellulose 2016, 23,1433–1445.[CrossRef]

32.Saito,T.;Kimura,S.;Nishiyama,Y.;Isogai,A.CellulosenanofiberspreparedbyTEMPO-mediatedoxidationofnativecellulose. Biomacromolecules 2007, 8,2485–2491.[CrossRef]

33. NREL/TP-510-42618;DeterminationofStructuralCarbohydratesandLignininBiomass.NREL:Golden,CO,USA„2012.

34. TAPPIT211om-16:2016;AshinWood,Pulp,PaperandPaperboard:Combustionat525DegreesC.NREL:Golden,CO,USA,2016.

35. TAPPIT204cm-17:2017;SolventExtractivesofWoodandPulp.NREL:Golden,CO,USA,2017.

36. Habibi,Y.;Chanzy,H.;Vignon,M.R.TEMPO-mediatedsurfaceoxidationofcellulosewhiskers. Cellulose 2006, 13,679–687. [CrossRef]

37. Varanasi,S.;He,R.;Batchelor,W.Estimationofcellulosenanofibreaspectratiofrommeasurementsoffibresuspensiongelpoint. Cellulose 2013, 20,1885–1896.[CrossRef]

38. Sanchez-Salvador,J.L.;Monte,M.C.;Negro,C.;Batchelor,W.;Garnier,G.;Blanco,A.Simplificationofgelpointcharacterization ofcellulosenanoandmicrofibersuspensions. Cellulose 2021, 28,6995–7006.[CrossRef]

39. Campano,C.;Balea,A.;Blanco, Á.;Negro,C.Areproduciblemethodtocharacterizethebulkmorphologyofcellulosenanocrystals andnanofibersbytransmissionelectronmicroscopy. Cellulose 2020, 27,4871–4887.[CrossRef]

40.Zuo,Y.-T.;Liu,H.-J.Fractalapproachtomechanicalandelectricalpropertiesofgraphene/siccomposites. FactaUniv.Ser.Mech. Eng. 2021, 19,271–284.[CrossRef]

41. Campano,C.;Lopez-Exposito,P.;Gonzalez-Aguilera,L.;Blanco, Á.;Negro,C.In-depthcharacterizationoftheaggregationstate ofcellulosenanocrystalsthroughanalysisoftransmissionelectronmicroscopyimages. Carbohydr.Polym. 2021, 254,117271. [CrossRef]

42. Serra-Parareda,F.;Tarrés,Q.;Sanchez-Salvador,J.L.;Campano,C.;Pèlach,M.À.;Mutjé,P.;Negro,C.;Delgado-Aguilar,M.Tuning morphologyandstructureofnon-woodynanocellulose:Rangingbetweennanofibersandnanocrystals. Ind.CropsProd. 2021, 171,113877.[CrossRef]

43. Park,H.;Cruz,D.;Tiller,P.;Johnson,D.K.;Mittal,A.;Jameel,H.;Venditti,R.;Park,S.Effectofashinpapersludgeonenzymatic hydrolysis. BiomassBioenergy 2022, 165,106567.[CrossRef]

44. Xu,H.;Sanchez-Salvador,J.L.;Blanco,A.;Balea,A.;Negro,C.RecyclingofTEMPO-mediatedoxidationmediumanditseffecton nanocelluloseproperties. Carbohydr.Polym. 2023, 319,121168.[CrossRef]

45. Ma,P.;Fu,S.;Zhai,H.;Law,K.;Daneault,C.InfluenceofTEMPO-mediatedoxidationontheligninofthermomechanicalpulp. Bioresour.Technol. 2012, 118,607–610.[CrossRef]

, 13,2536

46. Ruvo,A.d.;Htun,M.;Ehrnroot,E.;Lundberg,R.;Kolman,M.Fundamentalandpracticalaspectsofpaper-makingwithrecycled fibers. Ind.DellaCarta 1980, 18,287–300.

47. Zhang,L.;Batchelor,W.;Varanasi,S.;Tsuzuki,T.;Wang,X.Effectofcellulosenanofiberdimensionsonsheetformingthrough filtration. Cellulose 2012, 19,561–574.[CrossRef]

48. Copenhaver,K.;Li,K.;Wang,L.;Lamm,M.;Zhao,X.;Korey,M.;Neivandt,D.;Dixon,B.;Sultana,S.;Kelly,P.Pretreatmentof lignocellulosicfeedstocksforcellulosenanofibrilproduction. Cellulose 2022, 29,4835–4876.[CrossRef]

Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM

Volume 10, Number 3, 2024

PAPERmaking!

Facile Strategy for Boosting of Inorganic Fillers Retention in Paper

Paper Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

polymers

Article

FacileStrategyforBoostingofInorganicFillersRetention inPaper

KlaudiaMa´slana 1, *,KrzysztofSielicki 1 ,KarolinaWenelska 1, * ,TomaszK˛edzierski 1 ,JoannaJanusz 2 , GrzegorzMaria´nczyk 2 ,AleksandraGorgon-Kuza 2 ,WojciechBogdan 2 ,BeataZieli´nska 1 andEwaMijowska 1

1 DepartmentofNanomaterialsPhysicochemistry,FacultyofChemicalTechnologyandEngineering, WestPomeranianUniversityofTechnologyinSzczecin,PiastowAve.45,70-311Szczecin,Poland; krzysztof-sielicki@zut.edu.pl(K.S.);tomasz.kedzierski@zut.edu.pl(T.K.);bzielinska@zut.edu.pl(B.Z.); emijowska@zut.edu.pl(E.M.)

2 ArcticPaperKostrzynSA,ul.Fabryczna1,66-470KostrzynnadOdra,Poland; joanna.janusz@arcticpaper.com(J.J.);grzegorz.marianczyk@arcticpaper.com(G.M.); wojciech.bogdan@arcticpaper.com(W.B.)

* Correspondence:klaudia.maslana@zut.edu.pl(K.M.);kwenelska@zut.edu.pl(K.W.)

Citation: Ma´slana,K.;Sielicki,K.; Wenelska,K.;K˛edzierski,T.;Janusz,J.; Maria´nczyk,G.;Gorgon-Kuza,A.; Bogdan,W.;Zieli´nska,B.;Mijowska, E.FacileStrategyforBoostingof InorganicFillersRetentioninPaper. Polymers 2024, 16,110.https:// doi.org/10.3390/polym16010110

AcademicEditor:SelestinaGorgieva

Received:21November2023

Revised:18December2023

Accepted:25December2023

Published:29December2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

Abstract: Achievingthedesiredpropertiesofpapersuchasstrength,durability,andprintability remainschallenging.Papermillsemploycalciumcarbonate(CaCO3 )asafillertoboostpaper’s brightness,opacity,andprintability.However,weakinteractionbetweencellulosefibersandCaCO3 particlescreatesdifferentissuesinthepapermakingindustry.Therefore,thisstudyexploresthe influenceofvariousinorganicadditivesascrosslinkerssuchasmesoporousSiO2 nanospheres,TiO2 nanoparticles,h-BNnanoflakes,andhydroxylatedh-BNnanoflakes(h-BN-OH)oninorganicfillers contentinthepaper.Theywereintroducedtothepaperpulpintheformofapolyethyleneglycol (PEG)suspensiontoenablebondingbetweentheinorganicparticlesandthepaperpulp.Ourfindings havebeenrevealedbasedondetailedmicroscopicandstructuralanalyses,e.g.,transmissionand scanningelectronmicroscopy,X-raydiffraction,Ramanspectroscopy,andN2 adsorption/desorption isotherms.Finally,theinorganicfillers(CaCO3 andrespectiveinorganicadditives)contentwas evaluatedfollowingISO1762:2001guidelines.Conductedevaluationsallowedustoidentifythe mostefficientcrosslinker(SiO2 nanoparticles)intermsofinorganicfillerretention.Papersheets modifiedwithSiO2 enhancetheretentionofthefillersby~12.1%.Therefore,webelievethesefindings offervaluableinsightsforenhancingthepapermakingprocesstowardboostingthequalityofthe resultingpaper.

Keywords: cellulose;crosslinker;fillers;polymer

1.Introduction

Theprocessofpapermakinginvolvesconvertingrawmaterials,likewoodfibersor recycledpaper,intoaproductthatmeetsqualitystandardsandmarketdemands.Oneofthe mainchallengesinthisprocessisachievingthedesiredpropertiesinthefinalproduct,such asstrength,durability,brightness,opacity,andprintability,whichenhancethestrengthand stiffnessofthepaper,avoidingpoorfolding,tearing,andcrackingresistance.Toachieve this,papermillsoftenusefillerssuchasCaCO3 [1].However,theweakinteractionbetween cellulosefibersandCaCO3 particlescanleadtoarangeofproblemsinpapermaking[2,3]. Thisproblemisrelatedtothecellulosefibers’structuralproperties,whichhaveahighly crystallinestructurewithalowsurface-area-to-volumeratio.Asaconsequence,alimited availabilityofactivesitesforhydrogenbonds,bothbetweenfibersandwithCaCO3 particles,isobserved[4,5].TheinteractionbetweencellulosefibersandCaCO3 particles affectspapermassdrainageandretention.Thepresenceoffillerscaninterferewithwater flowthroughthepapermachine,leadingtolongerdryingtimesandincreasedenergy consumption[6].

Variousstrategieshavebeendevelopedtoovercometheseobstaclestoenhancethe affinityofthepapermasstoCaCO3 .Oneofthestrategiesistheadditionofcrosslinkers,whichcanimprovetheinteractionbetweenthecellulosefibersandCaCO3 particles. Crosslinkersarechemicalcompoundsthatcanformbondsbetweenthecellulosefibers, creatingamorestablenetworkthatcanbetterresistthedisruptiveeffectsoffillers[7,8].The additionoffillerssuchasSiO2 [9],TiO2 [10],h-BN[11],andh-BN-OH[12]hasbeenshown tobeeffectiveinimprovingtheaffinityofthepapermasstoCaCO3 .Thesecompounds canformbondswithboththecellulosefibersandCaCO3 particles,creatingastronger networkthatimprovesthestrength,stiffness,andprintabilityofthepaper.Therefore, usingcrosslinkersinpapermakingisanimportantstrategyforimprovingthequalityand performanceofpaperproducts.

Silicondioxide(SiO2 )canformcovalentbondswithboththecellulosefibersand CaCO3 particles.TheSiO2 particlescanalsoserveasaconnectorbetweenthecellulose fibersandCaCO3 particles,helpingtostrengthentheinter-fiberbondingandimprovethe stiffnessandstrengthofthepaper.Inadditiontoitsroleasacrosslinker,SiO2 canalso improvethedrainageandretentionofthepapermass.TheSiO2 particlesarehydrophilic, whichmeansthattheycanhelpabsorbwaterandimprovetheflowofthepapermass throughthepapermachine.Thiscanleadtofasterdryingtimesandincreasedproductivity. SiO2 canbeaddedtothepapermassinvariousforms,includingcolloidalsilica,precipitated silica,andsilicafume[9,13].

Titaniumdioxide(TiO2 )asacrosslinkercanalsoimprovetheopticalpropertiesof paperproducts.TiO2 isawhitepigmentthatcanreflectandscatterlight,leadingtoa brighterandmoreopaquepaper.Thiscanbeparticularlybeneficialinapplicationswhere highbrightnessandopacityareexpected.Inaddition,TiO2 canalsoimprovethedrainage andretentionofthepapermass—similartoSiO2 .Thiscanleadtofasterdryingtimesand increasedproductivity.TiO2 canbeaddedtothepapermassinvariousforms,including rutile,anatase,andnano-sizedTiO2 particles.Rutileandanatasearetwocrystallineforms ofTiO2 ,withrutilebeingthemostcommonlyusedforminpapermakingduetoitshigher refractiveindexandopacity.Nano-sizedTiO2 particleshaveasmallerparticlesizeandcan provideadditionalbenefitssuchasimprovedprintabilityandinkadhesion[10,14].

Hexagonalboronnitride(h-BN)isalayeredmaterialthatconsistsofhexagonally arrangedboronandnitrogenatoms.Ithasahighsurfaceareaanduniquesurfacechemistry thatmakeitattractiveforvariousapplications.Whenaddedtothepapermass,h-BN canformcovalentbondswithboththecellulosefibersandCaCO3 particles,improving theinteractionbetweenthemandcreatingamorestablenetwork.Theh-BNparticles canalsoserveasaconnectorbetweenthefibersandfillers,enhancingthestiffnessand strengthofthepaper.h-BN-OHisaderivativeofh-BNthathasbeenfunctionalizedwith hydroxylgroups.Thehydroxylgroupsincreasethesurfaceenergyandwettabilityofthe h-BNparticles,allowingthemtointeractwiththecellulosefibersandCaCO3 particles moreeffectively.Thehydroxylgroupscanalsoprovideadditionalchemicalfunctionality, allowingforfurthermodificationsandimprovementsinthepaperproperties[12,15].

Inthiswork,theimpactofdifferentinorganicfillersoncalciumcarbonatecontentin thepaperwasinvestigated.Forthisreason,mesoporousSiO2 nanoparticles,TiO2 nanoparticles,h-BNnanoflakes,andhydroxylatedh-BNnanoflakes(h-BN-OH)havebeenexplored asadditives.Theyhavebeenintroducedtothepaperpulpintheformofapolyethylene glycol(PEG)mixturetoinducebondingbetweentheinorganicstructuresandpaperpulp components.Variouscharacterizationmethodswereemployedtodeterminethechemical structureandmorphologyofpreparedsamples,includingTEM,SEM,XRD,Ramanspectroscopy,andTGA.Theashcontent(residualsolidparticlesafterthecombustionprocess) wasevaluatedaccordingtoISO1762:2001.Itallowedustoselectmesoporoussilicaasthe mostefficientfiller,enhancingtheretentionofthefillersby12.1%inrespecttounmodified papersheets.

2.ExperimentalPart

2.1.Chemicals

Eucalyptus-derivedcellulosefibers,wood-derivedcellulosefibers,chemicalthermomechanicalpulpcellulose(CTMP),cationicstarch,calciumcarbonate,andpotassiumamyl xanthate(PAX)werederivedbyArcticPaperKostrzynSA.Polyethyleneglycol2000(PEG, M=1800–2200g/mol)waspurchasedfromCarlRoth,Karlsruhe,Germany.Titanium dioxidewaskindlysuppliedbyGrupaAzotyPolice(Police,Poland).Tetraethylorthosilicate(TEOS)andboronnitride(BN,~1 μm,98%)werepurchasedfromSigmaAldrich (Pozna´n,Poland).Ammoniasolution(NH4 OH,25%),sulfuricacid(H2 SO4 ,95%),nitric acid(HNO3 ,65%),andpotassiumpermanganate(KMnO4 )weredeliveredfromChempur (Piekary ´ Sl˛askie,Poland).

2.2.SynthesisofSiliconDioxide(SiO2 )

SiO2 nanoparticleswerepreparedaccordingtoamodifiedStöbermethod[16];5.8mL ofTEOSand150mLofethanolwereinitiallymixedinaroundbottomflaskandstirredfor 10minatroomtemperature(RT).Next,7.8mLofammoniasolutionwasadded,andthe mixturewasfurtherstirredfor12h.Afterthat,theproductwasseparatedbycentrifugation, washedafewtimeswithethanol,anddried.

2.3.SynthesisofHexagonalBoronNitride(h-BN)

Atotalof0.2gofbulkboronnitridewasplacedinaflask,andthen,200mLof ethanolwasadded.Afterward,theobtainedmixturewassonicatedusinganultrasonic homogenizerfor12h.Thefinalproductwaswashedwithdistilledwateranddriedat 80 ◦ C.

2.4.SynthesisofOxidizedHexagonalBoronNitride(h-BN-OH)

Toprepareh-BN-OH,amodifiedHummersmethodwasapplied[12].Briefly,0.2g ofh-BNpowderwasplacedinaround-bottomedflask,andthen,13.5mLofH2 SO4 and 4.4mLofHNO3 wereadded.Themixturewasstirredtoobtainahomogenousdispersion. Afterthat,1.2gofKMnO4 waspartiallyintroduced,andfinally,themixturewasheatedto 90 ◦ Candkeptatthistemperaturefor12h.Next,themixturewascooledtoRT,filtrated, andwashedafewtimeswithdistilledwateruntilthepHvalueapproached7.Finally,the productwasdriedat80 ◦ Covernight.

2.5.PreparationofPEGSolution

Intheexperiments,thedifferentpolyethyleneglycol(PEG)variants(PEG2000,PEG 4000,PEG10000,andPEG20000)weretestedtochoosetheoptimalone.Duringthe preparationofpapersheetsusingtheRapid-Köthenmachine(Lodz,Poland)different performancecharacteristicsofthepaperwiththetestedPEGvariantswereevaluated.The finalselectionofPEG2000wasbasedonitssuperiorperformanceduringthepapersheet preparationprocess.PEG2000exhibitedthebestsolubilityinthechosensolventandits integrationwithpaperpulp.AnappropriatePEG2000amountwasaddedto1Lofdistilled water,andwiththeuseofamagneticstirrer,itwascompletelydissolved.Theamountof PEG2000wascalculatedin1tonofdrypulptoobtainaconcentrationof1kgofPEG/ton ofdrycellulose(typicalcommercialprocedure).

2.6.PreparationofPaperSheets

Asareferencesample,asheetofpaperwithouttheadditionofinorganicfillerswas prepared.Thereferencepapersamplecontainedonlystandardcommercialcomponents usedfortheproductionofpapersheets.Paperwithagrammageof80g/m2 wascreated bycombiningthreetypesofcellulosefibers:short-fibercellulosepulp(eucalyptusderived), long-fibercellulosepulp(birch-derived),andchemicalthermomechanicalpulpcellulose (CTMP)withamassratioof70/20/10,respectively.Thecellulosicmasswasmixedina plasticcontainerusingamechanicalstirrerfor15min.Subsequently,PAXandacationic

starchsolution(3.8%)wereaddedtothemixturewith2and5kgpertonofdrycellulose fibers,respectively.Finally,CaCO3 andappropriatecrosslinkers(SiO2 ,TiO2 ,h-BN,and h-BN-OH)dispersedinPEGsolutionwereintroducedtothesystem.Todoso,1kgof crosslinkersper1tonofdrycellulosefiberswasfirstdispersedin100mLofPEGsolution andsonicatedtoobtainahomogeneousmixture.Thepreparedmixturewasmechanically stirredwithcellulosicmassfor15min.PapersheetswereformedusingaRapid-Köthen AutomaticSheet-FormingMachine(Lodz,Poland),followingtheguidelinesofPN-ISO 5262–2.Thismethodofproducingmodifiedpapersheetsusingthementionedequipment replicatestheconditionsfoundinlarge-scaleproduction,facilitatingeasyscalabilityof theentireprocess.Thepreparedpapersheetsweredenotedasreferenceforthesample withoutanycrosslinker,andPEG/SiO2 ,PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OHfor sampleswhereadditionalPEGsuspensioncontainingSiO2 ,TiO2 ,h-BN,andh-BN-OH wereadded,respectively.Thereferencewaspreparedbythesameprocedurebutwithout theadditionofPEG/inorganicfillermixture.

2.7.Characterization

High-resolutiontransmissionelectronmicroscopy(HR-TEM)(Washington,DC,USA) imagingwasperformedwiththeFEITecnaiF20microscopeatanacceleratingvoltageof 200kV.Theimagesweretakendirectlyonsample-drop-castCugridswithcarbonfilm. Ascanningelectronmicroscope(SEM)(VEGA3,TESCAN)(Brno,CzechRepublic)was usedtodeterminethemorphologyofthepreparedsheets.Thechemicalbondingofthe structuresinthepapersheetswasexaminedusingRamanspectroscopy(InViaRenishaw, Wotton-under-Edge,UK)equippedwithanexcitationwavelengthof785nm.Itisanideal methodtostudythestructuralpropertiesofthenanomaterials.Thephasecompositionwas determinedbyX-raydiffraction(XRD)patternsbyusinganAeris(MalvernPanalytical, Malvern,UK)diffractometerusingCuKα radiation.ThecontentofCaCO3 wasdetermined inaccordancewiththeInternationalOrganizationofStandardization(ISO1762:2001).The thermogravimetricanalysiswasconductedusinganSDTQ600Thermogravimeter(TA Instruments,NewCastle,DE,USA)underairflowof100mL/min.Ineachcase,the sampleswereheatedfromroomtemperatureto600 ◦ Catalinearheatingrateof10 ◦ C/min. Thesamplesweremeasuredinanaluminacruciblewithamassofabout5.0mg.N2 adsorption/desorptionisothermswereacquiredatliquidnitrogentemperature(77K) usingaMicromeriticsASAP2460(Norcross,GA,USA).TheBrunauer–Emmett–Teller(BET) anddensityfunctionaltheory(DFT)methodswereadoptedtocalculatethespecificsurface areaandporesizedistribution.

3.Results

TEMimagesofSiO2 ,TiO2 ,h-BN,andh-BN-OHarepresentedinFigure 1.SiO2 andTiO2 revealdistinctmorphologies.SiO2 (Figure 1A)exhibitsparticleswithspherical morphology,showcasingvisibleporositywithinthesilicastructure.Highporositydirectly leadstothehighsurfaceareaofSiO2 .Similarly,TiO2 (Figure 1B)nanoparticlesdisplaya sphericalorquasi-sphericalmorphology,relativetoSiO2 ,andexhibitobservableporosity withevidentpores.Forh-BN,theTEMimageillustratesaflatandtwo-dimensional(2D) sheet-likestructure.Itisalayeredmaterialwithahexagonallatticeresemblinggraphene, showcasingathinandplanar2Dnature.Hydroxylatedh-BN(h-BN-OH,Figure 1D)also portraysthis2Dplanarstructure,withthepresenceofhydroxyl(OH)groupsaltering surfacecharacteristicsbutnotthefundamentalstructuralmorphology.

Figure1. TEMimagesofcrosslinkers:(A)SiO2 ,(B)TiO2 ,(C)h-BN,and(D)h-BN-OH.

XRDpatternsofallcrosslinkers(SiO2 ,TiO2 ,h-BN,andh-BN-OH)areshownin

Figure 2.Bothh-BNandh-BN-OHshowreflectionscorrespondingtoboronnitride (2θ =~26.7◦ , 41.6◦ ,43.7◦ ,54.9◦ ,75.6◦ ;ICDDPDFno.00-034-0421).Forh-BN-OH,aclear shiftofpeakstowardthehigheranglesisobservedincomparisontoh-BN.Forexample,the signalat~26.39◦ ,correspondingtothe(002)planeofh-BN,isshiftedto26.83◦ .Thisisdue totheexpansionofcrystallographicstructurebytheincorporationofthe-OHfunctional groupsintothelattice.SiO2 exhibitsonebroadpeakcenteredataround23◦ ,whichcanbe assignedtotheamorphousstructureofsilicaoxide[17,18].TiO2 iscomposedoftwocrystal phases:anatase(ICDDPDFno.04-014-8515)andrutile(ICDDPDFno.00-021-1276).There are~83.9%ofanataseand~16.1%ofrutileinthesample[19].

N2 adsorption/desorptionisothermsacquiredatliquidnitrogentemperatureare presentedinFigure 3.TheisothermsforTiO2 ,SiO2 ,h-BN,andh-BN-OHaretypeII isotherms,wherethereisawiderangeofporesizes[20].FromTEM,itisclearthat poresarepresent.ThehighestcontentisinSiO2 ,whichcanresultinahighsurfacearea. ThehighestsurfaceareawasdeterminedfortheSiO2 ,whichis275.4m2 /g.h-BN-OH exhibitsalargerspecificsurfaceareacomparedtoh-BN,whichis38.7m2 /gand19.8m2 /g, respectively.Thisisduetotheexpansionofindividualh-BNlayersbyhydroxylgroups andthecreationofalargersurfaceareathatisaccessibleforN2 adsorption.Thelowest specificsurfaceareafromallcrosslinkerswasmeasuredfortheTiO2 (10.8m2 /g).Asimilar dependencecanbeobservedforthetotalporevolume(Figure 3b).Themeasuredtotalpore

volumeswere0.248,0.035,0.011,and0.008cm3 /gforSiO2 ,h-BN-OH,h-BN,andTiO2 , respectively.DatacollectedfromtheN2 adsorption/desorptiontestarecollectedinTable 1.

Figure2. XRDpatternsofcrosslinkers:TiO2 ,SiO2 ,h-BN-OH,andh-BN.

(a) (b)

Figure3. (a)N2 adsorption/desorptionisothermsofcrosslinkers,TiO2 ,SiO2 ,h-BN,andh-BN-OH, and(b)poresizedistribution.

Table1. BETsurfacearea,microporevolume,andmedianporewidthofsamples.

Next,theimpactofdifferentcrosslinkersonthemorphologyofthepreparedpaper sampleswasevaluatedviaSEM(Figure 4).Thereferencesampleexhibitsthepresence ofCaCO3 betweenthecellulosefiberswithunevendistribution.ThePEG/SiO2 and PEG/TiO2 papersamples(Figure 4B,C)showamoreevendistributionofCaCO3 particles alongcellulosefiberscomparedtothereferencesample.InthematerialwithPEG/SiO2 , theamountofCaCO3 betweenthefibersismuchhighercomparedtothereferencesample. Papersampleswithh-BNandh-BN-OHexhibitagglomeratedCaCO3 particles.Thismay leadtoincreasedpermeabilityofCaCO3 throughcellulosefibers,whichwillresultina reducedcontentofcalciumcarbonateinthesample.

Figure4. SEMimagesof(A)referencepaperandpapercontainingdifferentcrosslinkers: (B)PEG/SiO2, (C)PEG/TiO2 ,(D)PEG/h-BN,and(E)PEG/h-BN-OH.

Figure 5 presentstheRamanspectraofpapersamples(reference,PEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OH).Celluloseisalinearpolymermadeupofrepeatingglucoseunitslinkedby β-1,4-glycosidicbonds.Itexhibitsahighdegreeofcrystallinity,with bothcrystallineandamorphousregionsinitsstructure.Ramanspectroscopyissensitivetovariousvibrationalmodespresentincellulose.ThemainRaman-activemodes forcellulosefibersincludeC-CandC-Obonds.Thesevibrationsareobservedaround 1095cm 1 ,offeringvaluableinformationaboutthemolecularbondswithinthecellulose structure[21,22].Next,out-of-planeringbending(C-C-CandC-O-C),observedintherange of400to600cm 1 ,providesinsightsintothespatialarrangementandflexibilityofthecelluloserings.Additionally,RamanpeaksassociatedwithdeformationsintheCH2 andCH3 groupsareprominentintherangeof1300to1470cm 1 [23](orangezones).Furthermore, RamanspectroscopystudiesrevealedthedistinctivepeaksofCaCO3 correspondingto twodifferentforms:calcite(greenzones)andvaterite(bluezones).Thepeakat1085cm 1 signifiescalcite,whilethepeaksat1080and1090cm 1 representvaterite,specifically

correspondingtotheAginternalmodederivedfromthev1 symmetricstretchingmodeof thecarbonateionineachmaterial.Thev4 in-planebendingmodeofcarbonateisobserved at712cm 1 forcalciteand739–749cm 1 forvaterite.Itisnoteworthythatthecharacteristic peakforvateritewasnotdetectedinthecaseofPEG/h-BNandPEG/hBN-OH.However, thereasonofthelackofthispeakisnotclear.

Figure5. Ramanspectraofreferencepaperandpaperwithdifferentcrosslinkers(PEG/SiO2 , PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH).

Figure 6 showstheX-raydiffractionpatternsofthereference,PEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OHpapersamples.Inthepatternsofallsamples,twocharacteristicphaseswereidentified,i.e.,celluloseandcalciumcarbonate(CaCO3 ).Thethree observedpeaks(broadpeaks)at2θ =16◦ ,22◦ ,and35◦ correspondtocellulose.However,a seriesofreflectionsat2θ equalto~23◦ ,29.4◦ ,36◦ ,39.4◦ ,43.2◦ ,47.5◦ ,and48.5◦ arecharacteristicforCaCO3 (ICDDno.00-005-2586).TheXRDdiffractogramsalsoshowtwopeaks (lowintensity)at~30.9◦ and31.6◦ ,whichcanbeattributedtoothercalciumcarbonate polymorphs(e.g.,aragoniteandvaterite)(ICDDno.01-075-9984,00-024-0030).Thereflections,whichcorrespondtothecalciumcarbonate,arenarrowandintense(comparedto thecellulosepeaks,thepeaksarewiderandoflowerintensity),whichindicatesthehigh crystallinityoftheusedCaCO3 .Alackofasignificanteffectofthefillersontheintensity andlocationofindividualreflectionswasfound,whichmaybeattributedtothesmall amountoftheadditives.

Todefinethethermalbehaviorofthepapersamples,thermogravimetricanalysis (TGA)wasapplied.TheTGAresultsforthereferenceandthePEG/SiO2 ,PEG/TiO2 , PEG/h-BN,andPEG/h-BN-OHpapersarepresentedinFigure 7.Forallsamples,three significantweightdecreasesarenoticeable.First,weightlossisobservedat90 ◦ Candis attributedtotheevaporationoftheadsorbedwaterormoisturepresentinthesamples. Furthermore,twostagesofcellulosedegradationareobserved.Thefirstdecomposition stagestartsat250 ◦ C.Celluloseconsistsofglucosemoleculeslinkedtogetherby β-1,4glycosidicbonds[24].Duringthisstage,glycosidicbondsbreak,resultingintherelease ofvolatileproductsandvariousvolatileorganiccompounds,suchasaceticacidand levoglucosan[25,26].Next,aseconddecompositionstagestartingat350 ◦ Cisobserved. Duringthisstage,additionalvolatileproductsareformedascellulosedecomposes.Carbon dioxide(CO2 )andcarbonmonoxide(CO)arereleasedatthisstageasaresultofthe

breakdownofmorecomplexcellulosestructures.Startingwiththereference,agradual masslosswithincreasingtemperatureleadstoaresidueofapproximately26%,indicating theashcontentinthereferencesample.InthecasesofPEG/SiO2 ,PEG/TiO2 ,PEG/h-BN, andPEG/h-BN-OH,thethermalprofilesdisplayanalogousmasslosscurves,resultingin residualmassesofabout27.0%,25.7%,25.5%,and24.8%,respectively.

Figure6. X-raydiffractionpatternsofreferencepaperandpaperwithdifferentcrosslinkers: PEG/SiO2 ,PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH.

Figure7. TGAplotsofreferencepaperandpaperwithcrosslinkers:PEG/SiO2 ,PEGTiO2 ,PEG/h-BN, andPEG/h-BN-OH.

Todeterminetheashcontentinthepaper,theguidelinessetbytheInternational OrganizationofStandardization(ISO1762:2001)wereapplied.Theprocedurewasthrough sampleignitionat525 ◦ C.Theashcontentinthereferenceandmodifiedpapers(PEG/SiO2 , PEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH)arepresentedinTable 2

Table2. DataobtainedfromtheInternationalOrganizationofStandardization(ISO)standard(ISO 1762:2001)ashcontentforallsamples.

BasedontheresultspresentedinTable 2,theadditionofSiO2 nanoparticlesincreased theashcontentinthepapersignificantly.ThismeansthatthisfacilestrategyboostsCaCO3 retentiononcellulosefibersby12.1%inthepresenceofPEG/SiO2 asananofiller,which canberelatedtotheabundanceofactivesitesavailableforCaCO3 bonding.Theopposite trendcanbeobservedforPEG/TiO2 ,PEG/h-BN,andPEG/h-BN-OH,whereashcontent is8.1,11.1,and17.5%lowercomparedtothereferencepaper,respectively.

Insummary,basedontheaboveresults,itcanbeinferredthattheadditionofporous SiO2 intheformofaPEGsuspensionisthemostpromisingcrosslinkerincreasingthe affinityofCaCO3 tocellulosefibers.Thisconclusionissupportedbynumerousanalyses, suchasTGA,andISO1762:2001tests,whichshowedthattheinorganicfillerscontent aftertheintroductionofPEG/SiO2 increasedby12.1%,whichprovesthepotentialof thisfacilestrategyinpracticalapplicationinthepaperindustry.Thismaybebecause SiO2 possessesthelargestspecificsurfaceareaamongothercrosslinkers(TEMandN2 adsorption/desorption),increasingaffinitytocellulosefibers,resultinginhigherinorganic fillercontentretention.

4.Conclusions

Insummary,thisstudyinvestigatedtheinfluenceofvariouscrosslinkers(TiO2 ,SiO2 , h-BN,andh-BN-OH)ontheinorganicfillercontentinpapersamples.Ramanspectroscopy andXRDconfirmedthatthechemicalstructureofthesamplesremainedinsignificantly changedupontheadditionofthesecompounds.Thisstudyfurtherdelvedintothe moleculardynamicsofcellulosethroughvariousRamanpeaksassociatedwithspecific vibrationalmodes.Additionally,Ramanspectroscopyidentifiedcharacteristicpeaksfor CaCO3 ,distinguishingbetweencalciteandvateriteforms.Moreover,theintroductionof h-BNandh-BN-OHledtotheformationofagglomeratesandunevendistributionofCaCO3 particlesoncellulosefibers,resultingindecreasedashcontentaftertesting.Amongthe crosslinkers,SiO2 suspendedinaPEGsolutionemergedasapromisingcandidateduetoits excellentaffinitytocelluloseandhighsurfacearea,enhancinginorganicfillercontentinthe paper.Thesefindingscontributetoadeeperunderstandingofhowdifferentcrosslinkers impactthecompositionandstructureofpapersamplesandallowtheboostingofthe contentofinorganiccompoundsinthepapersheet,reducingthecontributionofcellulose.

AuthorContributions: Methodology,K.W.andT.K.;Investigation,W.B.;Writing—originaldraft,K.M. andK.S.;Visualization,B.Z.;Supervision,E.M.;Projectadministration,A.G.-K.;Fundingacquisition, J.J.andG.M.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.

Funding: ThisresearchreceivedfundingfromtheNationalCentreforResearchandDevelopment (Poland):POIR.01.01.01-00-0272/19-00.

InstitutionalReviewBoardStatement: Notapplicable.

DataAvailabilityStatement: Thedatapresentedinthisstudyareavailablefromthecorresponding authoruponreasonablerequest.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

References

1. CalciumCarbonateinthePaperIndustry â¢BlessingforCoatedPapermakingandCurseforRecycling.Availableonline: https://imisrise.tappi.org/TAPPI/Products/14/NOV/14NOV47.aspx (accessedon22June2023).

2. Dalas,E.;Klepetsanis,P.G.;Koutsoukos,P.G.CalciumCarbonateDepositiononCellulose. J.ColloidInterfaceSci. 2000, 224,56–62. [CrossRef][PubMed]

3. Fimbel,P.;Siffert,B.Interactionofcalciumcarbonate(calcite)withcellulosefibresinaqueousmedium. ColloidsSurf. 1986, 20, 1–16.[CrossRef]

4. Guerra-Garcés,J.;García-Negrete,C.A.;Pastor-Sierra,K.;Arteaga,G.C.;Barrera-Vargas,M.;deHaro,M.C.J.;Fernández,A. MorphologicallydiverseCaCO3 microparticlesandtheirincorporationintorecycledcelluloseforcirculareconomy. Mater.Today Sustain. 2022, 19,100166.[CrossRef]

5. Kandirmaz,E.A.;Yenido,S.;Aydemir,C.;Karademir,A.Effectofusingcalciumcarbonate(CaCO3 )insurfacecoatingonliquid absorptionofpaperandsomeprintabilityparameters. Cellul.Chem.Technol. 2020, 54,485–493.[CrossRef]

6. Su,N.Preparationandperformanceofretentionanddrainageaidmadeofcationicsphericalpolyelectrolytebrushes. e-Polymers 2022, 22,676–685.[CrossRef]

7. Salfitra,M.;Putra,A.Effectofcalciumcarbonate(caco3)additivesonthequalityofcellulose-basedbiodegradableplastics bacteria-polyethyleneglycol(peg)ofcoconutwater(Cocosnucifera). Electrolyte 2023, 2,65–72.[CrossRef]

8. Watcharamul,S.;Lerddamrongchai,S.;Siripongpreda,T.;Rodtassana,C.;Nuisin,R.;Kiatkamjornwong,S.EffectsofCarboxymethylCellulose/Nano-CalciumCarbonateHydrogelAmendmentofLoamySandSoilforMaizeGrowth. ACSAgric.Sci. Technol. 2022, 2,1071–1080.[CrossRef]

9. Zhang,Y.;Wang,Q.;Wang,C.;Wang,T.High-strainshapememorypolymernetworkscrosslinkedbySiO2 J.Mater.Chem. 2011, 21,9073–9078.[CrossRef]

10. Roy,S.;Zhai,L.;Kim,H.C.;Pham,D.H.;Alrobei,H.;Kim,J.Tannic-Acid-Cross-LinkedandTiO2 -Nanoparticle-Reinforced Chitosan-BasedNanocompositeFilm. Polymers 2021, 13,228.[CrossRef]

11. Aki,D.;Ulag,S.;Unal,S.;Sengor,M.;Ekren,N.;Lin,C.C.;Yılmazer,H.;Ustundag,C.B.;Kalaskar,D.M.;Gunduz,O.3Dprinting ofPVA/hexagonalboronnitride/bacterialcellulosecompositescaffoldsforbonetissueengineering. Mater.Des. 2020, 196,109094. [CrossRef]

12. Onyszko,M.;Markowska-Szczupak,A.;Rakoczy,R.;Paszkiewicz,O.;Janusz,J.;Gorgon-Kuza,A.;Wenelska,K.;Mijowska, E.FewLayeredOxidizedh-BNasNanofillerofCellulose-BasedPaperwithSuperiorAntibacterialResponseandEnhanced Mechanical/ThermalPerformance. Int.J.Mol.Sci. 2020, 21,5396.[CrossRef][PubMed]

13. Zeng,X.;Liu,Y.;He,R.;Li,T.;Hu,Y.;Wang,C.;Xu,J.;Wang,L.;Wang,H.Tissuepaper-basedcompositeseparatorusing nano-SiO2 hybridcrosslinkedpolymerelectrolyteascoatinglayerforlithiumionbatterywithsuperiorsecurityandcyclestability. Cellulose 2022, 29,3985–4000.[CrossRef]

14. Zhang,W.;Rhim,J.W.Titaniumdioxide(TiO2 )forthemanufactureofmultifunctionalactivefoodpackagingfilms. FoodPackag. ShelfLife 2022, 31,100806.[CrossRef]

15. Chen,L.;Xiao,C.;Tang,Y.;Zhang,X.;Zheng,K.;Tian,X.Preparationandpropertiesofboronnitridenanosheets/cellulose nanofibershear-orientedfilmswithhighthermalconductivity. Ceram.Int. 2019, 45,12965–12974.[CrossRef]

16. Ghimire,P.P.;Jaroniec,M.RenaissanceofStöbermethodforsynthesisofcolloidalparticles:Newdevelopmentsandopportunities. J.ColloidInterfaceSci. 2021, 584,838–865.[CrossRef][PubMed]

17. Liang,Y.;Ouyang,J.;Wang,H.;Wang,W.;Chui,P.;Sun,K.Synthesisandcharacterizationofcore–shellstructured SiO2 @YVO4 :Yb3+ ,Er3+ microspheres. Appl.Surf.Sci. 2012, 258,3689–3694.[CrossRef]

18. Chandraboss,V.L.;Kamalakkannan,J.;Senthilvelan,S.SynthesisofAC-Bi@SiO2 NanocompositeSphereforSuperiorPhotocatalyticActivityTowardsthePhotodegradationofMalachiteGreen. Can.Chem.Trans. 2016, 3,410–429.[CrossRef]

19. Spurr,R.A.;Myers,H.QuantitativeAnalysisofAnatase-RutileMixtureswithanX-rayDiffractometer. Anal.Chem. 1957, 29, 760–762.[CrossRef]

20. Awe,A.A.;Opeolu,B.O.;Fatoki,O.S.;Ayanda,O.S.;Jackson,V.A.;Snyman,R.Preparationandcharacterisationofactivated carbonfrom Vitisvinifera leaflitteranditsadsorptionperformanceforaqueousphenanthrene. Appl.Biol.Chem. 2020, 63,12. [CrossRef]

21. Lahiri,S.K.;Liu,L.FabricationofaNanoporousSilicaHydrogelbyCross-LinkingofSiO2 -H3 BO3 -Hexadecyltrimethoxysilanefor ExcellentAdsorptionofAzoDyesfromWastewater. Langmuir 2021, 37,8753–8764.[CrossRef]

22. Hsieh,Y.C.;Yano,H.;Nogi,M.;Eichhorn,S.J.AnestimationoftheYoung’smodulusofbacterialcellulosefilaments. Cellulose 2008, 15,507–513.[CrossRef]

23. Schenzel,K.;Fischer,S.NIRFTRamanspectroscopy—Arapidanalyticaltoolfordetectingthetransformationofcellulose polymorphs. Cellulose 2001, 8,49–57.[CrossRef]

24. Zhu,C.;Krumm,C.;Facas,G.G.;Neurock,M.;Dauenhauer,P.J.Energeticsofcelluloseandcyclodextringlycosidicbondcleavage. React.Chem.Eng. 2017, 2,201–214.[CrossRef]

25.Huang,Y.B.;Fu,Y.Hydrolysisofcellulosetoglucosebysolidacidcatalysts. GreenChem. 2013, 15,1095–1111.[CrossRef]

26. Paajanen,A.;Vaari,J.High-temperaturedecompositionofthecellulosemolecule:Astochasticmoleculardynamicsstudy. Cellulose 2017, 24,2713–2725.[CrossRef]

Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM

Volume 10, Number 3, 2024

PAPERmaking!

Evaluation of oxygen delignified fibers with high water absorbency, as a greener alternative to fully bleached fibers for tissue paper

Nord.PulpPaperRes.J.2024;aop

ChemicalPulping

Evaluationofoxygendelignified fiberswithhigh waterabsorbency,asagreeneralternativetofully bleached fibersfortissuepaper

https://doi.org/10.1515/npprj-2024-0024

ReceivedApril5,2024;acceptedJuly2,2024; publishedonlineAugust27,2024

Abstract: Thepotentialofoxygendelignified fiberstoreplace fullybleached fibersintissueproductswasinvestigatedon softwoodpulps.Theabsorption,mechanicalpropertiesand softnessoflaboratorytissuehandsheetsfromonecommercial fullybleachedpulpand fiveunbleachedoxygendelignifiedlab pulpswerecompared.Thepulpswithdifferentlignincontent andtotal fiberchargewereevaluatedwithandwithoutPFI refining.Thepulpssubjectedtooxygendelignificationresulted inpulpswithmuchhighertotal fiberchargecontentthatledto higherswellingandhigherwetstrengthwhencomparedtothe commercialfullybleachedpulp.Someunbleachedoxygen delignifiedpulpsshowedgreatpotentialintheabsorption capacity,whileothersshowedamuchhigherwettensile strengthwhencomparedtothecommercialpulp.Comparedto thecommercialbleachedpulp,asimilarsoftnessforahigher wetanddrytensileindexintheunbleached fiberswasobserved fortheoxygendelignifiedpulps.Unbleachedpulpssubjected toanextendedoxygendelignificationprovedtobeasuitable alternativetofullybleachedpulpsintissuegrades,depending onthedesiredproperty(absorptionorwetstrength).

Keywords: absorptioncapacity; fibercharges;highlignin content;oxygendelignification;wetstrength

1Introduction

Tissueproductsarepresentinoureverydaylivesfordifferent purposes,suchaspersonaluseasfacialtissue,toiletpaper, napkins,householdtowels,packingtissuepaper,among others.Theprimaryrequiredpropertiesaregenerallygood liquidabsorptioncapacity,smoothness,bulkand,strength

*Correspondingauthor:CláudiaV.G.Esteves,SustainableMaterialsand PackagingDepartment,RISEResearchInstitutesofSweden,Bioeconomy andHealth,DrottningKristinasväg61,SE-11428,Stockholm,Sweden, E-mail:claudia.esteves@ri.se

(deAssisetal.2018).Thosepropertiesarehighlydependenton theproductionprocessandrawmaterialandtheywillvary accordingtothe finaluse.Whileabsorbencyandsoftnessare themostrequiredqualitiesfortoiletpapers,napkinsorfacial tissue(Kimetal.1994),fortowelpapers,besidestheabsorption capacity,tensilestrengthisalsoacrucialpropertytotake intoconsideration,especiallywettensilestrength(Gigacand Fišerová2008).

Theproductionandconsumptionoftissueproductshave beenconstantlygrowingovertheyears,withtheprediction thattheywillcontinuetoincrease,accordingtoCEPI(Central EuropeanPaperIndustries)statistics.Theawarenessaround healthandhygieneissues,populationgrowthandtheimproved standardoflivingaresomeofthecausesoftheincreased demandfortissue.However,theincreaseintissueconsumptionleadstosomeenvironmentalissues.

Nowadays,fullybleached fibersaretheonestypicallyused intissueandhygieneproductsduetotheirgoodproperties: high-levelbrightness,goodwaterabsorption,softnessandlower impuritycontent(Beutheretal.2010;Fišerováetal.2019; Kullander2012;Rebolaetal.2021).However,fullybleached fibersrequirebleachingprocessesthatnegativelyaffectthe environmentandcompromisesustainability.Consumer awarenessforsustainabilityisrisingeverydayandthereisan increasingpreferenceforproductswithlowerenvironmental impact,suchasrecycledorunbleachedproducts(Britoetal. 2023;Feberetal.2020;Halleretal.2020;Zambranoetal.2022).

Unbleached fiberscanbeagreatalternativetofully bleached fibersduetotheirlowercarbonfootprint(Jouretal. 2013;Manetal.2020).Dependingonthe finalproductproperties,unbleached fiberscanprobablybetailor-madeand eventuallyreplacethefullybleached fibersusednowadays. Studieshaveshownthatunbleachedoxygendelignifiedpulps canhaveagreatswellingabilityduetothe fibercharge increaseduringtheiroxidationreactions(Esteves2022;Mai 2021;Zambranoetal.2022;Zhangetal.2005).Besidesthat, oxygendelignificationtendstoresultin fiberswithhigher curlandahighernumberofkinks(Estevesetal.2021a;Mohlin andAlfredsson1990),whichcanbebeneficialforthebulkof the finalproduct(Rebolaetal.2021).Thisworkaimsto

OpenAccess.©2024theauthor(s),publishedbyDeGruyter. ThisworkislicensedundertheCreativeCommonsAttribution4.0InternationalLicense.

maximizetheincreaseinthetotal fiberchargeofthe fibers subjectedtooxygendelignificationassessingkraftcooked pulpwithdifferentstartingkappanumbersandinvestigating thepotentialofusingthosepulpsasareplacementforfully bleached fibers.

2Materialsandmethods

2.1Materials

Amixtureofsoftwoodchipsfromanindustrialmill(80% Spruceand20%Pine)wasusedinthisstudyforkraftcooking andoxygendelignification.Aneverdriedcommercialfully bleachedpulp(referencepulp)fromthesamemillwasused forcomparison.Forfuturecomparisons,itisimportantto highlightthatthefullybleachedpulpwasproducedindustriallyand,thereforesubjectedtomuchharshertreatments thanthepulpsproducedinthelaboratory.

2.2Methods

2.2.1Kraftcooking

Threeseriesofkraftcooksweredoneinthisstudytoobtain pulpswithdifferentkappanumbers,twowereproducedin onerecirculatorydigesterandonewasproducedinautoclave.

Recirculatordigester:Thewoodchipswerekraftcooked inarecirculateddigesterwithadrychipscapacityof2kg, controlledtemperatureandaforcedliquor flow.Thewood chipswereimpregnatedinwaterunder0.5MPanitrogen pressurethedaybeforethecooking.Thewaterwasthen removedandcookingliquorwasaddedtogivealiquor/wood ratioof4.5l/kg.Theimpregnationstepwasperformed for30minat100 °Candthecookingstepwasperformedat 160 °C.Afterthecooking,thesteam flowwasstopped,and thespentliquorwasdrainedoff andcollectedforanalysis.

Autoclave:Thetrialswereperformedinsteelautoclaveswithavolumeof2.5dm 3 ,whichwereloadedwith

250g(o.d.)woodchips.Withavacuumpump,theairinside thevesselswasremovedfor30minandafterthattime,the cookingliquorwassuckedintotheautoclaves.Thechips were fi rstsubjectedto0.5MPanitrogeninjectionforabout 30min,andthenreleasedbeforestartingthecook.Forthe impregnationstep,theautoclaveswereplacedinasteamheatedglycolbathat100 °Cfor30min,andat160 °Cforthe cookingstep.Rotationandslightinclinationoftheautoclavesensuredgoodmixinginside.Afterthecookingstep, theautoclaveswerecooleddowninawaterbathfor10min, andthenthespentliquorwasdrainedo ff thechipsand collectedforanalysis.

Thetrialswereperformedwithaneffectivealkaliof 22%,asulfidityof30%andwithanionicstrengthof0.1M. ThetrialswerestoppedatdifferentHfactors(cookingtimes) toachievedistinctkappanumbers.

Thedelignifiedchipswerewashedwithdeionizedwater for10hinself-emptyingmetalcylindersandsubsequently defibratedandscreenedinanNAFwaterjetdefibrator (NordiskaArmaturfabriken).Theshiveswerecollected, driedat105 °C,andweighed.

2.2.2Oxygendelignification

Oxygendelignificationwascarriedoutwith60gofovendried(o.d.)pulp,placedinpolyethylenebagswiththe requiredamountofNaOH,MgSO4,andwaterataconsistencyof12%.Thebagswereclosedbyheat-welding,kneadedinitiallybyhandandtheninavibrationalshaker.The pulpwasthenremovedfromthebagsandtransferredto pressurizedteflon-coatedstainless-steelautoclaves.The autoclaveswereclosed,pressurizedwithoxygenandplaced inanelectricallyheatedglycolbath,withrotationataslight inclination.Thetrialswereperformedwithsingleordouble oxygenstageswithnowashinginbetween.Thesingleoxygenstageswerepressurizedwith0.7MPaofoxygenandthe reactionwascarriedat100 °C.Forthedoublestagesofoxygendelignificationthepressureusedinthe firststagewas 1MPaandthetemperaturewas85 °C,whileforthesecond stagethepressurewas0.5MPaand110 °C.Aftertheoxygen delignification,thepulpswerewashedwithdeionizedwater and filtrated.

TheconditionsforeachtrialareillustratedinFigure1. PulpsweredenominatedKX_OY,whereXisthekappa numberofthecookedpulpandYisthekappanumberafter theoxygendelignificationstage.

2.2.3Re

fining,papermaking

Thepulpsampleswererefinedattwodifferentlevels(2000 and4,000rpm)inaPFI-millaccordingtoISO5264–2and 2

Figure1: Illustrativerepresentationoftheperformedkraftcookingandoxygendelignificationtrials.Theblackarrowsrepresentthecookingextension andthewhitearrowstheoxygendelignification.Thewhitesinglearrowsarerelativetothesingleoxygenstage,whilethetwowhitearrowsoverlapping arerelativetothedoubleoxygenstage.ThesamplesaredenominatedKX_OY,whereXisthekappanumberofthecookedpulpandYthekappanumber afteroxygendelignification.

handsheetswerepreparedaccordingtoISO5269–1with deionizedwater,toagrammageof60g/m2 forthestandard handsheetsandagrammageof20g/m2 forthetissuehandsheets,withnopressing.

2.3Analysisofpulpandpaperproperties

Table1and2presentthedifferentpulpandpapercharacterizationstandards.

Measuringtissuepropertiesusuallydependsonseveral factorsthatareoftenpoorlycontrolledsuchasthesample size,thenumberofplies,amongothers.Inthepresentstudy, thepaperswereproducedandevaluatedinthesameconditions:labtissuehandsheetsof20g/m2 forthecommercial fullybleachedpulpandfortheoxygendelignifiedpulps.

Table : Standardsusedforthepulpcharacterization.

MethodsStandards KappanumberISO

Table : Standardsusedforthestandardandtissuehandsheet characterization.

MethodsSamplesStandards

Grammage

Thicknessandbulk

Basketimmersiontest

Capillarityrise(Klemm)

Drytensilestrength

Dryandwettensilestrength

TissueSoftnessanalyzer(TSA)

g/m

RISEinternalstandard ainsteadof  gthetestwasperformedwith  gofsample, binsteadof  min thetestwasperformedfor  min.

2.3.1Softnessevaluation

Thesoftnessofthetissuehandsheetswasevaluatedbythe TissueSoftnessAnalyzer(TSA).TSAcollectsdatafromseveral sensorsintheinstrument,butthreeparametersareconsidered tobeofmostimportance:softness(TS7),surfacesmoothness (TS750)andsheetstiffness(D).Theequipmentusesarotating lamellarfanonthepaper’ssurfacetoestimatethesample’s softness.BothTS7andTS750aredeterminedfromthesound spectrumcapturedbymicrophonesoneithersideofthesample.

Thehighertheresponsefromthesensortheloweristhepaper softness.Thetopmicrophonealgorithmwasusedinthiswork.

2.3.2Total fiberchargeincreasecalculation

Toquantifyhowmuchtheincreaseinthe fiberchargeafter oxygendelignificationwascomparedtothekraftcooking,a regression fitwasmadeforthekraftcookedpulpsasa reference,givenbyEquation(1).

TTFCcook ( y) = 0 88x + 58 9(1)

TTFCCook isthe Theoreticalvalueforthe Total Fiber Chargeofakraftcookedpulpforagivenkappanumber.The fiberchargeincreaseobtainedbyoxygendelignificationis thencalculatedaccordingtoEquation(2):

TFCoxygen TTFCcook TTFCcook (2)

whereTFCOxygen isthetotal fiberchargeofpulpafteroxygen delignificationtokappanumber “x”,andTTFCCook isthetheoreticaltotal fiberchargeofpulpafterkraftcookinguntilthe kappanumber(x)wasthesameastheoxygendelignifiedpulps.

3Resultsanddiscussion

3.1Delignification

Thecookingtrialswereaimedtoobtainthreedi ff erent kappanumbers:ahighkappanumber(109),amediumhighkappa(61)andalowkappanumber(29) – Table3. Thekappanumbersaimedforarebasedonresultsfrom previousstudies(Esteves2022;Estevesetal.2021a; Mai2021)whereitwasseenthatthehigherthestarting kappanumberisaftercookingthehigherwillbethe fi ber chargeincrease.Havingkraft-cookedpulpsbetween kappa109and29willalsoallowustoevaluatethe in fl uenceofthelignincontentonthe fi nalabsorption andstrengthpropertiesinconnectionwiththe fi ber charge.

Thepulpwiththehighestkappanumber(K109)was de fi bratedinaSproutWaldronrefi nerbeforetheoxygen deligni fi cation.Theoxygentrialswereaimedtohave extendeddelignifi cation(morethan60min)withahigh alkalicharge(morethan3%NaOH)andanendpHbetween 10and11.5.Thegoalwastoachievethehighestpossible total fi bercharge.However,forthelowercookedkappa number(K29)theendpHwashigherthanitwasaimedat sincethealkalichargewastoohighforthedelignifi cation e ffi ciency.

Table : Summaryofthekraftcookingandoxygendelignificationtrials. Cookingtemperaturewas  °C,sulfidity  %,effectivealkali  %and liquor-to-woodratio   l/kg.Forthesingleoxygentrialsthepressurewas   MPaandthetemperaturewas  °C,whileforthedoubleoxygen trialsthepressurewas  MPaandthetemperaturewas  °Cforthe first stageand   MPaand  °Cforthesecondstage.

SamplesH factor – Kappa no. Totalyield (cooking stage)(%) Residual alkali(g/l) K

SamplesTime, min Alkali charge, % Kappa no. Totalyield (oxygen stage)(%) EndpH K

3.2Total fibercharge

Itisknownthatthecarboxylicacidgroupsarethemain chargedgroupsfoundinthechemicalpulp fibers(Dangetal. 2006;Zhangetal.2005).However,thechargessuffermodificationsduringthedifferentpulpingprocessesthatcan eventuallyleadtotheirdecline.Figure2illustratesthe differentbehaviorsthatoccurduringKraftcooking,oxygen delignification,andbleaching.

Thelineardecreaseinthechargedgroupsasthelignin contentisreducedduringkraftcookingisclear(Figure2) anditiswelldocumented(Buchertetal.1997;Chaietal.2003; Dangetal.2006;Esteves2022).Thisiscausedbythelignin removalduringthedelignificationandbysomexylan dissolution(Buchertetal.1997;Chaietal.2003;Dangetal. 2006;Estevesetal.2021a)sincetheyarethemaincomponentswherethechargedgroupsarepresent.

Foroxygendelignification,thetotal fiberchargedevelopmentisnotstraightforward,buttheincreaseintotal fiber chargewhencomparedtothekraftcookedpulpsforthesame lignincontentisevidentinthehigherkappanumbers.The highervaluesforthechargecontentwereobtainedforthe pulpwiththehighestkappanumberfromthecooking,which wasexpected.Thisismainlyduetotheoxidationreactionsin ligninthatleadtoahighercontentofnewchargedgroupson thepulpduetothehigherlignincontent.Thesegroupsare largelyfromthemuconicacidstructurescreatedinlignin (Dangetal.2006;Snowmanetal.1999;Yangetal.2003),but

Figure2: Total fiberchargefornonrefined pulpsatdifferentkappanumbersafterkraft cooking(blackline)andoxygendelignification (green,orangeandbluelines)atdifferent alkalicharges,givenas%NaOHinthe figure. Theoxygentrialspresentedingreenwere performedonkraftcookedpulpwithaninitial kappa(iKa)numberof29,whiletheoxygen trialspresentedinorangewereperformedon kraftcookedpulpwithaninitialkappanumber (iKa)of61andtheoxygentrialspresentedin bluewereperformedonkraftcookedpulp withaninitialkappanumber(iKa)of109.The commercialfullybleachedpulpis denominatedasreferenceinthe figure(black square). C.V.G.Esteves:Oxygendeligni

alsofromoxidizedcarbohydrates(Taoetal.2011;Zhangetal. 2006;Zhaoetal.2016).Forthelowerkappanumber(K29)the increasein fiberchargeswasalmostinsignificantafteroxygendelignification.Thiswasnotasurprisesincethelignin contentwasreducedsignificantlyduringthekraftcooking step,andthepotentialtomaximizethechargeswasreduced.

Previousstudieshavereportedthatthe fibercharge increasefromoxygendelignificationwillbedependenton severalfactors,suchasinitiallignincontent,alkalicharge applied,delignificationdegreeandtheextensionofthereaction(Esteves2022;Estevesetal.2021a;Zhangetal.2006). FromFigure2thevariationinthoseparameterscanbe observed.Pulpswithdifferentstartingkappanumber(109, 61and29)willhavedifferent finalchargecontentafter extendedoxygendelignificationdependingontheconditionsintheoxygenstage(alkalichargeandreactiontime).

Table4presentsthe finaltotal fiberchargeobtained afteroxygendelignificationandtheincreasedamountof total fiberchargeifthepulpwouldbeonlycookedtothe samekappanumbers,calculatedbyequation(1)and(2).

Table : Fiberchargeincreaseforthestudiedpulps.Thesamplesthat obtainedthehighestincreaseof fiberchargeswithineachkraftcooking seriesarehighlightedinbold.

SamplesKappa number Total fibercharge, meq/kg Fiberchargeincrease,% K

_O Noincrease K_O K_OO K_O K_O

Previousstudies(Esteves2022;Estevesetal.2020)have shownthataminimumincrease(>60%)inthe fibercharge isvitalforthechangeinpulpproperties.FromTable4the samplesthatpresentedthehighest fiberchargeincrease wereselectedandconsideredforfurtherstudies(refining andpapertesting).Thesamplesfromthecookedpulpwith kappanumber29didn’thaveasignificantincreaseinthe fibercharge,achievingonly23%increase,nevertheless,the samplewasalsoconsideredforfurthertrialstoevaluatethe influenceofthelignincontentonthe finalproperties.

3.3Waterretentionvalue

Thewaterretentionvalue(WRV)wassignificantlyhigherfor theoxygendelignifiedpulpscomparedtothecommercial fullybleachedpulp(reference) – Figure3A.Thisbehavior wasalreadyexpectedsincetheoxygendelignified fibers presentedahighertotal fibercharge(highercontentof carboxylicacidgroups)whichleadstoanincreasein fiber swelling(Estevesetal.2020;Sjöstedtetal.2015;Zhaoetal. 2016).Thepulpswiththehighestkappanumberwerethe oneswiththehighestwaterretentionvalues,whilethe referencefullybleachedpulppresentedthelowestcharge andthelowestWRV – Figure3BandC.

Figure3Bshowsthewaterretentionvaluecorrelation alongthekappanumberwhenpulpsareunrefinedor refinedwith4000revolutions.Asexpected,theWRVincreaseswithrefininganddecreaseswithkappanumber.A similarrelationcanbeseeninFigure3CwheretheWRVis plottedagainstthetotal fibercharge.Aspreviouslysuggested,WRVishighlydependentonthetotal fibercharge (Estevesetal.2021b).

Thesignificantincreaseinthewaterretentionvalueis verybeneficialtotheabsorptionandstrengthpropertiesof

Figure3: WaterretentionvalueforunbleachedoxygendelignifiedpulpsandfullybleachedpulpasafunctionofA)PFI-refining,B)kappanumberandC) total fibercharge.

thepulps,however,itmightimpactthepaperdryingsection, leadingtohigherenergyrequirements.However,theincreaseinthewaterretentionvaluealsoleadstoadecreasein therefiningrequiredtoacertaintensilestrength,whichin turnwillleadtolowerenergyconsumption.

3.4Absorptionandcapillarityproperties

Toevaluatetheabsorptionandcapillaritypropertiesofthe studiedpulps,thebasketmethodandKlemmtestwere used,respectively.Theabsorptioncapacitycanbede fi ned asameasurementofthe fi berabilitytoabsorbwater(g water/g fi ber)untilitgetssaturated(SchuchardandBerg 1991).Theabsorptionquanti fi cationalsoconsidersthe fi ber capacityofholdingwater,sincethereisadewatering periodbeforemeasuringthewetweight.Theabsorption capacityfortheanalyzedsamplesispresentedinFigure4. Asexpected,theabsorptioncapacityisdirectlyrelatedto thepaperbulkdespitethelargespaninkappanumber, rangingfrom0(REF)to47.

ThecommercialfullybleachedpulpandthepulpsK61_O andK61_OOpresentedverysimilarresultsfortheabsorptioncapacity(Figure4)whiletheoxygendelignifiedpulps withthehighestkappanumber(K109_OandK109_OO)and thelowest(K29_O10)afterthecookingsteppresentedlower absorptioncapacity.

Absorbencycanbesigni fi cantlyincreasedthrough theincreaseintheproductbulk(SedinandVomho ff 2017).Bulkisthereforeanimportantpropertyoftissue paper,asitregulatesthepaperabsorption,paper networkporosityandsoftnesssensation.Theoxygen deligni fi edpulps(K61_O25andK61_OO18)presented

Figure4: Absorptioncapacityforunbleachedoxygendelignifiedpulps andfullybleachedpulpasafunctionofbulk(20g/m2 laboratorytissue handsheetswereused).Decreaseinbulkforeachpulpsampleisobtained byincreasedrefining.

similarabsorptioncapacityasthereferencepulpwith slightlyhigherbulk.Theoxygendeligni fi edpulps K109_O47,K109_OO35andK29_O10presentedamuch lowerbulkwhencomparedtotheotherpulpsand, consequentlylowerabsorptioncapacity.Fortheunrefi nedsamples,K109_O47andK29_O10,thebulkandabsorptioncapacityareverysimilar,eventhoughthelignin contentissigni fi cantlydi ff erent.

Contrarytowhathappenswiththewaterretention value(Figure3A),whenrefiningisappliedthewaterabsorptioncapacityofthepulpsdecreases – Figure4.Whilethe waterretentionvalueismainlyrelatedtothewaterabsorptioninthe fiberwall,theabsorptioncapacityisrelated tothewaterabsorptionwithinthe fibernetwork.The externalandinternal fibrillationcreatedbytherefining leadstoagreaterswellingpotentialbyincreasingthewater penetrationbetweenthe fibrilsseenaswaterretention

Figure5: Watercapillarityrisedistanceforunbleachedoxygen delignifiedpulpsandfullybleachedpulpasafunctionofbulk(20g/m2 laboratorytissuehandsheetswereused).Decreaseinbulkforeachpulp sampleisobtainedbyincreasedrefining.

value(Hartman1985;Kang2007),butsimultaneously,the increasein fibrillationalsoleadstobetter fiberbonding whichpromotesadenserpaperstructure,leadingtoalower absorptionvalues(Lumiainen2000).

Figure5showsthecapillaryrisebehaviorofthe differentpulpsobtainedbytheKlemmmethod.Similarto theresultsinFigure4,thepulpsK61_O25andK61_OO18 presentedthemostsimilarresultswhencomparedtothe referencefullybleachedpulp.

Capillaryrisedependsonthecohesionandadhesion forcesofthewatermoleculesthatwillrisealongthe fiber wallsorwithinthepores(MoraisandCurto2022).Thesize ofthoseporeswilldefinethecapillarypressureinside the fibersandthe fibernetwork,determininghowfastthe

waterwillrise.Microporesarepresentinnative fibers,but duringpulpingthelignin–hemicellulosematrixisgradually removedcreatingsomeporesinthecellwall,calledmacropores(Brännvalletal.2021).Themicroandmacropores willinfluencethewaterabsorptioncapacityofthe fibers, oncetheyinfluencethe fibercapillarypressure(Beuther etal.2010).Biggerporestendtodecreasethecapillaryforces andtheholdingcapacity(JoutsimoandAsikainen2013), whilesmallerporesarecapableofretainingmoreliquidat higherpressuresthanlargerporesduetogreatercapillary force(BrodinandTheliander2012).

When fi bersundergore fi ning,thecapillarypressure tendstodecrease,probablyduetointernalandexternal fi brillation.As fi berinteractionsgetstronger,thesheet thicknessisreducedbytheincreaseinsheetdensifi cation, andconsequently,theopenvoidsavailableinthesheetin whichwatercanbeheldwillbereduced(Kullander2012). Thedecreaseinthecapillarypressurewiththeincreasein fi brillationwassuggestedbefore(Moraisetal.2021).The higherthebulk,thehigherthevolumeofporesinsidethe papernetwork.

Figure6showsthediff erentspeedsinthecapillaryrise forthestudiedpulps.Forunre fi nedpulps,theoxygen deligni fi edK29_O10andK61_O25hadthefastestwaterrise (Figure6A).Thepulpswithslowerwaterrisingwerethe oxygendelignifi edpulpswithhigherkappanumbers, K109_O47andK109_OO35.Thefastercapillarityriseseen fortheK61_OandK61_OOisprobablyduetothemoreopen structureofthepapernetworksincebothpulppresented thehighestbulk.

Figure6: RateofwatercapillarityriseforunbleachedoxygendelignifiedpulpsandfullybleachedpulpforA)unrefinedandB)4000PFI-refinedpulps. (20g/m2 laboratorytissuehandsheetswereused).

8 C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper

Whenrefiningisapplied,thefastestwaterriseisforthe commercialfullybleachedpulp,whiletheoxygendelignified pulpslandinlowerwaterrising,especiallyfortheK29_O10.

3.5Mechanicalproperties

3.5.1Drytensileproperties

Thereferencefullybleachedpulppresentedamuchlower tensileindexthantheunbleachedoxygendelignifiedpulps –Figure7A.Thedifferenceinthetensileindexisevenmore significantforunrefinedpulps.Thisiscausedbythedifferent chemistryofthefullybleachedandunbleached fibersandthe harsherindustrialtreatmentthatthefullybleachedpulpwas subjectedto.Theoxygendelignifiedpulpsobtainedahigher tensileindex.Alltheunrefinedoxygendelignifiedpulps,obtainedsimilartensileindex(between74and83Nm/g)and higherbulk(1.55–1.45cm3/g)whencomparedtothereference fullybleachedpulprefinedwith2000PFI-revolutions(72Nm/g and80g/cm3).Forhigherrefininglevels,theunbleachedpulps continuedtopresenthighertensileindexvaluesthanthe referencepulp.Theresultsshowedthatoxygendelignification pulpsobtainsimilarabsorptionpropertieswithmuchhigher tensilestrengththanfullybleachedpulps,withlowerrefining energyrequired.

Theincreaseinpaperstrengthwassurelyachieved bytheincreaseininternalandexternal fi brillationinthe re fi ningstep.Re fi ningbreakssomeinnerbondsinthe fi berswall,makingthemmore fl exibleandswellable,

leadingtobetter fi berbonding(Gharehkhanietal.2015; Kullander2012;MaloneyandPaulapuro1999).However, forthefullybleachedpulps,theincreaseinthetensile indexseemstobemorein fl uencedbytheincreaseof sheetdensi fi cationduetore fi ning,ratherthantheincreaseinthe fi berbondingstrength.Oxygendeligni fi ed pulpspresentedhigherstrengthforsimilarbulk comparedtothereferencepulp.Thissuggeststhataless bondedareaisneededtoaccomplishacertainstrength. Nordström(2014)andEstevesetal.(2021b)havepreviouslyreportedsimilarresults,wherepulpswithhigher lignincontentobtainedahighertensileindextoagiven lowdensity.

FromFigure7B,itisinterestingtohighlightthatthe oxygendelignifi edpulpshaveasignifi cantlyhigher strengthforsimilarabsorptioncapacity.Asseenforthe otherproperties,thesamplesK61_O25andK61_OO18presentedthebeststrengthandabsorptionperformance,as showninFigure4.

3.5.2Wettensileproperties

Cellulose-basedmaterialssuchastissueproductsare highlysensitivetohumiditysincecellulosemoleculeshold alargenumberofhydroxylgroups.Paperis,therefore,a hydrophilicmaterial;whenincontactwithwateror moisture,itstartstoswell,breakingdownthehydrogen bondsandlosingitsstructure.Therefore,thewetstrength becomescriticalfortissuepapersexposedtowaterand moisture.

Figure7: TensileindexforthereferenceandoxygendelignifiedpulpsasafunctionofA)bulk(60g/m2 laboratorytissuehandsheetswereused)and B)absorptioncapacity(20g/m2 laboratorytissuehandsheetswereused).Theincreaseintensilestrengthforeachpulpsampleisobtainedbyincreased refining.

C.V.G.Esteves:Oxygendeligni

Wettensilestrengthisoneoftheimportantproperties oftissueproductssincetheyshouldberesistantand maintaintheirstructurewhenwetted.Figure8presents thewettensileindexfortheoxygendelignifiedpulpsand thereferencefullybleachedpulp.Thewettensileindexfor

Figure8: Wettensileindexforthereferenceandoxygendelignified pulpsasafunctionofA)bulk,B)waterretentionvalueandC)absorption capacity.(20g/m2 laboratorytissuehandsheetswereused).

thereferenceunrefinedpulpwasnotpossibletodetermine duetothelackofwetstrengthsincenowetstrengthadditiveswereusedinthisstudy.

Thereferencefullybleachedpulpafter2000and4000 PFIrevolutionsdidnotpresentanincreaseinthewettensile strength(Figure8A).Theunbleachedpulps,ontheother hand,hadanalmostlinearincreaseofthewettensileindex withtherefining,obtainingbetween200and400%higher wettensilethanthereferencefullybleachedpulpforsimilar bulkvalues.

Whenthewettensileindexisseenasafunctionofthe waterretentionvalue,therelationisalmostlinearforthe unbleachedpulps(Figure8B).Thehigherthepulpswelling thehigherthewettensileindex.

Figure8CshowssimilarbehaviourasseeninFigure8A, sincebulkandabsorptioncapacityhavealinearrelationship. Forsimilarabsorptioncapacity(around7g/g),thepulpswith thehigherkappanumber(K109_O47andK109_OO35)present thehighestwetstrength(2.5Nm/g).

Theincreasein fi ber fi brillationand fi berbonding, thatisexpectedfromre fi ning,seemstovanishwhen thepaperiswettedforthecommercialfullybleached pulp.Theunre fi nedunbleachedpulpspresentedwet tensilestrengthinthesamerangeasthecommercial fullybleachedpulpwhenitwasre fi nedwith2,000and 4,000revolutions,withmuchhigherbulk.Thehigherwet strengthseenfortheunbleachedpulpsshowsagreat potentialfortowelpapers,forexample,wheretheycan stillhaveahighabsorptioncapacityandhigherstrength.

Whenthestrengthvaluesareplottedasafunctionof thekappanumbertherelationisclear:higherlignincontentinthepulpsleadstohigherwettensilestrength (Figure9).Someoldlaboratorystudieshavealsoshowna connectionbetweenhighlignincontentandincreasedwet strength(Gunnarsson2012).Figure9Bshowsthefairly linearrelationofthepulps ’ relativestrengthandlignin content.

Theseresultsshowthepotentialofusingpulpswithhigh lignincontenttoincreasethewetstrengthofthetissue products.Theequilibriumbetweenwetstrengthandabsorptioncapacityofunbleachedtissueproductscanbe alteredbytheoxygendelignificationconditionsandbythe startingkappanumberofthepulps.

3.6Softness

Softnesscanbedescribedasthehumanperceptionof somethingthatisbulkyanddelicatewithnosharpedges. However,itisalsoaquitecomplexphenomenontoevaluate andquantify.Softnessdependsonseveralfactors,suchas

10 C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper

Figure9: Strengthpropertiesforthereferenceandoxygendelignifiedpulpsatdifferentlevelsofrefiningasafunctionofkappanumber.A)Wettensile indexandB)relativestrength.(20g/m2 laboratorytissuehandsheetswereused).ThenumbersonthetopofthesymbolsingraphA)arethetotal fiber chargeofthesamples.Thevaluesareinmeq/kg.

individualsensibility,bulk, flexibility,thickness,among others.Softnessisconsideredoneofthemostessential propertiesoftissueproducts(deAssisetal.2018).

ThestudiedsampleswereevaluatedusingtheTissue SoftnessAnalyzer(TSA),whichisclaimedtogivea perceptionofthesample ’ ssoftness(Figure10).ThesoftnesscanbeestimatedbytheTS7parameter,wherelower TS7valuesareattributedtohighersoftness(deAssisetal. 2020).

Theunbleachedpulps(K61_O25andK61_OO18)presentedsimilarTS7valuesforslightlyhigherbulkasthe referencepulpwhennore fi ningwasapplied.Thehighest andlowestkappasamplesalsoobtainedasimilarTS7 valueasthereferencebutforlowerbulkvalues.TheincreaseinTS7withre fi ningwasexpectedsincethehigher strengthisusuallyassociatedwithlowersoftness(Debnathetal.2021;Scottetal.1995).Thus,anincreased strengthresultsinimpairedsoftnessandviceversa (Figure10BandC).

Anincreaseinthepaperstrengthisgenerallyfollowed byadecreaseinsoftness(Salemetal.2023).However,itcan beseenthatunbleachedpulpspresentedsimilarsoftness levelswithmuchhigherwetanddrystrength(Figure10B andC).Figure10Bshowsthatoxygendeligni fi edpulps, whennotre fi ned,presenthigherwetstrengthforlower TS7values(highersoftness).Whenthepulpsarere fi ned, thewetstrengthsigni fi cantlyincreaseswithoutvaryingthe TS7factorsignifi cantly(K109_O47andK109_OO35).Quite

similarbehaviorwasseenforthedrystrength – Figure10C. Theoxygendelignifi edpulpsevenshowedslightlybetter softnessatspeci fi ctensilestrengththancommercially bleachedpulp.Unfortunately,thesoftnessmeasurements throughtheTSAequipmentcomewithasigni fi cantlylarge standarddeviationforsomesamples,whichgivessome uncertaintyaboutthesoftnesscomparisonbetweenthe samples.

4Conclusions

Thisworkshowedthepotentialofusingoxygendelignified pulpsasareplacementforfullybleachedpulps.Comparedto thecommercialfullybleachedpulp,similarabsorptionand muchhighertensilestrengthwereobtainedfortheoxygen delignifiedpulps,especiallyforunrefinedpulps.Twoofthe oxygendelignifiedpulps(K61_O25andK61_OO18)achieved similarabsorptioncapacityandfasterwaterrisingwith higherbulkwhencomparedtocommercialpulp.Significantly higherwetstrengthandhigherstrengthratiowereobtained fortheoxygendelignifiedpulps,especiallyforthepulpswith thehighestlignincontent.Theoxygenpulpsshowedsimilar softnesslevelsforhighertensilestrength.Lignincontentwas seentohaveanimpactontheWRVbutnoeffectonabsorptioncapacityorcapillaryrising,whichonlydependedonbulk. Asexpected,whentheoxygendelignificationstartswitha kraftcookedpulpwithalowkappanumbertheincreasein

C.V.G.Esteves:Oxygendeligni

Figure10: Softnessforunbleachedoxygendelignifiedpulpsandfully bleachedpulpasafunctionof,a)bulk,b)wetandc)drytensileindex (20g/m2 laboratorytissuehandsheetswereused).

the fiberchargesisnotmaximizedasinthehigherkappa numberpulpsandthereforenosignificantbenefitwasseen. Thehigherwetstrengthandsimilarabsorptioncapacity seenfortheoxygenunbleached fiberswillbesuitablefor differenttypesoftissueproducts,makingthemamoresustainableoptionthanthefullybleached fibers,sincenobleachingwouldbenecessary.Nevertheless,otherconsiderations mustbeconsideredandstudiedfurther,suchasthepossibly higherenergyconsumptioninthedryingpapersection.

Acknowledgments: Theauthorgratefullyacknowledges “ SödraSkogsägarnasStiftelseförForskning,Utvecklingoch Utbildning ” forthe fi nancialsupportofthisproject2022–297.TheauthorwouldalsoliketoacknowledgeMikaela Kubatforthecooking,oxygendelignifi cationand fi ber chargemeasurements.FredrikAdåsandLadanFouladiare alsoacknowledgedfortheirguidanceandcommentsonthe tissuetesting.ElisabetBrännvallandAronTysénare acknowledgedforreadingandcommentingonthe manuscript.

Researchethics: Notapplicable.

Authorcontributions: Theauthorhasacceptedresponsibilityfortheentirecontentofthismanuscriptandapproved itssubmission.

Competinginterests: Theauthorstatesnocon fl ictof interest

Researchfunding: SödraSkogsägarnasStiftelseförForskning, UtvecklingochUtbildning,2022–297.

Dataavailability: Therawdatacanbeobtainedonrequest fromthecorrespondingauthor.

References

Beuther,P.D.,Veith,M.W.,andZwick,K.J.(2010).Characterizationof absorbent flowrateintowelandtissue. J.Eng.FiberFabr. 5,https://doi. org/10.1177/155892501000500201.

Brännvall,E.,Larsson,P.T.,andStevanic,J.S.(2021).Changesinthecellulose fiberwallsupramolecularstructureduringtheinitialstagesof chemicaltreatmentsofwoodevaluatedbyNMRandX-rayscattering. Cellulose 28:3951–3965,https://doi.org/10.1007/s10570-021-03790-1.

Brito,A.,Suarez,A.,Pifano,A.,Reisinger,L.,Wright,J.,Saloni,D.,Kelley,S., Gonzalez,R.,Venditti,R.,andJameel,H.(2023).Environmentallife cycleassessmentofpremiumandultrahygienetissueproductsinthe UnitedStates. BioResources 18:4006–4031,https://doi.org/10.15376/ biores.18.2.4006-4031.

Brodin,F.W.andTheliander,H.(2012).Absorbentmaterialsbasedonkraft pulp:preparationandmaterialcharacterization. BioResources 7, https://doi.org/10.15376/biores.7.2.1666-1683.

Buchert,J.,Bergnor,E.,Lindblad,G.,Viikari,L.,andEk,M.(1997). Significanceofxylanandglucomannaninthebrightnessreversionof kraftpulps. TappiJ.80:165–171.

Chai,X.-S.,Hou,Q.,andZhu,J.(2003).Carboxylgroupsinwood fibers.2.The fateofcarboxylgroupsduringalkalinedelignificationandits applicationfor fiberyieldpredictioninalkalinepulping. Ind.Eng. Chem.Res. 42:5445–5449,https://doi.org/10.1021/ie0209733.

Dang,Z.,Elder,T.,andRagauskas,A.J.(2006).Influenceofkraftpulpingon carboxylatecontentofsoftwoodkraftpulps. Ind.Eng.Chem.Res. 45: 4509–4516,https://doi.org/10.1021/ie060203h.

deAssis,T.,Pawlak,J.,Pal,L.,Jameel,H.,Reisinger,L.W.,Kavalew,D., Campbell,C.,Pawlowska,L.,andGonzalez,R.W.(2020).Comparison betweenuncrepedandcrepedhandsheetsontissuepaperproperties usingacrepingsimulatorunit. Cellulose 27:5981–5999,https://doi. org/10.1007/s10570-020-03163-0.

deAssis,T.,Reisinger,L.W.,Pal,L.,Pawlak,J.,Jameel,H.,andGonzalez,R.W. (2018).Understandingtheeffectofmachinetechnologyandcellulosic fibersontissueproperties–Areview. BioResources 13:4593–4629, https://doi.org/10.15376/biores.13.2.deassis.

Debnath,M.,Salem,K.S.,Naithani,V.,Musten,E.,Hubbe,M.A.,andPal,L. (2021).Softmechanicaltreatmentsofrecycled fibersusingahighshearhomogenizerfortissueandhygieneproducts. Cellulose 28: 7981–7994,https://doi.org/10.1007/s10570-021-04024-0.

Esteves,C.V.(2022). Pulpstrengthenhancementbyoxygendelignification,PhD Compilation.KTHRoyalInstituteofTechnology,Stockholm. Esteves,C.V.,Brännvall,E.,Östlund,S.,andSevastyanova,O.(2020). Evaluatingthepotentialtomodifypulpandpaperpropertiesthrough oxygendelignification. ACSOmega 5:13703–13711,https://doi.org/10. 1021/acsomega.0c00869.

Esteves,C.V.,Sevastyanova,O.,Östlund,S.,andBrännvall,E.(2021a).

Differencesandsimilaritiesbetweenkraftandoxygendelignification ofsoftwood fibers:effectsonchemicalandphysicalproperties. Cellulose 28:3149–3167,https://doi.org/10.1007/s10570-021-03713-0.

Esteves,C.V.,Sevastyanova,O.,Östlund,S.,andBrännvall,E.(2021b).

Differencesandsimilaritiesbetweenkraftandoxygendelignification ofsoftwood fibers:effectsonmechanicalproperties. Cellulose 28: 3775–3788,https://doi.org/10.1007/s10570-021-03781-2.

Feber,D.,Granskog,A.,Lingqvist,O.,andNordigården,D.(2020).

Sustainabilityinpackaging:insidethemindsofUSconsumers, Retrieved08-2023,2023,Availablefrom:https://www.mckinsey.com/ industries/paper-forest-products-and-packaging/our-insights/ sustainability-in-packaging-inside-the-minds-of-us-consumers. Fišerová,M.,Gigac,J.,Stankovska,M.,andOpalena,E.(2019).Influenceof bleachedsoftwoodandhardwoodkraftpulpsontissuepaper properties. Cell.Chem.Technol. 53:469–477,https://doi.org/10.35812/ cellulosechemtechnol.2019.53.47.

Gharehkhani,S.,Sadeghinezhad,E.,Kazi,S.N.,Yarmand,H.,Badarudin,A., Safaei,M.R.,andZubir,M.N.M.(2015).Basiceffectsofpulprefiningon fiberproperties – areview. Carbohyd.Polym. 115:785–803,https://doi. org/10.1016/j.carbpol.2014.08.047.

Gigac,J.andFišerová,M.(2008).Influenceofpulprefiningontissuepaper properties. TappiJ.7:27–32,https://doi.org/10.32964/tj7.8.27.

Gunnarsson,M.(2012) Decreasedwetstrengthinretortedliquidpackaging board.Master,ChalmersUniversityofTechnology.Göteborg,Sweden. Haller,K.,Lee,J.,andCheung,J.(2020). Meetthe2020consumersdriving change.IBMInstituteforBusinessValue,Availableonline: https://www.ibm.com/downloads/cas/EXK4XKX8(Accessedon29 March2021).

Hartman,R.R.(1985). Mechanicaltreatmentofpulp fibresforproperty development,PhD.Appleton,USA. Jour,P.,Halldén,K.,andWackerberg,E.(2013).Environmentalsystems analysisofalternativebleachingsequenceswithfocusoncarbon footprint.In: ProceedingsoftheABTCP,the46thABTCPinternationalpulp andpapercongress.©2013ABTCP,SaoPaulo,Brazil. Joutsimo,O.P.andAsikainen,S.(2013).Effectof fiberwallporestructureon pulpsheetdensityofsoftwoodkraftpulp fibers. BioResources 8: 2719–2737,https://doi.org/10.15376/biores.8.2.2719-2737. Kang,T.(2007). Roleofexternal fibrillationinpulpandpaperproperties,PhD. HelsinkiUniversityofTechnology,Espoo. Katz,S.,Beatson,R.P.,andScallon,A.M.(1984).Thedeterminationofstrong andweakacidicgroupsinsulfitepulps. Svenskpapperstidn 87:48–53. Kim,J.J.,Shalev,I.,andBarker,R.L.(1994).Softnesspropertiesofpaper towels. TappiJ.77:83–89. Kullander,J.(2012). Evaluationoffurnishesfortissuemanufacturing,Ph.D. Karlstad,Karlstadsuniversitet. Lumiainen,J.(2000).Refiningofchemicalpulp. Papermakingpart 1:86–122. Mai,J.(2021). Developmentofpulp fiberchargeinoxygendelignificationof softwood,Masterdegree.KTH,Stockholm. Maloney,T.andPaulapuro,H.(1999).Theformationofporesinthecellwall. J.PulpPap.Sci. 25:430–436. Man,Y.,Li,J.,Hong,M.,andHan,Y.(2020).EnergytransitionforthelowcarbonpulpandpaperindustryinChina. RenewableSustainableEnergy Rev. 131:109998,https://doi.org/10.1016/j.rser.2020.109998. Mohlin,U.-B.andAlfredsson,C.(1990).Fibredeformationandits implicationsinpulpcharacterization. Nord.PulpPap.Res.J.5:172–179, https://doi.org/10.3183/npprj-1990-05-04-p172-179.

Morais,F.P.andCurto,J.M.(2022).Challengesincomputationalmaterials modellingandsimulation:acase-studytopredicttissuepaperproperties. Heliyon 8:e09356,https://doi.org/10.1016/j.heliyon.2022.e09356. Morais,F.P.,Carta,A.,Amaral,M.E.,andCurto,J.M.(2021).Cellulose fiber enzymaticmodificationtoimprovethesoftness,strength,and absorptionpropertiesoftissuepapers. BioResources 16:846–861, https://doi.org/10.15376/biores.16.1.846-861.

Nordström,B.(2014).Unbleachedlinerboardkraftpulpswithdifferent kappanumber(yield)–effectsontensilepropertiesandcompression strengthwithfreeorrestraineddrying. Nord.PulpPap.Res.J.29: 462–467,https://doi.org/10.3183/npprj-2014-29-03-p462-467.

Rebola,S.M.,Azevedo,C.A.,andEvtuguin,D.V.(2021).E ffectofcooking andbleachingconditionsonthepropertiesofeucalyptuskraft fl uff pulps. Cellulose 28:4411 –4426,https://doi.org/10.1007/s10570-02103789-8.

Salem,K.,Jameel,H.,Lucia,L.,andPal,L.(2023).Sustainablehigh-yield lignocellulosic fibersandmodificationtechnologieseducingsoftnessand strengthfortissuesandhygieneproductsforglobalhealth. Mater.Today Sustainability 22:100342,https://doi.org/10.1016/j.mtsust.2023.100342. Schuchard,D.R.andBerg,J.C.(1991).Liquidtransportincompositecellulose superabsorbent fibernetworks. WoodFiberSci.:342–357. Scott,W.E.,Abbott,J.C.,andTrosset,S.(1995).Thepropertiesofcreped tissuepapers.In: Propertiesofpaper:anintroduction.TAPPI,Atlanta, GA,pp.179–185.

Sedin,M.F.,F.andVomhoff,H.(2017).Theinfluenceofabsorptiondirection ontheabsorptioncapacityofkitchentowel. InnventiaResearch Programme:2015–2017,InnventiaReport973.

Sjöstedt,A.,Wohlert,J.,Larsson,P.T.,andWågberg,L.(2015).Structural changesduringswellingofhighlychargedcellulose fibres. Cellulose 22:2943–2953,https://doi.org/10.1007/s10570-015-0701-4.

C.V.G.Esteves:Oxygendelignified fibersasagreeneralternativefortissuepaper 13

Snowman,V.R.,Genco,J.M.,Cole,B.J.,Kwon,H.B.,andMiller,W.J.(1999). Bondstrengthofoxygen-deligni fi edkraftpulps. TappiJ .82: 103 – 109.

Tao,L.,Genco,J.M.,Cole,B.J.,andFortJr,R.C.(2011).Selectivityofoxygen delignificationforsouthernsoftwoodkraftpulpswithhighlignin content. TappiJ.10:29–39,https://doi.org/10.32964/tj10.8.29. Yang,R.,Lucia,L.,Ragauskas,A.J.,andJameel,H.(2003).Oxygen delignificationchemistryanditsimpactonpulp fibers. J.WoodChem. Technol. 23:13–29,https://doi.org/10.1081/wct-120018613. Zambrano,F.,Marquez,R.,Vera,R.,Jameel,H.,Venditti,R.,andGonzalez,R. (2022).Developingalternative,high-absorbencyBrown fibers:tissue paperfromupcycledcorrugatedpackagingwastetomeetnew

consumertrends. ACSSustain.Chem.Eng. 10:13343–13356,https://doi. org/10.1021/acssuschemeng.2c03280.

Zhang,D.,Chai,X.-S.,Hou,Q.,andRagauskas,A.(2005).Characterizationof fibercarboxylicaciddevelopmentduringone-stageoxygen delignification. Ind.Eng.Chem.Res. 44:9279–9285,https://doi.org/10. 1021/ie050489a.

Zhang,D.,Pu,Y.,Courchene,C.,Chai,X.-S.,andRagauskas,A.(2006).Total fibrechargeoffullybleachedSWkraftpulps:acomparativestudy. J.PulpPap.Sci. 32:231–237.

Zhao,C.,Zhang,H.,Zeng,X.,Li,H.,andSun,D.(2016).Enhancingtheinter-fiber bondingpropertiesofcellulosic fibersbyincreasingdifferent fibercharges. Cellulose 23:1617–1628,https://doi.org/10.1007/s10570-016-0941-y.

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Comparison of Degradation of Lignincontaining Wastewaters in the Presence of Different Microbial Consortia

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

Introduction

Keywords

Chem. Biochem. Eng. Q.

Shinella Cupriavidus Bosea Serratia Yersinia

et al.

et al.

Chem. Biochem. Eng. Q.

Materials and methods

Materials

Shinella Cupriavidus Bosea Bacillus Rhodococcus Serratia Yersinia Astragalus membranaceus Fritillaria cirrhosa, Angelica sinensis

Culture media and model wastewater

Domestication of the microorganisms

Chem. Biochem. Eng. Q.

Analysis methods

Wastewater treatment and conditions optimization

– Experimental design for wastewater treatment conditions

Chem. Biochem. Eng. Q.

Chem. Biochem. Eng. Q.

Statistical analysis

Results and discussion

Conditions optimization and analysis of wastewater degradation effect

Effect of treatment time on degradation

3.1.2 Effect of temperature on COD removal

– Degradation of lignin-containing wastewater by different microorganisms

Chem. Biochem. Eng. Q.

– Effect of treatment time on lignin-containing wastewater treatment (a: traditional Chinese medicine wastewater; b: papermaking wastewater)

– Effect of temperature on lignin-containing wastewater treatment (a: traditional Chinese medicine wastewater treatment by J-6; b: traditional Chinese medicine wastewater treatment by J-1; c: papermaking wastewater treatment by J-6; d: papermaking wastewater treatment by J-1)

Effect of pH on COD removal

Effect of dissolved oxygen on COD removal

Chem. Biochem. Eng. Q.

Effect of wastewater concentration on COD removal

Chem. Biochem. Eng. Q.

– Effect of different factors on the treatment of lignin-containing wastewater (a: effect of pH on traditional Chinese medicine wastewater treatment; b: effect of pH on papermaking wastewater treatment; c: effect of DO on traditional Chinese medicine wastewater treatment; d: effect of DO on papermaking wastewater treatment; e: effect of wastewater concentration on traditional Chinese medicine wastewater treatment; f: effect of wastewater concentration on papermaking wastewater treatment)

Effect of nitrogen source addition on papermaking wastewater treatment

Chem. Biochem. Eng. Q.

et al. et al.

– Effect of nitrogen source addition on papermaking wastewater treatment (a: average removal efficiency of COD under different nitrogen addition; b: effluent ammonia nitrogen concentration under different nitrogen addition)

Consortium structure and diversity analysis

Analysis of consortium diversity and composition

Chem. Biochem. Eng. Q.

– Bacterial community diversity in different samples

Sphingomonas Rhodoplanes Lactobacillus Pseudomonas Serratia Ralstonia

Rhodoplanes Pseudomonas Serratia Lactobacillus Ralstonia

Bacteroides

Rhodoplanes

Sphingomonas Rhodoplanes

Rhodoplanes

Rhodoplanes

Sphingomonas

Sphingomonas

Sphingomonas

Chem. Biochem. Eng. Q.

– Bacterial community composition of different wastewater treatment systems (T: traditional Chinese medicine wastewater; P: papermaking wastewater)

Serratia Ralstonia Pseudomonas Lactobacillus Rhodoplanes Geobacter

Serratia Sphingomonas

Pseudomonas Lactobacillus Ralstonia

et al.

Serratia
Serratia
Serratia
Serratia
Serratia

Chem. Biochem. Eng. Q.

– Microscopic examination of lignin degradation microbial consortia in different wastewater treatment systems (a: traditional Chinese medicine wastewater treatment by J-1; b: papermaking wastewater treatment by J-1; c: traditional Chinese medicine wastewater treatment by J-6; d: papermaking wastewater treatment by J-6)

Microorganism correlation analysis

Serratia

Rhodoplanes Sphingomonas, Pseudomonas

Serratia Geobacter Lactoba-

Biochem. Eng. Q.

– Correlation between different species in the lignin-containing wastewater treatment systems

cillus Serratia Geobacter Lactobacillus

Conclusion

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENTS

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ20B060004, Zhejiang Shuren University project (2019R017) and Zhejiang Shuren University Basic Scientific Research Special Funds (2021XZ016).

References

Jin, H., Xu, C., Yang, L., Qu, G., Peng, J.,

Chen, J., Zhang, B., Luo, L., Zhang, F., Yi, Y., Shan, Y., Liu, B., Zhou, Y., Wang, X., Lü, X.,

Zhang, W., Diao, C., Wang, L.,

Singh, A. K., Bilal, M., Iqbal, H. M. N., Meyer, A. S., Raj, A.,

Kumar, A., Priyadarshinee, R., Singha, S., Sengupta, B., Roy, A., Dasgupta, D. M., Mandal, T., Bacillus flexus

Li, N., An, X., Xiao, X., An, W., Zhang, Q.,

Zhong, W., Guo, L., Ji, C., Dong, G., Li, S.,

Huang, C., Huang, Z.-Y., Hu, Y., Li, Z.-X., Wu, Y., Gao, J., Lal, K., Garg, A.,

Yaser, A. Z., Cassey, T. L., Hairul, M. A., Shazwan, A. S.,

Li, C., Chen, C., Wu, X. F., Tsang, C. W., Mou, J. H., Yan, J. B., Liu, Y., Lin, C. S. K.,

Chen, Z.-B., Hu, D.-X., Ren, N.-Q., Tian, Y., Zhang, Z.-P.,

Chem. Biochem. Eng. Q.

Liang, J., Mai, W., Wang, J., Li, X., Su, M., Du, J., Wu, Y., Dai, J., Tang, Q., Gao, J., Liu, Y., Tang, J., Wei, Y.

Kong, Z., Li, L., Li, Y.-Y.,

Ma, X.-C., Li, X.-K., Wang, X.-W., Liu, G.-G., Zuo, J.-L., Wang, S.-T., Wang, K.,

Huang, X., Zhou, T., Chen, X., Bai, J., Zhao Y.,

Zhang, W., Ren, X. H., He, J., Zhang, Q. R., Qiu, C., Fan, B. M.,

Da Re, V., Papinutti, L.,

Chen, Z., Wan, C. X.,

Zhang, W., Ren, X., Lei, Q., Wang, L.,

Ling, Q., Kong, Y., Wu, C., Wang, M., Wang, Y., Yan, N.,

Anderson, J. P. E., Domsch, K. H.,

Chang, Y.-C., Choi, D., Takamizawa, K., Kikuchi, S., Bacillus

He, J., Zhang, W., Ren, X. H., Xing, L. F., Chen, S. Q., Wang, C.,

Chris, F. S., Aswin, K. N., Thilagam, R., Chandralekha, A., Raghavarao, K. S. M. S., Gnanamani, A., Bacillus lichenformis

Baghel, S., Sahariah, B. P., Anandkumar, J.,

Chen, H., Chang, S.,

Tucci, M., Viggi, C. C., Núñez, A. E., Schievano, A., Rabaey, K., Aulenta, F.,

Chem. Biochem. Eng. Q.

Merry, R. J., McAllan, A. B., Smith, R. H.,

Ren, L. F., Chen, R., Zhang, X., Shao, J., He, Y.,

Shinde, R., Shahi, D. K., Mahapatra, P., Naik, S. K., Thombare, N., Singh, A. K.,

Sun, Q., Qiu, H., Hu, Y., Wei, X., Chen, X., Ge, T., Wu, J., Su, Y.,

Mate, D. M., Alcalde, M.,

Xie, X. G., Dai, C. C., Phomopsis liquidambari

Liang, W., Huang, S. B.,

Holenda, B., Domokos, E., Rédey, Á., Fazakas, J.,

Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., Ozturk, I.,

He, Y., Xu, P., Li, C., Zhang, B., Gentili, F. G.,

Zhong, Y., Luan, T., Wang, X., Lan, C., Tam, N. F. Y., Sphingomonas

Zhang, J., Li, X., Lei, H., Zhao, R., Gan, W., Zhou, K., Li, B., Sphingomonas

Moraes, E. C., Alvarez, T. M., Persinoti, G. F., Tomazetto, G., Brenelli, L. B., Paixão, D. A. A., Ematsu, G. C., Aricetti, J. A.,

Singh, A. K., Yadav, P., Bharagava, R. N., Saratale, G. D., Raj, A., Serratia liquefaciens

Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G., Bushman, F. D., Knight, R., Kelley, S.,

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Which Wastepaper Should Not Be Processed?

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

sustainability

Article

WhichWastepaperShouldNotBeProcessed?

EdytaMałachowska 1,2, *,AnetaLipkiewicz 1 ,MarcinDubowik 1 andPiotrPrzybysz 1,2

1 NaturalFibersAdvancedTechnologies,42ABlekitnaStr.,93-322Lodz,Poland

Citation: Małachowska,E.; Lipkiewicz,A.;Dubowik,M.; Przybysz,P.WhichWastepaper ShouldNotBeProcessed?

Sustainability 2023, 15,2850. https://doi.org/10.3390/su15042850

AcademicEditors:JianxinJiang, JunHuandHailongYu

Received:26November2022

Revised:13January2023

Accepted:2February2023

Published:4February2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

* Correspondence:edyta_malachowska@sggw.edu.pl;Tel.:+48-22-59-385-45

2 InstituteofWoodSciencesandFurniture,WarsawUniversityofLifeSciences-SGGW,159Nowoursynowska Str.,02-787Warsaw,Poland

Abstract: Inthe21stcentury,numerouseconomicandenvironmentalinitiativeshavesignificantly increasedpaperrecycling,whichcontinuestoexpandduetoenvironmentalawareness.Withincreasingrecyclingrate,low-qualitypaperfractionsmaybeincludedintheprocess,leadingtothe overproductionofverylow-valuepapersthatcannotbereprocessed.Moreover,theproductionof paperfrompoor-qualitywastepapercanresultintheintroductionofchemicalsfromtherecycled paperintotherecyclingloopandunintendedspreadofchemicalsubstances.Therefore,reliable andconsciousselectionofrecycledpulpisimperative.Tothisend,thepresentstudyverifiedthe propertiesofrecycledpulpcriticalfortheassessmentofitspapermakingabilityfortheproduction ofhigh-qualitysanitarypaper.Followinganexaminationofsamples,itwasfoundthatthekey parametersthatinfluencethepapermakingabilityofwastepaperincludepresenceofimpurities, contentofextractivesubstances,freeness,andlengthoffiber.Onthisbasis,typesofwastepaperthat, attheverybeginning,didnotportendwellforobtainingpaperproductswithhighpotentialfor utilitywereeliminated.

Keywords: wastepaper;recycling;papermakingability;wastemanagement

1.Introduction

Recoveredfibrousrawmaterialsfrompaperproductshavelongbeenusedforsecondarypulpproduction[1–4].Forseveralcenturies,productsofinadequatequality,unsuitableforfurtheruseorwithdrybreaks,havebeenusedasinputmaterials.Withgrowing demandforpaper,however,theprocessingofusedpaperproducts,calledwastepaper,has becomeincreasinglysignificantforobtainingfibrousrawmaterials.Currently,thepulpand paperindustryusessecondarypulpasanindispensableproductioninput.Theglobalpaper recyclingratestandsatapproximately58%[5–8].Insomeofthemoredevelopedcountries, therecyclingrateofwastepaperhasreachedashighas70–75%ofthetotalamountof wastepapergeneratedatthenationalscale[9].Inparticular,Europestandsoutwiththe highestpaperrecyclingrateintheworld(72%),followedbyNorthAmerica,whereas Asia,LatinAmerica,andAfricahavethelowestrecyclingrates[10].Manycountrieshave unceasinglysoughttoincreasethisratebyimplementingmeasurestooptimizeactivities fromthebeginningofpaperproductionuntilitsuse,collection,andrecycling.

Paperanditswasteareeasilydegradable,andtheresultingcellulosefiberscanbe recycleduptoseventimes[11,12].Therefore,usefulpaperwastemustberecycled.Efficient wastepaperrecyclingplaysasignificantroleinbuildingasustainableenvironment,offering severalbenefitsoverthepaperlifecycle[13,14].Sensiblepaperrecyclingsavesenergy, water,andlandfillareas.Moreover,wastepaperrecyclingsavesvirginfiberinputduring paperproduction.Asopposedtochemicalpulpingofwoodfromvirginpulp,wastepaper pulpinggeneratesnowoodwasteordissolvedchemicalsforenergygeneration[15].Moreover,paperrecyclingreducestheemissionsofCO2 ,NO2 ,andSO2 intheairanddecreases waterpollutioncausedbychlorinecompoundsfrombleachingandchemicals[16].In

general,recyclingandretreatmentofpaperimpactsustainability,particularlytheeconomy, environment,andsociety.

Whilstthepaperrecyclingratecanundoubtedlybefurtherincreasedinmostcountries, thequalityofwastepapermayeventuallydecreaseasincreasingnumbersofmarginalpaper fractionsaregatheredforrecycling.However,increasingthepaperrecyclingraterequires theuseofrecycledfibersfromhigh-qualitypaper.Thisiscrucialsincethemechanical andprintingpropertiesofthematerialdeteriorateeverytimeitisrecycledowingto thelimitednumberofrecyclingrounds[17–21].Thesefibersareshortenedandtheir swellingandflexibilitypropertiesdeteriorate.Poor-qualitywastepapernotonlyreducesthe papermakingabilityofpulpbutisalsoassociatedwithincreaseduseofchemicaladditives andfillers,whichproducelargequantitiesofby-products,creatingmajorenvironmental andeconomicchallenges[22].Moreover,poor-qualityrecycledfibersincreasethecontent ofinjurioussubstancesinpaper[23–25].Inthiscontext,systematicanalysisofpaper pulpisessentialtoprovideabasisforfurtherevaluationofthequalityofwastepaperas aresourceaswellastoidentifyappropriateprocessingmethodsforensuringthatthe resultingrecycledpulpmeetstheexpectationsofpapermakersand,ultimately,consumers. Thisisparticularlyapplicabletosanitarypapers,whichmustbenotonlystrongbutalso absorbentandsoft.Inaddition,consumersrequireacertainqualityofwhitenessand brightness.Thus,recyclablewastepapercanbesegregatedintovariousgradestofacilitate theproductionofhigh-qualityproducts.Bydividingtherecyclablepaperwasteaccording toitspropertiesandcomparingthemwiththecharacteristicsofthedesiredfinalproduct, paperwastecanberecycledmoreefficiently.Inaddition,ahighlysortedpaperstream facilitatestheproductionofhigh-qualityendproducts;savesprocessingchemicals,water, andenergy;andreducestheamountofsludgeandrejectsgeneratedduringwastepaper processing.Removingcontaminantsfromwastepaper,ensuringpapermakingability,and maintainingconsistentqualitywhilstlimitingtheenvironmentalfootprintofproductshave becomeamajorgoalandchallengeintheindustry.

Thesegoalsandchallengeswereexploredbymanystudiesonpaperrecyclingat theturnofthelastdecade[26–30].Previousresearchmainlyfocusedonthedevelopmentoftechnologiesthatenablethereuseoffibersfromwastepaper,suchasbleaching methods[31–35] offibersanddeinkingtechnologies[36–39].Publicationsonpaperrecyclingpeakedin2000,whichmayhavebeendictatedbytheEuropeandeclarationonpaper recoveryissuedinthatyear[40].Duringthenextdecade,publicationscontinuedtofocus onfiberrecoveryissues[41–45].Inrecentpublications,thetopicofrecoveryofbiomaterialsandbio-refineryfeedstockfromwastepaperprevailed[46–49]since,consideringthe principlesofcirculareconomy,thisisstrategicformitigatingtheongoingclimatechange.

However,theavailableliteraturelacksthoroughanalysesofthepapermakingability ofspecifictypesofwastepaper,alongwiththeverificationofthepossibilityofusingthem fortheproductionofspecifictypesofpaper.Allofthisismoresignificantsince,inpractice, thequalityandcompositionofwastepaperdeliveredtopapermillsoftendifferfrom expectations,andthespecifictypesofwastepaperdonotmeettherequirementsinthe respectivestandards.Therefore,inthepresentstudy,wedeterminedthepapermaking abilityofawiderangeofwastepaperprocessedinaselectedpapermillandverifiedthe possibilityofusingthemfortheproductionofhigh-qualitysanitarypaper.Theresearchin thearticlecontributesfurthertothemethodsofassessmentofwastepaperforthepaper production.

2.MaterialsandMethods

2.1.Materials

Thefollowingmaterialswereselectedfromthepapermillforresearch:

• Whitewastepaper,includingproductsofbleachedpulps,scrapsofwood-freepaper, littleprinted,noglue,nowaterproofpaper,andnocoloredpaper(ranked3.04accordingtotheEN643‘ListofEuropeanstandardtypesofwastepaper’[50])(seven samples).

• Mixedwastepapercomposedofunsortedwastepaper,formallyclassifiedastheentire spectrumofthesecondtypeofpaper,thatismedium-sizedvarieties.Theseincluded newspapersandprintedofficewastepaper,amongothers(ranked3.19accordingto theEN643‘ListofEuropeanstandardtypeswastepaper’)(fivesamples).

Thewastepaperwascrushedmanually(piecesofapproximately2–5cm)andmixed toensurethatthesamplewasmixedhomogeneously.Thewastepaperpreparedinthisway wasplacedinthedescribedPPfoilbags,whichweresubsequentlystoredinbarrelswith tightcoverstoprotectthesamplesfrommoistureandcontamination.Aftermechanical shredding,thewastepapersampleswerepackedintightcontainersandstoredataconstant temperatureofapproximately15 ◦ C.

2.2.Non-FibrisedSubstancesandChemicalAnalysisofPulp

Todeterminetheamountofnon-fiberizedsubstancesinthetestedwastewater,the rewettedpulpsamples(22.5gdryweightsamplessoakedinwaterfor24h)weresubjected todisintegrationusingalaboratoryJACSHPD28Dpropellerpulpdisintegrator(Danex, Katowice,Poland)with23,000revolutionsfollowingISO5263-1(2004).Non-defibered substancesversusfibersandwaterwereremovedusingamembranescreener(PS-114; Danex,Katowice,Poland)atanamplitudeof25mmandafrequencyof2Hz.Thescreener isequippedwithagapscreen(gapwidth=0.50mm).

Toidentifythedissolvedsubstancesinthetestedwastepapersamples,theassociation betweentheamountofoxygenrequiredfortheoxidationoforganicsubstancesinthetested samplesandthatofsolublesubstanceswasused.TheMERCKCODtestwasappliedto quantifythesesubstances.Organiccompoundswereoxidizedfollowingthemanufacturer’s instructions.Theamountofoxygenconsumedtooxidizethesesubstanceswasdetermined usingaspectrophotometer(UV-1280;Shimadzu,Japan)at620nm.

Analysesofthechemicalcompositionofcellulosicpulpincludedthequantificationof ash,extractives,holocellulose,andlignin.Ashcontentwasdeterminedusingagravimetric methodincompliancewiththeTappiT211standard(ashinwood,pulp,paper,and paperboard;combustionat525 ◦ C).Theamountsofextractivesweredeterminedaccording totheTappiT204standard(solventextractivesfromwoodandpulp).Holocellulosecontent wasdeterminedaccordingtoTappiUsefulMethod249(celluloseinpulp).Asindicatorsof lignincontentinthepulp,kappanumbersfordriedpulpswereexaminedaccordingtoISO 302(2015).Theaveragepolymerizationdegreeofcellulose(DP)inthepulpwasdetermined usingviscometryfollowingISO5351(2010).Allchemicalanalyseswereperformedin triplicateforeachpulpsample.

2.3.AnalysisofFibreandPulpProperties

Pulpswerecharacterizedintermsoffiberdimension,finecontent,waterretention value(WRV),andfreeness.ThedimensionsoffibersweremeasuredaccordingtoISO 16065-2:2014usingtheMorfiCompactBlackEditionapparatus(Techpap,Grenoble,France). WRVwasdeterminedaccordingtoISO23714:2014.Freenesswasmeasuredusingthe Schopper–Rieglerapparatus(Thwing-AlbertInstrumentCompany,WestBerlin,NJ,USA), accordingtoPN-ENISO5267-1(2002).Allanalyseswereperformedonbothunbeatenand refinedpulpsamples.

2.4.PulpRefining

Beforeprocessing,thepulpwassoakedinwaterfor24h.Then,wastewaterwas treatedintheDanexJACSHPD28Dpropellerpulpdisintegrator(Danex,Katowice,Poland) accordingtoPNENISO5263-1(2006)with23,000revolutions.Therefiningprocesswas performedintheDanexJACPFID12XPFImill(Danex,Katowice,Poland),withasingle batchofdriedpulp(22.5g),accordingtoPN-ENISO5264-2(2011).Pulpwasrefinedto 30 ± 1 ◦ SR.

2.5.PreparationofPaperSheets

Laboratorypapersheetswerepreparedfromunbeatenandrefinedpulpsamplesthat hadbeenpreviouslydisintegrated,asdescribedinSection 2.4 Sheetsofpaperwereformed usingtheRapid–KoethenapparatusinaccordancewithPN-ENISO5269-2(2007).Each papersheethadthebasisweightof80g m 2 (ISO536:2012).Onlysheetswithbaseweights between79and81g · m 2 wereusedforfurtherinvestigation.

Thepapersampleswereconditionedat23 ◦ Cand50%relativehumidityaccordingto ISO187:1990foraminimumof24hbeforeexamination.

2.6.AnalysisofPaperProperties

ContaminantsonthetestedpapersurfaceswereassessedusingtheKeyenceVHX6000microscope(Keyence,Belgium)equippedwiththeVH-Z20UTlens(20/200 × magnification).TheOP-72402adapter(ringshape)wasusedforsampleillumination.Image analysis-basedmeasurementsofelementswasperformedusingthemicroscopesoftware. ThesurfacetextureofsampleswastestedunderamicroscopeinaccordancewithISO 25178:2016GeometricalProductSpecifications(GPS).Briefly,basedonthree-dimensional microscopicphotographsofcoatedsurfacepapers,roughnessprofileswereprepared. Specifically,roughnessprofileswereobtainedfromthesurfaceprofilesbyseparatingthe long-wavecomponents(wavinessandshapedeviations)withan λcprofilefilter.The λcprofilefilterdeterminesthetransitionfromroughnesstowaviness,thatis,random orclose-to-periodicinequalities.Thebasicroughnessparameters(SaandSz)describing surfacemicrogeometryandthoserelatedtospecificprofilefeatureswereobtainedfrom theroughnessprofilephotographs.Forroughnessprofiles,Sarepresentsthearithmetic meandeviationoftheroughnessprofilealongthesamplinglength,whilstSzrepresents themaximumroughness(themaximumheightoftheprofileindicatestheabsolutevertical distancebetweenthemaximumprofilepeakheightandmaximumprofilevalleydepth alongthesamplinglength).

Furthermore,theroughnessofpapersurfacewasdeterminedinaccordancewithISO 8791-2:2013withtheTMI58-27BendtsenRoughnessTester(Kontech,Lodz,Poland).Air permeabilitywasdeterminedaccordingtotheISO5636-3:2013withtheTMI58-27Bendtsen RoughnessTester(Kontech,Lodz,Poland).Opticalparametersweredeterminedusingthe X-riteExactspectro-densitometerinaccordancewithISO2470-1:2016.

TheprioritystrengthpropertiesofpapersweredeterminedusingtheZwick005 ProLinetestingmachine(ZwickRoell,Ulm,Germany)coupledwiththetestXpertIIIsoftwareinaccordancewithISO1924-2:2010.Thefollowingtensilepropertiesofpaperwere examined:

• IB :breakinglength[m]

• FB :tensileforceatbreak[N]

• σT b :width-relatedforceatbreak[N m 1 ]

• σT W :forceatbreakindex[Nm g 1 ]

• εT :strainatbreak[%]

• WT b :energyabsorption[J m 2 ]

• WT W :energyabsorptionindex[J · g 1 ]

• Eb :tensilestiffness[N m 1 ]

• Ew :tensilestiffnessindex[Nm g 1 ]

• E*:Young’smodulus[MPa]

Detailedstatisticalanalysiswasperformedonindividualresearchseriestodetermine thefollowingbasicindicators:arithmeticmean,extendeddeviation,andpercentagerelative error.

3.ResultsandDiscussion

Contentsofnon-fiberizedsubstancesinwastepaperpulpsamplesaresummarized inTable 1.Whitewastepaper,describedasnumber3.04inaccordancewiththePN-

EN643:2004standard,containsscrapsofwood-freepaperwithlittleprint,noglue,no waterproofpaper,andnocoloredpaper.Cursoryanalysisofwastepaperrevealedthatmost ofthetestedsamplesdidnotmeettheassumedrequirementstoagreaterorlesserextent. Specifically,thiswastepapercontainedcertainamountsofwoodpaperandpapercolored inmass,andmostofthemcontainedasignificantamountofheavilyprintedpaper.Based ontheresultsoftheseanalyses,thedeliveredwastepapertothemillshouldbeformally characterizedundercategory3.02,thatis,mixedwastepaperwithscrapsofprintingand writingpaper,slightlydyedinmass,containingatleast90%ofwood-freepaper,orunder category3.03,thatis,wastepapercontainingbookbindingscrapsofwood-freepaper(itmay contain10%woodpaperatthemost),withlittleprintandgluebutnopapercoloredinmass. Insummary,thetreatmentofwhitewastepaperaspurelytype3or04isasimplification usedinthetradeofwastepaper.Infact,thistypeofpaperexhibitsaspectrumofproperties.

Table1. Non-fiberizedsubstancesandchemicalcompositionofwastepaperpulps. Wastepaper

White1.1 2.5519.971.602.6767.6749.67376

White1.2 0.0118.121.471.9563.2649.58339

White1.3 0.0016.710.223.2878.335.34840

White1.4 2.6117.601.131.9866.685.28832

Mixed1.5 1.0523.681.102.4670.7745.50531

White2.1 0.7127.270.751.7273.6845.32660

White2.2 0.7924.601.572.4476.7319.38673

Mixed2.3 0.4837.871.416.7470.5839.62376

Mixed2.4 2.4022.921.243.6076.5239.59412

Mixed2.5 1.3527.481.241.3576.9540.15377

Mixed3.1 1.7125.430.500.5971.3816.25611

White3.2 0.3516.900.410.6579.5913.60643

Theseresultsconfirmedthechemicalcompositionoftheexaminedwastepaperpulp, withoutsimpledependenciesonthetypeofwastepaper.Thedegreeofpolymerization affectsthestrengthpropertiesofpaper;thisisduetothefactthatwithadecreasein polymerizationdegree,themechanicalstrengthofcellulosedecreases.Basedontheresults ofouranalyses,despitethehighdegreeofcellulosepolymerization,theselectedwastepaper pulpsdidnotachievethehigheststrengthproperties.Therefore,presenceofimpurities andmanyotherfactorsmayaffectthestrengthofpaperderivedfromrecycledpulp.

Todeterminethecriticalparametersforobtaininghigh-qualityrecycledpulpand ensuringsuitabilityfortheproductionofspecifictypesofpaper,papermakingabilitywas assessed.Thisanalysiscoversawidespectrumoftestsaimedatdeterminingwhethera givenfibrousrawmaterialissuitableforuseinpaperproduction.Papermakingabilityis determinedbasedonmultipleparametersofpulp,includingthechemicalcompositionand propertiesofthefinishedpaper.Theassessmentofpapermakingabilityallowscomprehensivecomparisonofthepropertiesofrecycledpulpsanddeterminationofthetypesof wastepaperthatmaybeuseful.Mostimportantly,thisassessmentidentifiesthetypesthat cannotcertainlybeusedtoobtainproductsofhighutilityvalue.

Toassesspapermakingability,pulpwasrefined,theprimarypurposeofwhichis themaximumdevelopmentofsurfaceareaboundinthepaper.Refiningincreasesthe elasticityofcellulosefibers,therebyimprovingthestrengthandstructural-dimensional propertiesofthefinishedpaper.Simultaneously,however,itcontributestothereduction ofpulpdewatering,whichadverselyaffectstheefficiencyofthepapermakingmachine. Moreover,therefiningprocessishighlyenergyintensive,accountingfornearly50%of theelectricityconsumptionofthepapermill.Previousstudiesandindustrialexperiments haveestablishedthattheoptimumcost,efficiency,andpaperproductpropertiescouldbe

obtainedatalubricityofapproximately30 ◦ SR.Therefore,thepapermakingabilityofthe selectedpulpswasdeterminedafterrefiningfortheSchopper–Rieglerfreenessof30 ± 1 ◦ SR,whichwasexpectedtoensurethemaximumstrengthofpulpsandcontributetoeasy dehydration.Infurtheranalysesofpapermakingability,thepulpsamplesthatdidnot promiseproductswithexcellentfunctionalpropertiesduetotheircharacteristicsatthevery beginningwererejected.Therefore,fromamongstallconsideredwastepapertypes,the pulpsthatwerecharacterizedbyafreenessof>30 ◦ SRintheunrefinedstatewererejected. Inaddition,pulpsamplesinwhichthecontentofextractivesubstancesexceeded1.30% wereexcluded.Owingtotheirhighchemicalreactivityaswellasthesignificantviscosity andadhesionoftheircomponents,extractivesmayhinderthepapermakingprocessinthe formofso-calledresindifficultiesandmaycreateresinstains,visibleasspotsinthefinished products.Inaddition,pulpsampleswithfiberlengthof<900 μmwereexcludedasthey increasestaticstrengthbutdecreasetearresistance.Incontrast,theintermediatefraction lowersthestaticstrengthbutimproveshedynamicstrength.Meanwhile,thelong-fiber fractionimprovesallstrengthpropertiesofthepaper.Alongerfiberlengthincreasesthe tearresistanceandextensibilityofthepaper,whichareparticularlydesirableinthecase ofsanitarypapers.Inthepresentstudy,whitewastepaper1.3,1.4,2.1and3.2andmixed wastepaper1.5mettheabovecriteria.

Consideringthepracticaltechnologicalaspectsofsubsequentprocessesonapaper machine,themostimportantchangesoccurringasaresultoftherefiningprocess,in additiontofromfreeness,includethedevelopmentofswellingdegree(WRV)ofthe recycledpulp.Thegreaterthedegreeofpulpswelling,thegreaterthecompactnessofthe structureoftheobtainedpaper,whichsignificantlyimprovesitspropertiesbutreducesits dynamicstrength.Afterrefining,WRVofthetestedpulpsincreasedby28–61%(Table 2), achievingthehighestvaluesforwhitewastepaper.Mixedwastepaper1.5wasmuchmore keratinizedandachievedamuchlowerdegreeofpulpswelling.Similarly,regardingfiber length,highervalueswererecordedforwhitewastepaper(Table 3),suggestingthatthe paperobtainedfromthesetypeswillachievehigherstrengthparametersattheoutset.To date,thehighestcontentofthefinefractionamongstrefinedpulpshasbeenrecordedfor white2.1andmixed1.5wastepaper(Table 2),whichisconducivetothequalitypaper derivedfromthesepulpsaswellastotheprocesseconomyresultingfromthesavingof bulkadditives.Overall,ouranalysesofunrefinedandrefinedpulpsshowedthatthetype ofwastepaper(impuritycontent),similartochemicalcomposition,doessignificantlyaffect fiberandpulpproperties.

Table2. Characteristicsofwastepaperpulps.

WastepaperFineContentFineContentWRVSchopper–RieglerFreeness [%inArea][%inLength][%][◦ SR]

UnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefined White1.1 21.05-62.24-130.9-36-

White1.2 23.63-65.94-136.3-56-

White1.3 10.0315.2734.7327.89103.8164.621731

White1.4 12.209.4137.3920.71101.4159.081829

Mixed1.5 14.5515.8749.2041.03103.6134.172229

White2.1 12.3910.9554.9941.93102.3151.862230

White2.2 13.32-47.31-101.3-20-

Mixed2.3 16.63-51.08-91.1-22-

Mixed2.4 13.42-44.98-97.6-22-

Mixed2.5 26.78-66.60-107.2-35-

Mixed3.1 17.63-46.68-103.7-20-

White3.2 10.7118.4734.5332.27105.8185.651630

Resultsofmicroscopicanalysisofimpuritiesonthesurfaceofthetestedpaperare presentedinFigure 1.Significantamountsofimpuritieswereobservedonthesurfaceof papersproducedfrommixedwastepaperduetothehighercontentofimpuritiesinthe pulp.

White wastepaper 1.1
Whitewastepaper 1.2
White wastepaper 1.3
White wastepaper 1.4
Mixed wastepaper 1.5
White wastepaper 2.1
White wastepaper 2.2
Mixed wastepaper 2.3
Mixed wastepaper 2.4
Mixed wastepaper 2.5
Mixed wastepaper 3.1
White wastepaper 3.2
Figure1. Microscopicimagesofwastepapersurfaces.

Table3. Fiberproperties.

WastepaperMeanLength-WeightedFibreLengthMacro-FibrillationIndexMeanFibreCoarseness [μm][%][mg m 1 ]

UnrefinedRefinedUnrefinedRefinedUnrefinedRefined

White1.1 994-1.11-0.16-

White1.2 925-1.24-0.15-

White1.3 102110060.510.650.100.10

White1.4 112610380.500.540.090.10

Mixed1.5 9798800.860.650.130.10

White2.1 10609721.220.860.150.13

White2.2 960-0.82-0.11-

Mixed2.3 884-0.86-0.11-

Mixed2.4 825-0.88-0.10-

Mixed2.5 985-1.06-0.15-

Mixed3.1 886-0.48-0.11-

White3.2 102210010.690.750.140.12

Whenprocessingpaper,theroughnessofthematerial’ssurfaceisaveryimportant parametersinceitaffectsmanypropertiesofthematerialaswellasvariousothercharacteristicsoftheproductsuchasappearance,aesthetics,andfunctionalvalue,whichare particularlyimportantinthecaseofsanitarypapers.Hence,basedonthethree-dimensional microscopicanalysisofdifferentpapers,roughnessprofileswereprepared.Specifically, profileswereobtainedbyseparatingthelong-wavecomponentsofthesurfaceprofile (wavinessandshapedeviations)witha λcprofilefilter.The λcprofilefilterdeterminesthe transitionfromroughnesstowaviness,thatis,randomorclose-to-periodicinequalities. Therefore,thebasicroughnessparameters(Sa andSz )describethesurfacemicrogeometry andlinkittospecificprofilefeatures(Table 4).Inroughnessprofiles,Sa representsthe arithmeticmeandeviationoftheroughnessprofilealongthesamplinglength,whilstSz representsthemaximumroughness(themaximumheightoftheprofileindicatestheabsoluteverticaldistancebetweenthemaximumprofilepeakheightandmaximumprofile valleydepthalongthesamplinglength).

Table4. Structuralandopticalpropertiesofpapers.

WastepaperSa Sz

[μm][μm][mL min 1 ][mL/min][%]

UnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefinedUnrefinedRefined

White1.1 3.15-36.77-991-183-66.38-

White1.2 3.08-32.95-315-169-67.24-

White1.3 3.783.6441.2141.564956215428825285.1891.14

White1.4 4.033.4046.7045.563971191329829983.0580.43

Mixed1.5 3.833.1242.7838.872905150827724764.1165.89

White2.1 3.513.0040.8130.85264314596027478.0776.70

White2.2 3.57-42.87-4407-303-74.58-

Mixed2.3 3.99-39.47-4456-56-68.39-

Mixed2.4 3.98-36.95-3440-59-70.36-

Mixed2.5 3.72-40.74-1458-59-56.75-

Mixed3.1 4.01-48.05-5009-323-70.70-

White3.2 3.742.3745.0632.41401979731918976.4978.44

Microscopicanalysisofpaperroughnessshowednosignificantdifferencesdepending onthetypeofwastepaperusedtoproducepapersheets,despitethedifferencesinthe amountofimpuritiesbetweenwhiteandmixedwastepaper(Table 4).Additionalroughness measurements,performedfollowingtheBendtsenprocedure(Table 4),confirmedthatthe typeofwastepaperuseddidnotalterroughnessparameters.Notably,inmostcases,the processofrefiningsmoothedthesurfaceofthepapersproducedonlytoasmallextent.

Thiswasalsotrueforopticalparameters.Interestingly,comparedtomixedwastepaper, whitewastepaperdidnotexhibithigherwhitenessindices.Theopticalcharacteristicsare presentedinTable 4 andFigures 2 and 3

Anotherimportantpropertythatcontributessignificantlytothefunctionalproperties ofpaperisairpermeability.Moreover,airpermeabilityisanimportantindicatorforthe productionprocesscontrolofsanitarypapers,sinceitreflectstheporosityoftheproduct andthusitsabsorbanceandtensileproperties.Mostofthestudiedpapersproducedfrom unrefinedpulpswerecharacterizedbyhighairpermeability,whichdecreasedsignificantly afterrefining(Table 4).However,whetherthisisdisadvantageousdependsonthepurpose ofapplication.

Thetensilepropertiesofpapersheetsareimportantformanufacturingandprocessing[51,52].Therefore,theeffectsofspecificpulpparametersandimpuritycontentson thestrengthofpaperswereanalyzed,andtheresultsaresummarizedinTables 5 and 6 Regardingstrengthproperties,papersproducedfromunrefinedwhitewastepaper2.1and 3.2achievedthebestresultsintheconductedtests(Table 5).Refiningsignificantlyimproves thepapermakingabilityofwastepaperpulp,increasingthestrengthoftheobtainedpapers. Fromrefinedpulp,thebestresultswererecordedforwhiterecycledpapers1.3and3.2 (Table 6),whichwasexpectedconsideringtheirexcellentpulpandfiberproperties(Tables 2

Figure2. Lightreflectioncurveofwhitewastepaper.
Figure3. Lightreflectioncurveofmixedwastepaper.

and 3).Hightearresistanceandelasticityrenderthesepapersthemostattractiveforusein theproductionofsanitarypaper.Theloweststrengthwasrecordedfromrecycledpaper1.5, whichmaybeduetothelowestfiberlengthofitspulp.

Table5. Tensilepropertiesofpaperproducedfromunrefinedpulp.

WastepaperIB

White1.1 250029.1195624.61.6320.50.258255,50032132320

White1.2 290034.3231928.41.6625.70.315266,40032622425

White1.3 285033.1222027.71.6924.00.300309,10038592809

White1.4 230026.5182922.61.4918.10.224256,10031572328

Mixed1.5 230026.7180422.51.5919.60.244258,00031592344

White2.1 245028.3192423.8 2.0626.70.331 260,60032242367

White2.2 255029.0201225.01.6823.00.285272,80033912481

Mixed2.3 180020.8141216.61.3010.50.130216,60026781970

Mixed2.4 205023.6159019.91.5317.00.213219,90027562000

Mixed2.5 225026.3176021.91.6619.60.244233,20029002120

Mixed3.1 235028.0189223.31.7521.70.267261,10032072376

White3.2 315036.6248030.5 1.7026.20.329 321,40040312922

Abjectresultsaremarkedwithcolor(thebesttensilepropertiesonthegreen,theworstonthered).

Table6. Tensilepropertiesofpaperproducedfromrefinedpulps.

WastepaperIB

White1.3 705077.1533569.03.02103.21.33514,400

Abjectresultsaremarkedwithcolor(thebesttensilepropertiesonthegreen,theworstonthered).

Ofnote,inafewcases,pulpswithsimilarpropertiesintheunrefinedstateexhibited markedlydifferentpropertiesintherefinedstate,suchaswastepaper1.4and1.5.Therefore, thoroughestimationofthepapermakingabilityisessential.

4.Conclusions

Analysesconductedinthepresentworkwereaimedatverifyingthespecificproperties ofwastepaperpulponthebasisofwhichtheirsuitabilitytoproduceaproductwith satisfactoryusabilitycharacteristicscanbeinitiallyassessed.However,althoughthepresent workdoesnotallowforidentifyingthepulpthatisreliableintermsofpapermaking, itallowsforrevealingthepulpthatisnotsuitable.Inotherwords,theusefulnessof recycledpulpcanbeassessedathighprobabilitybydeterminingthefreenessandcontent ofextractivesubstances.Basedontheobtaineddata,itwasconductedthat,samples containinglargeamountsofextractives(above1.30%)anddissolvedsubstancescannot yieldproductswithahighaddedvalue.Also,sampleswithveryhighinitialSchopper–Rieglerfreenessshouldnotbeintroducedintothesystem,astheydonotallowforachieving theexpectedresultsandmayinduceanumberoftechnologicaldifficulties.Similarly,pulp sampleswithfiberlengthof<900 μmdonotallowgoodpaperstrength,andespecially satisfactorytearresistance,soessentialtosanitarypapers.Moreover,strengthproperties cannotbedeterminedwithouttherefiningprocess.Overall,comprehensiveevaluation ofthepapermakingabilityofwastepaperisimperative.Undeniably,ourfindingswill behelpfultofurtheranalyzethevalidityofrecycledmaterialsandreducetheimpactof wastepaperontheenvironment.

AuthorContributions: Conceptualization,E.M.andP.P.;methodology,A.L.,M.D.andE.M.;data processing,M.D.andA.L.;literaturereview,M.D.;writing—originaldraftpreparation,E.M.;writing— reviewandediting,E.M.;supervision,P.P.;fundingacquisition,P.P.Allauthorshavereadandagreed tothepublishedversionofthemanuscript.

Funding: ThisresearchwasfundedbytheNationalCenterofResearchandDevelopmentinPoland, grantnumberPOIR.01.01.01-00-0084/17.

InstitutionalReviewBoardStatement: Notapplicable.

InformedConsentStatement: Notapplicable.

DataAvailabilityStatement: Thedatasetsgeneratedduringand/oranalyzedduringthecurrent studyareavailablefromthecorrespondingauthoronreasonablerequest.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

References

1. Aue,J.;Picard,K.;Grabner,K.Fiberrecoveryfromwastepaper:Abreakthroughinre-pulpingtechnology. TAPPIFallTechnol. Conf. 2003,273–280.

2. Scott,G.M.Chapter10—Recoveredpaper.In Waste,AHandbookforManagement;AcademicPress:Cambridge,MA,USA,2011; pp.137–149.[CrossRef]

3. Scott,G.M.Chapter14—Recoveredpaper.In Waste,AHandbookforManagement,2nded.;AcademicPress:Cambridge,MA,USA, 2019;pp.291–305.[CrossRef]

4. KeyStatistics2021.EuropeanPulp&PaperIndustry.Availableonline: https://www.cepi.org/wp-content/uploads/2022/07/ Key-Statistics-2021-Final.pdf (accessedon22November2022).

5. PaperRecyclingRateatabout66Percentin2020.RecyclingToday.Availableonline: https://www.recyclingtoday.com/article/ paper-recycling-rate-66-percent-2020/ (accessedon22November2022).

6. EuropeanPaperRecyclingCouncilMonitoringReport2020.EuropeanDeclarationonPaperRecycling2016–2020.Availableonline: https://www.cepi.org/wp-content/uploads/2021/07/WEB-PAGES_EPRC-Monitoring-Report-2020_20210716.pdf (accessedon22November2022).

7. UnpackingContinuouslyHighPaperRecyclingRate.AmericanForest&PaperAssociation.Availableonline: https://www. afandpa.org/news/2022/unpacking-continuously-high-paper-recycling-rates (accessedon25July2022).

8. GlobalPaperRecyclingMarket(2021–2026)bySourceofCollection,Type,Application,Collection&SegregationChannel, End-Use,Geography,CompetitiveAnalysisandtheImpactofCOVID-19withAnsoffAnalysis.ResearchandMarketsthe World’sLargestMarketResearchStore.Availableonline: https://www.researchandmarkets.com/reports/5317165/global-paperrecycling-market-2021-2026-by (accessedon25September2022).

9. GlobalForestandPaperIndustryReleasesPolicyStatementonPaperRecycling.CEPI.Availableonline: https://www.cepi.org/ global-forest-and-paper-industry-releases-policy-statement-on-paper-recycling/ (accessedon13November2022).

10. RecyclingFacts.IMPACTPapeRec.Availableonline: https://impactpaperec.eu/en/facts-figures/recycling-facts/ (accessedon 13November2022).

11. CircularEconomy,RenewableandRecyclable:OurEssence.CEPI.Availableonline: https://sustainability.cepi.org/policyblocks/circular-economy/# (accessedon25July2022).

12. HowManyTimesCanPaperBeRecycled?MythVs.Fact—CanRecycledPaperbeUsedIndefinitely?FSSIDocumentOutsourcing Specialists.Availableonline: https://www.fssi-ca.com/myths-vs-facts-we-can-use-recycled-paper-until-its-all-gone/ (accessed on22November2022).

13. Laurijssen,J.;Marsidi,M.;Westenbroek,A.;Worrell,E.;Faaij,A.Paperandbiomassforenergy?:Theimpactofpaperrecycling onenergyandCO2 emissions. Resour.Conserv.Recycl. 2010, 54,1208–1218.[CrossRef]

14. Villanueva,A.;Wenzel,H.Paperwaste—Recycling,incinerationorlandfilling?Areviewofexistinglifecycleassessments. Waste Manag. 2007, 27,S29–S46.[CrossRef]

15. Rahman,M.O.;Hussain,A.;Basri,H.Acriticalreviewonwastepapersortingtechniques. Int.J.Environ.Sci.Technol. 2013, 11, 551–564.[CrossRef]

16. Ozola,Z.U.;Vesere,R.;Kalnins,S.N.;Blumberga,D.Paperwasterecycling.Circulareconomyaspects. Environ.Clim.Technol. 2019, 23,260–273.[CrossRef]

17. Cabalova,I.;Kacik,F.;Geffert,A.;Kacikova,D.TheEffectsofpaperrecyclinganditsenvironmentalimpact. Environ.Manag. Pract. 2011,329–350.[CrossRef]

18. Potˇcek,F.; Cešek,B.;Milichovský,M.Effectofaddingsecondaryfiberstokraftpulponstrengthpropertiesandairresistance. Cellul.Chem.Technol. 2013, 47,425–441.

19. Yilmaz,U.;Tutus,A.;Sönmez,S.Fiberclassification,physicalandopticalpropertiesofrecycledpaper. Cellul.Chem.Technol. 2021, 55,689–696.[CrossRef]

20.Ghais,A.;Mutwly,M.Effectofrecyclingprocessonpaperproperties. Int.J.Sci.Eng.Res. 2014, 5,401–403.

2023, 15,2850

21. Obradovic,D.;Mishra,L.N.Mechanicalpropertiesofrecycledpaperandcardboard. J.Eng.ExactSci. 2020, 6,0429–0434. [CrossRef]

22. Faubert,P.;Barnabé,S.;Bouchard,S.;Côté,R.;Villeneuve,C.Pulpandpapermillsludgemanagementpractices:Whatarethe challengestoassesstheimpactsongreenhousegasemissions? Resour.Conserv.Recycl. 2016, 108,107–133.[CrossRef]

23. Liao,C.;Kannan,K.WidespreadoccurrenceofbisphenolAinpaperandpaperproducts:Implicationsforhumanexposure. Environ.Sci.Technol. 2011, 45,9372–9379.[CrossRef][PubMed]

24.Pivnenko,K.;Eriksson,E.;Astrup,T.F.Wastepaperforrecycling:Overviewandidentificationofpotentiallycriticalsubstances. WasteManag. 2015, 45,134–142.[CrossRef]

25. Geens,T.;Goeyens,L.;Kannan,K.;Neels,H.;Covaci,A.Levelsofbisphenol-AinthermalpaperreceiptsfromBelgiumand estimationofhumanexposure. Sci.TotalEnviron. 2012, 435–436,30–33.[CrossRef]

26. Ervasti,I.;Miranda,R.;Kauranen,I.Aglobal,comprehensivereviewofliteraturerelatedtopaperrecycling:Apressingneedfor auniformsystemoftermsanddefinitions. WasteManag. 2016, 48,64–71.[CrossRef]

27. Grossmann,H.;Handke,T.;Brenner,T.Paperrecycling.In HandbookofRecycling:State-of-the-ArtforPractitioners,Analysts,and Scientists;Elsevier:Amsterdam,TheNetherlands,2014;pp.165–178.[CrossRef]

28. Technologiesforpaperrecycling.In LeadMarketsforEnvironmentalInnovations.ZEWEconomicStudies;Physica-VerlagHeidelberg: Heidelberg,Germany,2005;Volume27,pp.205–2016.[CrossRef]

29. Jin,H.;Kose,R.;Akada,N.;Okayama,T.Relationshipbetweenwettabilityofpulpfibersandtensilestrengthofpaperduring recycling. Sci.Rep. 2022, 12,1560.[CrossRef]

30. Ali,I.Studyofthemechanicalbehaviorofrecycledfibers.Applicationstopapersandpaperboards.In Contribution à l’ ÉtudeDu ComportementMécaniqueDesFibresRecyclées;ApplicationsAuxSupport;Université deGrenoble:Grenoble,France,2013.

31. Valchev,I.V.;Bikov,P.I.;Blyahovski,V.N.;Tsekova,P.B.NewPossibilitiesforRecycledPaperBleaching.InProceedingsofthe16th InternationalSymposiumWood,FiberPulpingChemistry,Tianjin,China,8–10June2011;Volume1,pp.677–681.

32. OptimizationofBleachingandDeinkingofWastePaperforStrengthandBrightnessImprovement.EuropeanCommission CORDISEUResearchResult.Availableonline: https://cordis.europa.eu/project/id/MP2B0006/pl (accessedon20August 2022).

33. Kopania,E.;Stupi´nska,H.;Palenik,J.Susceptibilityofdeinkedwastepapermasstoperoxidebleaching. FibresText.East.Eur. 2008, 16,112–116.

34. Pe¸sman,E.;Parlak,M.Recyclingofcoloredofficepaper.PartII:Postbleachingwithformamidinesulfinicacidandhydrogen peroxide. BioResources 2019, 13,4841–4855.[CrossRef]

35. Zeb,H.;Hussain,M.A.;Ahmed,I.;Akram,M.S.;Haider,B.;Haider,R.;Babar,Z.B.;Saleem,R.M.;Ahsan,A.;Aziz,I.;etal.Study ofbleachingofoldnewsprintrecycledpaper:Reproductionofnewspapermaterial. Mater.Res.Express 2021, 8,085305.[CrossRef]

36.Bajpai,P.Deinkingwithenzymes. Recycl.DeinkingRecover.Pap. 2014,139–153.[CrossRef]

37. Kumar,A.;Dutt,D.AComparativestudyofconventionalchemicaldeinkingandenvironment-friendlybio-deinkingofmixed officewastepaper. Sci.African 2021, 12,e00793.[CrossRef]

38. Hasanin,M.S.;Hashem,A.H.;AbdEl-Sayed,E.S.;El-Saied,H.Greenecofriendlybio-deinkingofmixedofficewastepaperusing variousenzymesfrom Rhizopusmicrosporus AH3:Efficiencyandcharacteristics. Cellulose 2020, 27,4443–4453.[CrossRef]

39. Lasheva,V.;Todorova,D.;Kotlarova,S.;Kamburov,M.DeinkingofWasteOffsetPrintedPaperbytheUseofEnzymes. Int.Sci.J. Sci.Business,Soc. 2016, 1,26–28.

40. PaperRecycling. MonitoringReport2011,ERPCEuropeanDeclarationonPaperRecycling2011–2015;PaperRecycling:Brussel, Belgium,2011;pp.1–8.Availableonline: http://www.cobelpa.be/pdf/Monitoring%20report%20final.pdf (accessedon30 November2022).

41. Li,S.;Wu,Z.;Wu,Z.;Liu,G.Enhancingfiberrecoveryfromwastewatermayrequiretoiletpaperredesign. J.Clean.Prod. 2020, 261,121138.[CrossRef]

42. Su,Z.H.;Fan,S.J.;Zhang,Y.;Tian,C.;Gong,C.;Ni,J.P.;Yang,B.;Peng,F.;Korkko,M.;Mahmoud,M.S.Industrialscale-upoffiber recoverytechnologyfrommixedofficewastefinescreenrejects. BioResources 2020, 15,6420–6430.[CrossRef]

43.Cortright,A.PaperRecyclingFiberRecapture.HonorsThesis,WesternMichiganUniversity,Kalamazoo,MI,USA,2020.

44. Small-ScalePaperFiberRecovery.FinalReport.1995.Availableonline: https://p2infohouse.org/ref/17/16804.pdf (accessedon 23November2022).

45. Barber,S.D.AnalysisandPreventionofUsableFiberLossfromaFinePaperMill.Master’sThesis,VirginiaPolytechnicInstitute andStateUniversity,Blacksburg,VA,USA,1998.

46. Adu,C.;Jolly,M.;Thakur,V.K.Exploringnewhorizonsforpaperrecycling:Areviewofbiomaterialsandbiorefineryfeedstocks derivedfromwastepaper. Curr.Opin.GreenSustain.Chem. 2018, 13,21–26.[CrossRef]

47. Haile,A.;Gelebo,G.G.;Tesfaye,T.;Mengie,W.;Mebrate,M.A.;Abuhay,A.;Limeneh,D.Y.Pulpandpapermillwastes: Utilizationsandprospectsforhighvalue-addedbiomaterials. Bioresour.Bioprocess. 2021, 8,35.[CrossRef]

48. Al-Battashi,H.;Annamalai,N.;Al-Kindi,S.;Nair,A.S.;Al-Bahry,S.;Verma,J.P.;Sivakumar,N.Productionofbioplastic(poly3-hydroxybutyrate)usingwastepaperasafeedstock:Optimizationofenzymatichydrolysisandfermentationemploying burkholderiasacchari. J.Clean.Prod. 2019, 214,236–247.[CrossRef]

49. AbsorbingResearchProducesAerogelsfromWastePaper.MaterialsToday.Availableonline: https://www.materialstoday.com/ biomaterials/news/research-produces-aerogels-from-waste-paper/ (accessedon23November2022).

2023, 15,2850

50.PN-EN643:2014-03.Availableonline: https://sklep.pkn.pl/pn-en-643-2014-03e.html (accessedon13November2022).

51. Kamel,S.;El-Sakhawy,M.;Nada,A.M.A.Mechanicalpropertiesofthepapersheetstreatedwithdifferentpolymers. Thermochim. Acta 2004, 421,81–85.[CrossRef]

52.Nada,A.M.A.;El-Sakhawy,M.;Kamel,S.;Eid,M.A.M.;Adel,A.M.Mechanicalandelectricalpropertiesofpapersheetstreated withchitosananditsderivatives. Carbohydr.Polym. 2006, 63,113–121.[CrossRef]

Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T E P O P T

Production of wood based panel from recycled wood resource: a literature review

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

European Journal of Wood and Wood Products (2023) 81:557–570

https://doi.org/10.1007/s00107-023-01937-4

REVIEW ARTICLE

Production of wood-based panel from recycled wood resource: a literature review

Received: 17 February 2022 / Accepted: 28 January 2023 / Published online: 17 February 2023 © The Author(s) 2023

Abstract

This article presents and discusses the available studies on utilization of waste wood (WW) resource for wood-based panel production. The cited literature indicated that the majority of WW research was from Europe and conducted mainly on recycled material from particleboard. In addition, particleboard was presented as the first option of wood-based panel product manufactured from waste wood. There was a lack of research on the recycling of plywood. Physical and chemical contaminants fluctuated strongly between low- and high-quality recycled wood mixes depending on their origins. Findings from studies also noticed that wood-based panels (e.g., particleboard) could be produced from 100% WW. However, the physical and mechanical properties of wood-based panel drop with the high proportion of WW content due to the decrease in slenderness ratio and increase in contaminants. Moreover, formaldehyde emission content of particleboard and Oriented Strand Board (OSB) manufactured from WW particles increases when the WW percentage increases. Contrary, the formaldehyde amount decreases with the increase in recycled fiber content in fiberboards. Notably, the properties and emission of recycled wood composite products could be improved by applying high-tech sorting technologies, appropriate chipping techniques, pretreatment steps and formaldehyde-free binders during waste wood handling and production process.

1 Introduction

Post-consumer waste wood is a valuable feedstock for energetic and material sector. Its volume has been increased together with the rapid urbanization and industrialization. Based on Eurostat data in 2014, Europe generates annually about 60 million tons of waste wood collected from different sectors. Germany is the country in Europe collecting the highest number of waste wood per year, accounting for about 6.6 million tons in 2016 (Purkus et al. 2019). Italy, UK and France generate roughly 4 million tons per year, whereas Belgium, Austria, Spain and Poland produce around 2 million tons in 2014 (Silvio 2018). In addition, Sweden, Norway and Denmark collect nearly 1.0 million tons per

* Duy Linh Nguyen linh.nguyen@uni-hamburg.de

1 Institute of Wood Science, University of Hamburg, Leuschnerstrasse 91C, 21031 Hamburg, Germany

2 Thuenen Institute of Wood Research, Leuschnerstrasse 91C, 21031 Hamburg, Germany

3 Faculty of Forestry, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc District, 70000 Ho Chi Minh City, Vietnam

year (Sekundaerrohstoffe 2018). According to the United State Environmental Protection Agency (EPA), USA generated about 18.1 million short tons of waste wood in 2018 collected from municipal solid waste streams.

Waste wood originates from various resources. Therefore, it is not a homogeneous material due to its complexity of wood types, applications and sources (Bergeron 2014). In addition, waste wood is also considered as a highly sophisticated material in terms of chemical and physical composition (Edo et al. 2016). Various physical and chemical contaminants exist in the waste wood resources causing problems for recycling processes and influencing the properties of recycled products. Nowadays, mechanical processes (e.g. sieving, magnet or eddy current) can sort physical contaminants in waste wood such as plastic, metal, textile, etc. However, chemical contaminants that are coming from substances of wood preservatives, paints, glues, etc. are not easy to eliminate from waste wood mechanically. Thus, the management of these contaminants from inputs plays an important role in cascading and re-using this valuable resource effectively (Besserer et al. 2021). From this point of view, management using waste wood ordinances has been established and used in many countries. However, there is a lack of uniform waste wood ordinance among countries

nowadays. Germany, Austria and Switzerland apply the same ordinance divided into four categories depending on the characteristics of the waste wood, namely AI, AII, AIII and AIV, whereas France, Belgium, Netherlands and Luxemburg classified their waste wood categories with A, B, C and D (Jan 2019). UK, Sweden, Estonia and Spain have their own waste wood ordinances. In addition, many countries have not established waste wood ordinance. In this sense, it is difficult to trade different collected waste wood assortments between European countries.

Despite the difference in waste wood management, the recycling rate of waste wood varies from country to country in material and energy uses. For instance, in European countries, for decades, energy utilization of waste wood exceeds material utilization, accounting for 60–95%. Sweden, Switzerland, Norway, Netherlands, and Finland are the top leading European countries, which share high waste wood portion for energy purpose, ranging from 85 to 95% (BAV e.V. 2021). In the sector of material use, Italy ranks in first position among European countries with a 42%, share of waste wood in panel production, followed by Austria with 33% (Silvio 2018).

As resources, fossil and renewables are limited in their availability, though for different reasons, the European Green Deal laid the political basis for a shift from linear to circular economy. Products entering the cycle must be designed in a way that supports circular utilization (Fig.  1). However, repeated utilization of resources through recycling requires a thorough cleaning process to prevent contaminants that may have entered the resources cycle decades ago from being carried over and accumulated. As the use of natural resources gains massive interest, their efficient use together with consumer protection is of high concern. Many authors have therefore been working on the characteristics of different waste wood resources and their utilizations. Some focused on the origins and contaminants of waste wood materials (Tables  1, 2). The others concentrated on the application

of waste wood to the production of wood-based panel as well as its effects on the physical and mechanical properties and formaldehyde emission of final products (Tables 3, 4). Due to the variety of materials and the effects of possible contaminations, this paper presents an overview of the conducted waste wood research with the goal to answer the following questions:

1. Where do the waste wood materials come from and what are the target composites?

2. What are the challenges that recyclers are facing during the conversion of waste wood?

3. What is the concentration of recycled wood material in the new composite products and its consequences?

2 Methods

The stated questions were addressed by collecting peerreviewed articles, proceedings of conferences and reports of research projects relating to waste wood material and its utilization from the following scientific websites:

• ScienceDirect (https://www.sciencedirect.com/)

• Google Scholar (https://scholar.google.com/)

• WorldCat (https://www.worldcat.org/)

• SpringerLink (https://link.springer.com/)

• Taylor&Francis Online (https://www.tandfonline.com/)

• ACS Publications (https://pubs.acs.org/)

• Web of Science (https://www.webofscience.com)

The following keywords were used:

• Waste wood contaminants

• Waste wood composites

• Recycled wood, formaldehyde emission

• Secondary wood resources

• Wood residues utilization

The term waste wood mentioned in the searched articles is restricted to used/secondary or recycled wood. Research articles, dealing with by-products from sawmills or the like are not included in this article.

Fig. 1 Existing resources utilization pathways (solid

and approaches

The collected publications for the review article were analyzed and categorized dealing with the research questions focusing on the recycling of waste wood materials from wood-based panel products to produce wood-based panel only. Therefore, wood plastic composite-based publications and the research papers that focused on waste wood materials from solid wood with and without CCA treated will not be discussed and shown up in the Supplementary information.

3 Results and discussion

3.1 Waste wood origin and target composite type

3.1.1 Waste wood origin

Table 1 includes twenty-eight research articles classified into two main categories namely origin and target composite type presenting the origin of waste wood materials conducted in the last twenty years. About half of the studies in Table 1 was conducted from 2015 to 2019. The results indicated that a large proportion of waste wood stream originates mainly from recycling center companies or combustion power plants. In this waste stream, construction and demolition (10 references) and furniture (9 references) dominate the origin uses of waste wood,

followed by packaging (6 references), whereas municipal counts for only one interest (Lesar et al. 2018). This finding is also consistent with the research of Mantau and Doering (2018) and Van Benthem et al. (2007) about waste wood streams in Europe.

In the sector of waste wood type, most studies dealt with/focused on wood-based panel (17 references). It is surprising that particleboard was found more than fiberboard, plywood and OSB in waste wood type of woodbased panel industry. According to FAO (2018), plywood production accounted for the largest volume of woodbased panel globally, followed by fiberboard, particleboard and OSB. Therefore, it was expected that more secondary/recycled plywood would be found in the waste wood type rather than particleboard and fiberboard. However, the finding in this research is controversial to the

References Origin

WW type Original use

Contaminant analysis

PBFBOSBPlywoodSolid woodC & DMunicipalFurniturePackagingPhysicalChemical

Schild et al. (2019)

Faraca et al. (2019)xxxxxxxxx

Azambuja et al. (2018a)xxxxx

Azambuja et al. (2018b)xxxxx

Hameed et al. (2018a)xx

Laskowska and Maminski (2018)x

Hong et al. (2018)x

Lesar et al. (2018)xxxxxxxxxxx

Robey et al. (2018)xx

Hameed et al. (2018b)xx

Zamarian et al. (2017)xxxxx

Edo et al. (2016)xxxx

Roffael et al. (2016)x

Andrade et al. (2015)xxx

Costa et al. (2014)

Martins et al. (2007)xx

Nagalli et al. (2013)xxxx

Lykidis and Grigoriou (2011)x

Mirski and Dorota (2011a)xx

Mirski and Dorota (2011b)x

Suffian et al. (2010)x

Lykidis and Grigoriou (2008)x

Yang et al. (2007)x

Wang et al. (2007)x

Mantanis et al. (2004)x

Jermer et al. (2001) xx

Tolaymat et al. (2000)xx

Krzysik et al. (1997)x

Table 1 Origin of waste wood materials

Table 1 (continued)

ReferencesOrigin

Target composite type and research topic

Country Wood based panel Composition Strength properties FE PBFBOSBPure WWMix

Schild et al. (2019)Canadaxxx

Faraca et al. (2019)Denmark

Azambuja et al. (2018a)Brazilxxx

Azambuja et al. (2018b)Brazilxxx

Hameed et al. (2018a)Swedenxxx

Laskowska and Maminski (2018)Polandxxx

Hong et al. (2018)Koreaxxxx

Lesar et al. (2018)Germany, UK, Finland, Slovenia

Robey et al. (2018)USA

Hameed et al. (2018b)Swedenxxx

Zamarian et al. (2017)Brazilxxx

Edo et al. (2016)Sweden

Roffael et al. (2016)Germanyxxxx

Andrade et al. (2015)Portugalxxx

Costa et al. (2014)Portugalxxxx

Martins et al. (2007)Portugalxxxx

Nagalli et al. (2013)Brazil

Lykidis and Grigoriou (2011)Greecexxxx Mirski and Dorota (2011a)Polandxxxx

Mirski and Dorota (2011b)Polandxxx

Suffian et al. (2010)UKxxx

Lykidis and Grigoriou (2008)Greecexxxx

Yang et al. (2007)Taiwanxxx

Wang et al. (2007)Taiwanxxxx

Mantanis et al. (2004)Portugalxxx

Jermer et al. (2001)Sweden, German, Netherlands

Tolaymat et al. (2000)USA

Krzysik et al. (1997)Polandxxx

FAO statistic about the production volume and recycling amount of plywood. On the other hand, more plywood and OSB were expected in waste wood research rather than particleboard and fiberboard as the waste wood stream came mostly from construction and demolition. Moreover, it could be that plywood and OSB are often used for exterior applications or as formwork. Therefore, they could be contaminated by preservatives and are usually not suitable for material utilization anymore.

The majority of the found research was conducted based on the waste wood materials collected in Europe (18 references) and South America (4 references). Only six articles were found in other countries such as Canada (Schild et al. 2019), Korea (Hong et al. 2018), USA (Robey et al. 2018; Tolaymat et al. 2000), Taiwan (Yang et al. 2007; Wang et al. 2007). This shows that Europe is more concerned with the waste wood recycling topic than other continents due

to established recycling programs, policies and regulations (e.g., European Union Commission Decision 2009/894/EC; Zero Waste Europe 2014).

3.1.2 Target composite type

Relating to the target composite type, the possibilities of using different waste wood percentages to produce woodbased panels were investigated. Particleboard (14 references) is by far the most favorable product to be made from waste wood materials. The number of fiberboards (Hong et al. 2018; Roffael et al. 2016; Mantanis et al. 2004; Krzysik et al. 1997) and OSB (Schild et al. 2019; Mirski and Dorota 2011a, b) articles together account for seven references. There was no research found using waste wood materials for the production of plywood. The reason could be the impossibility of processing waste wood materials into veneers

European Journal of Wood and Wood Products (2023) 81:557–570

for plywood production. This can be done only from wood logs. On the other hand, there are more advantages in low cost, simple treatment process (mechanical e.g., chipping instead of chemical methods), and less technical barriers for waste wood during the conversion of wood-based panel (particleboard, fiberboard, OSB, plywood) into particles for particleboard production compared to conversion of old fiberboard into fiber or old OSB and plywood into strands. In general, recycled plywood can be processed into strands for the production of OSB when they are well collected and sorted. However, waste wood streams are normally a mixture of wood-based panel products together. The difficulty in the conversion process of inhomogeneous waste wood types into proper strand size and shapes hinders the usage of this resource in the three-layer OSB panel production compared to virgin wood.

3.2 Challenges in waste wood conversion and recycled composites products

3.2.1 Contaminants in waste wood and sorting technologies

3.2.1.1 Contaminants in waste wood Material flows during recycling must ensure that the products contain only nonhazardous contamination levels. The type and threshold of contaminations described in the national legal framework determines whether waste wood may be reused for material purposes or can only be thermally utilized. To use the waste wood efficiently by sorting out as little uncontaminated wood as possible is one of the most challenging steps during recycling. Physical contaminants or material impurities in WW are usually plastic, metal, glass, textiles, concrete or stone (Edo et al. 2015; Vaermeforsk 2012; Krook et al. 2006) that may originate from different material sources depending on the end-use of wood products or the waste wood collection plant/process. Chemical contaminants on the other hand may come from wood treatments, which were applied in order to improve wood products appearance (e.g., coating pigments, paints, oils), strengthen properties (e.g., gluing agents), prevent biological decay (e.g., wood preservatives) or fire resistance (e.g., flame-retardants) indicated by Johan et al. (2007).

Table  2 shows the research conducted in Europe and America on the analysis of physical and chemical contamination in waste wood. The waste wood materials were collected from different sources such as combustion plant, construction site and recycling companies. Physical and chemical impurities of waste wood fluctuate considerably from the findings. It can be seen in Table  2 that physical contaminants were found from 1 to 3% basic dry weight of total material content (Faraca et al. 2019; Lesar et al. 2018; Edo et al. 2016; Jermer et al. 2001). A higher proportion of

non-wooden material was found in low quality mixed recycled wood (e.g., hazardous waste wood) rather than in high quality material (e.g., clean/non-hazardous waste wood) (Lesar et al. 2018). These fluctuations might be relevant to types, sources, fractions and seasons in year, collection and sorting process as well as management of waste wood at recycling facilities. Lesar et al. (2018) also indicated that companies with sophisticated sorting systems showed low content of non-wooden compounds in their waste wood materials. Nowadays, manual sorting, size, sink-float, gravity, magnetism, surface tension, and electric conductivity are the most popular sorting methods, which can help to sort out up to 96% of physical impurities in waste materials (Lahtela and Kaerki 2018).

The chemical elements in waste wood originate from various substances accumulated from preservatives, adhesives, pigments, paints, coatings or lacquers. Wood preservatives (e.g., Chromated Copper Arsenate CCA) can be found in many waste wood samples of the collected articles. The amount of Cr, Cu and As varies widely depending on various origins of incoming recycled wood. For example, the waste wood materials from Europe (Faraca et al. 2019; Lesar et al. 2018; Edo et al. 2016; Jermer et al. 2001) tend to contain less CCA than the ones from America (Robey et al. 2018; Tolaymat et al. 2000). It can be explained by the fact that the CCA has been banned in Europe since 2006 as wood preservative (EU Directive 2006/139/CE), whereas it is still allowed in USA. Therefore, these CCA values are lower than in USA. Moreover, Jermer et al. (2001) also found that the amount of arsenic, copper and chromium in German waste wood are lower than in Sweden. This may be a result of the German wood waste ordinance which limits strictly those chemical impurities at lower values compared to Sweden [e.g., As and Cd (2 mg/kg), Cu (20 mg/kg), Cr and Pb (30 mg/kg), Hg (0.4 mg/kg), Cl (600 mg/kg)].

In addition, the amount of Pb, Hg, Cd and Cl varied significantly depending on waste wood sources. Pb was found at high level (up to 2900 ppm) in waste wood from Sweden (Edo et al. 2016) whereas Cl was found (up to 1191 ppm) in waste wood mix of Sweden, Germany and Netherlands (Jermer et al. 2001). The reasons for these phenomena could be due to the difference in waste wood quality among countries depending on company size, collecting seasons and deliveries of waste wood. These elements are commonly used in pigments, paints, coatings, lacquers for wood floor and furniture treatment and were found more in Swedish waste wood (Fjelsted and Christensen 2007; Jermer et al. 2001). Furthermore, Pb and Cd also originated from heat stabilizers in PVC products (Mesch 2010; Krook et al. 2004). Another reason could be due to the waste wood fraction variations. Faraca et al. (2019) proved that the fractions of waste wood affected the amount of contaminants. For instance, the amount of Cl and Pb in waste wood increases

Table 2 Contaminants

in waste wood

ReferencesCountrySource

Contaminants analysis

Physical/material contaminants

%wt. dry basic of total material content (1)

Variation in (1)

Stone (%)Plastic (%)Metal (%)Textile (%)Other (%)

Faraca et al. (2019)DenmarkRecycling center1–21–892–990–1

Lesar et al. (2018)Germany, Slovenian, Finish, UK Recycling companies1–2.96

Robey et al. (2018)USARecycling Facilities

Edo et al. (2016)SwedenCombustion power plant 1.119–4414–2514–22

Nagalli et al. (2013)BrazilConstruction site28.8–75.748.3–69.22.9–11.1

Jermer et al. (2001)Sweden, Germany, The Netherlands

Combustion plant< 1

Tolaymat et al. (2000)USARecycling facilities

References Contaminants analysis

Chemicals/trace element

mg/kg dry wood (ppm) CrCuAsPbHgCdClPCPPCBPAH

Faraca et al. (2019)0.5–1501–5000.03–7.00.1–1200.01–0.510–5–1.010–3–10–1 10–5–10

Lesar et al. (2018)3–591–251–11697–802

Robey et al. (2018)7.0–94.63.7–3482.0–150

Edo et al. (2016)1.5–3133.6–32000.10–2701.80–29000.5–10.5–10.07–0.13

Nagalli et al. (2013)

Jermer et al. (2001)9–730–641–410–1530.06–0.520.12–1.2291–1191

Tolaymat et al. (2000)10–29,00039–1600

when the waste wood particles, which are lower than 4 mm (fine fraction) increases (Edo et al. 2016; Vaermeforsk 2012; Jermer et al. 2001). This is probably due to the crushing and chipping process resulting in more surface coating materials removed from the waste wood surface increasing the amount of heavy metal and Cl in the fine fraction after sieving. There are limited studies conducted on finding organic compounds of waste wood in the recycling process. Faraca et al. (2019) was the only reference found in analyzing PCP, PCB and PAH of waste wood materials. The finding showed that those substances are mainly coming from old furniture. In the past, PCB was used as plasticizers in the coating ingredients of paints and flame retardant (Butera et al. 2014; Jartun et al. 2009a, b). Nowadays, these substances are slowly replaced by other ingredients in paints and coating recipes applied to wood surface treatment. Therefore, high quality waste wood was found containing less of these components and complies with European standards for organic pollutants.

3.2.1.2 Sorting technologies Different sorting technologies have been developed to detect and eliminate chemical contaminants in waste wood particles such as atomic absorption spectroscopy (CV, GF, or HG-AAS), inductively coupled plasma spectrometry (ICP-OES, ICP-MS), energy dispersive X-ray fluorescence (ED-XRF) and near infrared (NIR) spectroscopy (Mauruschat et al. 2016; Fellin et al. 2014, 2011; Hasan et al. 2011a, b; Williams 1976). It is noticed that atomic absorption spectroscopy and inductively coupled plasma spectrometry are the methods used to detect the chemical contaminants of waste wood or biomass in the laboratory indicated by EU Commission decision 2009/894/EC. Other sorting techniques such as energy dispersive X-ray fluorescence (ED-XRF) and near infrared (NIR) spectroscopy have recently shown advantages in the sorting process of waste wood due to fast detection and high sorting efficiency. Plastics and wood preservatives can be detected and sorted by these techniques easily. For example,

European Journal of Wood and Wood Products (2023) 81:557–570

Hasan et al. (2011a, b) stated that the application of EDXRF in online sorting could eliminate 92–96% of wood preservatives (CCA) and alkaline copper quaternary (ACQ) in recycled wood at recycling plants. This method also showed high efficiencies with certain limitations for the elemental analysis of six different groups (origin, type, material, visually detected pollution, pollutant macro category and pollutant specification) from wood residues in wood recycling plants (Fellin et al. 2014). On the other hand, Fellin et al. (2011) stated the positive results on the application of infrared spectroscopy for the detection of pollutants in wood residues. Moreover, Mauruschat et al. (2016) indicated that near infrared (NIR) spectroscopy and automatically pneumatic nozzles can distinguish four types of plastic granulate in WPC. In addition, this study also showed the possibility to distinguish between untreated and treated wood at different moisture contents containing inorganic and organic preservatives. However, these technologies need more investigations/improvements prior to being used on an industrial scale besides focusing on the development of new sorting techniques.

Principally, the detection and sorting of most contaminants in waste wood could be conducted by appropriate methods. However, the waste wood after sorting and processing could contain certain contaminants. Depending on types and contents, those physical and chemical contaminants in waste wood resources will be classified whether they are problematic for the later wood-based panel products.

3.2.2 Properties of wood-based panel produced from waste wood

Table 3 presents information about the properties of woodbased panels made from recycled wood. In this part, some factors influencing physical and mechanical properties of particleboard, fiberboard and OSB produced from recycled wood such as treatment process of waste wood (e.g., hydrothermal process), waste wood mixing ratio, and adhesives type will be addressed.

3.2.2.1 Particleboard Different investigations based on hydrothermal treatment processes were conducted at various schedules to separate waste wood into particles and use them for the production of particleboard (Andrade et al. 2015; Lykidis and Grigoriou 2011, 2008). The findings indicated that the particleboards manufactured from treated waste wood particles show stable dimensions. However, the mechanical properties (MOE, MOR and IB) and physical properties (thickness swelling and water absorption) of the panel decrease when the temperature increases. This finding is also consistent with the results of Michanickl (1996a) and Boehme and Michanickl (1998). It can be explained by the degradation of holocellulose and lignin in recycled wood

resulting in reduction of the mechanical properties of boards due to the temperature increase (Yilgor et al. 2001). Moreover, these findings correspond to the research of Goldstein (1973) that the treatment temperature range should be between 110 and 170°C for recycled particles of particleboards. Additionally, Lykidis and Grigoriou (2011, 2008) concluded that the panel made from hydrothermally treated waste wood particles at around 150 °C shows better quality than others.

The effects of different waste wood ratio on the physical and mechanical properties of particleboard were investigated by Azambuja et al. (2018a, b), Laskowska and Mamiński (2018), Zamarian et al. (2017), Martins et al. (2007) and Suffian et al. (2010). The research results stated that it is possible to use 100% recycled wood particles in the production of panel products with UF as binder. In general, the higher the wood mix ratio applied, the lower the mechanical properties (MOE, MOR and IB) and the higher the hygroscopic properties (thickness swelling and water absorption) of panel achieved. The reasons could be due to the decrease in slenderness ratio of waste wood particles formed during the chipping process, which leads to the limitation of contact area between the particles (Arabi et al. 2011). In addition, the physical contaminants from surface coating materials (e.g., polypropylene, polyethylene, polyvinylchloride) of different waste wood-mix resources ( e.g., construction and demolition, furniture, packaging) cause negative effects on glue bonding of panel production, resulting in the decline of strength properties of boards. Moreover, Czarnecki et al. (2003) confirmed that waste wood particles containing PF resin could hinder UF curing due to its alkaline character resulting in reducing MOE, MOR and IB of recycled particleboard. On the other hand, Azambuja et al. (2018b) proved that the strength properties of produced particleboard containing up to 50% of waste wood mix are comparable to the one made from fresh wood particles and their values meet the standard of panel type P2. In general, the properties of the particleboards can be controlled based on the waste wood ratio in wood mixture.

Adhesive types also strongly affect the properties of particleboards. Several investigations focused on PF, TF and PMDI adhesives instead of UF for the improvement of particleboard properties using 100% waste wood particles (Hameed et al. 2018a; Laskowska and Mamiński 2018; Yang et al. 2007; Wang et al. 2007). The key findings illustrated that the MOE, MOR, and IB increase and TS and WA decrease when the percentages of those glues in waste wood mixture increase. This may be due to the differences in bonding properties (e.g., impregnation/absorbing ability only on surface or deeply inside middle lamella of wood) of UF, PF, TF and PMDI adhesives with wood particles/ fiber during the curing process affecting the physical and mechanical properties of produced panels. Better bonding

Properties of wood-based panels made from waste wood

Table 3

ParticleboardAzambuja et al. ( 2018a ) xxUF25; 1007500.49–1.304.6–7.20.18–0.7615.2–26.744.4–79.4

Azambuja et al. ( 2018b ) xxUF25; 507500.70–1.493.7–8.40.48–0.9214.2–27.943.2–81.3

Hameed et al. ( 2018a ) xUF, TF, PMDI1006402.10–2.1210.1–11.00.40–0.428.9–16.226.9–51.5

xUF, PF20; 40; 60; 80; 1006500.10–2.01.5–17.00.01–0.552.0–13.0

Laskowska and Mamiński ( 2018 )

xxUF10; 25; 50; 75; 1007001.45–1.9610.2–13.10.60–0.9611.6–16.034.8–42.7

Zamarian et al. ( 2017 )

Andrade et al. ( 2015 )xxUF0; 25; 50; 75; 1006000.61–0.844.4–9.00.37–0.8930.592.5

Martins et al. ( 2007 )xUF50; 70; 1006120.52–1.003.4–8.90.16–0.42

Lykidis and Grigoriou ( 2011 ) xUF1006801.78–2.699.2–14.20.38–0.5419.4–24.079.8–86.3

Suffian et al. ( 2010 )xUF1006502.5613.80.6135.763.6

xUF1006502.14–2.589.5–17.20.18–0.9426.2–59.179.0–119.6

Lykidis and Grigoriou ( 2008 )

Yang et al. ( 2007 )xPF100700; 8001.73–5.3311.1–29.00.12–0.422.0–11.0

Wang et al. ( 2007 )xPF, PMDI1008002.08–3.4511.4–27.90.56–0.737.0–18.1

FiberboardHong et al. ( 2018 )xUF10; 20; 307001.60–2.3010.0–18.00.08–0.2218.2–53.023.2–92.8

Roffael et al. ( 2016 )xUF, PMDI0; 33; 67; 1007300.40–0.5414.7–19.649.7–75.3

Mantanis et al. ( 2004 ) xUF2575032.4–37.80.60–1.027.0–8.2

Krzysik et al. ( 1997 )xPF7010003.38–4.1811.7–37.70.41–0.597.1–12.513.2–25.5

OSB Schild et al. ( 2019 )xPF0; 25; 50; 1006008.10–12.6528.0–33.50.38–0.5928.5–39.070.0–77.0

Mirski and Dorota ( 2011a ) xMUPF0; 25; 50; 75; 1006001.55–6.759.9–36.90.32–0.6426.9–33.6

Mirski and Dorota ( 2011b ) xPMDI0; 25; 50; 75; 1006001.40–7.1510.2–44.10.49–0.8821.6–32.9

OSB Oriented Strand Board, WW waste wood, WBP wood-based panel, UF urea formaldehyde, TF tannin formaldehyde, PF phenol formaldehyde, PMDI polymeric methylene diphenyl isocyanate, MUPF melamine urea phenol formaldehyde, MOE modulus of elasticity, MOR modulus of rupture, IB internal bond, TS thickness swelling, WA water absorption Target compositeReferences WW typeAdhesivesWW

European Journal of Wood and Wood Products (2023) 81:557–570

ability will result in better board properties. Laskowska and Maminski (2018) and Yang et al. (2007) stated that boards made from PF showed better properties than UF boards, whereas Wang et al. (2007) indicated that panels produced from PMDI showed higher properties than PF ones. Furthermore, Hameed et al. (2018a) demonstrated that the combination of TF and PMDI at the ratio of 30%:70% and 40%:60% in particleboard manufactured from waste wood material complied with the standard values of type P2 strength.

3.2.2.2 Fiberboard In the sector of fiberboard produced from the mixture of waste wood fiber and virgin wood, Hong et al. (2018), Roffael et al. (2016), Mantanis et al. (2004) and Krzysik et al. (1997) found that the strength properties (MOE, MOR and IB) of the panel decrease tendentially with the increase in waste wood fiber content. It could be explained by the fact that the handling process (e.g., hammering, cooking, refining) of recycled fiberboard into fiber resulted in shortening the fiber length of recycled fiber leading to the reduction in mechanical properties. There was a controversial finding in hygroscopic properties of investigated fiberboard. Hong et al. (2018) and Krzysik et al. (1997) found that TS and WA of investigated fiberboard increased with the higher proportion of recycled fiber content, whereas Roffael et al. (2016) and Mantanis et al. (2004) stated that TS and WA were improved and decreased when more recycled fibers are used. However, the difference could be explained by the fact that the adhesive content in recycled fiberboard contributes to the increase in TS and WA. Moreover, the interaction of cross-linking of the lignocellulose fibers with existing UF-pre-polymers in UF resin could be a reason for this effect (Andrews et al. 1985). Another possibility may be the effects of contaminants from adhesives, coating layers or surface laminate types (e.g., polyethylene terephthalate) in recycled fiberboard. Therefore, the findings indicated that it is only feasible to substitute 20% (Hong et al. 2018) to 25% (Mantanis et al. 2004) of recycled fiber in the UF wood mixture to produce fiberboards, reaching mechanical and physical properties comparable to virgin wood fibers.

At industrial scale, fiberboard recycling is facing a major problem of effectively collecting, sorting and disintegrating the wood fibers. Recycled fiberboards from off-cuts, machining errors, and transport and storage losses contain different types of wood adhesives and coating surface materials. These cause difficulties in applying appropriate technologies (e.g. mechanical, thermo-hydrolytic and chemical) to disintegrating fiberboard waste wood into reclaimed fiber completely in a single step used for fiberboard production. Therefore, the combination of mechanical, thermal and chemical technologies is requested. However, this combination will lead to the quality reduction in recovered fibers (Irle et al. 2019; Buschalsky and Mai 2021).

In addition, most collected waste wood resources at recycling centers or companies are mixtures of different wood types such as particleboard, fiberboard, plywood and OSB. Fiberboard accounts for about 5–15% of the amount of these waste wood resources and normally is not easy to separate from the mixture by traditional sorting methods (Fechter 2021). This amount will generate challenges (e.g. dust during chipping process of waste wood into particles and higher consumption of adhesives at gluing stage) when using it for the manufacture of industrial particleboards. For the time being, sorting technologies are developed that can sort out most of the fines from the waste wood mixture. Great effort is made to increase the recovery of MDF by different technologies besides improved sorting such as steaming at high pressure, ohmic heating or microrelease.

3.2.2.3 OSB For the production of OSB from waste wood, Mirski and Dorota (2011a, b) stated that 75% of recycled wood particles could replace virgin ones in the core layer of OSB with MUPF and PMDI, complying with the mechanical and physical property values of standard EN 300. On the other hand, Schild et al. (2019) indicated that the substitution up to 100% of unsorted waste wood particles in the core layer of OSB with PF is possible and the MOE, MOR and IB of the boards comply with standard requirements, except for TS and WA. However, MOE and MOR decrease when the waste wood content increases, whereas IB, thickness swelling and water absorption increase with the increase in waste wood proportions. These effects could be due to the inhomogeneous distribution of strands and particles and particles contaminants (e.g., wood preservatives, resonated waste wood particles, paints) in the face and core layers of OSB resulting in high-density variations in core layer and the whole board.

3.2.3 Formaldehyde emission

Table  4 shows the summarized data of studies conducted on formaldehyde emission of wood-based panels (particleboard, OSB, fiberboard) produced with various waste wood ratio and adhesives types.

Tendentially, the amount of formaldehyde emission of particleboard and OSB produced from waste wood particles increases with higher proportion of waste wood mixture. Martins et al. (2007) indicated that particleboards produced from higher waste wood ratio (from 50 to 100%) and same UF content showed higher formaldehyde emission. Mirski and Dorota (2011a) found the same tendency in the production of OSB from recycled wood. The reason for this is probably due to the former concentration of formaldehyde included in the glue of recycled wood. In contrast, Hong et al. (2018) and Roffael et al. (2016) found that the amount of formaldehyde emission of fiberboards made from waste

Adhesives (%)WW ratio (%)Density (kg/m 3 ) Formaldehyde emission

Desiccator (mg/L)

Flask (mg/1000 g o.d) (EN 717–3)

Perforator (mg/1000 g o.d) (EN 120)

References WW type

PBFBUnknownType%Chamber (ppm or mg/m 3 air) (EN 717–1)

Costa et al. ( 2014 ) xUF71006502.90–8.50

Martins et al. ( 2007 ) xUF750; 70; 1006122.20–6.96

Lykidis and Grigoriou ( 2011 ) xUF8;121006803.68–14.40

Lykidis and Grigoriou ( 2008 ) xUF71006501.61–10.26

Wang et al. ( 2007 ) xPF PMDI 6 4 1008000.03–0.89

Table 4

Target composite

ParticleboardHameed et al. ( 2018b ) xUF, TF, PMDI1006400.06–0.593.10–13.305.30–145.4

OSBMirski and Dorota ( 2011a ) xMUPF50; 25; 50; 75; 100 6004.87–6.21

Hong et al. ( 2018 ) xUF1210; 20; 307000.80–1.50

Roffael et al. ( 2016 ) xUF PMDI 10 0.5;1.0 0; 33; 67; 1007301.90–11.802.70–122.0

Formaldehyde emission of wood-based panel products produced from waste wood UF urea formaldehyde, PF phenol formaldehyde, TF tannin formaldehyde, PMDI

Fiberboard

European Journal of Wood and Wood Products (2023) 81:557–570

wood fiber decreases with the increase in recycled fiber content. This formaldehyde reduction could be related to the amount of urea pre-polymers, urea and ammonia generated during the degradation of amino-plastic resin in recycled fiberboard reacting with formaldehyde as formaldehyde scavengers. Another explanation might be the release of melamine during hot-pressing acting as formaldehyde scavengers (Sugita et al. 1990; Martin et al. 1992). Furthermore, the findings of Costa et al. (2014), Martins et al. (2007) and Mirski, and Dorota (2011a) indicate that formaldehyde emission of particleboards and OSB (middle layer) produced from 100% recycled wood meets the standard values of EN 120 (< 8.0 mg/100 g o.d).

The type of adhesives affects the formaldehyde emission strongly. According to Hameed et al. (2018b), the particleboard produced from UF showed higher amount of formaldehyde content than TF/PMDI. Moreover, the amount of formaldehyde content reduced notably when the ratio of TF/PMDI increased. Wang et al. (2008) added that formaldehyde release of particleboards made from waste wood decreases linearly when the PMDI/PF ratio increases. The same tendency was found in the study of Roffael et al. (2016) with UF and PMDI for fiberboard production from secondary wood fibers.

On the other hand, the hydrothermal process of waste wood particles contributed to reduce the amount of formaldehyde emission. Moreover, the formaldehyde content of thermally treated wood particles is comparable or almost the same as the formaldehyde content of the virgin ones. Waste wood particles treated at 150 °C with 30% water retention/20 mins; 45% water retention/10 mins; and 60% water retention/8 mins (Lykidis and Grigoriou 2011) and 6 bar/156 °C/45 min (Lykidis and Grigoriou 2008) reduce considerably the formaldehyde content in the produced particleboards compared to control panel and comply with emission class E1. Roffael (1995), Michanickl (1996a, b) and Dix et al. (2001a, b) found the same. It can be explained by the fact that the increase in temperature during hydrothermal treatments speeds up the degradation of adhesives in waste wood particles and therefore, urea and other derivatives of hardened urea-formaldehyde will be activated as formaldehyde catchers (Roffael and Kraft 2005).

It can be noticed that the formaldehyde emission of wood-based panels manufactured from waste wood could be reduced using thermal hydrolysis process to handle waste wood particles or formaldehyde-free adhesives.

4 Conclusion

Over the last two decades, many efforts have been put into studying the properties of waste wood resource and its application on material use. Evidently, waste wood is not

a homogeneous material. Therefore, there are still some limitations that need to be overcome before waste wood can be used as raw material for wood composites production. Considering the research questions put forward in this review of waste wood utilization, the following conclusions can be drawn:

• It is not surprising that most of previous investigations focused on recycled wood of construction and demolition, furniture and packaging since they are the most popular waste wood stream resources. The potential municipal waste resource was missing in the research.

• There are not enough published data and results available based on research with material derived from plywood and OSB as compared to particleboard and fiberboard even though most of the wood-based panel products in the world are plywood. It is controversial between production volume, usage and recycling.

• Due to the rather strict national and/or Europe-wide regulations controlling recycling topics, European institutions and European research institutes are currently the forerunners in waste wood studies. However, the European member states are lacking a common legislation scheme about the recycling of wood regarding classification and thresholds. Waste wood resources in other continents such as Asia, Africa and Australia would be of high research interest in the future. In addition, more studies about waste wood ordinances should be conducted especially for countries outside Europe.

• The advantages in technical and mechanical treatment process of waste wood into particles indicated that particleboard was the primary option for the production of wood-based panel compared to fiberboard and OSB. The present literature analysis has confirmed that currently, there appears to be hardly any research on the use of waste wood materials in the production of plywood.

• Physical and mechanical contaminants of waste wood resources would not be a problem for wood composites recycling if they were well managed. This management can be done beforehand at recycling companies or facilities via steps of collection, separation and sorting into certain grades. In general, every contaminant could be detected and eliminated by appropriate sorting techniques. On the other hand, the focus on improvement of sorting methods will bring the future perspective values for cleaning waste wood mix. Moreover, changing ingredients of coating pigments, paints, preservatives etc., which contain less harmful substances contributing to reduce contaminants in recycled wood, would be an option as well.

• Particleboard and the core layer of OSB panel products could be substituted up to 100% by waste wood particles. However, the contaminants and the low slenderness ratio

of recycled wood particles will result in the reduction of physical and mechanical properties of the panel products. Those disadvantages could be overcome by applying modern sorting techniques to eliminate contaminants and appropriate chipping techniques in order to increase the slenderness ratio of recycled wood particles. Further investigations are needed at the moment for the improvement of fiberboard properties made from 100% recycled fibers since only up to 25% of waste wood fiber can be utilized in the fiberboard wood mixture achieving comparable physical and mechanical properties with fiberboard from virgin wood.

• Using waste wood for the production of wood-based panel increases the risk of formaldehyde emission in products of particleboard and OSB, except for fiberboard. However, this risk can be addressed by applying pretreatment steps to reduce formaldehyde emission (e.g., hydrothermal process) or using formaldehyde-free adhesives (e.g., PMDI)

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00107-023-01937-4

Author contributions All authors contributed to the study conception and design of this review paper. Papers search, data collection, analysis and interpretation were performed by NDL, JL, MN and AK. NDL wrote the first version of this manuscript. All authors commented and revised on previous versions of the manuscript. At the end, all authors proofread and approved the final manuscript to be published.

Funding Open Access funding enabled and organized by Projekt DEAL. German Academic Exchange Service (Deutscher Akademischer Austauschdienst [Grant no. 91691453]) funded this research.

Data availability The datasets collected, generated and analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andrade PI, Araújo SO, Neiva DM, Vital BR, Oliveira C, Angélica C, Gominho J, Pereira H (2015) Strength properties and dimensional stability of particleboards with different proportions of thermally treated recycled pine particles. Holzforschung 70(5):467–474. https://doi.org/10.1515/hf-2015-0090

Andrews K, Reinhard R, Frick JG, Bertoniere R (1985) Cellulose reaction with formaldehyde and its amid derivates in formaldehyde release from wood products. In: Proceedings of the ACS symposium series No. 316. (ISBN 0-8412-0982-0

Arabi M, Faezipour M, Layeghi M, Enayati AA (2011) Interaction analysis between slenderness ratio and resin content on mechanical properties of particleboard. J for Res 22(3):461–464. https:// doi.org/10.1007/s11676-011-0188-2

Azambuja RR, Castro VG, Trianoski R, Iwakiri S (2018a) Recycling wood waste from construction and demolition to produce particleboards. Maderas Ciencia y Tecnologia 20(4):681–690. https://doi.org/10.4067/S0718-221X2018005041401

Azambuja RR, Castro VG, Trianoski R, Iwakiri S (2018b) Utilization of construction and demolition waste for particleboard production. J Build Eng 20:488–492. https://doi.org/10.1016/j. jobe.2018.07.019

Bergeron FC (2014) Assessment of the coherence or the Swiss waste wood management. Resour Conserv Recycl 91:62–70

Besserer A, Troilo S, Girods P, Rogaume Y, Brosse N (2021) Cascading recycling of waste wood: a review. Polymers 13(11):1752. https://doi.org/10.3390/polym13111752

Boehme C, Michanickl A (1998) Process for recovering chips and fibers from residues of timber-derived materials, old pieces of furniture, production residues, waste and other timber containing materials. Patent No. US5804035, EP 0697941

Bundesverband der Altholzaufbereiter und -Verwerter (BAV e.V.) (2021) Waste wood markets in Europe, Kategorie Europa. https://altholzverband.de/2021/09/27/waste-wood-markets-ineurope/. (German waste wood association (2021) Waste wood markets in Europa, Category Europe). Accessed on 12.10.2021

Buschalsky FY, Mai C (2021) Repeated thermo-hydrolytic disintegration of medium density fiberboards (MDF) for the production of new MDF. Eur J Wood Prod 79:1451–1459. https://doi.org/ 10.1007/s00107-021-01739-6

Butera S, Christensen TH, Astrup TF (2014) Composition and leaching of construction and demolition waste: inorganic elements and organic compounds. J Hazard Mater 276:302–311. https:// doi.org/10.1016/j.jhazmat.2014.05.033

Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhães FD (2014) Formaldehyde emission in wood-based panels: effect of curing reactions. Int Wood Prod J 5(3):146–150. https:// doi. org/ 10. 1179/2042645314Y.0000000070

Czarnecki R, Dziurka D, Łęcka J (2003) The use of recycled boards as the substitute for particles in the center layer of particleboards. Electron J Pol Agric Univ Wood Technol 6(2):#01. http://www.ejpau.media.pl/volume6/issue2/wood/art-01.html Accessed 22 Dec 2019

Dix B, Schafer M, Roffael E (2001a) Using fibers from waste fiberboards pulped by a thermo-chemical process to produce medium density fiberboard (MDF). Holz Roh Werkst 59(4):276

Dix B, Schafer M, Roffael E (2001b) Using fibers from waste particleboard and fiberboards pulped by a chemo-thermo-mechanical process to produce medium density fiberboard (MDF). Holz Roh Werkst 59(4):299–300

European Journal of Wood and Wood Products (2023) 81:557–570

Edo MB, Persson E, Jansson PE (2015) Assessment of chemical and material contamination in waste wood fuels—a case study ranging over nine years. Waste Manage 49:311–319. https://doi. org/10.1016/j.wasman.2015.11.048

Edo M, Bjoern E, Per-Erik P, Jansson S (2016) Assessment of chemical and material contamination in waste wood fuels—a case study ranging over nine years. Waste Manag (new York, NY) 49:311–319. https://doi.org/10.1016/j.wasman.2015.11.048

European Union Commission Decision 2009/894/EC (2009) On establishing the ecological criteria for the award of the community eco-label for wooden furniture (notified under document C (2009) 9522) OJ L 320, 5.12.2009:23–32. http://extwprlegs1. fao.org/docs/pdf/eur91599.pdf. Accessed on 13.01.2022

FAO (2018) Global forest products. Fact and figures. 6–8. https:// www. fao. org/3/ ca741 5en/ ca741 5en. pdf . Accessed on 17.08.2021

Faraca G, Alessio B, Thomas A (2019) Resource quality of wood waste: the importance of physical and chemical impurities in wood waste for recycling. Waste Manag 87:135–147. https://doi. org/10.1016/j.wasman.2019.02.005

Fechter JO (2021) Von der Vision zur Umsetzung—IKEAS Recyclingziele für Altholz, IKEA of Sweden. BAV-Altholztag, Koeln, Germany. (Fechter JO (2021) From vision to implementation— IKEAS recycling targets for waste wood, IKEA of Sweden. BAV Waste Wood Day, Cologne, Germany)

Fellin M, Negri M, Zanuttini R (2011) Monitoring pollutants on wood residues using FT-IR-ATR technology, ISCHP 11-Virginia Tech, Blacksburg, VA, USA 16–18 October 2011, pp 187–195. (ISBN 978-0-9837700-0-8 )

Fellin M, Negri M, Zanuttini R (2014) Multi-elemental analysis of wood waste using energy dispersive X-ray fluorescence (EDXRF) analyzer. Eur J Wood Prod 72(2):199–211. https://doi.org/ 10.1007/s00107-013-0766-4

Fjelsted L, Christensen TH (2007) Household hazardous waste: composition of polluted waste. Waste Manag Res 25:502-S09. https:// doi.org/10.1177/0734242X07082956

Goldstein I (1973) Degradation and protection of wood from thermal attack. In: Ddd V (ed) Wood deterioration and its prevention by preservative treatments, Volume I: degradation and protection of wood. Syracuse wood science series, vol 5. Syracuse University Press, New York

Hameed M, Roennols E, Bramryd T (2018a) Particleboard based on wood waste material and bonded by hybrid resin of TF and PMDI. Part 1: the mechanical and physical properties of particleboards. Holztechnologie 59(4):24–32

Hameed M, Roennols E, Bramryd T (2018b) Particleboard based on wood waste material and bonded by hybrid resin of TF and PMDI. Part 2: the extractable formaldehyde content and formaldehyde release. Holztechnologie 59(5):32–38 (ISSN: 0018-3881)

Hasan RA, Schindler J, Solo-Gabriele HM, Townsend TG (2011a) Part I: online sorting of recovered wood waste by automated XRFtechnology. Detection of preservative-treated wood waste. Waste Manag (new York, NY) 31(4):688–694. https://doi.org/10.1016/j. wasman.2010.11.010

Hasan RA, Solo-Gabriele H, Townsend TG (2011b) Part II: online sorting of recovered wood waste by automated XRF-technology— sorting efficiencies. Waste Manag (new York, NY) 31(4):695–704. https://doi.org/10.1016/j.wasman.2010.10.024

Hong MK, Lubis MAR, Park B, Sohn CH, Roh J (2018) Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Mat Sci Eng 15(3):163–171. https://doi.org/10.1080/17480272.2018.1528479

Irle M, Privat F, Couret L, Belloncle C, Deroubaix G, Bonni E, Cathala B (2019) Advanced recycling of post-consumer solid wood and

MDF. Wood Mater Sci Eng 14(1):19–23. https://doi.org/10.1080/ 17480272.2018.1427144

Jan VM (2019) Überblick über den Europäischen Markt, SUEZ trading. BAV-Altholztag, München, Deutschland (Jan VM (2019) European Market Overview, SUEZ Trading. German waste wood association—Waste wood day, Munich, Germany)

Jartun M, Ottesen RT, Steinnes EVT (2009a) Painted surfaces „ important source of polychlorinated biphenyl (PCBs) contamination to the urban and marine environment. Environ Pollut 157:295–302

Jartun M, Ottesen RT, Tl V, Kvist Q (2009b) Local sources of polychlorinated biphenyls (PCB) in Russian and Norwegian settlements on Spitsbergen Island, Norway. J Toxicol Environ Health Part A Curr Lssues 72:284–294. https://doi.org/10.1080/15287390802539426

Jermer J, Annika E, Claes T (2001) Analysis of contaminants in waste wood. In: Annual meeting paper, the international research group on wood preservation. IRG/WP 01-50179

Johan S, Maria Z, Ron Z (2007) Combined thermal treatment of CCAwood waste and municipal sewage sludge for arsenic emissions control. Report 2007-1. Faculty of Technology. Abo Akademi University. http://users.abo.fi/rzevenho/CCAreportV T2007-1. pdf. Accessed on 15.10.2021

Krook J, Mirtensson A, Eklund M (2004) Metal contamination in recovered waste wood used as energy source in Sweden. Resour Conserv Recycl 41:1–14. https://doi.org/10.1016/50921-3449(03) 00100-9

Krook J, Mirtensson A, Eklund M (2006) Sources of heavy metal contamination in Swedish wood waste used for combustion. Waste Manag 26:158–166. https://doi.org/10.1016/j.wasman.2005.07. 017

Krzysik JMA, Youngquist AJ, Bowers H (1997) Medium density fiberboard panels from waste wood and paper. Mater Sci (Corpus ID: 18005113)

Lahtela V, Kaerki T (2018) Mechanical sorting processing of waste material before composite manufacturing—a review. JESTR 11(6):35–46. https://doi.org/10.25103/jestr.116.06

Laskowska A, Mamiński M (2018) Properties of particleboard produced from post-industrial UF- and PF-bonded plywood. Eur J Wood Prod 76(2):427–435. https:// doi. org/ 10. 1007/ s00107-017-1266-8

Lesar B, Humar M, Hora G (2018) Quality assessment of recycled wood with and without non-wooden materials from selected recycling companies in Europe. Waste Manag (new York, NY) 79:362–373. https://doi.org/10.1016/j.wasman.2018.08.002

Lykidis C, Grigoriou A (2008) Hydrothermal recycling of waste and performance of the recycled wooden particleboards. Waste Manag (new York, NY) 28(1):57–63. https://doi.org/10.1016/j.wasman. 2006.11.016

Lykidis C, Grigoriou A (2011) Quality characteristics of hydrothermally recycled particleboards using various wood recovery parameters. Int Wood Prod J 2(1):38–43. https://doi.org/10.1179/ 2042645311Y.0000000002

Mantanis G, Eleftheria A, Panagiotis N, Aires C (2004) A new process for recycling waste fiberboards. In: 38th international wood composites symposium, pp 119–122

Mantau U, Doering P (2018) Rohstoffmonitoring Holz. Altholz im Entsorgungsmarkt—Herkunft und Aufbereitung, INFRO Teilbericht. http://infro.eu/downloads/studien/10_ATH_2016_Zusatz_Teilb ericht_FINAL_20180904.pdf. Accessed on 08.09.2021

Martin RE, Hizo CB, Ong AM, Alba OM, Ishiwata H (1992) Release of formaldehyde and melamine from melamine tableware manufactured in the Philippines. J Food Prot 55(8):632–635

Martins J, João P, Brígida P, Cristina C, Luisa C (2007) Effect of recycled wood on formaldehyde release of particleboard. In: COST action E49 conference “Measurement and Control of VOC Emission from Wood Based Panels”, Braunschweig, Germany

Mauruschat D, Plinke B, Aderhold J, Gunschera J, Meinlschmidt P, Salthammer T (2016) Application of near-infrared spectroscopy for the fast detection and sorting of wood–plastic composites and waste wood treated with wood preservatives. Wood Sci Technol 50(2):313–331. https://doi.org/10.1007/s00226-015-0785-x

Mesch K (2010) Heat stabilizers. In: Encyclopedies of polymer science and technology. Wiley Online Library. https://doi.org/10.1002/ 0471440264.pst153

Michanickl A (1996a) The material utilization of products made from wood-based panels. In: Proceedings of the third Eurowood symposium, Braunschweig, Germany, pp 1–5

Michanickl A (1996b) Recovery of fibers and particles from woodbased products. In: Proceedings no 7286: the use of recycled wood and paper in building applications. Forest Products Society, pp 115–119

Mirski R, Dorota D (2011a) The utilization of chips from comminuted wood waste as a substitute for flakes in the oriented strand board core. For Prod J 61(6):473–477. https://doi.org/10.13073/00157473-61.6.473

Mirski R, Dorota D (2011b) Applicability of strand substitution in the core of OSB. In: BioResources 6(3):3080–3086

Nagalli A, Fernada PL, Piera MP, Rafaela MH, Ronaldo LSI (2013) Analysis of wood waste contamination used in construction sites. EJGE 18(Bund. S):3999–4009

Purkus A, Luedtke J, Becher G, Jochem D, Polley H, Rueter S, Weimar H, Maack C (2019) Charta fuer Holz 2.0—Kennzahlenbericht 2019 Forst & Holz. Guelzow-Pruezen: Fachagentur Nachwachsende Rohstoffe e.V. (FNR). 45 S (Purkus A, Luedtke J, Becher G, Jochem D, Polley H, Rueter S, Weimar H, Maack C (2019) Charter for wood 2.0—key figures report 2019 forest and wood. Guelzow-Pruezen: Agency for Renewable Resources e.V. (FNR). 45S)

Robey NM, Solo-Gabriele HM, Jones AS, Marini J, Townsend TG (2018) Metal’s content of recycled construction and demolition wood before and after implementation of best management practices. Environ Pollut (barking, Essex: 1987) 242(Pt B):1198–1205. https://doi.org/10.1016/j.envpol.2018.07.134

Roffael E, Franke R (1995) On recycling of wood-based panels. In: Proc. IUFRO XX World Congress. Tampere, Finland, August 1995. http://www.metla.fi/iufro/iufro95abs/d5pap69.htm

Roffael E, Kraft R (2005) Zur quantitativen Bestimmung von Harnstoff mittels Indophenolmethode (Berthelot-Reaktion). (On the quantitative estimation of urea using the Indophenol method). Holz Roh Werkst 63:309–310

Roffael E, Behn C, Schneider T, Krug D (2016) Bonding of recycled fibers with urea-formaldehyde resins. Int Wood Prod J 7(1):36–45. https://doi.org/10.1080/20426445.2015.1131918

Schild A, Cool J, Barbu MC, Smith GD (2019) Feasibility of substituting core layer strands in randomly OSB with contaminated waste wood particles. Wood Mater Sci Eng 52(5):1–8. https://doi.org/ 10.1080/17480272.2019.1652682

Sekundaerrohstoffe A (2018) Aufkommen, Verwendung, Maerkte und Trends. EU-Recycling 11:30–32

Silvio M (2018) Panel production trends: will the role of waste wood change? Poeyry group. In: 11th European wood-based panel symposium, pp 10–12 October 2018, Hamburg, Germany

Suffian M, Ormondroyd GA, Hale MD (2010) Comparisons of particleboard produced from Acacia hybrid and a UK commercial particleboard furnish from recycled wood. J Trop for Sci 2010:227–236

Sugita T, Ishiwata H, Yoshihira K (1990) Release of formaldehyde and melamine from tableware made of melamine–formaldehyde resin. Food Addit Contam 7(1):21–27

Tolaymat TM, Timothy GT, Helena SG (2000) Chromated copper arsenate-treated wood in recovered wood. Environ Eng Sci. https://doi. org/10.1089/ees.2000.17.19

United State Environmental Protection Agency (2018) Facts and figures about materials, waste and recycling. Wood: Material-Specific Data. https:// www. epa. gov/ facts- and- figures- about- mater ialswaste-and-recycling/wood-material-specific-data. Accessed on 10.01.2022

Vaermeforsk (2012) Report 1234 Braenslehandboken (The fuel handbook), p 442 (ISSN 1653-1248)

Van Benthem M, Leek N, Mantau U, Weimar H (2007) Markets for recovered wood in Europe: case studies for the Netherlands and Germany based on the Bioxchange project, pp 1–12. http://www. probos.nl/images/pdf/artikelen/PaperProbosforCOST-E31.pdf Accessed on 09.01.2022

Wang SY, Yang T, Lin L, Lin C, Tsai M (2007) Properties of lowformaldehyde-emission particleboard made from recycled wood-waste chips sprayed with PMDI/PF resin. Build Environ 42(7):S.2472-S.2479. https://doi.org/10.1016/j.buildenv.2006. 06.009

Williams C (1976) The rapid determination of trace elements in soils and plants by X-ray fluorescence analysis. J Sci Food Agric 27:561–570

Yang TH, Lin C, Wang S, Tsai M (2007) Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Build Environ 42(1):189–195. https:// doi.org/10.1016/j.buildenv.2005.08.028

Yilgor N, Unsal O, Kartal S (2001) Physical, mechanical and chemical properties of steamed beech wood. For Prod J 51(11–12):89–93

Zamarian EHC, Iwakiri S, Trianoski R, Albuquerque CECA (2017) Production of particleboard from discarded furniture. Rev Árvore 41(4):333. https://doi.org/10.1590/1806-90882017000400007

Zero Waste Europe (2014) Press release: Eurostat data for 2014 confirms need for European residual waste target. Published in 23.03.2016. https://zerowasteeurope.eu/press-release/press-relea se-eurostat-data-for-2014-confirms-need-for-european-residualwaste-target/. Accessed on 13.01.2022

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

polymers

Review

RecentAdvancesinNaturalFibre-BasedMaterialsforFood PackagingApplications

HarikrishnanPulikkalparambil 1 ,SandhyaAliceVarghese 1 ,VaneeChonhenchob 1,2 ,TarineeNampitch 1 , LerpongJarupan 1,2 andNathdanaiHarnkarnsujarit 1,2, *

Citation: Pulikkalparambil,H.; Varghese,S.A.;Chonhenchob,V.; Nampitch,T.;Jarupan,L.; Harnkarnsujarit,N.RecentAdvances inNaturalFibre-BasedMaterialsfor FoodPackagingApplications. Polymers 2023, 15,1393.https:// doi.org/10.3390/polym15061393

AcademicEditor:SwarupRoy

Received:22December2022

Revised:24January2023

Accepted:23February2023

Published:10March2023

Copyright: ©2023bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

1 DepartmentofPackagingandMaterialsTechnology,FacultyofAgro-Industry,KasetsartUniversity,50Ngam WongWanRd.,Latyao,Chatuchak,Bangkok10900,Thailand

2 CenterforAdvancedStudiesforAgricultureandFood,KasetsartUniversity,50NgamWongWanRd.,Latyao, Chatuchak,Bangkok10900,Thailand

* Correspondence:nathdanai.h@ku.ac.th;Tel.:+662-562-5045;Fax:+662-562-5046

Abstract: Packagingisoneofthemajordomainsinthefoodprocessingindustrythatreduceswaste andenhancesproductshelflife.Recently,researchanddevelopmenthavefocusedonbioplasticsand bioresourcestocombatenvironmentalissuescausedbythealarminggrowthofsingle-useplastic wastefoodpackaging.Thedemandfornaturalfibreshasrecentlyincreasedbecauseoftheirlow cost,biodegradabilityandeco-friendliness.Thisarticlereviewedrecentdevelopmentsinnatural fibre-basedfoodpackagingmaterials.Thefirstpartdiscussestheintroductionofnaturalfibresin foodpackaging,withafocusonfibresource,compositionandselectionparameters,whilethesecond partinvestigatesthephysicalandchemicalwaystomodifynaturalfibres.Severalplant-derivedfibre materialshavebeenutilisedinfoodpackagingasreinforcements,fillersandpackagingmatrices. Recentinvestigationsdevelopedandmodifiednaturalfibre(physicalandchemicaltreatments)into packagingusingcasting,meltmixing,hotpressing,compressionmoulding,injectionmoulding,etc. Thesetechniquesmajorlyimprovedthestrengthofbio-basedpackagingforcommercialisation. Thisreviewalsoidentifiedthemainresearchbottlenecksandfuturestudyareasweresuggested.

Keywords: naturalfibres;foodpackaging;fibremodifications

1.Introduction

Bothsmall-andlarge-scalefoodindustriesaregrowingcontinuously,withfood packagingbeinganintegralaspecttoreducespoilageandextendproductshelflife[1].The globalproductionofplasticsisprojectedtoreach1100milliontonnesby2050,with36%of theoutputcurrentlyusedinthepackagingindustryand85%ofthisendsupinlandfills.

Figure 1 showsagraphicalrepresentationofplasticwastegenerationbyseveralindustrial sectorsin2015[2].Thisdiscardedwastepollutestheenvironment.Plasticpackagingis nowusedtoproducecomplexgeometrieswithfunctionalsnapfitsanddecorationsbut single-useplasticscauseextremeecologicalissues.Highproductionvolumes,shortusage timeanddealingwiththedisposalofend-lifeplasticshavebecomepressingissues.Rates ofrecyclingforconventionalsingle-usepackagingsuchasglass,plastic,paper,aluminium, andotheralloysarelow,withpaperandpaper-basedpackagingmaterialsrecycledaround 20%ofthetime,whileotherssuchasplasticarerecycledatsubstantiallylowerrates[3].

(measured in tonnes per year)

Figure1. Plasticwastegeneratedbydifferentindustrialsectors[2].

Packagingmaterialhasavitalroleinproductfunctionality,efficiency,processing parametersandenvironmentallyfriendlycustomersatisfaction[4,5].Petroleum-based conventionalplasticpackagingismostlynon-biodegradable,withrisingandunstable pricesduetofluctuationsintheavailabilityofpetroleumsources.Packagingdisposalis nowaprimaryconcernthreateningtopollutewatersupplies,sewersystems,riversand lakes[6].Overtime,plasticproductsfragmentintomicro-andnano-sizedparticlesthat causeserioushealthissues[7].Microplasticshavebeendetectedin15humanbiological componentsincludingbreastmilk,bronchoalveolarlavagefluid,blood,lung,liver,kidney, spleen,placenta,meconium,skin,hair,head,face,hand,saliva,colectomyspecimens, faecesandsputum[8].Babiesingest553to4,550,000microplasticparticles/daythrough feedingbottles[9].Thismicroplasticexposuredirectlyimpactsthedigestive,reproductive, centralnervous,immuneandcirculatorysystemsduringearlydevelopmentalstages.

Pollutioncausedbyplasticsrequireswastemanagementactionbyinnovation,improvedproductandpackagedesignandincreasedrecycling.Thisrequiresorganised legislativeactionsandinternationalcooperation.Thestatisticsindicatethattheutilisation ofplasticresourcesinthetakeawayfoodindustryhasmushroomed[10].Chinaisthe largestconsumeroftakeawayfood,generating350kT/dayofplasticfoodpackaging,with 40billionfoodboxesdiscardedperdayin2019[11].Recently,theCOVID-19crisiscaused a2.2%reductionintheuseofplasticsin2020butthevolumesoftakeawaypackaging andconsumptionofplasticmedicalequipmentincreasedaseconomicactivityresumedin 2021.Thisupwardprogressionoftheuseandconsumptionofplasticsmustbecritically addressed[12,13].

Thisstudyinvestigatedalternativestotraditionalsyntheticplasticpackagingby adoptingasustainable,renewableandbiodegradableapproach[14,15].Naturalfibres arecommonlyusedasreinforcementincompositematerials[16].Theyplaypivotalroles inattainingsomeofthespecificneedsincompositepreparations.Recently,theutilisationofnaturalfibreshasincreasedbecauseofecologicalconcerns;theyarelightweight, naturallydegradable,CO2 neutralandreadilyavailableasrenewablematerials[17,18]. Mostimportantly,duetotheirvulnerabilitytolivingorganisms,theyarebiodegradable anddonotimpacttheecosystem[19].Consequently,incorporatingnaturalfibresinto

thepolymermatricesimprovesthedisposalofcompositematerial[20–22].Varghese etal.[23]investigatedtheuseof Ceibapentandra naturalfibresinpoly(3-hydroxybutyrateco-3-hydroxyvalerate)-basedpackagingapplications.Theyfoundthattheincorporation ofnaturalfibresacceleratedthedegradationofpackagingmaterials,whichshowedgood antibacterialcapacityagainst Staphylococcusaureus andeffectivelypreservedthefreshness ofstrawberriesforalongerperiod.Naturalfibresareecologicallyfriendlybutnegative packagingaspectsincludetheirdominanthydrophilicityandlowmechanicalproperties underhumidconditions.Therefore,usesofnaturalfibresinseveralpackagingapplications arelimited.Recently,naturalfibreshavebeenutilisedwhentherecoveryofconventional plasticsisnoteconomicallyfeasible,controllableorviableandone-time-usepackaging materialsarepreferrable.Naturalfibre-reinforcedcompositescanbereused,unlikecardboardboxes.Saraivaetal.[24]developednaturalfibre-reinforcedcompositematerialfrom spongegourdresidueandcompareditspackagingefficacywiththatofcardboardboxes. Theresultsshowedthatthedevelopednaturalpackagingmaterialwaspreferableafter fourcyclesofuse.

Thisreviewaimedtoinvestigateadvancementsintheresearch,developmentand utilisationofnaturalfibre-basedcompositesforfoodpackagingapplications.Sources, compositionsandrecentproductiontechniquesofseveralnaturalfibresinfoodpackaging werediscussed.Physicalandchemicalmodificationsofnaturalfibresthatimprovetheir suitabilityforfoodpackagingwerealsoexplored.

2.NaturalFibresinPackaging

Naturalfibresareabundantlyavailableasbiodegradableandrenewablenatural materials[25]andtheyhaverecentlyreceivedhugeattentionfromtheglobalresearch community[26,27].Naturalfibrescanbedividedintothreecategoriesbyorigin:animalbased,mineralbasedandplant-based[28].Plant-basednaturalfibreswerethemainfocus ofthisreviewbecauseoftheirabundantavailabilityatlowcost.Plant-basednaturalfibres arelignocellulosicinnaturewiththeirbasicconstituentsincludinglignin,hemicellulose andcellulose.Animal-basedfibresmostlyconsistofproteins,e.g.,woolandsilk.Mineralbasedfibresareformedasaresultofgeologicalprocesses,suchasasbestosandbasalt.In plant-basednaturalfibres,bothprimaryfibresobtaineddirectlyfromplantsandsecondary fibresobtainedasbyproductsafterutilisationofprimaryfibresareused.

2.1.SourceandCompositions

Naturalprimaryplantfibresincludehemp,kenaf,sisalandcotton,whilesecondary fibresincludebagasse,coir,pineapple,agaveandoilpalm[29–31].Naturalfibreshave longbeenexploitedinthepreparationandmanufactureofropesandtextiles,forexample, flax,hemp,cottonlintorsisal.Somefibreshavesecondaryapplicationsinfoodpackaging. Figure 2 showssomeofthecommonlyavailablenaturalfibresandtheirsources,while Table 1 showstheoriginandpropertiesofnaturalfibres.Someofthemajorvarietiesof naturalfibresarediscussedinmoredetailbelow.

Figure2. Commonlyavailablenaturalplantfibresandtheirsources[32–60]Agavefiberfigure ReprintedwithpermissionfromRef.[58].Copyright2021ElsevierLtd.

2.1.1.Hemp(Cannabissativa)

Hempisoneofthemostwidelyutilisednaturalfibresaftersisalasreinforcementfor composites[61].HempisgrownwidelyintheEU,China,thePhilippinesandCentral Asia.Theplantsarecultivatedfromseedandcangrowupto5minheight.Crops cultivatedforfibrearedenselysownandproduceplantsaveraging2–3minheightwith almostnobranching.Hempfibreshaveantibacterialproperties[62–64]emanatingfrom cannabinoids,alkaloids,otherbioactivecomponentsorlignin[65].Khanetal.[66]studied theantibacterialpropertiesofhemphurdpowderagainst E.coli usingretted,semi-retted andnon-rettedhemphurdpowderwithdifferentparticlesizes.Thefibreswerekeptat 160 ◦ Cfor2hto eliminateself-contaminationssuchashumidityandthermalhistory.These authorsfoundthathempwasanecofriendlyfoodpackagingmaterialsuitableformeat, saladsandready-madefoodproducts.Teixeiraetal.[67]studiedthetemperatureeffects onmechanicalstrengthofhempfibres.Theyfoundthattensilestrengthincreasedby18% oncethefibreswereexposedto100 ◦ Cfor24h.However,whenexposedto200 ◦ Cfor24h, tensilepropertiesdecreasedandthefibresbecamefragileandbrittle.

2.1.2.Sisal(Agavesisalana)

Sisalisoneofthemostcommonlyusednaturalfibresgrownintropicalandsubtropical regionsofNorthandSouthAmerica,Africa,theWestIndiesandtheFarEast.Moreover, thehydroalcoholicextractobtainedfromsisalleavespossessessignificantantimicrobial activityagainst Aspergillusniger and Candidaalbicans [68,69].Pulikkalparambiletal.[70] examinedthereuseofdiscardedpolypropylene(PP)-baseddisposablefacemaskswith sisalandhempfibremats.TheyusedhotcompressionmouldingtosandwichthePPmasks andnaturalfibres.Theresultingcompositesshowedexcellentmechanicalpropertieswith antimicrobialactivitiesagainst S.aureus

2.1.3.Kenaf(Hibiscuscannabinus L.)

KenafisamemberoftheMalvaceaefamilyandherbaceousfibrecrops.Kenafplants aregrownthroughouttheyearwithashortharvesttimeinWestAfrica,IndiaandChina[71]. Theycangrowupto2.5–4.5mtallwithstemsupto1–2minlength.Kenafseedsandleaves areusedinfoodproductsastheyarerichinnutritionalandphytochemicalcompounds[72].

2.1.4.Bamboo(Bambusavulgaris)

Bamboo(Bambusavulgaris)growsinAsia-Pacific,African,EuropeanandNorthand SouthAmericanregions.Bambooreachesmaturityin3yearswhenitstensilestrength iseffectivelycomparabletomildsteel.Mosobamboohasagrowthrateof2inchesper hour.Somebamboospeciesreachaheightof60feetin3months.Therefore,cutting downthiswooddoesnotaffecttheecologicalandnaturalbalancemuch[73].Bamboois consideredthemostunder-utilisednaturalfibreandisabundantlyavailableinSoutheast Asiancountries.Theannualglobalavailabilityofbamboofibresis30milliontonneswith amaturitycycleofonly3–4years.Bamboofibreshaveexcellentmechanicalstrength. Thespecificstiffnessandstrengthiscomparabletoglassfibres[74].Afrinetal.[75] reportedstrongantibacterialpropertiesofbamboofibresagainst E.coli and S.aureus due toretainedlignin.AnotherpossiblereasonwasthepresenceofH2 O2 thatdamagedthe DNAsequencingof E.coli.However,theybelievedthatthiswasnotpossibleasH2 O2 was thermallydecomposedduringtheextractionprocess.

2.1.5.Jute

Juteisoftenneglectedbutconsideredasoneofthemostimportantfibres.Juteisinthe TiliaceaefamilywiththescientificnameCorchoruscapsularisbecauseitisextractedfrom Corchorusplants.JutefibresaremostlyfoundintheMediterraneanbutrecentlythefinest growthfibrescomefromBangladesh,India,China,Nepal,Thailand,IndonesiaandBrazil. Jutefibresarebrittleandcangrow2–3.5minheight.Theypossessveryhighlignincontent (12–16%)andthushavelowelongationatbreak.Jutefibrespossessuniqueproperties which,ifutilisedeffectively,cansolveproblemsinthetextileandfoodpackagingfields. TheincorporationofjutefibresinPLAmatricesimprovedbothoxygenandwatervapour barrierproperties.

2.1.6.Flax(Linumusitatissimum)

FlaxiscommonlygrowninmoderateclimaticregionssuchasIndia,Argentina,SouthernEurope,ChinaandCanada[28].Flaxplantscangrowtoheightsof80to150cmin lessthan110days.Fibresfromflaxbastgrowbetween60and140cmlongwithdiameters rangingfrom40to80 μm.Theyaremembersofthebastfamily.Thebastfibresarecollected fromthefibrousbundleslocatedintheinnerbarkofaplantstem.Themajorcomponentsof flaxfibresarepectin,hemicellulose,cellulose,andlignin.Therearealsosmallamountsof wax,oilandwater.Theincorporationofflaxfibresincreasesstrengthandstiffness,which canbefurtherimprovedbymodificationwithamalleatedcouplingagent[76].

2.1.7.BananaPlants

Bananaplantsaremostlygrownintropicalcountrieswheretheyareconsideredas anagriculturalcrop.Bananabastfibreisalingo–cellulosicmaterialandextractedas awasteproductofbananaplantcultivation.Bananafibrehasgreatspecificstrength whichiscomparabletoconventionalmaterialssuchasglassfibre[77].Ranaetal.[78] manufacturedbananafibre-reinforcedpolyvinylalcohol(PVA)resinandevaluatedthe mechanicalstrengthofthesecomposites.TheyconcludedthatPVAcompositeswith reinforcedbananafibrecouldbeusedasbiodegradablefoodpackaging.Theyhadgood biodegradationwithadequatehandlingstrength.

2.1.8.Ramie(Boehmerianivea (L)Gaud.)

RamieisaperennialhardyshrubbelongingtotheUrticaceaefamily.Ramieisconsideredoneoftheoldestvegetablefibreswhichhasbeenutilisedforthousandsofyears, specificallyasmummyclothsinEgyptfrom5000–3000BC.Ramiewasinitiallygrownin China,whiletodayramiefibreismainlygrowninBrazil,India,China,thePhilippines, SouthKorea,TaiwanandThailand.ThefibresarepopularlyknownasRhea,Kunkura, Pooah,Kunchoor,Puya,steelwireandChinagrassindifferentpartsofIndia.Thereishigh demandforramiefibresduetotheirperformanceandaestheticproperties.Ramiefabrics effectivelyabsorbmoisture,transmitheat,andaremoreresistanttomildewthanother cellulose-basedfibres.

Table1. Originandpropertiesofnaturalfibres.ReprintedwithpermissionfromRef.[79].Copyright 2021WileyLtd.

Natural Fibre Origin WorldProduction (× 103 Tonnes)

AbacaLeaf700.83114–130418–48612–13.8BananaStem2001.3580–250529–7598.201–3.5 BambooStem10,000910-50335.911.4 CoirFruit1001.15100–460108–2524–615–40 CottonLintFruit18,5001.6-287–5975.5–12.63–10 FlaxStem8101.5-345–150027.6–801.2–3.2 JuteStem25001.46-393–80010–301.5–1.8 HempStem2151.48-550–900701.6 KenafStem7701.4812504.3OilpalmFruitAbundant0.7–1.55150–50080–2480.5–3.217–25 RamieStem1001.0–1.5520–80400–100024.5–1281.2–4.0

Ricehusk Fruit/ grain Abundant-----

RoselleStem250----SisalLeaf3801.4550–300227–4009–202–14

2.2.NaturalFibreSelectionParametersasPackagingMaterial

Thefunctionoffoodpackagingistoprotectthefoodcontainedinsidethepackaging fromphysical,chemicalandbiologicalhazards(oxygen,moisture,light,microbialcontaminationandinsects)[80].Packagingmaterialsdependgreatlyuponthetypeoffood. containedinsidethepackagingsuchasmeat,fruits,vegetablesandready-to-eatfood.The packagingmustmaintainthesafetyandqualityofthecontainedfood.Otherfunctionsincludingpropercontainment,convenience,andinformationregardingthefoodarerequired,

whilemostimportantlythepackagingmustlookaestheticallypleasing.Table 2 listssome ofthecategoriesinvestigatedwhenstudyingthepropertiesofpackagingmaterials[81].

Oneprimaryconcernisthestructuralaspectsofthepackagingmaterialincluding tensileandtear,strength,bending,compression,punctureandfoldingparametersthat needtowithstanddifferentloadingconditionsduringstacking,transferandtransportation. Thestrengthofnaturalfibre-reinforcedcompositesrelatestotwofactors:(a)thestiffness andstrengthofthenaturalfibresand(b)compatibilitybetweenthefibresandthematrix. Strengthandstiffnessdependonthearrangementofcellulosicfibrilsinthemicrofibrils presentinthefibres,whilethemechanicalpropertiesofnaturalfibresarecontingentonthe partofthetreeorplantfromwhichthefibrehasbeencollected.Crystallineandamorphous fibrecharacteristicsdifferbetweenpartsofthetreeandbetweentrees.Previousstudies suggestedthatfibreswithfeweramorphouscontentssuchashemicellulose,ligninand pectinpossessbettermechanicalproperties[82,83].

Theconcentrationofnaturalfibresincorporatedintocompositesalsoimpactsthe mechanicalproperties.Anincreaseinfibrecontentincreasesmechanicalpropertiesupto anoptimalconcentrationbeyondwhichthemechanicalstrengthstartstoshowadecrease trend[84].Taoetal.[85]studiedtheeffectofjuteandramiefibreloadinginPLAcompositesandfoundthat30%naturalfibrecontentinPLAprovidedtheoptimalmechanical properties.Anotherfactoraffectingthepropertiesofnaturalfibre-reinforcedcomposites iscompatibility,whereinteractionbetweenthefibresandthematrixplaysanimportant roleinuniformlydistributingtheappliedloadintothematrix.Kamarudinetal.[86] reportedthatPLA/kenafcompositesshowedexcellentmechanicalstrengthatupto40% fibreloadingduetogoodfibre–matrixinterfacialinteraction.Beyondthiscriticalfibre loadingvalue,poorfillermatrixcompatibilityresultedinearlierfractureofthecomposite. Severalsurfacemodificationtechniques(bothphysicalandchemical)havebeenstudiedto improvethecompatibilityofnaturalfibresandmatrixmaterials.

Compositespreparedfromnaturalfibresshowpromiseappliedasfoodpackaging materials.However,theroleoffoodpackagingmaterialsisnotlimitedtoprotecting productsfromphysicalandmechanicaldamageduringdistribution[87].Foodpackaging mustalsocontrolthetransferofwatervapour,oxygenand/orcarbondioxide,which impactratesofoxidation,microbialdevelopmentandphysiologicalreactionsoffood degradation.Plasticsarecommonlypermeabletosmallvolatilessuchasgases(O2 ,CO2 ), watervapour,organicvapoursandliquids[88,89]andwaterabsorptionbarrierproperties areessentialbasicrequirementswhenpackingfood.Themoisturebarrierpropertyis importantinfoodpackagingasthispreservesthetextureinbothdryandmoistfoodand controlsmicrobialgrowthofaerobicspoilage.Importantparametersresponsibleforthe controlwatervapourpermeability(WVP)arefibrecontentandsize,fibre/matrixadhesion andcrystallinityandplasticisationofthematrix[90–92].Thedispersionoffibresinthe matrixcanevokeimpermeabilityduetothetortuosityeffect.However,theWVPofnatural fibre-reinforcedcompositessignificantlyincreasesduetothehygroscopicnatureofthe fibresandpoordispersioninthematrix.Bycontrast,hydrophilicpolysaccharidematrices havelowWVPproperties.Sirvioetal.[93]observedthatincorporationofupto50wt%of cellulosemicrofibrilsinalginatefilmsdecreasedtheWVPduetoanincreaseintortuosity. However,theaggregationandpercolationofsmallnaturalfibresinpolymermatricescan resultfrompoorfibre/matrixadhesion,leadingtovoidsinthepolymerswhichencourage thetransportofwatermolecules[94].OtherwaystoimprovetheWVPofnaturalfibres includecoatingwithPLA[95].Dasetal.[96]observedenhancedvapourpermeability andabsorptioncapacityof15.9%and48.1%,respectively,inshreddedbetelnutcomposite sheetscomparedwithcardboardsheets.Foodmustalsobeprotectedfromoxygenand carbondioxide,whichcausemanydegradationreactions.HighlevelsofCO2 inchilieslimit theKrebscycle,whereaslowlevelsofO2 decreasetheactivationofcytochromeoxidase, polyphenoloxidase,glycolicacidoxidaseandascorbicacidoxidase[97].

Migrationintofoodisanotherparametertobeconsideredwhenchoosingmaterialsfor foodpackagingapplications[98].Toxicologicalsubstancessuchaspesticideresiduessuch

asherbicides,fungicidesandinsecticidesandotherpollutantsintheenvironmentssuch aspolycyclicaromatichydrocarbonsmightbepresentinnaturalfibres.Specialadditives suchasplasticisers,includingphthalates,arealsoaddedinformulationsofpackaging materials.Theseunnaturalsubstancesmightmigrateintofoodduringstoragecausing spoilage.Temperature,activationenergyandmicrostructuresofthepackagingfilmscan alsorestrictdiffusionofunwantedsubstancesintofood[99,100].Thus,itisnecessaryto decontaminatenaturalfibresduringextractionbeforecompositepreparation.

Finally,thebiodegradability/compostabilityofthepackagingmaterialsisalsoof interesttoconsumers.Usingfullbioplasticsasmatricesandnaturalfibresproduces eco-friendlypackagingwithlowcarbonfootprints.Biodegradationratesofnaturalfibre compositesdependonthenatureofthefillers,reinforcementsandthematrixaswellasthe compositeratios.

Table2. Propertiesofpackagingmaterials.ReprintedwithpermissionfromRef.[81]Copyright2008 ElsevierLtd.

PropertyExamples

Structuralproperties

Barrierandabsorptionproperties

Tensilestrength,tearproperties,compressionproperties,bendingstiffness, edgecrushresistance,burststrength,punctureresistance,foldingendurance, wetstrengthanddelamination

Oxygenpermeability(OP),watervapourpermeability(WVP),Volatile permeabilityandwaterabsorptioncapacity

ManufacturabilityandmanufacturingqualityUniformityofthickness,densityandmoisturecontent

MigrationintofoodToxicologyparametersandmigrationstudies

Non-structuralfunctionalityAbrasionresistanceandstaticandkineticfriction

Degradability/compostabilityCompostabilityinbiodegradationtestsanddisintegrationtests

3.PhysicalandChemicalModificationsofFibresforFoodPackaging

Numerousstudieshaveinvestigatednaturalfibre-reinforcedpolymersbecauseof theirimprovedstrengthandstiffnesswiththelowcost,biodegradability,renewabilityand abundancyofnaturalfibres[101,102].However,mixingnaturalfibrewithapolymermatrix commonlycausespoormechanicalcompositepropertiesbecauseof(a)poorcompatibility betweenthepolarhydrophilicnaturalfibreandthenon-polarhydrophobicpolymermatrix and(b)non-homogeneousdispersionoffibreandwoodpowderinthePPmatrix[103,104]. Themodificationofnaturalfibrescanreducetheirhydrophilicityand,thereby,increasetheir compatibility.Theremovalofunwantedwaxandincreasingsurfaceroughnessincreases thecontactsurfaceareaofthefibres,whichinturnincreasesthetransferofstressuniformly intothematrix.Severalchemicalandphysicaltreatmentstoimprovethecompatibilityof naturalfibresareasfollows.

3.1.ChemicalModificationTechniques

Compositesreinforcedwithchemicallytreatednaturalfibresgenerallyshowenhanced mechanicalpropertiesbecauseofimprovedinterfacialadhesionbetweenthefibreandthe matrix[82].Numeroussurfacetreatmentmethodsareavailableforthemodificationof naturalfibres.Alkaline(NaOH)treatment/mercerisationisthesimplest,mosteffectiveand commonlyusedchemicaltreatment.Traditionally,mercerisationisatechniquetomodify surfaceofcotton.Strongcausticsodasolutionsareusedtotreatmaterialsfor1–3min undertensionandlowtemperatures,followedbywashing.Holdingcottonfabricunder tensioninthecausticsolutionhelpstomaintainitsoriginaldimensions.Asaresult,the fibreshavemorearoundedstructureinthecrosssection,reflectinglighttoimprovelustre. Mercerisedcottonalsoinvolvesachangeincrystallinestructureanddegreeofcrystallinity, therebyreducingstressesandincreasingthestrengthoftheweakpointsinthefibre[105].

ImmersioninNaOHaqueoussolutionremoveshemicellulose,lignin,pectinandother impuritiesfromthefibresurface.Thisresultsinaroughersurface,whichinturnimproves themechanicalinterlockingofthefibreswiththematrix.Borahetal.[106]foundthat alkalitreatmentofbetelnutfibresbeforecompositeformationimprovedtensionstrength by18%,elongationatbreakby6%,bendingstrengthby11%andimpactstrengthby18%. Thereactionbetweenthefibreandalkalisolutioncanberepresentedbytheequation below[107].

Theutilisationofoxidisingagentssuchashydrogenperoxide(H2 O2 )innaturalfibres canalsoeliminatethecementingsubstancesfromsurfaceofthefibres,whichhinder adhesionwiththepolymermatrix.Fornaturalfibres,alkalitreatmentresultsinthe formationofanalkali-resistantlinkagebetweenligninandhemicellulosethatmayimpede theremovaloflignin.UsingH2 O2 breaksthesebondsanddelignifieslignocellulosic fibre,whichenhancestheinterfacialadhesionwiththepolymermatrices[108,109].The acetylationoffibrealsoimproveshydrophobicity,whichenhancesinterfacialadhesionby reducingthemoistureabsorptionofthecellulosecomponents.Thisincludestreatmentsof aceticorpropionicacidatelevatedtemperatureswithorwithoutthecombinationofan acidcatalyst[110].Acetylationofthecellulosecomponentssubstituteshydroxylgroups ofthecellwall,whichincreasesthehydrophobicityofthenaturalfibres.Thismethod improvescompatibilitywiththepolymermatrixbydecreasingwaterabsorption.

Finally,couplingagentsalsoreduceinherentincompatibilitybetweenthepolymer matrixandnaturalfibres,whichenhancestheinterfacialadhesion.Polymersconsistof bifunctionalgroupswhicheffectivelyreactwithboththefibreandthematrix.Organofunctionalsilanecouplingagentsformcovalentbondswiththehydroxylgroupsofcellulose. Alkoxygroupsarehydrolysable.Moisturefacilitateshydrolysisandformssilanolswhich furtherreactwiththehydroxylgroupsofthefibre.Consequently,stablecovalentbonds areformedwiththecellwallthatarechemisorbedontothefibresurface[110–112].This chemisorptioncommonlyimprovesthedegreeofcrosslinkingatinterface,whichimproves affinityoforganophilicpolymers[110].Addinghydrocarbonchainsbythemodificationof naturalfibrewithsilanesmodifiestheirwettabilityandreduceswateruptakeascovalent bondingformscross-linkingbetweenthefibreandthematrix.

However,theuseofalkalineoranyotherchemicaltreatmentsadverselyimpacts productsustainability,withgreentechniquespreferredfornaturalfibremodification. Smithetal.[113]preparedasustainablegreencompositebasedonagavefibre(Agavetequilana) modifiedwithpoly(3-hydroxybutyrate)(PHB)inthepresenceofasmallquantity(0.1phr) oforganicperoxidethroughone-stepreactiveextrusionprocessing.Resultsshowedthat 25wt%agavefibrewith0.1phrperoxideimprovedflexuralstrengthby46%,impact strengthby45%andheatdeflectiontemperature(HDT)by39%comparedwithneat PHB.Thesefindingssuggestedthatthepresenceofperoxideprovidesacost-effectiveand sustainablealternativetopetroleum-basedconventionalplasticsforfoodpackaging.

Mohantyetal.[114]chemicallymodifieddatepalmleaf(DPL)usingacrylicacid andtestedthedispersionandcompatibilitywithpolyvinylpyrrolidonecompositesfor packagingapplications.Preparedbiocompositesreinforcedwith26wt%DPLfibreloading showedpromiseforuseaswater-andchemical-resistanthydrophobicpackagingmaterials. Nazrinetal.[115]studiedtheincorporationofnanocellulosetoenhancetheproperties ofthermoplasticstarch(TPS),polylacticacid(PLA)andpolybutylenesuccinate(PBS)for foodpackaging.TheyreportedthattheadditionofnanocelluloseinTPSimprovedthelow waterbarrierandtensileproperties,whiletheadditionofnanocelluloseintoPBSandPLA enhancedtheoxygenbarrierpropertiesandmechanicalstrength.

Naturaljutefibreincorporatedwitharedgrapepomaceextract(RGPE)hasbeen developedforactivepackaging.TheRGPEwasderivedfrompressurisedliquidextraction (PLE)andenhancedsolventextraction(ESE)techniques[116].Thepackagingshowed excellentantibacterialactivitiesagainst E.coli, S.aureus and Pseudomonasaeruginosa.The RGPEextractfromPLEusingC2 H5 OH:H2 O(asasolvent)had11majorphenoliccom-

Fibre OH + NaOH → Fibre O Na+ + H2 O

pounds.Jara-Palaciosetal.[117]foundquercetin-3-O-glucosideasthemostabundant compoundinRGPEextractedbyC2 H5 OH:H2 O.Wangetal.[118]modifiedhempfibre withalysine-graftedN-halamineorganicasanantibacterialagentinhempfibreusing amildSchiffbasereaction.Thematerialstotallyeliminated Staphylococcusaureus and Escherichiacoli in5min,whiletheinhibitionzoneincreasedto18.4mm.

3.2.PhysicalModificationTechniques

Previousstudiesmainlyfocusedontheeffectsofcouplingagentsandcompatibilisers totailorthemechanicalpropertiesofnaturalfibre-reinforcedcomposites.Mostchemical treatmentsweresuccessfulandresultedinincreasedthermalandmechanicalproperties. However,somemajorproblemsassociatedwithchemicaltreatmentsarethehighcost andpollutionfromthedisposalofthechemicalsaftertreatment[119].Plasmatreatment introducesfunctionalgroupsontonaturalfibresthatformstrongcovalentbondswith thematrix,leadingtoastrongfibre/matrixinterface.Plasmatreatmentissimple,shortduration,consumeslittleenergy,andlowcost.Thetechniquerequiresnowaterorany potentiallyhazardouschemicals.Surfaceetchingimprovesthesurfaceroughnessofnatural fibresandresultsinbetterinterfacialinteractionwiththematricesthroughmechanical linking[120–124].

3.2.1.ColdPlasmaTreatments

Coldplasmatechniquesaredry,cleanprocesseswithlessenvironmentalconcerns. Suchamodificationoccursonlyonthesurfacewithnointerferenceonthebulkproperties. Figure 3 showsaschematicrepresentationoftheeffectsofplasmaandcationisingprocesses ofcellulose-constitutingcottonfibres[125].Sinhaetal.[122]studiedtheinfluenceofphysicaltreatmentonthemorphology,wettabilityandimpactofthefinestructureoffibreson interfacialadhesionofnaturalfibre-reinforcedcomposites.Theyfoundthatplasmatreatmentreducedfibrehydrophilicityduetothedecreaseinphenolicandsecondaryalcoholic groupsandoxidationofthebasicstructuralligninandhemicellulosescomponents.Plasma treatmentimprovedfibre/matrixadhesion,asrevealedbyscanningelectronmicroscopy (SEM)morphology.Figure 4 demonstratestheetchedsurfacesandincreasednumbersof newoxygenfunctionalgroupspresentonthesurfaceofsisalandcoconutfibresrevealed usingSEManalysis[126].

Figure3. Theeffectsofplasmaandcationisingprocesses.ReprintedwithpermissionfromRef.[125]. Copyright2011SpringerNatureLtd.

Figure4. Theeffectofplasmatreatmenton(a)thesurfaceroughnessoffibresand(b)theinterfacial interactionbetweenthefibreandmatrix[126].

Combiningchemicaltreatmentswithphysicalplasmatreatmentswasstudiedonflax fibresbyGiepardaetal.[127]tounderstandthesynergisticeffects.Theauthorsused silanisationandplasmatreatmentbothindividuallyandincombination.Theresults revealedanincreasedthermalstabilitywithasignificantimpactonfibrediameterand specificsurfacearea.Erwinetal.[128]studiedliquidplasmatreatmentoncoirfibre withmicrowaveplasmaintheliquid.Themediumswerewaterandsodiumbicarbonate (NaHCO3 )solution.Theinterfacialshearstrengthofthecoirfibre–epoxymatrixincreased afterliquidplasmatreatmentwithbothwaterandsodiumbicarbonatebecauseofchemical adhesionwhichfacilitatedmechanicalinterlocking.

3.2.2.SteamExplosion

Steamexplosionisanotherphysicalmodificationtechniquefornaturalfibres.Thisinvolvesheatingthefibresatahightemperatureandpressure,causingmechanicaldisruption ofthecellularmaterialthatundergoesfibrillation.Theselectionofsteamingtemperature andexposuretimeisveryimportanttoachieveoptimalfibreproperties.Hanetal.[129] studiedtheeffectsofsteamtreatmentonwheatstrawunderdifferentpressuresandtimes. Theyreportedthatthetreatmentenhancedthedimensionalstabilitywiththeremovalof lignin,ashandextracts.

4.ProductionTechnology

Naturalfibre-reinforcedhybridcompositesarenowextensivelyappliedtodealwith technologicalproblems[130–132].Table 3 listscompositesmadeofnaturalfibresthathave widespreadapplicationsinareaswherethecostofreinforcementslimitstheutilisation ofconventional,lightweight,reinforcedplasticmaterials[133–135].Cabedoetal.[136] comparedalmondshell,ricehuskandseagrassasfillersinPHB/fibrecompositesprepared bythemelt-blendingprocess.Theystudiedtheinfluenceoffibretypeandfibrecontenton morphology,thermal,mechanicalandbarrierproperties,compostabilityandprocessability. Theyconcludedthatallthreefibresweresuitableforthedevelopmentoffullycompostable biocompositesforpackagingapplications.Rawietal.[75]studiedtheeffectsofcompressionmouldingparametersonthemechanicalpropertiesofbamboofabric,poly(lacticacid) (PLA)compositesforpackagingapplications.Theyreportedthatthecompositeswiththe highestcompressionpressureof1.01MPaat3minexhibitedasuperiortensilestrengthof 80.71MPaandflexuralpropertiesof124MPa.They[137]alsocomparedpolypropylene (PP)andbamboofabricPLAcompositestoinvestigatetheuseofenvironmentallyfriendly

compositesforpackagingapplications.Thefindingsindicatedthatbamboofabric/PLA compositesenhancedPLAimpactstrengthby117%,withcomparativelylowerimpact strengthobservedforPP/bamboofibrecomposites.Thermalstabilityintermsoftheheat deflectiontemperature(HDT)ofPPandPLAmatriceswasincreasedbytheadditionof bamboofabric.Thehighheatresistancepropertyofcompositesissuitableforpackaging applications.Nabels-Sneidersetal.[138]studiedlaminationtechnologyofcasthemppaper withbio-basedplasticsusingacompressionmouldingprocesstoreplaceconventionalplasticsandsolvetheexistingwastedisposalproblems.Theycomparedpolyhydroxyalkanoate (PHA),polylacticacid(PLA),polybutylenesuccinate(PBS)andpolybutylenesuccinate adipate(PBSA)laminatespreparedatthreedifferentcompressionpressures.Thedesired pressureonporouscastpaper,impregnationandexcellentlayeradhesionwasproposed intheirstudy.Jietal.[139]preparedchitosan-basedcompositefilmsreinforcedbyramie fibreandlignin,asshowninFigure 5,forfoodpackagingapplications.Theadditionof 20%ramiefibreand20%ligninimprovedthemechanicalpropertiesandwaterresistance byupto29.6%and41%,respectively.Foodpackagingstudiesshowedextendedshelflife inmeatproductssuchaschickenbreastscomparedwithfruitssuchascherrytomatoes.

Figure5. Preparationofchitosan/ramiefibre/lignincompositefilms.Reprintedwithpermission from[139].Copyright2022ElsevierLtd.

Tawakkaletal.[140]usedathymolextractwithkenaffibrestostudythemigrationof thymolextractfromPLA/kenafcomposites.Melt-blendingwasusedtopreparethefilms inaninternalmixer(155 ◦ Cfor8minand50rpm)followedbyheatpressing.Thematerials weremeltedbypreheating(150 ◦ Cfor3min)withoutapplyingpressureandthenpressedat thesametemperaturefor2minwithaforceof20kNbeforequenchcoolingto30 ◦ Cunder pressure.Tawakkaletal.[141]alsostudiedtheantimicrobialactivityofPLA/kenaf/thymol against Escherichiacoli bacteriaandnaturallyoccurringfungi.Filmswithhigherthymol concentrationsandhigherkenafloadingexhibitedexcellentantibacterialpropertiesagainst fungalgrowthduetothereleaseofthymolintotheheadspacesurroundingthesamples; however,theshelflifeafterstoragefor3monthsatambienttemperatureshowedonly aslightdecreaseinantimicrobialproperties.

2023 , 15 ,1393

Polymers

MajorFindingsRef.

[ 138 ]

Biodegradationinacontrolledcompost at58 ◦ Cresultedinfulldegradation within40to80days,withPLAandPHA laminatesshowing40and50days, respectively.

Methodof Packaging Production

Table3. Summaryofnaturalfibre-reinforcedcompositesforfoodpackagingapplications.

Packaging Form

RoleofFibrein Packaging

Typeofmatrix/OtherPolymerBlend(IfAny)

FibrePrepara- tion/Treatment

PartofPlant

Source ofFibre

[ 142 ]

Oilpalmemptyfruitbunchfibre-based trayswerebelowtheallowablelimit specifiedbyCommissionRegulation (EU)No10/2011.

Theresinhadfavourablecharacteristics intermsofelasto–plasticand stress–strainbehaviour,suitablefor storageandtransportation.

Directmeltcoating

Sodiumhydroxide (NaOH)treatment

HempStraw

[ 140 , 141 ]

Solventcasting

MatrixTray

Emptyfruit bunchOilpalmemptyfruit bunch+Formaldehyde

Oilpalm

LaminateCasting

PolyesterresinReinforcement

[ 96 ] Kenaf

BetelnutSeed

AddingkenaffillertothePLAenhanced thereleaseofthymolfromthePLA matrix,reducedproductioncostsand increasedmechanicalstrength. Thecompositefilmsreduced Escherichiacoli inoculatedonthesurface ofprocessedslicedchickensamplesafter 30daysat10 ◦ Cbothindirectcontact andinthevapourphase.

Meltblendingand heatpressing

ReinforcementFilm

[ 143 ]

Flexuralstrengthimprovedby28% afteracetylationtreatment.

LaminateCasting

[ 144 ]

Theintroductionofplasticisersreduced brittlenessandenhancedflexibilityand peelabilityoffilms.

Solution-casting technique

Heated hydraulicpress

PolyesterFiller

Matrix Film

FillerFilm

Acetylation treatment

Plantain pseudostem

SugarpalmTrunkSugarpalm+glycerol andsorbitol

[ 137 ]

Theimpactstrengthwasenhanced by117%.

Film-stackingand compression moulding

Laminate

Reinforcement

A3.5-foldincreaseinwatervapour permeabilitywasrecorded. [ 145 ] Bamboo Stem-PLA

Wheatstraw Straw-PHBV

2023 , 15 ,1393

MajorFindingsRef.

Biocompositesreinforcedwith26wt% DPLfibreloadingcanbeusedaswater- andchemical-resistantpackaging materialsduetotheir hydrophobicnature.

Alkalitreatmentinthepresenceof asilane-couplingagentcausedmatrix skinformationandtheformationof flower-likestructuresonthesurfaceof thefabric,suggestinggoodbonding betweenthereinforcementand thematrix.

Thehighestcompressionpressureof 1.01MPaat3minexhibitedasuperior tensilestrengthof80.71MPaand flexuralpropertiesof124MPa.

Sizeandshapeirregularitiesofthefibres playedadominantroleinthe ultimateproperties.

Methodof Packaging Production

Meltmixing fabrication technique

Packaging Form

RoleofFibrein Packaging

Typeofmatrix/OtherPolymerBlend(IfAny)

Table3. Cont.

FibrePrepara- tion/Treatment

PartofPlant

Source ofFibre

DatepalmLeaffibreAcrylicacidPolyvinylpyrrolidoneReinforcement

poly(lacticacid)(PLA)Reinforcement LaminateHotpressing

Alkalitreatment and silane-coupling agent

Film-stackingand compression moulding

Sterculiaurens

References

5.ConclusionsandFuturePerspectives

Inthelastdecade,numerousstudieshavebeenconductedontheutilisationofnatural fibrestoreplaceconventionalpolymerapplications.Severalfibreshavebeenextracted fromplantresourcessuchashemp,sisal,kenaf,bamboo,jute,flax,bananaandramie. Chemicalextractionsandtreatmentsincludingalkalinesolutions,oxidisingagentsand couplingagentshavebeendemonstratedtopurifyandimprovethestrengthoffibre. Alternatively,physicaltreatmentssuchascoldplasmatreatmentsandsteamexplosion enhancethepropertiesandpurificationsofextractedfibre,removinglignin,ashandother substanceswhileincreasingdimensionalstability.Thesefibreshavebeenrecentlyutilised infoodpackagingasmatrices,fillersandreinforcementsbysolutioncasting,meltmixing, hotpressing,compressionmoulding,injectionmoulding,etc.Theincorporationofthese naturalfibreseffectivelyimprovedthemechanicalstrengthofthepackaging.Further developmentofnaturalfibre-basedfoodpackagingmaterialscanbeproposedasfollows:

• Thevalorisationofnaturalfibresinthefoodpackagingsectorexhibitedpromisingresults. However,along-lastingsupplyofrawmaterialsisessentialtoensuresustainability.

• Environmentallyfriendlyextraction/purificationisidealfortheproductionofuniformqualityfibres.Themodificationofnaturalfibresneedstoaddressenvironmentalissues impliedbychemicalmethods.

• Naturalfibresensurethesafetyandprotectionoffoodbyenhancingthemechanical propertiesoffoodpackagingtoresistphysicaldamage.However,severalotherfactors mustbeconsidered.Thepackagingmustbedesignedtoovercomedegradation reactionsandalsobeabletoregulategasandwaterbarrierproperties.Theselectionof naturalfibrescombinedwiththeuseofappropriatemodificationmethodscanprevent theformationofdefectsthatwoulddegradethemechanicalproperties,whilealso enhancingpackagingpermeability.

• Thedecontaminationofnaturalfibresshouldcomplywiththeregulationsonfood contactmaterialstoguaranteethehealthoftheconsumer.Thisaspectischallenging whenusingnaturalfibresduetothepresenceoftoxicologicalsubstancessuchas pesticidesthatcouldmigratetofoodfromthepackagingmaterials.

• Consumerwillingnesstopurchaseeconomicallycompetitivefullybiocompositealternativesisstilluncertain.Thecostofbiocompositesinfoodpackagingmaterialsneeds toberegulatedtoimprovethedemandinlocalmarkets.Thefutureuseofnatural fibresishighlyrecommendedforpackagingmaterialsduetotheircost-effectiveness andavailabilitythroughouttheyear.

AuthorContributions: Conceptualisation,H.P.andN.H.;methodology,H.P.andN.H.;validation, N.H.;investigation,H.P.andN.H.;writing—originaldraftpreparation,H.P.andN.H.;writing— reviewandediting,H.P,S.A.V.,V.C.,T.N.,L.J.andN.H.;supervision,N.H.;fundingacquisition,N.H. Allauthorshavereadandagreedtothepublishedversionofthemanuscript.

Funding: ThisresearchwasfundedbyKasetsartUniversityResearchandDevelopmentInstitute, KURDIgrantno.FF(KU)17.65withfinancialsupportfromtheOfficeoftheMinistryofHigher Education,Science,ResearchandInnovation;andtheThailandScienceResearchandInnovation throughtheKasetsartUniversityReinventingUniversityProgram2022.

InstitutionalReviewBoardStatement: Notapplicable.

DataAvailabilityStatement: Notapplicable. ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

1. Wang,X.;Pang,Z.;Chen,C.;Xia,Q.;Zhou,Y.;Jing,S.;Wang,R.;Ray,U.;Gan,W.;Li,C.;etal.All-Natural,Degradable,Rolled-Up StrawsBasedonCelluloseMicro-andNano-HybridFibers. Adv.Funct.Mater. 2020, 30,1910417.[CrossRef]

2. Geyer,R.;Jambeck,J.R.;Law,K.L.Production,use,andfateofallplasticsevermade. Sci.Adv. 2017, 3,e1700782.[CrossRef] [PubMed]

3. Jeevahan,J.;Chandrasekaran,M.Nanoediblefilmsforfoodpackaging:Areview. J.Mater.Sci. 2019, 54,12290–12318.[CrossRef]

4. Al-Oqla,F.M.;Almagableh,A.;Omari,M.A.DesignandFabricationofGreenBiocomposites.In GreenEnergyandTechnology; Springer:Cham,Switzerland,2017;pp.45–67.

5. Mastura,M.T.;Sapuan,S.M.;Mansor,M.R.;Nuraini,A.A.Environmentallyconscioushybridbio-compositematerialselectionfor automotiveanti-rollbar. Int.J.Adv.Manuf.Technol. 2016, 89,2203–2219.[CrossRef]

6.Porta,R.ThePlasticsSunsetandtheBio-PlasticsSunrise. Coatings 2019, 9,526.[CrossRef]

7. Welsh,B.;Aherne,J.;Paterson,A.M.;Yao,H.;McConnell,C.SpatiotemporalvariabilityofmicroplasticsinMuskoka-Haliburton headwaterlakes,Ontario,Canada. Environ.EarthSci. 2022, 81,551.[CrossRef]

8. Kutralam-Muniasamy,G.;Pérez-Guevara,F.;Elizalde-Martínez,I.;Shruti,V.C.Brandedmilks—Aretheyimmunefrommicroplasticscontamination? Sci.TotalEnviron. 2020, 714,136823.[CrossRef][PubMed]

9. Amran,N.H.;Zaid,S.S.M.;Mokhtar,M.H.;Manaf,L.A.;Othman,S.ExposuretoMicroplasticsduringEarlyDevelopmentalStage: ReviewofCurrentEvidence. Toxics 2022, 10,597.[CrossRef]

10.Molina-Besch,K.Fooddeliverypackagingandtablewarewaste. Nat.Food 2020, 1,531–532.[CrossRef]

11. Zhou,Y.;Shan,Y.;Guan,D.;Liang,X.;Cai,Y.;Liu,J.;Xie,W.;Xue,J.;Ma,Z.;Yang,Z.Sharingtablewarereduceswastegeneration, emissionsandwaterconsumptioninChina’stakeawaypackagingwastedilemma. Nat.Food 2020, 1,552–561.[CrossRef]

12. Srisa,A.;Promhuad,K.;San,H.;Laorenza,Y.;Wongphan,P.;Wadaugsorn,K.;Sodsai,J.;Kaewpetch,T.;Tansin,K.;Harnkarnsujarit,N.Antibacterial,AntifungalandAntiviralPolymericFoodPackaginginPost-COVID-19Era. Polymers 2022, 14,4042. [CrossRef]

13. Laorenza,Y.;Chonhenchob,V.;Bumbudsanpharoke,N.;Jittanit,W.;Sae-Tan,S.;Rachtanapun,C.;Chanput,W.P.;Charoensiddhi, S.;Srisa,A.;Promhuad,K.;etal.PolymericPackagingApplicationsforSeafoodProducts:Packaging-DeteriorationRelevance, TechnologyandTrends. Polymers 2022, 14,3706.[CrossRef]

14. Jiang,S.;Zou,L.;Hou,Y.;Qian,F.;Tuo,Y.;Wu,X.;Zhu,X.;Mu,G.Theinfluenceoftheadditionoftransglutaminaseatdifferent phaseonthefilmandfilmformingcharacteristicsofwheyproteinconcentrate-carboxymethylchitosancompositefilms. Food Packag.ShelfLife 2020, 25,100546.[CrossRef]

15.Kabasci,S.Biobasedplastics.In PlasticWasteandRecycling;AcademicPress:Cambridge,MA,USA,2020;pp.67–96.

16. Majeed,K.;Jawaid,M.;Hassan,A.;AbuBakar,A.;AbdulKhalil,H.P.S.;Salema,A.A.;Inuwa,I.Potentialmaterialsforfood packagingfromnanoclay/naturalfibresfilledhybridcomposites. Mater.Des. 2013, 46,391–410.[CrossRef]

17. Yu,L.;Dean,K.;Li,L.Polymerblendsandcompositesfromrenewableresources. Prog.Polym.Sci. 2006, 31,576–602.[CrossRef]

18. Pulikkalparambil,H.;Parameswaranpillai,J.;George,J.J.;Yorseng,K.;Siengchin,S.Physicalandthermo-mechanicalpropertiesof bionanoreinforcedpoly(butyleneadipate-co-terephthalate),hemp/CNF/Ag-NPscomposites. AIMSMater.Sci. 2017, 4,814–831. [CrossRef]

19. Singh,M.K.;Tewari,R.;Zafar,S.;Rangappa,S.M.;Siengchin,S.AComprehensiveReviewofVariousFactorsforApplication FeasibilityofNaturalFiber-ReinforcedPolymerComposites. SSRNElectron.J. 2023, 17,100355.[CrossRef]

20. Tserki,V.;Matzinos,P.;Panayiotou,C.Novelbiodegradablecompositesbasedontreatedlignocellulosicwasteflourasfiller.Part II.Developmentofbiodegradablecompositesusingtreatedandcompatibilizedwasteflour. Compos.PartAAppl.Sci.Manuf. 2006, 37,1231–1238.[CrossRef]

21. Contat-Rodrigo,L.;RibesGreus,A.BiodegradationstudiesofLDPEfilledwithbiodegradableadditives:Morphologicalchanges. I. J.Appl.Polym.Sci. 2002, 83,1683–1691.[CrossRef]

22. Kim,H.-S.;Kim,H.J.;Lee,J.W.;Choi,I.G.Biodegradabilityofbio-flourfilledbiodegradablepoly(butylenesuccinate)biocompositesinnaturalandcompostsoil. Polym.Degrad.Stab. 2006, 91,1117–1127.[CrossRef]

23. Varghese,S.A.;Pulikkalparambil,H.;Rangappa,S.M.;Siengchin,S.;Parameswaranpillai,J.Novelbiodegradablepolymerfilms basedonpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)andCeibapentandranaturalfibersforpackagingapplications. Food Packag.ShelfLife 2020, 25,100538.[CrossRef]

24. BernstadSaraiva,A.;Pacheco,E.B.;Gomes,G.M.;Visconte,L.L.;Bernardo,C.A.;Simoes,C.L.;Soares,A.G.Comparativelifecycle assessmentofmangopackagingmadefromapolyethylene/naturalfiber-compositeandfromcardboardmaterial. J.Clean.Prod. 2016, 139,1168–1180.[CrossRef]

25. Mushtaq,B.;Ahmad,S.;Ahmad,F.;Nawab,Y.AlternativeNaturalFibersforBiocomposites.In NaturalFiberstoComposites; Springer:Cham,Switzerland,2023;pp.1–18.

26. Puttegowda,M.;Pulikkalparambil,H.;Rangappa,S.M.TrendsandDevelopmentsinNaturalFiberComposites. Appl.Sci.Eng. Prog. 2021, 14,543–552.[CrossRef]

27. Yorseng,K.;Sanjay,M.R.;Tengsuthiwat,J.;Pulikkalparambil,H.;Parameswaranpillai,J.;Siengchin,S.;Moure,M.M.Information inUnitedStatesPatentsonworksrelatedto‘NaturalFibers’:2000–2018. Curr.Mater.Sci. 2019, 12,4–76.[CrossRef]

28. Moudood,A.;Rahman,A.;Öchsner,A.;Islam,M.;Francucci,G.Flaxfiberanditscomposites:Anoverviewofwaterandmoisture absorptionimpactontheirperformance. J.Reinf.Plast.Compos. 2018, 38,323–339.[CrossRef]

29.Zini,E.;Scandola,M.Greencomposites:Anoverview. Polym.Compos. 2011, 32,1905–1915.[CrossRef]

30. Summerscales,J.;Dissanayake,N.P.;Virk,A.S.;Hall,W.Areviewofbastfibresandtheircomposites.Part1—Fibresas reinforcements. Compos.PartAAppl.Sci.Manuf. 2010, 41,1329–1335.[CrossRef]

31. Mittal,V.;Saini,R.;Sinha,S.Naturalfiber-mediatedepoxycomposites—Areview. Compos.PartBEng. 2016, 99,425–435. [CrossRef]

32. TheGuaridan.Hemp:HowOneLittlePlantCouldBoostAmerica’sEconomy.Availableonline: https://www.theguardian.com/ society/2017/feb/04/hemp-plant-that-could-boost-americas-economy (accessedon28February2023).

33. BBC.HempFibres’BetterthanGraphene’.Availableonline: https://www.bbc.com/news/science-environment-28770876 (accessedon28February2023).

34. Picturethisai.Sisal.Availableonline: https://www.picturethisai.com/wiki/Agave_sisalana.html (accessedon28February2023).

35. ExportersIndia.UGSisalFiber.Availableonline: https://www.exportersindia.com/minerals-handling-shipping-company/ugsisal-fiber-3117510.htm (accessedon28February2023).

36. InMatteria.Kenaf:ALivingMaterialforConstruction.Availableonline: https://www.inmatteria.com/2014/09/29/kenaf-aliving-material-for-construction/kenaf-2/ (accessedon28February2023).

37. CarriageHousePaper.KenafFiber(Cutinto1/4InchLengths).Availableonline: https://carriagehousepaper.com/kenaf-fiber (accessedon28February2023).

38. TextileLearner.Features,CharacteristicsandApplicationofJuteFiber.Availableonline: https://textilelearner.net/featuresproperties-and-uses-of-jute-fiber/ (accessedon28February2023).

39. MillerWasteMills.JuteFiber.Availableonline: https://www.millerwastemills.com/products/jute-fiber/ (accessedon28 February2023).

40. Colegiogamarra.Availableonline: www.colegiogamarra.com%2F2016%2F11%2Fcolegiogamarra.com%2Fpolitica-decookies%3Fss%3D741_4_26_24%26pp%3Dlinen%2Bis%2Bobtained%2Bfrom%2Bwhich%2Bplant%26ii%3D1040613&psig= AOvVaw1BWIJES1DqhEPbFzQoN1bG&ust=1677556113274000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCJjO3dLltP0 CFQAAAAAdAAAAABAE (accessedon28February2023).

41. Istockphoto.FlaxFiber,RawStockPhoto.Availableonline: https://www.istockphoto.com/th/%E0%B8%A3%E0%B8%B9%E0 %B8%9B%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/%E0%B9%80%E0%B8%AA%E0%B9%89%E0%B8%99%E0%B9 %83%E0%B8%A2%E0%B8%A5%E0%B8%B4%E0%B8%99%E0%B9%80%E0%B8%9C%E0%B9%87%E0%B8%81%E0%B8%94% E0%B8%B4%E0%B8%9A-gm646167566-117200491 (accessedon28February2023).

42. GardeningKnowHow.WhattoFeedBananaPlants–HowtoFertilizeaBananaTreePlant.Availableonline: https://www. gardeningknowhow.com/edible/fruits/banana/feeding-banana-plants.htm (accessedon28February2023).

43. TextileCoach.BANANAFIBER|TextileFibers.Availableonline: https://www.textilecoach.net/post/banana-fiber (accessedon 28February2023).

44. NortheastNow.Meghalaya’sOrganicTextileFabricRamieMakesaSplashinIndianFashionIndustry.Availableonline: https://nenow.in/environment/meghalayas-organic-textile-fabric-ramie-makes-splash-indian-fashion-industry.html (accessed on28February2023).

45. TextilewithMe.Ramie.Availableonline: http://textilewithme.blogspot.com/2015/04/ramie.html (accessedon28February2023).

46. Teles,M.C.A.;Glória,G.O.;Altoé,G.R.;Netto,P.A.;Margem,F.M.;Braga,F.O.;Monteiro,S.N.EvaluationoftheDiameter InfluenceontheTensileStrengthofPineappleLeafFibers(PALF)byWeibullMethod. Mater.Res. 2015, 18,185–192.[CrossRef]

47. WorldWildlife.SUSTAINABLEAGRICULTURECOTTON.Availableonline: https://www.worldwildlife.org/industries/cotton (accessedon28February2023).

48. FibretoFashion.NaturalCottonFibreSupplier.Availableonline: https://www.fibre2fashion.com/fibres/cotton-fibre-suppliers20181615 (accessedon28February2023).

49. BonniePlants.GROWINGCORN.Availableonline: https://bonnieplants.com/blogs/how-to-grow/growing-corn (accessedon 28February2023).

50. Berliandika,S.;Yahya,I.;Ubaidillah.Acousticperformanceofcornhuskfiber(Zeamays L)wastecompositeassoundabsorber withlatexadhesive. AIPConf.Proc. 2019, 2088,050001.

51. PlantsGuru.WaterBambooPlant-EquisetumHyemale,RoughHorsetail.Availableonline: https://www.plantsguru.com/waterbamboo (accessedon28February2023).

52. BambooTechnologyNetworkEurope.OrganicBambooFiberManufacturing.Availableonline: https://www.btn-europe.com/ organic-bamboo-fiber-manufacturing.php (accessedon28February2023).

53. GardeningSolutions.Roselle.Availableonline: https://gardeningsolutions.ifas.ufl.edu/plants/edibles/vegetables/roselle.html (accessedon28February2023).

54.Tamta,M.;Kalita,B.B.PropertiesofRoselleanditsBlends. Int.J.Curr.Microbiol.Appl.Sci. 2020, 9,3616–3621.[CrossRef]

55. GingerHillfarm.TheManyUsesoftheCoconutTree.Availableonline: https://gingerhillfarm.com/the-many-uses-of-thecoconut-tree/ (accessedon28February2023).

56. Alibaba.COIRFIBER,COCONUTFIBER,COIRFIBERWITHCHEAPPRICEFROMVIETNAM.Availableonline: https://thai. alibaba.com/product-detail/COIR-FIBER-COCONUT-FIBER-COIR-FIBER-62005347723.html (accessedon28February2023).

57. ArchitecturalPlants.AGAVEAMERICANA(CENTURYPLANT).Availableonline: https://www.architecturalplants.com/ product/agave-americana/ (accessedon28February2023).

58. Jani,S.P.;Sajith,S.;Rajaganapathy,C.;Khan,M.A.Mechanicalandthermalinsulationpropertiesofsurface-modifiedAgave Americana/carbonfibrehybridreinforcedepoxycomposites. Mater.Proc. 2021, 37,1648–1653.[CrossRef]

59. StockAdobe.SugarcaneField.Availableonline: https://stock.adobe.com/th/search?k=%22sugarcane+field%22&asset_id=4890 68318 (accessedon28February2023).

2023, 15,1393

60. PetfoodIndustry.SugarcaneFiberPetFoodIngredientMadebyPartnership.Availableonline: https://www.petfoodindustry. com/articles/6189-sugarcane-fiber-pet-food-ingredient-made-by-partnership (accessedon28February2023).

61. Promhuad,K.;Srisa,A.;San,H.;Laorenza,Y.;Wongphan,P.;Sodsai,J.;Tansin,K.;Phromphen,P.;Chartvivatpornchai,N.; Ngoenchai,P.;etal.ApplicationsofHempPolymersandExtractsinFood,TextileandPackaging:AReview. Polymers 2022, 14,4274.[CrossRef]

62. Khan,B.A.;Warner,P.;Wang,H.AntibacterialPropertiesofHempandOtherNaturalFibrePlants:AReview. BioResources 2014, 9,3642–3659.[CrossRef]

63. Cassano,R.;Trombino,S.;Ferrarelli,T.;Nicoletta,F.P.;Mauro,M.V.;Giraldi,C.;Picci,N.Hempfiber(Cannabissativa L.)derivatives withantibacterialandchelatingproperties. Cellulose 2013, 20,547–557.[CrossRef]

64. Appendino,G.;Gibbons,S.;Giana,A.;Pagani,A.;Grassi,G.;Stavri,M.;Smith,E.;Rahman,M.M.AntibacterialCannabinoids from Cannabissativa:AStructure ActivityStudy. J.Nat.Prod. 2008, 71,1427–1430.[CrossRef]

65. Vaquero,M.J.R.;Alberto,M.R.;deNadra,M.C.M.Antibacterialeffectofphenoliccompoundsfromdifferentwines. FoodControl 2007, 18,93–101.[CrossRef]

66. Khan,B.A.;Wang,J.;Warner,P.;Wang,H.Antibacterialpropertiesofhemphurdpowderagainst E.coli J.Appl.Polym.Sci. 2015, 132.[CrossRef]

67. Teixeira,F.P.;Gomes,O.D.F.M.;deAndradeSilva,F.Degradationmechanismsofcuraua,hemp,andsisalfibersexposedto elevatedtemperatures. BioResources 2019, 14,1494–1511.[CrossRef]

68. Jener,D.G.S.;Branco,A.;Silva,A.F.;Pinheiro,C.S.;Neto,A.G.;Uetanabaro,A.P.;Queiroz,S.R.;Osuna,J.T.Antimicrobialactivity ofAgavesisalana. Afr.J.Biotechnol. 2009, 8,6181–6184.[CrossRef]

69. Ribeiro,B.D.;Alviano,D.S.;Barreto,D.W.;Coelho,M.A.Z.Functionalpropertiesofsaponinsfromsisal(Agavesisalana)andjuá (Ziziphusjoazeiro):Criticalmicellarconcentration,antioxidantandantimicrobialactivities. ColloidsSurf.APhysicochem.Eng.Asp. 2013, 436,736–743.[CrossRef]

70. Pulikkalparambil,H.;Nandi,D.;Rangappa,S.M.;Prasanth,S.;Siengchin,S.Polymercompositesfromnaturalfibersandrecycled wastesurgicalmasksduringCOVID-19pandemic. Polym.Compos. 2022, 43,3944–3950.[CrossRef][PubMed]

71. Asyraf,M.R.M.;Rafidah,M.;Azrina,A.;Razman,M.R.Dynamicmechanicalbehaviourofkenafcellulosicfibrebiocomposites: Acomprehensivereviewonchemicaltreatments. Cellulose 2021, 28,2675–2695.[CrossRef]

72. GiwaIbrahim,S.A.;Karim,R.;Saari,N.;WanAbdullah,W.Z.;Zawawi,N.;AbRazak,A.F.;Hamim,N.A.;Umar,R.U.A.Kenaf (Hibiscuscannabinus L.)SeedanditsPotentialFoodApplications:AReview. J.FoodSci. 2019, 84,2015–2023.[CrossRef][PubMed]

73. AbdulKhalil,H.P.S.;Bhat,I.U.H.;Jawaid,M.;Zaidon,A.;Hermawan,D.;Hadi,Y.S.Bamboofibrereinforcedbiocomposites: Areview. Mater.Des. 2012, 42,353–368.[CrossRef]

74. Rawi,N.F.M.;Jayaraman,K.;Bhattacharyya,D.Aperformancestudyoncompositesmadefrombamboofabricandpoly(lactic acid). J.Reinf.Plast.Compos. 2013, 32,1513–1525.[CrossRef]

75. Afrin,T.;Kanwar,R.K.;Wang,X.;Tsuzuki,T.Propertiesofbamboofibresproducedusinganenvironmentallybenignmethod. J.Text.Inst. 2014, 105,1293–1299.[CrossRef]

76. Bavasso,I.;Sergi,C.;Valente,T.;Tirillò,J.;Sarasini,F.RecycledMulti-MaterialPackagingReinforcedwithFlaxFibres:Thermal andMechanicalBehaviour. Polymers 2022, 14,4423.[CrossRef]

77. Srinivasan,V.S.;Boopathy,S.R.;Sangeetha,D.;Ramnath,B.V.Evaluationofmechanicalandthermalpropertiesofbanana–flax basednaturalfibrecomposite. Mater.Des. 2014, 60,620–627.[CrossRef]

78. Rana,R.S.;Rana,S.;Nigrawal,A.Preparationandmechanicalpropertiesevaluationofpolyvinylalcoholandbananafibres composite. Mater.TodayProc. 2020, 26,3145–3147.[CrossRef]

79. Rangappa,S.M.;Siengchin,S.;Parameswaranpillai,J.;Jawaid,M.;Ozbakkaloglu,T.Lignocellulosicfiberreinforcedcomposites: Progress,performance,properties,applications,andfutureperspectives. Polym.Compos. 2021, 43,645–691.[CrossRef]

80.Dallyn,H.;Shorten,D.Hygieneaspectsofpackaginginthefoodindustry. Int.Biodeterior. 1988, 24,387–392.[CrossRef]

81. Pickering,K.L.PropertiesPerformanceofNatural-FibreComposites.In PropertiesandPerformanceofNatural-FibreComposites; Pickering,K.L.,Ed.;WoodheadPublishing:Cambridge,UK,2008;pp.xi–xiv.

82. Ramalingam,K.;Thiagamani,S.M.K.;Pulikkalparambil,H.;Muthukumar,C.;Krishnasamy,S.;Siengchin,S.;Alosaimi,A.M.;Hussein,M.A.;Rangappa,S.M.NovelCellulosicNaturalFibersfromAbelmoschusFiculneusWeed:ExtractionandCharacterization forPotentialApplicationinPolymerComposites. J.Polym.Environ. 2022,1–12.[CrossRef]

83. Rao,H.J.;Singh,S.;Pulikkalparambil,H.;Ramulu,P.J.;Rangappa,S.M.;Siengchin,S.ExtractionofCellulosicFillerfrom Artocarpusheterophyllus(Jackfruit)asaReinforcementMaterialforPolymerComposites. J.Polym.Environ. 2022, 31,479–487. [CrossRef]

84. Ku,H.;Wang,H.;Pattarachaiyakoop,N.;Trada,M.Areviewonthetensilepropertiesofnaturalfiberreinforcedpolymer composites. Compos.PartBEng. 2011, 42,856–873.[CrossRef]

85. Yu,T.;Li,Y.;Ren,J.Preparationandpropertiesofshortnaturalfiberreinforcedpoly(lacticacid)composites. Trans.Nonferrous Met.Soc.China 2009, 19,s651–s655.[CrossRef]

86. Kamarudin,S.H.;Abdullah,L.C.;Aung,M.M.;Ratnam,C.T.;Jusoh,E.R.Astudyofmechanicalandmorphologicalpropertiesof PLAbasedbiocompositespreparedwithEJOvegetableoilbasedplasticiserandkenaffibres. Mater.Res.Express 2018, 368,085314. [CrossRef]

2023, 15,1393

87. San,H.;Laorenza,Y.;Behzadfar,E.;Sonchaeng,U.;Wadaugsorn,K.;Sodsai,J.;Kaewpetch,T.;Promhuad,K.;Srisa,A.; Wongphan,P.;etal.FunctionalPolymerandPackagingTechnologyforBakeryProducts. Polymers 2022, 14,3793.[CrossRef]

88. Sonchaeng,U.;Promsorn,J.;Bumbudsanpharoke,N.;Chonhenchob,V.;Sablani,S.S.;Harnkarnsujarit,N.PolyestersIncorporating GallicAcidasOxygenScavengerinBiodegradablePackaging. Polymers 2022, 14,5296.[CrossRef]

89. Kaewpetch,T.;Pratummang,A.;Suwarak,S.;Wongphan,P.;Promhuad,K.;Leelaphiwat,P.;Bumbudsanpharoke,N.;Lorenzo, J.M.;Harnkarnsujarit,N.Ylang-ylang(Canangaodorata)essentialoilswithfloraodorantsenhancedactivefunctionofbiodegradablepolyesterfilmsproducedbyextrusion. FoodBiosci. 2023, 51,102284.[CrossRef]

90. Sanchez-Garcia,M.D.;Gimenez,E.;Lagaron,J.M.Morphologyandbarrierpropertiesofsolventcastcompositesofthermoplastic biopolymersandpurifiedcellulosefibers. Carbohydr.Polym. 2008, 71,235–244.[CrossRef]

91. Ludueña,L.;Vázquez,A.;Alvarez,V.Effectoflignocellulosicfillertypeandcontentonthebehaviorofpolycaprolactonebased eco-compositesforpackagingapplications. Carbohydr.Polym. 2012, 87,411–421.[CrossRef][PubMed]

92. Promhuad,K.;Bumbudsanpharoke,N.;Wadaugsorn,K.;Sonchaeng,U.;Harnkarnsujarit,N.Maltol-IncorporatedAcetylated CassavaStarchFilmsforShelf-Life-ExtensionPackagingofBakeryProducts. Polymers 2022, 14,5342.[CrossRef][PubMed]

93. Sirviö,J.A.;Kolehmainen,A.;Liimatainen,H.;Niinimäki,J.;Hormi,O.E.Biocompositecellulose-alginatefilms:Promising packagingmaterials. FoodChem. 2014, 151,343–351.[CrossRef]

94. Thiagamani,S.M.K.;Pulikkalparambil,H.;Siengchin,S.;Ilyas,R.A.;Krishnasamy,S.;Muthukumar,C.;Radzi,A.M.;Rangappa, S.M.Mechanical,absorption,andswellingpropertiesofjute/kenaf/bananareinforcedepoxyhybridcomposites:Influenceof variousstackingsequences. Polym.Compos. 2022, 43,8297–8307.[CrossRef]

95. Cetin,M.S.;Aydogdu,R.B.;Toprakci,O.;KarahanToprakci,H.A.Sustainable,Tree-Free,PLACoated,Biodegradable,Barrier PapersfromKendir(TurkishHemp). J.Nat.Fibers 2022, 19,13802–13814.[CrossRef]

96. Das,S.;Rani,P.;Tripathy,P.P.DevelopmentandCharacterizationofBetelNutFiberCompositeasaFoodPackagingMaterial. J.Nat.Fibers 2020, 19,747–760.[CrossRef]

97. Sanchez-Garcia,M.D.;Lopez-Rubio,A.;Lagaron,J.M.Naturalmicroandnanobiocompositeswithenhancedbarrierproperties andnovelfunctionalitiesforfoodbiopackagingapplications. TrendsFoodSci.Technol. 2010, 21,528–536.[CrossRef]

98.Phothisarattana,D.;Harnkarnsujarit,N.Migration,aggregationsandthermaldegradationbehaviorsofTiO2 andZnOincorporatedPBAT/TPSnanocompositeblownfilms. FoodPackag.ShelfLife 2022, 33,100901.[CrossRef]

99. Promsorn,J.;Harnkarnsujarit,N.Pyrogallolloadedthermoplasticcassavastarchbasedfilmsasbio-basedoxygenscavengers. Ind.CropsProd. 2022, 186,115226.[CrossRef]

100. Promsorn,J.;Harnkarnsujarit,N.Oxygenabsorbingfoodpackagingmadebyextrusioncompoundingofthermoplasticcassava starchwithgallicacid. FoodControl 2022, 142,109273.[CrossRef]

101. Peterson,S.;Jayaraman,K.;Bhattacharyya,D.Formingperformanceandbiodegradabilityofwoodfibre–Biopol™ composites. Compos.PartAAppl.Sci.Manuf. 2002, 33,1123–1134.[CrossRef]

102. Gassan,J.;Bledzki,A.K.Theinfluenceoffiber-surfacetreatmentonthemechanicalpropertiesofjute-polypropylenecomposites. Compos.PartAAppl.Sci.Manuf. 1997, 28,1001–1005.[CrossRef]

103. Kim,B.S.;Nguyen,M.H.;Hwang,B.S.;Lee,S.Effectofplasmatreatmentonthemechanicalpropertiesofnatural fiber/polypropylenecomposites.In NaturalFillerandFibreComposites;WITPress:Southampton,UK,2015;pp.27–35.

104. Varghese,S.A.;Pulikkalparambil,H.;Rangappa,S.M.;Parameswaranpillai,J.;Siengchin,S.Antimicrobialactivepackagingbased onPVA/Starchfilmsincorporatingbasilleafextracts. Mater.TodayProc. 2023, 72,3056–3062.[CrossRef]

105. Sun,D.SurfaceModificationofNaturalFibersUsingPlasmaTreatment.In BiodegradableGreenComposites;Wiley:Hoboken,NJ, USA,2016;pp.18–39.

106. Borah,J.;Dutta,N.DevelopmentandPropertiesEvaluationofBetelNutFibresCompositeMaterial. Mater.TodayProc. 2018, 5, 2229–2233.[CrossRef]

107. Senthilkumar,K.;Saba,N.;Chandrasekar,M.;Jawaid,M.;Rajini,N.;Siengchin,S.;Ayrilmis,N.;Mohammad,F.;Al-Lohedan, H.A.Compressive,dynamicandthermo-mechanicalpropertiesofcellulosicpineappleleaffibre/polyestercomposites:Influence ofalkalitreatmentonadhesion. Int.J.Adhes.Adhes. 2021, 106,102823.[CrossRef]

108. Ciannamea,E.M.;Stefani,P.M.;Ruseckaite,R.A.Medium-densityparticleboardsfrommodifiedricehusksandsoybeanprotein concentrate-basedadhesives. Bioresour.Technol. 2010, 101,818–825.[CrossRef]

109.Salam,A.;Reddy,N.;Yang,Y.BleachingofKenafandCornhuskFibers. Ind.Eng.Chem.Res. 2007, 46,1452–1458.[CrossRef]

110. Kalia,S.;Kaith,B.S.;Kaur,I.Pretreatmentsofnaturalfibersandtheirapplicationasreinforcingmaterialinpolymercomposites—A review. Polym.Eng.Sci. 2009, 49,1253–1272.[CrossRef]

111. Li,X.;Tabil,L.G.;Panigrahi,S.ChemicalTreatmentsofNaturalFiberforUseinNaturalFiber-ReinforcedComposites:AReview. J.Polym.Environ. 2007, 15,25–33.[CrossRef]

112. Agrawal,R.;Saxena,N.S.;Sharma,K.B.;Thomas,S.;Sreekala,M.S.Activationenergyandcrystallizationkineticsofuntreated andtreatedoilpalmfibrereinforcedphenolformaldehydecomposites. Mater.Sci.Eng.A 2000, 277,77–82.[CrossRef]

113. Smith,M.K.M.;Paleri,D.M.;Abdelwahab,M.;Mielewski,D.F.;Misra,M.;Mohanty,A.K.Sustainablecompositesfrompoly(3hydroxybutyrate)(PHB)bioplasticandagavenaturalfibre. GreenChem. 2020, 22,3906–3916.[CrossRef]

114. Mohanty,J.R.;Das,S.N.;Das,H.C.;Swain,S.K.Effectofchemicallymodifieddatepalmleaffiberonmechanical,thermaland rheologicalpropertiesofpolyvinylpyrrolidone. FibersPolym. 2014, 15,1062–1070.[CrossRef]

2023, 15,1393

115. Nazrin,A.;Sapuan,S.M.;Zuhri,M.Y.M.;Ilyas,R.A.;Syafiq,R.;Sherwani,S.F.K.NanocelluloseReinforcedThermoplasticStarch (TPS),PolylacticAcid(PLA),andPolybutyleneSuccinate(PBS)forFoodPackagingApplications. Front.Chem. 2020, 8,213. [CrossRef][PubMed]

116. Cejudo-Bastante,C.;Arjona-Mudarra,P.;Fernández-Ponce,M.T.;Casas,L.;Mantell,C.;MartínezdelaOssa,E.J.;Pereyra,C. ApplicationofaNaturalAntioxidantfromGrapePomaceExtractintheDevelopmentofBioactiveJuteFibersforFoodPackaging. Antioxidants 2021, 10,216.[CrossRef]

117. Jara-Palacios,M.J.;Gonçalves,S.;Heredia,F.J.;Hernanz,D.;Romano,A.ExtractionofAntioxidantsfromWinemakingByproducts: EffectoftheSolventonPhenolicComposition,AntioxidantandAnti-CholinesteraseActivities,andElectrochemicalBehaviour. Antioxidants 2020, 9,675.[CrossRef]

118. Wang,R.;Xue,H.;Leng,J.;Zhang,J.;Yan,Z.;Liu,X.;Feng,H.;Xiao,L.;Zhu,W.Preparationandantibacterialpropertiesofhemp cellulose-basedmaterialbasedonSchiffbasebetweenlysinegraftedN-halamineanddialdehydehemp. Ind.CropsProd. 2022, 176,114388.[CrossRef]

119. Yuan,X.;Jayaraman,K.;Bhattacharyya,D.Effectsofplasmatreatmentinenhancingtheperformanceofwoodfibre-polypropylene composites. Compos.PartAAppl.Sci.Manuf. 2004, 35,1363–1374.[CrossRef]

120. Parida,D.;Jassal,M.;Agarwal,A.K.FunctionalizationofCottonbyIn-SituReactionofStyreneinAtmosphericPressurePlasma Zone. PlasmaChem.PlasmaProcess. 2012, 32,1259–1274.[CrossRef]

121. Barani,H.;Calvimontes,A.EffectsofOxygenPlasmaTreatmentonthePhysicalandChemicalPropertiesofWoolFiberSurface. PlasmaChem.PlasmaProcess. 2014, 34,1291–1302.[CrossRef]

122. Sinha,E.;Panigrahi,S.EffectofPlasmaTreatmentonStructure,WettabilityofJuteFiberandFlexuralStrengthofItsComposite. J.Compos.Mater. 2009, 43,1791–1802.[CrossRef]

123. HariPrakash,N.;Sarma,B.;Gopi,S.;Sarma,A.SurfaceandmoisturecharacteristicsofjuteusingaDCglowdischargeargon plasma. Instrum.Sci.Technol. 2015, 44,73–84.[CrossRef]

124. Bozaci,E.;Sever,K.;Sarikanat,M.;Seki,Y.;Demir,A.;Ozdogan,E.;Tavman,I.Effectsoftheatmosphericplasmatreatmentson surfaceandmechanicalpropertiesofflaxfiberandadhesionbetweenfiber–matrixforcompositematerials. Compos.PartBEng. 2013, 45,565–572.[CrossRef]

125. Patino,A.;Canal,C.;Rodríguez,C.;Caballero,G.;Navarro,A.;Canal,J.M.Surfaceandbulkcottonfibremodifications:Plasma andcationization.Influenceondyeingwithreactivedye. Cellulose 2011, 18,1073–1083.[CrossRef]

126. Valášek,P.;Müller,M.;Šleger,V.InfluenceofPlasmaTreatmentonMechanicalPropertiesofCellulose-basedFibresandTheir InterfacialInteractioninCompositeSystems. BioResources 2017, 12,5449–5461.[CrossRef]

127. Gieparda,W.;Rojewski,S.;Róza´nska,W.EffectivenessofSilanizationandPlasmaTreatmentintheImprovementofSelectedFlax Fibers’Properties. Materials 2021, 14,3564.[CrossRef][PubMed]

128. Putra,A.E.E.;Renreng,I.;Arsyad,H.;Bakri,B.Investigatingtheeffectsofliquid-plasmatreatmentontensilestrengthofcoir fibersandinterfacialfiber-matrixadhesionofcomposites. Compos.PartBEng. 2020, 183,107722.[CrossRef]

129. Han,G.;Cheng,W.;Deng,J.;Dai,C.;Zhang,S.;Wu,Q.Effectofpressurizedsteamtreatmentonselectedpropertiesofwheat straws. Ind.CropsProd. 2009, 30,48–53.[CrossRef]

130. Kamath,S.S.;Sampathkumar,D.;Bennehalli,B.Areviewonnaturalarecafibrereinforcedpolymercompositematerials. Ciênc. Tecnol.DosMater. 2017, 29,106–128.[CrossRef]

131. Omrani,E.;Menezes,P.L.;Rohatgi,P.K.Stateoftheartontribologicalbehaviorofpolymermatrixcompositesreinforcedwith naturalfibersinthegreenmaterialsworld. Eng.Sci.Technol.Int.J. 2016, 19,717–736.[CrossRef]

132. Cheung,H.-Y.;Ho,M.P.;Lau,K.T.;Cardona,F.;Hui,D.Naturalfibre-reinforcedcompositesforbioengineeringandenvironmental engineeringapplications. Compos.PartBEng. 2009, 40,655–663.[CrossRef]

133. Nunna,S.;Chandra,P.R.;Shrivastava,S.;Jalan,A.K.Areviewonmechanicalbehaviorofnaturalfiberbasedhybridcomposites. J.Reinf.Plast.Compos. 2012, 31,759–769.[CrossRef]

134.Santulli,C.Impactpropertiesofglass/plantfibrehybridlaminates. J.Mater.Sci. 2007, 42,3699–3707.[CrossRef]

135. Harish,S.;Michael,D.P.;Bensely,A.;Lal,D.M.;Rajadurai,A.Mechanicalpropertyevaluationofnaturalfibercoircomposite. Mater.Charact. 2009, 60,44–49.[CrossRef]

136. Sánchez-Safont,E.L.;Aldureid,A.;Lagarón,J.M.;Gámez-Pérez,J.;Cabedo,L.Biocompositesofdifferentlignocellulosicwastes forsustainablefoodpackagingapplications. Compos.PartBEng. 2018, 145,215–225.[CrossRef]

137. Rawi,N.F.M.;Jayaraman,K.;Bhattacharyya,D.Bamboofabricreinforcedpolypropyleneandpoly(lacticacid)forpackaging applications:Impact,thermal,andphysicalproperties. Polym.Compos. 2014, 35,1888–1899.[CrossRef]

138. Nabels-Sneiders,M.;Platnieks,O.;Grase,L.;Gaidukovs,S.LaminationofCastHempPaperwithBio-BasedPlasticsfor SustainablePackaging:Structure-ThermomechanicalPropertiesRelationshipandBiodegradationStudies. J.Compos.Sci. 2022, 6,246.[CrossRef]

139. Ji,M.;Li,J.;Li,F.;Wang,X.;Man,J.;Li,J.;Zhang,C.;Peng,S.Abiodegradablechitosan-basedcompositefilmreinforcedbyramie fibreandligninforfoodpackaging. Carbohydr.Polym. 2022, 281,119078.[CrossRef]

140.Tawakkal,I.S.M.A.;Cran,M.J.;Bigger,S.W.Releaseofthymolfrompoly(lacticacid)-basedantimicrobialfilmscontainingkenaf fibresasnaturalfiller. LWTFoodSci.Technol. 2016, 66,629–637.[CrossRef]

141. Tawakkal,I.S.M.A.;Cran,M.J.;Bigger,S.W.EffectofPoly(LacticAcid)/KenafCompositesIncorporatedwithThymolonthe AntimicrobialActivityofProcessedMeat. J.FoodProcess.Preserv. 2017, 41,e13145.[CrossRef]

2023, 15,1393

142. Naziruddin,M.A.;Jawaid,M.;Yusof,N.L.;Abdul-Mutalib,N.A.;Ahmad,M.F.;Sanny,M.;Alzahari,A.Assessmentanddetection ofthepotentialcontaminantsfromoilpalmemptyfruitbunchfiber-basedbiodegradabletray. FoodPackag.ShelfLife 2021, 29,100685.[CrossRef]

143. CadenaCh,E.M.;Jawaid,M.;Yusof,N.L.;Abdul-Mutalib,N.A.;Ahmad,M.F.;Sanny,M.;Alzahari,A.NaturalFibersfrom PlantainPseudostem(Musaparadisiaca)forUseinFiber-ReinforcedComposites. J.Nat.Fibers 2017, 14,678–690.[CrossRef]

144. Sanyang,M.L.;Sapuan,S.M.;Jawaid,M.;Ishak,M.R.;Sahari,J.Effectofplasticizertypeandconcentrationonphysicalproperties ofbiodegradablefilmsbasedonsugarpalm(Arengapinnata)starchforfoodpackaging. J.FoodSci.Technol. 2015, 53,326–336. [CrossRef][PubMed]

145. Berthet,M.-A.;Angellier-Coussy,H.;Machado,D.;Hilliou,L.;Staebler,A.;Vicente,A.;Gontard,N.Exploringthepotentialitiesof usinglignocellulosicfibresderivedfromthreefoodby-productsasconstituentsofbiocompositesforfoodpackaging. Ind.Crops Prod. 2015, 69,110–122.[CrossRef]

146. Jayaramudu,J.;Reddy,G.S.M.;Varaprasad,K.;Sadiku,E.R.;Ray,S.S.;Rajulu,A.V.Structureandpropertiesofpoly(lactic acid)/Sterculiaurensuniaxialfabricbiocomposites. Carbohydr.Polym. 2013, 94,822–828.[CrossRef][PubMed]

147. Rosa,M.F.;Chiou,B.S.;Medeiros,E.S.;Wood,D.F.;Mattoso,L.H.;Orts,W.J.;Imam,S.H.Biodegradablecompositesbasedon starch/EVOH/glycerolblendsandcoconutfibers. J.Appl.Polym.Sci. 2008, 111,612–618.[CrossRef]

Disclaimer/Publisher’sNote: Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

FROM THE PUBLISHERS OF PAPER

Volume 10, Number 3, 2024

PAPERmaking!

A critical review of test methods and alternative scientific approaches to compliance and safety evaluation of paper and board for food contact

Paper Technology

International® PITA Annual Review

Essential Guide to Aqueous Coating

TYPE Review

PUBLISHED 11July2024

DOI 10.3389/fchem.2024.1397913

Acriticalreviewoftestmethods

OPENACCESS

EDITEDBY EmmanouilTsochatzis, EuropeanFoodSafetyAuthority(EFSA),Italy

REVIEWEDBY RaquelSendon, UniversityofSantiagodeCompostela,Spain FátimaPoças, EscolaSuperiordeBiotecnologia-Universidade CatólicaPortuguesa,Portugal

*CORRESPONDENCE

AngelaStörmer, angela.stoermer@ivv.fraunhofer.de †Theseauthorshavecontributedequallyto thiswork

RECEIVED 08March2024

ACCEPTED 21May2024

PUBLISHED 11July2024

CITATION

StörmerA,HetzelLandFranzR(2024),Acritical reviewoftestmethodsandalternativescientific approachestocomplianceandsafety evaluationofpaperandboardforfoodcontact. Front.Chem. 12:1397913. doi:10.3389/fchem.2024.1397913

COPYRIGHT

©2024Störmer,HetzelandFranz.Thisisan open-accessarticledistributedundertheterms ofthe CreativeCommonsAttributionLicense (CCBY).Theuse,distributionorreproductionin otherforumsispermitted,providedtheoriginal author(s)andthecopyrightowner(s)are creditedandthattheoriginalpublicationinthis journaliscited,inaccordancewithaccepted academicpractice.Nouse,distributionor reproductionispermittedwhichdoesnot complywiththeseterms.

andalternativescientific approachestocomplianceand safetyevaluationofpaperand boardforfoodcontact

Paperandboardarewidelyusedasfoodcontactmaterials.Forsuchsensitive applications,consumersafetyregardingthetransferofchemicalcomponents andcontaminantstothefoodneedstobeestablished.Suchsafetyassessments arebecomingincreasinglychallengingnotonlyduetointentionallyadded substancesbutalsonon-intentionallyaddedsubstances.IntheEuropean Union,compliancetestingandsafetyevaluationofpaperinfoodcontactare largelybasedonnationallegislationandstandards.Theunderlyingtestsare conventionalmethods,oftenoverestimatingandsometimesunderestimatingthe migrationintofood.Inthisarticle,therelevantstandardtestmethodsare contrastedwithcurrentlyavailablescientificknowledge.Thescientific approachestodevelopandidentifysuitabletestmethodsarecritically reviewed.Furthermore,theoreticalpredictionsviamathematicalmodeling, withtheaimtorealisticallysimulatetransfertofood,arepresentedand discussedincomparisonwithavailablemigrationstudieswithfoods. Objectivesareto(i)summarizetheactualscientificknowledgeinthe fieldand drawconclusionsregardingthepotentialandlimitationsoftheexistingtest methodsand(ii)identifyresearchgapstowardabetterqualitativeandquantitative understandingoftransportprocessesofvolatileandnon-volatilesubstances frompaperandboardintofoods.

KEYWORDS

foodcontactmaterials,paperandboard,migration,paperextracts,foodsafety,dry foods,fattyandwettingfoods,migrationmodeling

1Introduction

Paper includingcardboard isincreasinglyusedasfoodcontactmaterial(Technavio, 2023).ThisisbecauseitseemstoalmostperfectlyservetheobjectivesoftheEU sustainabilitystrategy(CommissionEuropean,2024a; CommissionEuropean,2024b), giventhatitisbasedonrenewablerawmaterialsandislargelyrecyclableor compostable.Meanwhile,productionofpaperishighlyenergyandwaterconsumptive (CEPI,2023).Theuseofrecycled fibersreducestheenvironmentalimpact(Deshwaletal., 2019; Wellenreutheretal.,2022).However,withrecycled fibers,unwantedsubstancesare introducedintothematerial.Thesemaybesuchvariedthatitseemsimpossibletocover themwithrelativelysimplemethodsandensureconsumersafety,exceptforapplications

withfunctionalbarrierslikeinnerbags,barriercoatings,orindirect contactforpackinginsensitivefoodslikesalt(Biedermannand Grob,2013; Geuekeetal.,2018).

Incontrasttoplasticfoodcontactmaterials(FCM),whichare subjecttoaspecificanddetailedEUlegislation(EU,2023)ina systematicandlargelyscience-basedway,paper-basedfoodcontact materialsstilllacksuchdetailedspecificregulationsataharmonized Europeanlevel(Simoneauetal.,2016).Onemajorreasonisthatfor paper,duetotheinherentstructuralandchemicalcompositional complexity,theknowledgebaseforproperriskassessmentisnotas advancedasitisforplastics.Nevertheless,thesafetyofpaper applicationsinfoodcontactneedstobeensurede.g.,inthe EuropeanUnionaccordingtoArticle3oftheFramework Regulation1935/2004(EU,2004).

Generally,thetransferofsubstancesfrompackagingmaterialsto foodsmustbeevaluatedtoensureconsumersafetyandthisatbest, asrealisticscenarios.However,tocoveralargenumberofpossible foodsas fillinggoodsandavoidanalyticaldifficultieswithcomplex foodmatrices,simulantsandstandardizedcontactconditionsare typicallyused.

Foodcontactcompliancetestingandsafetyevaluationofpaper arestilllargelybasedonstandardmethods,whicharerather conventionaltestproceduresthansimulatingtransfertoreal foods.Asystematicandholisticapproachsimilartoplasticfood contactmaterialsisstillmissingbutwouldbeneededasabasisfor thefutureEUlegislationandframingbetterrulesforthepaper packagingindustry(Lestido-Cardamaetal.,2020; Kourkopoulos etal.,2022).Therequirementstoensureconsumersafetyinfood contactapplicationshavebeenadvancingduringthelastfew decades,especiallywithnon-intentionallyaddedsubstances emergingtotheforefront(Kosteretal.,2015; LeemanandKrul, 2015; EP,2016; CoE,2020; Nerinetal.,2022).Paperfoodcontact materialshavebeenreportedinamultitudeofscientificarticlesas potentialsourcesforreleasing/migratingchemicalcontaminantsof knownandunknownidentityandtoxicityintothefoodswhenin contactwiththem.Inparticular,foodcontactmaterialshaving recycledpaperqualitiesraiseconcerns(Jickellsetal.,2005; Sturaroetal.,2006; Begleyetal.,2008; Zhangetal.,2008; Gärtneretal.,2009; Vollmeretal.,2011; EFSA,2012a; Pivnenko etal.,2015; Canavaretal.,2018; Deshwaletal.,2019; Conchione etal.,2020; Zabaletaetal.,2020; Panetal.,2021).

Substanceswithonlyscarceornotoxicologicaldatacanbe evaluatedassafeonlyatlowmigrationlimits,e.g.,byapplying ThresholdofToxicologicalConcern(EFSA,2012b; CoE,2020).Test methods whichhighlyoverestimaterealmigrationinto foods maytriggereitherprematurenegativeevaluationsand unjustifiednon-complianceassessmentsofpapermaterialsorthe needforelaborateandcostlymigrationtestsincontactwith representativeorworst-casefoodstuffsthemselves(“food prevails”).Thisriskusuallyincreaseswithdecreasing migrationlimits.

Overall,thereisahighnumberandvariabilityofapplicabletests andevaluationmethodsinEurope.Thereisalotofdiscussioninthe scientificliterature,whichmethodstoapplyforvariouspurposes, andtherelateduncertaintiesandinterpretationgaps.

Theobjectiveofthisarticleisto(i)provideanoverviewof available,legallybinding,andnormativetestprocedures,including guidancedocumentsinEurope;(ii)compilealternativescientific

approachespublishedinthescientificliterature;and(iii)explainand criticallydiscussthepresentedtestmethodsandapproaches concerningtheirobjectives,potentials,andlimitations.The overarchingintentionistoidentifyandhighlighttheresulting conclusionsforfutureresearchtowardabetterharmonizedruleandscience-basedevaluationschemeforpaper-basedfood contactmaterials.

Thispaperfocusesonsimulatingthetransferprocessestofood. Workaboutmethodstodetectandidentifypossiblymigrating substancesaswellasbioassays,althoughbelongingtotheareaof newalternativeapproaches,areintentionallyexcludedfrom thisreview.

2Ashortviewonthediversityofpaper foodcontactapplications

Paperiscommonlyusedasapackagingmaterialforawiderange offoodproducts,includingdrygoods(e.g., flour,cereals,snacks,and pasta),bakedgoods(e.g.,breadandpastries),andfreshproduce (e.g.,fruitsandvegetables).Importantproductsforfoodprotection duringtransportandstoragearebags,boxes,andtrays.Forhightemperatureapplications,e.g.,baking,parchmentpaperorbaking cupsformuffinsareusedtopreventfoodfromstickingtosurfacesin commercialandhomebakingsettingsandteabagsorcoffee filters forhotaqueouscontact.Infoodserviceareaswithinthecommercial andresidentialsettings,disposabletableware suchascups,plates, bowls,napkins,andstraws ismadefrompaper.Otherapplications comprisewrappingmaterials includingwaxedpaper foravariety offoodproducts,suchasmeatproductsandsandwiches.Papercan beusedasitisorcoatedwithavarietyofbarriermaterialstoprevent moisture,oxygen,andaromacompoundsfromenteringorleaving thepackageandimprovegreaseresistance.Barriersmightbe coextruded films(e.g.,polyethylene),lacquers,orcoatingsfrom petrochemicalorbiobasedsources.Finally,labelsandtags applied tofoodpackagesorfoodproductsforidentificationorpromotional purposes areoftenbasedonpaper.Acomprehensiveoverviewof papercategoriesandpaper-basedfoodpackagingmaterialscanbe foundintheliterature(Simoneauetal.,2016; Deshwaletal.,2019). Inconclusion,theuseofpaperishighlydiverse,coveringawide rangeofproductsandfoodcontactapplications.Thepapertypes anddesignsdependontheparticularapplicationneedsandthe relevantregulatorystandards.Demonstratingorprovingthe chemicalsafetyofsuchlargevarietyofapplicationsposea seriouschallengetoindustrial,contract,andcontrollaboratories, particularlywhenrecycled fiberscarryingpotentiallynumerous chemicalcontaminantsenterproductionlines.Undoubtedly,this situationindicatesaneedforbetterscience-basedmethodological supporttowardthesafetyassessmentofpaperfoodcontact materials,asindicatedby Grob(2022)

3EUlegislationof fiber-basedfood contactmaterialsandrelated(supra) nationalprovisions

Aswithanyotherfoodcontactmaterial,paperforfoodcontact issubjecttotheoverarchingEuropeanFrameworkRegulation(EC)

No.1935/2004(EU,2004)andtheGoodManufacturingRegulation (EC)No.2023/2006(EU,2006).Inshort,theseregulationslaydown generalprinciplestoensurethatanyfoodcontactmaterialissafefor theconsumerandmanufacturedunderquality-controlled conditions.PapermaterialsarelistedinAnnex1of1935/2004as materials,whichmaybecoveredbyspecificEUmeasuresbutarenot harmonized.Therefore,Article7ofthatRegulationforeseesthat nationalprovisionscanbemaintainedoradoptedbyMemberStates intheabsenceofEU-specificmeasures.Atotalof10MemberStates (Belgium,CzechRepublic,Estonia,Greece,Germany,France, Croatia,Italy,theNetherlands,andSlovakia)havesetouttheir provisionsandsafetycriteriainnationalregulationsor recommendations.Thelatter,suchassetoutbytheGermanBfR, arelegallynotbindingbuthavealmostthestrengthoflegislationby theforceofthemarket.Asummary includingthelimitsfor specificsubstances isgiveninAnnex16of Simoneauetal. (2016).Thereisahighvarietyofrules,requirements,and substancelistswithonlylittlecongruencebetweentheMember States(Simoneauetal.,2016).TheCouncilofEuropehasrecently releasedthegeneralresolutionCM/Res(2020)9onthesafetyand qualityofmaterialsandarticlesincontactwithfood(CoE,2020), whichisapplicabletonon-harmonizedmaterialsinEU,giving detailedbutnotlegallybindingrequirementsregardingconsumer safety.Aspecifictechnicalguideonpaperandboard(CoE,2021) supplementsthisgeneralresolution.AnnexIIgivessome restrictionstospecificsubstancesoccurringwithinpaper. ComprehensiveanddetailedoverviewsofthepaperEU regulatorysituationalongwithextensivelistsofnational provisionsandmeasurescanbefoundinthebaselinestudy (Simoneauetal.,2016)andinreviewarticlesby Kourkopoulos etal.(2022) and Oldringetal.(2023).Amatterofconcerninthelast decadewasthepresenceofmineraloilcomponents,especially aromatichydrocarbons(MOAH)inpaperswithrecycled fibers, orfromprintinginksonfoodcontactmaterials.TheGerman FederalMinistryofFood,AgricultureandConsumerProtection (BMEL)proposedspecificmigrationlimitsforMOAHtobe undetectableinfoodandfoodsimulantsatdetectionlimitsof 0.5and0.15mg/kgfoodsimulant.Therespectivenationaldecree wasnotsetintoforcependingafutureEuropeanmeasure(BMEL, 2022b;a).Limitsformineraloilcomponentsinfoodarestill discussedinEU(EC,2023).

4Normativeframeworkofstandard testmethodsandguidelines

SupportingandenforcingtheEuropeanandnationallegislation forpaper,morethan20standardtestmethodsandproceduresare availableonEuropeanandnationallevels(Simoneauetal.,2016; CoE,2021; Oldringetal.,2023).Thesestandardscoverarangeof testprinciples(determinationofresidualcontent,extraction,and migration),specifictargetsubstancesorsubstancegroups(suchas bisphenolA,anthraquinone,andphthalates),andotherpaper materialparameters,includingorganoleptictesting,fastnessof colors,oropticalbrighteners.

Testingthetransferofsubstancesfrompaperincludesthestepof transfer(migration,gasphasetransfer,orextraction)andaspecific analyticalmethodforthetargetsubstances(BfR,2015).For

simulatingthetransfer,conventionalproceduresareusually applied,whichshallcovertheworstcase(BfR,2015).Thefour mostimportantandrelevantbasictestproceduresarecoldwater extract,hotwaterextract,organicsolventextract,andmigration testingusingmodifiedpolyphenyleneoxide(MPPO,poly2,6diphenyl-p-phenyleneoxide,e.g.,Tenax®)asasimulant.All proceduresarepublishedasEuropeanStandards.Theextractsare carriedoutunderdefinedconditions(sampleweight,water/solvent volume,andcontacttime/temperature; Table1).GermanBfR recommendedslightmodificationstoincreasetheintra-and inter-laboratoryreproducibilityofthewaterextracts.

Coldandhotwaterextractsareconsideredtosimulatedirect aqueousfoodcontact;thecoldwaterextractrepresentsaqueous foodsandbeveragesatallapplicationsexcepthotandbaking applications.Forthesetwoapplications,thehotwaterextractis usedforwater-solubleandhydrophilicsubstances.Theorganic solventextractsimulatescontactwithfattyfoodsbyusing95% ethanolandisooctaneassolvents.Theseextractionsarecarriedout withcutsamples.

Onthecontrary,theMPPOtestisamigrationtest,inwhich theadsorbentMPPOisspreadonthefoodcontactsurface.MPPO simulatescontactwithdryfoodsandathightemperatureswithall foods(microwaveandbakingapplications).Thetestconditions areusuallytakenfromAnnexVofthePlasticsRegulation(EU)10/ 2011( EU,2011).TheEURL-FCMguidelinefortestingconditions ofkitchenwarestatesexamplesforavarietyofapplications( Beldi etal.,2023).Forhigh-temperatureapplications(microwaveand oven),therecommendedtemperaturesvary.EN14338givesa maximumtemperatureof175 °Cforthetestbutdoesnotgive adviceontheselectionoftestconditions.CoETechnicalGuide proposes2hat175 °Cforovenapplicationsand30minat150°Cfor microwave( CoE,2021 ).EURL-FCMguideline preparedbythe EUreferenceandnationalsurveillancelaboratories recommends conditionsupto2hat200°C,dependingontheapplicationinthe ovenand30minat121°Cforwarmingupordefrostingorat175°C forcookinginthemicrowave(Beldietal.,2023).Accordingto GermanBfRatcontactof2hat220 °Cnodegradationforbaking papersshouldoccur,and30minat150°Cformicrowave applicationsshouldbeapplied(BfR,2015 ).EURL-FCM guidelinedistinguishesbetweencoatedortreatedpaperarticles, whichdonotabsorbmoistureoroilandwithstandmigrationtests basedontheconditionsfromRegulation10/2011,andotherpaper articles.Fortheformer,theconditionsforplasticmaterialsare givenintable5Aoftheguideline,andforthelatter,theextraction andMPPOtestsasdescribedabove(table5B,there).Plastic migrationprocesseshavecompletely differentcharacteristics comparedwithpaper.Consequently,thecontactconditionsare notnecessarilyapplicabletopaperasdiscussedindepthbelowin Section5 .Inadditiontothesetests,CouncilofEuropeTechnical Guide( CoE,2021 )recommendsusing3%aceticacidfor estimatingthereleaseofmetalsintoacidicfoods.Generally,for thecontacttestconditions,theguidereferstoEURLFCMguideline.

Theresultsofcoldandhotwaterextractsinmg/Lareconsidered conventionallyequivalenttomigrationinmg/kgfood(CoE,2021). CoETechnicalGuidestatesthattherealratioofsurfaceareatothe amountoffoodmustbeusedorthemaximumallowablesurface-tofoodratioshouldbedeclared.Bycontrast,theEURL-FCMguideline

TABLE1RelevantEuropeanStandardsfortheextractionormigrationtestingofpaper Standard

EN645:1993ColdwaterextractSample,cutorrippedinpieces,extractedwithwater10g/200mLat 23 C±2 Cfor24h,shakingoccasionally;the filtrate(filledupto 250mL)usedforanalysis CEN (1993a)

Modification byBfR

Samplecut(notripped),shakingnotnecessary,vacuum filtrationwitha glass fiber filter(1.2μm)insteadofglassdrip(10–16μm),andpressing ofthe filtercakeincaseofhighwaterabsorption BfR (2022a)

EN647:1993HotwaterextractExtractedwithwaterat80°C±2°Cfor2h.Theprocedurewassimilarto thatofthecoldwaterextract CEN (1993b)

Modification byBfR

Similartothatforthecoldwaterextractbutnocommentonshaking BfR (2022b)

EN15519:2007OrganicsolventextractSamplecut,extractionwithethanolorisooctane10g/200mLcontact timeandtemperaturedependingonapplication2hor24h/20 C(shortorlong-termcontact)and2h/60°C(forhotcontact),shaking occasionally; filtrate(filledupto250mL)usedforanalysis

EN14338:2003Migrationusingmodifiedpolyphenyleneoxide(MPPO)asthe simulant

CEN/TS14234: 2002 Polymericcoatingsonpaperandboard guidetotheselectionof conditionsandtestmethodsforoverallmigration

referstoArticle17ofPlasticsRegulation10/2011andthe exemptionsforsmall(<500gormL)andverylargepackages (>10kgorL)forwhichtheconventionalratioof6dm2/kgis used.Thisconceptcanalsobeappliedtopaper(Beldietal.,2023). Thus,coldandhotwaterextractresultsarerecalculatedtothe surfaceareaofthesampleandthe filling.Thenewer(oralteratively: morerecent)organicsolventstandardEN15519:2007already requiresreportingtheresultsrelatedtothesurface.

Contrarytotheirname,thewaterandsolventextraction methodsarenotnecessarilyexhaustive(BfR,2015).The extractivepowerwilldependonthetypeandnatureofthetarget substance(organic-polar,organic-unpolar,orinorganic),its physical–chemicalproperties,anditsinteractionswiththepaper sample.Thename “extraction,” whichisusuallyreservedfor exhaustivemethods,maycauseconfusion(Oldringetal.,2023). Takingthesestandardstodepict “worstcase” migrationintofood (BfR,2015),itneedstobestatedthattheseconventionalmethods mightnotmatchtherealconditionsofuse.Confederationof EuropeanPaperIndustries(CEPI)seeshotwaterextracttesting asaclosecopyoftheintended finaluseandotherextractiontestsas mostlyoverestimating(CEPI,2019/2021).AlthoughCoETechnical Guidereferssolelytothesestandardtests,German BfR(2015) recognizesthispointandrecommendsatieredapproachusing representativerealfoodsincaseofdoubtorknown overestimationorunderestimation.Testingresultsinfoodhave priorityforthefoodregulatoryassessment.Forplastics,general testingrequirementsshallcoverworstcaseoffoodcontact applicationsandbeevenmoresevere,asspecifiedinAnnexesIII andVofEURegulation10/2011.Similarly,themethodsforpaper areintendedtosimulatetransferintorealfoodsconservativelyand areslightlyoverestimating.However,forplastics,tooseveretestscan showconformitybutnotdisapprovethem.Thisisthecasefor alternativemethods theso-calledscreeningmethods butmight alsobefor(overestimating)conventionaltestingresults.EU

AdsorbentMPPO(Tenax®)isspreadonthesurfaceofthesample(4g/ dm2),contactconditionsaccordingtoapplication,andsolvent extractionofMPPO

Rapidextractionmethodswithisooctaneand/or95%ethanol24hat 40°Cor50°Cdependingonthepolymerofthefoodcontactlayer;for polymerlayerthicknessesupto300μm

CEN (2007)

CEN (2003)

CEN (2002b)

Regulation10/2011initsArticle18statesthat “theresultsof specificmigrationtestingobtainedinfoodshallprevailoverthe resultsobtainedinfoodsimulant.” Thismeanssimulationor predictionofmigrationshoulddepictthesituationwithfoodas closelyaspossible,ideallymatchingwiththeupperboundmarginof thedeterminationinthefood.

Theconventionalassumptionthattheextractionvaluescorrelateto migrationintofoodholdsanon-negligibleconflictpotentialas migrationintofoodunderrealisticconditionsmaydifferfromthe extractresults.Thisbecomesobviousforcutsamples,whichpartially disintegrateduringextraction.However,thediscrepancymayoccurin bothdirections:overestimationandunderestimation.Theexampleof perfluorocompounds whichdonot fitintothesimulantschemeasa worsecase(Begleyetal.,2008) isgiveninBfRguideline(BfR,2015). Merkeletal.(2018) comparedthemigrationofprimaryaromatic amines(PAAs)fromthreepapernapkinsintofourdifferentfood categories(wet,dry,acidic,andfatty)withthecoldwaterextractresults. Inthefoodcategorypickledgherkins(aqueous–acidic),coldwater seemedtobeinsevenofninetestcasessufficientlyrepresentativeor evenoverestimatingwithameasuredtransferintofood(expressedas% ofextract)rangingfrom62%to115%,dependingmainlyonthespecific amines,butwasseverelyunderestimativeintwocaseswith224%and 271%(PAAinbothcases:aniline).Significantlyless,orevenno migrationcouldbefoundintorice(dry),buttercookies(fatty),and cucumber(wet),respectively,withtransferrangingfrom2%to79%and manynon-detects.Particularlystrikingisthedifferencebetweenthe resultsofcoldwaterextractandbuttercookies(fattyfoods):onlyin threeofninetestcases,PAAsweredetectableinthefoodand,inwhich measurabletransferwasrangingfrom2%to43%ofcoldwaterextract value,i.e.,withextremeoverestimationbytheextract.Coldwater extractisthesamplepreparationmethodproposedintherecently publishedstandardEN17163:2019(CEN,2019)fortestingPAAs. Fortheorganicsolventextract,thequestionarisesastowhether thesurface-relatedsolventextractionvaluescanbedirectly

understoodasrepresentativesofthefattyfoodstobesimulated. Lestido-Cardamaetal.(2020) showedthatthesolventextractcould bestronglyoverestimatingforlipophilicsubstancegroupslike dialkylketones.Solventextractsinisooctaneanddichloromethane werecomparedwithmigrationintotwovegetableoilsandthreefatty foods(croissant,salami,andtwokindsofcheese)underdifferent conditions.Themigrationintothesolventsandoilsexceededthe migrationintotherealfoodsbyroughlyfourordersofmagnitude, suggestingthatthesolventandoilsarefarmoreextractivethanthe realfoods.Itseemsthatsolventextractsconstituteanappropriate andcorrecttooltodeterminethemigrationpotentialofsubstances frompapersbuttheobtainedresultsinmasspersurfaceunit cannotbetakenasdirectmeasuresforconsideringrealtransfer tofood.However,thispracticeisstillapplied.The dialkylketones forwhichGermanBfRhassetamigrationlimit of5mg/kgfood areusuallydirectlycontrolledonthebasisofthe organicsolventextract.

Fromtheindustryside,CEPIreleasedanupdatedguideline regardingcomplianceworkforfoodcontactpapermaterials(CEPI, 2019/2021).Theguidelineisaddressedtoallparticipantsinthe manufacturingchainaswellastotheconsumersandregulators. CEPIguidelinereferstothecurrentstandardproceduresfortesting, includingcoldwater,hotwater,andsolventextractsaswellasmigration intoMPPO.Itgivesrecommendationsonhowtohandlelimitationsof thesestandards,likethepossibleoverestimationofmigrationthrough extracts,e.g.,casesinwhichcertainsolvent–materialcombinations couldfalselyleadtofailingresults.Thesolutionwillbeacase-by-case approach,focusingontheriskassessmentoftheusedrawmaterialsin thecontextoftheintendeduseofthematerial.

Scientificguidancefortheoreticallyassessing,measuring,and estimatingthetransferofmineraloilcomponentswaspublishedby GermanFederationforFoodLawandFoodScience(Gruberetal.,2019).

5Scientificstudiesandalternative approachesincluding migrationmodeling

5.1Introductoryremarksanddescriptionof thekeychallenges

Thetransferofamigrantfromapackagingmaterialisdetermined byitsmobility/speed(diffusionrate)insidethematerialand,inthecase ofsemisolidandsolidfoods,additionallyinsidethefood.Thesecond mainparameteristhepartitioningbetweenthepackagingmaterialand thefood,inthecaseofseverallayers,additionallybetweenthelayers. Forcompliancetestingofplastics,inmostcases,liquidsimulantsare usedwhichshallroughlyrepresentthesolubilitypropertiesofthefood forthemigrants.Concerningdiffusionandtheuseofsimulants,plastics appearasasimplermatrixcomparedwithpaper.Thesimulantliquids usuallydonotpenetratetheplasticmatrixsoakineticmigrationtest willmonitorthetime-dependentdevelopmentofthemigrant’stransfer process,ideallyinawaythatiscomparabletotheprocessesoccurringin contactwithfood.NormallymigrationfollowsFickiansecondlaw. Therefore,fromkineticdatausingcurve fitting,thephysico-chemical keyparameters;thediffusioncoefficient,DP,inpolymer;andthe partitioncoefficientpolymer-food,KP/F,canbederived.Bothare fundamentalformigrationpredictionandmodeling(Mercea,2008).

Incontrasttoplastics,theliquidsimulantsusedinthe conventionaltestmethodsinthepapersector,i.e.,coldorhot waterorsolventssuchasisooctaneand95%ethanol,penetrate uncoatedandevenoftencoatedpapertestsamples,thusheavily impairingtheirfunctionalconsistency.Thiscancausephysical disintegrationofthepaper fibernetwork.Therefore,theobtained valuesareratherresultsofanextractionprocessandnotofa migrationmechanismintofood.Consequently,thisleadsin manyorevenmostcasestooverestimationsbecausethesomeasuredvaluesrepresentanequilibriumbetweentheused (extraction)solventandthepapermaterial.Thisdiffersfromreal foodcontactapplications,inwhichtheequilibriumisnotreached duringthecontacttime.Migrationcanbesloweddownbythe diffusionpropertiesofthefooditself,especiallyinthecaseof semisolidorsolidfoods.Additionally,thesolubilityofthe migrantsinrealfoodmaybelowerthaninsimulants, i.e.,partitioningismoreonthefoodcontactmaterialside. However,testsinfoodcannotbeseenasanalternativeto routinetestingastheyarenotpossibleforallsubstancesand may findtheirlimitationsintheanalyticalfeasibilityforusually verycomplexfoodmatricesoreveninthechoiceofrepresentative foodsfortheintendedapplications.Awayoutoratleasta supportingtoolisthedevelopmentanduseofpredictive mathematicalmigrationmodels,whichneedtobedesignedsuch thattheydepictrealityascloselyaspossible.

Numerousscienti fi cpapersaddressedthedevelopmentof analyticalmethodsforkeymigrantsandcontaminantsin paperforfoodcontactaswellasalternativemigrationtest procedures.Thelatteraimstode fi necrucialphysico-chemical parametersformasstransferfrompaperandto fi ndrelationships betweenpapermaterialproperties,migrants,testconditions,and migrationlevels.Inthefollowingsections,anoverviewwillbe givenofpublishedexperimentalandtheoreticalscienti fi c approachestowardabetterunderstandingandevaluationof masstransferfrompaperfoodcontactmaterialsintofoods andtheirsafetyinuse.Thisoverviewisnotquantitatively exhaustivebutclaimstoaddressthemostrelevant publicationswithregardtotheintentionofthisarticle.The conclusionsofthestudiesmaydependontheconsidered migratingsubstancesandtheirproperties,e.g.,volatility.The substancesusedintherespectivepublicationsarecompiledinthe SupplementaryTableS1

5.2Experimentaltestapproachesand key findings

Thescientificeffortsinthepublishedliteraturearelargelyvaried andhavemanifolddetails.Inprinciple,theycanbedividedinto threemajorresearchdirectionswiththefollowingobjectives:

(i)Exploringanddevelopingalternativefoodsimulantssuitable tomimicfoodincontactwithpaper;

(ii)Comparisonofmigrationresultsobtainedfromsimulated migrationtestingwithrealisticmigrationlevelsinfoods themselves;

(iii)Deriving/definingmigrationtestconditionstobetter simulatefoodcontact.

5.2.1Migrationintodryfoods

Migrationintodryfoodshasbeenatopicformostofthese scientificpublicationsbecausecontactwithdryfoodsrepresentsa majorapplicationofpaperinfoodcontact. UrbelisandCooper (2021) publishedacomprehensivesummaryreviewof162studies thatexaminedmigrationintodryfoodsanditssimulants,an importantdatasource.Thefocusofthisstudywastheextentof migrationintodryfoodsandnotspecificallyfrompaperpackaging butanytypeoffoodcontactmaterial.However,thelargestpartis paperrelevant.Thismightcorrelatewiththefactthatmost packagingfordryfoodsispaper.Thisreviewdealswiththe analysisofmarketfoodproducts,aswellasoffoodproductsand foodsimulantsincontactwithfoodcontactmaterial,after experimentalfortificationwithknownquantitiesofamigrant. Thediscussionontesting,informationgaps,andremaining questionscoincideswiththisreviewbutisdonefromadifferent perspective.

5.2.2MPPOasasimulantfordryfood

MPPOistheofficialEUfoodsimulant(simulantE)fordry foodsintheEUPlasticsRegulation(EU,2023).Thedevelopment anduseofMPPOasasimulantfordryfoodsgobacktothe1990s. Piringeretal.(1993) publishedthemethodforthe firsttimeasa convenientapproachfordeterminingtheoverallmigrationathigh temperaturessuchasfromnon-stickcoatingsonfryingpansand bakingpapers.Themethodwasalsoapplicabletothedetermination ofspecificmigrationoforganicsubstancesfromadhesivesinpaper foodcontactmaterial(GrunerandPiringer,1999).Sincethen,the so-calledTenaxmethodhasbeenincreasinglyusedandhasreached aEurope-wideofficialstatuswithCENEN1186:2002-Part13(CEN, 2002a)fortheoverallmigrationtestingofplasticfoodcontact materialathightemperature(>100°C)andtheimplementationof MPPOasfoodsimulantEfordryfoodsinEURegulation10/2011 (EU,2023).Inparallel,themethodwasstandardizedforpaperfood contactmaterialtesting(CEN,2003).

TheuseandappropriatenessofMPPOasasimulantfordry foodswerereviewedby VanDenHouweetal.(2018).Themajority ofcollecteddataandcitedreferencesrelatetopapermaterials.The performanceofMPPOasafoodsimulantfordryfoodsisdiscussed basedoncomparisonswithrealfoodsandotherfood-simulating adsorbents.MPPOsimulationcomparedwiththerealmigration conditionsintoseveralfoodstuffs(suchassugar, flour,cakeand certainpastries,semolina,instantbabyformula,milkpowder,rice, salt,cerealsandevenmeat,chocolate,sweetmatrices,freshfruits, andvegetables)showednounderestimationsoftherealconditions. VanDenHouweconcludedthatMPPOissuitableasasimulantfor dryfoodstuffs.Moreover,intheirview,theonlysuitablesimulantfor thesimulationofdryfoodstuffs.

5.2.3MPPOsimulantversusdryfoods:recycling componentsotherthanmineraloil

In1999–2002,anearlyandessentialscientificinitiativewas takenbyEUProjectFAIRCT98–4318 “Recyclability” withinits Section2 “PaperandBoard” (RaffaelandSimoneau,2002; Castle andFranz,2003).Migrationkineticsfrom15differentpapersample typeswerecomparativelyinvestigatedbetweendryfoods(cookies, flour,milkpowder,noodles,salt,semolina,souppowder,sugar,and icingsugar)andMPPOattemperaturesrangingfromroom

temperatureupto100°C.Aselectionof12surrogates[suchas acetophenone,diphenylether,diisobutylphthalate(DiBP),and diisopropylnaphthalene(DIPN)isomers; SupplementaryTable S1]ofdifferentchemicalstructuresandvolatilitieswasspiked intothepapersamplesbeforetesting.Furthermore,partition coefficientsbetweenpaperandfood(simulant)asacrucialmass transferparameterformigrationmodelingpurposeswere determined.Transferfromthepaperrapidlyreachedits equilibrium,dependingonsubstanceandtemperature,e.g.,after 1hat100°Cand2–10daysat23°C.MigrationtoMPPOwasin almostallcaseshigherthanintofoods.The finalpartitionining coefficientbetweenpaperandMPPOsimulantwasalwaysatleast oneorderofmagnitudelessthantheonebetweenpaperand foodstuff.Thus,MPPOwasfoundtobemoreseverethanfood concerningtheadsorption/uptakeofmigrantsfrompaper; therefore,itwasconsideredtobeagoodsimulantfordryfoods. Diisopropylnaphthalene,intrinsicallypresentintherecycledboard, displayedadifferentkineticbehaviorcomparedwiththespiked-in experiments,whichwasexplainedby “native” DIPNbeingpresent intheencapsulatedform(fromtherecyclingofcarbonlesscopy papers).Thisexplanationisnotnecessarilycorrectbecauseothers founddifferencesbetween “native” andfortifiedsubstancesalsofor othercomponentslikephthalates(ZülchandPiringer,2010; Bradley etal.,2015).

Aurelaetal.(1999) comparedthereleaseoftwophthalates (diisobutylphthalateanddibutylphthalate)frompaperpackagesinto (crystal)sugarwiththoseintoMPPO.Themeasuredmigrationwas similarinsugarstoredfor4monthsatroomtemperatureandin MPPOstoredfor10daysat40°Cor2hat70°C.Alkylbenzenes (C10–C13alkylchain)at30minat70°Cshowedanoverestimation factorof3.8inMPPOcomparedwithhamburgerrollsunderthe samecondition(Aurelaetal.,2002).

Baeleetal.(2020) observedastrongoverestimationforvolatile substances(1,3,5-tri-tert-butylbenzene,n-hexadecane,and n-heptadecane)byMPPO(indirectcontact,22°C,16weeks)in comparisontostarchy,low-fatfoods(noodleswithandwithout eggs,wheat,andricesemolina)butsimilarmigrationasinto chocolate.Thedifferencedecreasedwithdecreasingvolatilityof themigrants. SummerfieldandCooper(2001) comparedthe migrationofdibutylphthalate,diisobutylphthalate,and diisopropylnaphthalenefromrecycledboardintovariousdry foodsandMPPO.Inidenticalconditions(10days/40°C), migrationintoMPPOwassimilarorevenlowerthanmigration intoricebutsimilar(diisobutylphthalate)ordistinctlyhigher (diisopropylnaphthalene)whenricewerestoredfor6monthsat 20°C.Diisopropylnaphthalenemigratedinsimilarorevenhigher amountsinMPPOthanin flourandpastryat40°C.Migrationin flour storedfor6monthsat20°C wassimilartothatafter10days at40°C.

5.2.4Mineraloilcomponents(MOSHandMOAH)in marketsamples

Aseriesofpublications(2010–2016)dealtwiththemigrationof mineraloilhydrocarbons(MOH,saturated:MOSH,aromatic hydrocarbons:MOAH)frompaperfoodpackagingintofoods. Themajorfocuswasondryfoodsandtheunderlying mechanisms.Theauthorshipvariedbutcenteredaroundthe CantonalFoodControlLabofZurich.Thestartingpointwas

SwissandItalianmarketsurveys,showingthepresenceof considerableamountsofMOHinfoodboxes,whichbecauseof thepresenceofalargefractionofvolatileMOH,gaverisetosafety concernsowingtotheirpotentialtogasphasetransferintothe packedfoods(Lorenzinietal.,2010).Thiswasconfirmedbya follow-upGermanmarketsurveyof119samplesofdryfoods,such ascereals,biscuits,andrice,packedinprintedpaperboard boxes withandwithoutinternalbags andintendedforlonger storageatambienttemperature.Inthissurvey,predominantly saturatedhydrocarbons(MOSH),uptoapproximatelyC24,were foundindryfoods(Vollmeretal.,2011),showingthatsubstances withboilingpointsuptoapproximately400°Ccanbetransferredvia gasphaseatambienttemperaturesfrompaperintodryfoods.This fitswiththe findingsofJickellsetal.regardingtransferfrom secondarypackagingusingpolarcontaminants(Jickellsetal., 2005).EvenuptoC28isexpectedtobetransferredintodry foodlikericeinlong-termstorage(BiedermannandGrob,2010; 2012).Themeasurementsofreplicatesfromthesamesamplesofthe surveywererepeatedafterfurther4monthsandanother12months ofstoragetime(Biedermannetal.,2013a).Migrationincreasedfrom firstmeasurementtothirdmeasurement(onaverageby60%); however,morethanhalfofthetransferwasalreadyfoundinthe firstfewmonths.Exceptfortablesalt(non-adsorptivefoodmatrix) andnoodles(lowadsorptive;notspecifiedbutmostprobably withouteggs),themigrationrangedbetween40%and84%ofthe potential,after16monthsofstoragewithsemolina,asthemost potentadsorbent.Thedifferencesbetweenthefoodtypeswere consideredmodest.Differenceswererelatedmoretothe packagingmaterialsthantothefoods.

5.2.5Migrationstudieswithmineraloil componentsundercontrolledconditions

Theabove-summarizedstudieswerecarriedoutwithmarket samplesfromtheGermansurvey,inwhichstoragetimesand temperaturesbeforepurchasingwerenotknown(Biedermann etal.,2013a).Additionalstudieswereperformedwithcontactto thefoodinthelaboratoryorsamplestakendirectlyfromtheline after fillingundercontrolledconditions.

Dimaetal.(2011) exploredpossibilitiesforadequatetestingof paperpartyplates,whicharecoveredbyathinpolyethyleneor polypropylenelayertomakethemresistliquidsfromfoods. Althoughthereisnodirectfoodcontactwithpaper,including thisstudyhereisworthwhilebecauseoftheevaluationapproach. Furthermore,thethinpolymerlayersdonotactasfunctional barriersagainstorganicmolecules.Theauthorscompared migrationofthesumofMOSHandpolyolefinoligomers (POSH)ofthecoatingfrom16partyplatesusinganedibleoilas asimulantat70°C,withmigrationintoavarietyoffattyfoodsunder foreseeablecontactconditionsrangingfrom60minto1dayatroom temperatureandforsomefoodswithprecedinghotcontact.The latterwasthecaseforahotmeatloaf,whichwasfreshlyfried,placed for1hontheplate,andcooleddowntoroomtemperature.Fromthe kineticmeasurementsat70°Cincontactwithoilover120min,the timepointof30minwasfoundtoreasonablycovertheworstcase determinedinfoods.Forsubstancesotherthanmineraloil,edibleoil isacomplicatedanalyticalmatrixinmanycasestomeasure migrantsatlowlevelsandduetopenetrationintopapernot suitablefornon-coatedmaterials.

Inthreeotherstudiesofthisauthorconsortium,themigrationof MOSHfrompaperfoodcontactmaterialintodryfoods,suchas noodles,rice,andmuesli,wasinvestigated(BiedermannandGrob, 2012; Biedermannetal.,2013b; Lorenzinietal.,2013).Animportant aimwastobetterunderstandthetransfermechanismsandthe influenceofthetypeandnatureofdryfoodsonmigration.Kinetic studiesintoeggpastaandmuesliat fivedifferenttemperatures(4°C, 20°C,30°C,40°C,and60°C)upto400dayswereperformed (Lorenzinietal.,2013).Bothfoodtypesshowedquitesimilar migrationcurveswithverysteepincreasesat60°Candwithslow migrationratesatthelowtemperatures.However,migrationwas increasingevenafter300and400days.Itappearedthatallmigration pointsarelikelytoapproachthesameorsimilarmigrationlevelsin foodsataninfinitetime.

Inthefollowingstudy(Zurfluhetal.,2013), “conventional” migrationtestingofarecycledpapertosimulatelong-termstorage atambienttemperaturewasstudiedusingMPPO(simulantE). “Conventional” testingwasunderstoodtoapplytestconditions fromEURegulation10/2011(forplastics),i.e.,10daysat60°C; however,10daysat40°Cwerealsoapplied.Inaddition,polenta (maizesemolina)wasusedatthesameconditionsasMPPO.The resultswerecomparedwiththemigrationintotestfoods(biscuits containing18%fat,polenta,noodles,rice,breadcrumbs,and oatmeal)incontactwiththesamepaperpackagingmaterial storedformorethan9months(sameexperimentas Biedermann etal.,2013b).SimulationwithMPPOafter10daysat60°Cledto almostfull “extraction” ofmigratableMOSH(i.e.,uptoC24), overestimatingthemaximummigrationofMOSHinthereal packsby73%.Tendaysofcontactwithpolentaat60°Cgavea similarmigrationofMOSHastheaverageofthetestedfoods.At 40°C,10daysofcontactwithpolentaunderestimatedtheaverage migrationinthetestedfoods.Increasingthetemperaturenotonly acceleratedthemigrationofgivensubstancesbutalsobroadenedthe rangeofmigratingsubstancesinthedirectionoflowervolatiles.The authorsconcludedthatsimulationwithMPPOwastoo overestimativebecauseoftheadsorbentandtheaccelerated conditionsoftesting.Therefore,MPPOfailedintestingthe migrationofmineraloilfrompaperboardpackaging.Theauthors questionedthesuitabilityofsuchsimulationforthepredictionof long-termmigrationandproposeddeterminationinpaperby definingconventionaltransferratestofood(70%–80%).

Thefooddataundercontrolledconditionsindirectpaper contactcomparedwithindirectcontact(behindpolyolefinlayers) wereseparatelypublished(Biedermannetal.,2013b).Inadditionto MOSH,specificsubstanceslikeDIPN,phthalatessuchasDiBP,and severalphotoinitiators,e.g.,benzophenone,weremeasuredastarget migrants.Thisisusefultolearnmoreaboutthetransport mechanismsfrompaper.Forthisreview,wereferonlytothe resultsobtainedfromdirectpaperfoodcontact.Thefoods (chocobiscuits,polenta,noodles,rice,breadcrumbs,andoatmeal) werestoredfor9monthsatambienttemperaturewithin-between measurementsat2and4months.Forthelevelofmigration,there wasnoseveredependencyonthefoodtype(mostly <2factor), particularlywhileconsideringsinglespecificsubstancesratherthan thewholegroupofMOSH.Thefastestandhighestmigrationwas shownintooatmeal;however,forthearomaticcompounds,MOAH andDIPNoatmealandbiscuitsweresimilar.After9months,forall sixfoods,themigrationrangedforMOSH <C24groupfrom50%to

80%oftheinitialconcentrationinpaper;however,forspecific substances,therangeswerenarrower:DIPN37%–49%(with26% forbreadcrumbs).MigrationofDiBPrangedfrom0.22mg/kgfood to0.54mg/kgfood(withan “outlier” of0.06forriceandbiscuitsas thehighest)andofbenzophenone(asthemostprominent photoinitiator)from24 μg/kgfoodto59 μg/kgfood(with 6 μg/kgasthelower “outlier” fromnoodlesandoatmealasthe highest).Theauthorscommentedthis: “Migrationseemedtobe influencedmorebytheporosityofthefoodthanbythefatcontent (forinstance,MOSHmigrationintooatmealwasclearlyhigherthan intofattybiscuits).” Thisindicatesthatadsorptionratherthan dissolutioninthefatphaseconstitutesthedrivingmechanism formigrationofsubstanceswithsufficientvolatility(accordingto theauthorswhencomparedwithC24orasimilarsubstance).The steepestincreaseforMOSHwasinthe first2monthsofstorage (approximately40%ofpotential,between22%fornoodlesand57% foroatmeal),whichincreasedto50%–80%after9months.Asa potentiallylogicalnextstep,thisauthorconsortiumstudiedthe differenceofmorevolatileversusnon-volatilemigrantsfrompaper intodryfoods(Eicheretal.,2015).Inthisstudyofmechanistic character,datafrommigrationexperimentsusingnewspaperas contactwithdryfoods(rice,polenta,bakingmix,andbreadcrumbs) andMPPOwasreported.Thenewspaperwaschosenbecauseit containedvolatileMOSH(<C24)andnon-volatile polyalphaolefines(PAO,branchedalkanes,characterizedbythe retentiontimeoftherespectiven-alkanes)fromtheprintingink. Theauthorshavedifferentiatedbetween “direct” (touching)and indirect(gasphase)contacts.Theyconcludedthatmigrationinto dryfoodsviatouchingcontactisnotnecessarilynegligibleandcould evenreachconsiderablelevels.Oneoftheseveralkeyexperiments wasacomparisonof10and20daysofcontactatroomtemperature withMPPO,polenta,andrice.Themigrationfocusedonthree substanceclasses:MOSH < C24,PAO29,andPAO35,representing increasingmolecularweightsanddecreasingvolatility.Migrationof MOSH < C24was100%onMPPO,92%forpolenta,and71%for rice.Migrationofthenon-volatilesPAO29/PAO35wasmuchlower: 46%/20%forMPPO,39%/20%forpolenta,and4%/2%forrice. Decreasingtheparticlesizeofthepolentafrom2mmto1mmledto anincreaseinPAOmigrationbyfactor2.5butnotofMOSH. Furthersizereductionto0.5mmhadonlylittleeffect.Thiswas relatedtothedensityofcontactpointsinthepaper.Migrationinto MPPOatidenticalconditionsatroomtemperature(10days)wasin thesameorderofmagnitudeaspolentayetlowerthanbakingmix andlargelyhigherthanintorice.However,inlonger-term(45days) migrationofPAOintorice(higherfatcontent)passedthatofthe finerbreadcrumbsincontrasttotheresultafter8days,inwhich migrationintobreadcrumbswashigher.Migrationinbothriceand breadcrumbswaslowerthanintopolenta.Consideringall findings, theauthorsexpressedtheirconcernastowhetherMPPOtestwould besuitableforpapertosimulatetouchingcontact:elevating temperaturemayvolatilizenon-volatilesubstancesatroom temperature,andtheparticlesizeofthefoodmaybefarfrom thatofMPPO.

TheuseofsurrogatesforMOAHwhilecomparingmigration testingwithMPPOversusthedryfoodspolentaandcouscouswas themaintopicofresearchby Jaénetal.(2022).Forthesekinetic experiments(at60°C:3,6,and10daysand70°C:2h)cardboard sampleswerepreviouslyfortifiedwith16aromaticmodel

substances,suchas2-methylnaphthalene,2,6-DIPN,and perylene,representingMOAHinawiderangeofmolecular masses,chemicalstructures,andmostimportantly,volatilities (boilingpointrangesfrom240°Cto467°C).Migrationreached equilibriumafter3–6daysat60°C.FormorevolatileMOAH substances,theequilibriumlevelsobtainedat60°Cwerealready reachedafter2hat70°C.Thiscoincideswiththe findingsof Aurela etal.(1999).Ingeneral,themigrationvalueswerehigherinMPPO thanincouscousandpolenta,whichwashighlydistinctiveforthe morevolatilesurrogatesandlessdistinctiveoreventhesameforthe heaviersurrogates.TheauthorsconcludedthatMPPOcanbe consideredastheworstcaseofthesimulationofmigration todryfood.

5.2.6Additionalalternativesimulantsfordryfoods InadditiontoMPPO(Tenax®)andpolenta(asamodelfood), otheradsorbentshavealsobeenstudiedaspotentialdryfood simulants: Nerínetal.(2007) performedcomprehensivekinetic migrationstudiesonthreepapersampleswithdifferentrecycled pulpcontentusingPorapak(aporouscopolymer,notfurther specifiedinthepublication)asasolid-foodsimulant.Target migrantswereDIPN,DiBP,anddiethylhexylphthalate.Thetest setupwasdirect(“touching”)contact.Testtemperatureswere25°C, 50°C,75°C,and100°Cwithcontacttimesrangingfrom5minto 10days.Inafewselectedcases,migrationintoMPPOandmilk powderwascarriedoutforcomparison.Porapakwasfoundtoallow solidandreproduciblemeasurementofmigrationkinetics comparablewiththoseobtainedwithMPPO.Notably,bothsolid simulantscoveredreasonably,i.e.,withaslightoverestimation,and themigrationintomilkpowderoccurredat25°Cand50°C. Fengler andGruber(2022) studiedSorb-Starasanotheralternativedryfood simulant.Sorb-StarisnotporouslikeMPPObutrod-shaped polydimethylsiloxane(20mm,ø2mm),whichishighly adsorptivetowardlowandmediumvolatilelipophilicorganic compounds.Thestudycomparedmigrationkinetics(at20°C, 40°C,and60°Cupto12days)forMOHusingSorb-Starversus MPPOin “touching” versus “gasphase” contact.Thecarbon fractionsC10–C16,C16–C20,C20–C25,C25–C35,and C35–C50wereinvestigatedtoobtainbettervolatility-resolved information.Furthermore,migrationofrepresentativesinglesubstancesurrogatesforeachfraction alkanesandaromatic compounds wascompared.MorepolarMOAHmigratedslower thanMOSH.MPPOin “touchingcontact” showedthehighest values.Undergasphasecontactconditions(withoutdirect contact),migrationratesintoMPPOwerelowercomparedwith Sorb-Star.InC25-C35,migrationwasfoundonlyinMPPOtouchingcontactandSorb-Starat60°CforMOSH.Theauthors concludedthatthemigrationbehaviorofMOHcanbedepictedby theuseofsuitablyrepresentativesurrogates,whichwillhelpeasethe analyticaltasks.Migrationtestswiththesesimulants(MPPOand Sorb-Star)at20°Cand40°Ccancoverawiderangeofreal-life migrationprocessesfrompaper-basedfoodcontactmaterialsinto foods,providedthatappropriateconditionsarechosen.

5.2.7Impactofhumidity

Asapotentiallyimportantfactor,relativehumidity(rH) which couldaffecttheextentofmigrationandthetypeofmigrantsfrom paperqualitatively wasstudiedusingMPPOby Barnkoband

Petersen(2013) and Wolfetal.(2023).In2013,benzophenone transferfromapapersampleafter30daysat34°Cunderthree differentrHconditions(43%–73%),increasedbyafactorupto 7.3withincreasingrH.Wolfetal.investigatedtheeffectofrHonthe transferof59volatileorganiccompoundsfromapaperatdifferent rHsetupsandtemperaturesbygaschromatography–mass spectroscopybycomparingpeakareasandbysensorytests. FurthermoretheycompareddirectcontactofMPPOwiththe indirectcontactwiththepapersample.Transferofvolatile substancesincreasedwithincreasingrH,alsodependingonthe polarityofthesubstances.Theauthorsconcludedand recommendedthatadefinedrHlevelneedstobeestablished beforestartingmigrationorsensoryteststoensuresufficient repeatabilityandcomparabilityofsuchtests.Ingeneral,touching contactofMPPOwithpaperledtoconsiderablyhighermigration valuesthanindirectones.Theinfluenceofhumidityfromfoodstuffs incontactortheenvironmentofstoragewasalsoreportedby Zülch andPiringer(2010) and Hauderetal.(2013)

5.2.8Otherfoods

Bradleyetal.(2014; 2015) comparedthemigrationfrompaper intoMPPOwithfreshfruit(applesandbananas),potatoes, mushrooms,andraisins,whichhavedifferentcharacteristicsthan typicaldryfoodssuchaspolenta.Storagetestswithfreshfoodswere performedunderrealistictime–temperatureconditions,e.g.,5days atroomtemperature,withraisinsandMPPOunderstandard conditionsof10daysat40°C.Targetmigrantswere contaminants,intrinsicallypresentinthepapersamplessuchas DIPNorDiBP,aswellassurrogatessuchasbenzophenoneand dodecane,previouslyspikedintothepapersamples.Themajor objectiveofthesestudieswas firsttoassesstherelationshipbetween migrationfrompaperintothefoodsversusintoMPPOandsecond tostudythemigrationofintrinsicallypresentmigrantsversusspiked ones.Migrationlevelsdependedstronglyonthenatureofthe substance.MigrationfromspikedP/Bsampleswasmore extensive(asapercentageoftheavailablemigrants)thanthatof intrinsicmigratablesubstances,suchasDIPNandDiBP.Thiswas explainedbyastrongerbondingintothe fibernetworkby manufacturingthanthespikingprocess.Thisdifferenceappears tobecomerelevantforcomplianceandfoodsafetyassessment versusrealexposureestimation.Inanycase,studyingspiked samplestendstobeconservative.Thenatureofthesubstances andofthefoodsinfluencedthemigrationlevelsmuchmorethanthe characteristicsofthepapersamples.MigrationintoMPPOwasupto afactorof62(potatoes)butatleastbyafactorof10higher comparedwiththefreshfoodsstoredfor5daysatroom temperature;however,itwascomparableoronlyslightlyhigher comparedwithraisins,whichduetotheirlongshelf-life,were storedatthesametime –temperatureconditionsasMPPO.The authorsdiscussedthepotentialuseandthelimitationsof correctionfactorstocorrelateMPPOvaluesunderstandard conditionstorealisticfoodconditions.Theyconcludedthat simplecorrectionfactorswouldapproximateonlythefood characteristicsbutwouldnotre fl ectthesubstance-speci fi c natureofchemicalmigration.Furthermore,theyaddressed ongoingdevelopmentstowardacomprehensivemigration modelforpaperthattakesintoaccountsubstance-andfoodspeci fi ccharacteristicsasmodelingparameters( Section5.3 ).

Correctionfactorswerededucedfrommigrationdataand proposedby Castle(2015)

Consideringmigrationintofattyorhumidfoods,onlyafew publicationsareavailable:dialkylketonesintosalami,cheese,and croissant(Lestido-Cardamaetal.,2020);recyclingcontaminants intobutter(ZülchandPiringer,2010);andPAAsintohumidfoods (Merkeletal.,2018).

5.3Predictivemigrationestimation andmodeling

5.3.1Comparisonofmodelinginplasticswiththat inpaper

Forplasticspackaging,migrationmodeling-basedconformity assessmenthasbeenofficiallyrecognizedsince2001(EUDirective 2001/62/EC),proposedinArticle18ofthecurrentEUPlastics Regulation10/2011(EU,2023)anddescribedinaJRCguideline (Hoekstraetal.,2015).Sincethen,thistoolhasbeenincreasingly usedbyindustry,testinglaboratories,andauthorities(e.g.,EFSA andFDA)toevaluatepolymerpackagingquicklyandinexpensively, aswellastocross-checkexperimentaldesignandresultsfor plausibility.Thediffusionoforganicsubstancesinplastics generallyfollowsFick’ssecondlaw(Crank,1975).Theplastic layerisconsideredisotropicandhomogeneouswithaninitially homogeneousdistributionofthemigrantsinthelayer.The differentialequationfromFick’slawcanbesolvedusing numericalsimulation(Roduitetal.,2005; Tosaetal.,2008; Nguyenetal.,2013)andisimplementedincommercialorfree software.Thediffusioncoefficient(s)DP ofamigrantintheplastic layer(s)andpartitioncoefficientsKbetweenthelayersarerequired asinputparameters.Inplastics,DP dependsmainlyonitsmolecular size,whichallowstheestimationofDP usingrelativelysimple formulas(Begleyetal.,2005; Piringer,2008; Welle,2013; Hoekstraetal.,2015; Merceaetal.,2018).Aspartition coefficientsintofood(simulant),ifknownvaluesarenot available,defaultvaluesforhigh(KP,F =1)orlow(KP,F =1,000) solubilityinfoodareemployed(Hoekstraetal.,2015).

Theassumptionofthehomogeneityandisotropyofthelayer losesitsvalidityinthecaseof fiber-basedpackagingmaterials.Paper mainlyconsistsofcellulose fibers,creatingaporousstructure,and maycontainotheradditives, fillers,and finishingagents.The transportmechanismcanessentiallybeunderstoodasasequence ofdesorption/evaporationstepsintothevaporphaseofthepores andadsorption/condensationofthemigratingsubstances(Aurela andKetoja,2002; ZülchandPiringer,2010).Nevertheless,various authorsconsideredpapermaterialsasaquasi-homogeneous, isotropiclayeranddescribedmigrationkineticswiththe simplifiedmodelforplastics.

5.3.2ModelsfollowingFick’ssecondlaw ofdiffusion

TheextensivekineticmigrationdatasetelaboratedinEUProject FAIR-CT98-4318(RaffaelandSimoneau,2002; CastleandFranz, 2003)wasusedtoexplorewhethertheexistingmigrationmodelfor plasticsaccordingtoFick’slawcoulddescribethemasstransferfrom paperwhileassumingthepapermatrixasahomogeneousisotropic layer.Theexperimentalmigrationcurvescouldbewell-fittedbased

ontheeffectivediffusionconstantsDpaper (understoodastheoverall diffusioneffectwithinthepapermatrix)andpartitioncoefficients Kpaper/food orKpaper/MPPO.EffectiveDpaper andKpaper/food valueswere obtainedfrommigrationexperimentsintoMPPOanddryfoodsat temperatures50°C,60°C,and70°C,witheightdifferentpapertypes spikedandasetofeightmigrants.Thepartitioncoefficients confirmedthatMPPOservesasamoresevereadsorbentthan foods.FromtheDpaper values,theeffectivediffusionbehaviorof thepapersampleswasfoundtobesimilartoLDPEpolymer.In general,attemperaturesof40°Candabove,migrationwas dominatedbypartitioningduetotherelativelyrapidachievementof equilibrium.Atroomtemperature,diffusionplayedabiggerrole, especiallyforlargermolecules.Therefore,thekineticmodel appearedtobemoreusefulindescribingshort-termcontactat ambienttemperatureandabove,e.g.,fastfoods,andatlow temperatures,e.g.,chilledandfrozenfoods.Animportant finding wasthatnoconsiderablekineticdifferenceswerenotedbetweenthe differentpapermaterials,asknownfordifferentplastictypes.

ZülchandPiringer(2010) developedanadaptationofthe plasticsmigrationmodelforpaper.Theystudiedthemigration behaviorfromdifferentpapersamples,spikedwithmodel substancesandnon-spikedwithfoodstuffsandMPPOasfood simulantat 18.5°Cand22°C,andablottingpaperasthe acceptorat40°C.From fittingthemigrationcurveusingthe plasticsmultilayermodeofthemodel(Tosaetal.,2008),they foundthatinthistemperaturerangetransferfrompaperwillbebest describedbyconsideringpaperasatwo-layersystem,whichis representedbyacorelayerB1withrelativehighdiffusionratesanda thinsurfacelayerB2withdifferentmigrationbehavior.Effective diffusioncoefficientswereestimatedinanalogytotheAP value approachforplastics(Begleyetal.,2005),basedonthemolecular massofthemigratingsubstanceupto400gmol 1.Forpaper,AB1 andAB2 areusedasspecificparameterswithconstantAB1 =6.AB2 valueofthevirtualsurfacelayerdependedonthepolarity,humidity inthepaper,thewateractivityofthefood,andpropertiesofthe migrantrangingbetween 10and 1forcontactwithdryfoodand upto6.0forcontactwithbutter.Thistwo-layerapproachis particularlyrelevantinthecaseoflowtemperaturesand migrantswithhighmolecularweight.Athightemperatures,the best fitofpredictedversusexperimentalmigrationdatawas obtainedwithaone-layerapproachandacommonvalueof AB1 =AB2 =AB = 2.Theauthorsconcludedthatthe differentiationbetweenthediffusioninB1andB2isunnecessary formigrantswithlowpolarity,molecularweightsbelow350gmol 1 athightemperatures(≥40°C),andhighhumidityduetothestrongly increaseddesorptionrate.Withthismodel,theauthorspresentafull migrationmodelintofoodforfoodslikebutter,chocolate,pasta, wheat flour,andbiscuitsatlowtemperatures(5°C,22°C).In2013, thesamegroup(Hauderetal.,2013)publishedfurtherworkto betterunderstandthenecessityofthechangingthemodelbehavior fromatwo-toaone-layerapproach,dependingonthetemperature andtorefinethemodel.Thespecificdiffusionbehaviorinpaperand migrationmodelingfromrecycledboardintodryfoodstuffsusing n-alkaneswith15–35carbonatomsandothersubstancesinthe board(nospiking)wasstudied.Forthesurfaceregion(B2) determiningthediffusionrate,thediffusioncoefficientsofthese migrantsdecreasedproportionallytotheirvaporpressures.Based onthese findings,theauthorsmodifiedthediffusioncoefficient

equationforB2withfunctionalconsiderationofthevaporpressure ofthemigrantsandprovidedageneralmigrationmodelforspecific andglobalmasstransferofimpuritiesfromtherecycledboardinto thedryfood. BarnkobandPetersen(2013) studiedtheapplicability ofthepapermigrationmodelby fittingthemigrationof benzophenonefrompaperatseveralhumidities(40%to >73% rH)at34°C,usingtheapproachof ZülchandPiringer(2010) Theauthorsfoundsomedifferencesconcerningtheapplicabilityof theone-andtwo-layerapproaches,whichweresmallwithinthe qualityofthe fitsbetweenbothapproaches. Hanetal.(2016) investigatedthemigrationofphotoinitiatorsintoMPPOat 50°C–100°Candderivedeffectivediffusionandpartition coefficientsby fittingtheexperimentalcurvestoFickiansecond law. Huangetal.(2013) includedatermforthepaperporosityinto theirmodelaccordingtoFickiansecondlaw.

5.3.3Othermodels

Contrarytotheabove-describedwork, Poçasetal.(2011) reportedthatFick’ssecondlawofdiffusiongavepoor fitsin somecases.Theystudiedthemigrationofseveralsubstances withdifferentchemicalfunctionalitiesfrom fivedifferentpaper materialstoinvestigatetheinfluenceofmolecularsize,chemical characteristicsofthemigrants,andpapercharacteristics(suchas type,thickness,andrecyclingcontent).To fitthemigrationcurves, theyexploredthepotentialofWeibullmodel,whichisbasedona distributionfunctiontriggeredbytwoparameters(scaleandshape parameter).Itcanbeempiricallyappliedwithouttheuseof physical–chemicalparameters,suchasDpaper andKpaper/food Migrationfrompaperwasfoundtobemuchfasterthanthose fromplastics.Thevolatilityandpolarityofthemigrantsdetermined theirtransferintofood(simulant)andthelossesfromthesystem duetoevaporation.Theauthorsconcludedthatthissimplemodel allowsthemtodescribethepatternofmigrationcurvesforawide rangeofmigrantvolatilities. Guazzottietal.(2015) appliedthe Weibullmodelto fitkineticmigrationcurvesobtainedfrompaper, spikedwithaseriesofn-alkanesat40°Cand60°Cincontactwith MPPO,confirmingthatthismodelcaneffectivelybeusedto describeadiffusionalprocessofthepaper.Anotherstatistical approachtocorrelatephysical–chemicalpropertieswith migrationbehaviorwasrecentlypublishedby Jaénetal.(2022) usingMOAHsurrogates(experimentaldetailsaregivenin Section 5.2).Theauthorsappliedmultivariateanalysisalgorithmsto correlateandgroupthemigrationofmodelsubstancesandbuilt apartialleastsquaresregressionmodeltopredicttheworstcase MOAHmigration.Themigrationpatternsshowedstrong correlationsalongwiththevolatilityofthesurrogates.The elaboratedmodelwascapableofpredictingmigrationvalues fromthephysical–chemicalsubstancepropertiesandwasauseful tooltobefurtherexplored.

AurelaandKetoja(2002) studiedthediffusionofvolatile compoundsin fibernetworksbyexperimentaldeterminationand modelingusingrandomwalksimulation,whichisbasedonthe porosityofthepapersampleandthediffusionspeedthroughthe pores assumedtobethediffusionconstantinfreeair.The compoundswerevolatilesolvents,suchasethanolandbutyl acetate.TheexperimentalandmodeledeffectiveDpaper values matchedandwereintherangeofapproximatelyE-7m2/s (E-3cm2/s)atambienttemperature.Theestimateofeffective

diffusionconstantswasbasedonlyonthatofthecompoundpresent infreeair. Laineetal.(2016) addedatermdescribingsorptiontoa one-dimensionaldiffusionequationtosimulatemigrationinto MPPOthroughcardboardinindirectcontactandsolelythrough air.Thesimulateddata fittedwellwithexperimentaldataon migrationintoMPPOduringanindirectcontactinanair-filled chamberandafterpermeationthroughcardboardusingMOSHand MOAHsurrogates.

Serebrennikovaetal.(2022) describedthetransportbypartial differentialequationsfortransportingwithinthegasphaseofthe poresinthepapercoupledtothosedescribingthesorptionprocess. Thetransportprocessesaredeterminedbycomplexinteractions. Diffusioncoefficientsandsorptionconstantscannotbeeasily derivedfromexperimentsbutby fittingtheparametersofthe modeltotheexperimentaldata(solutionofaninverseproblem). Theexamplewasthediffusionofdimethylsulfoxideinastackof paper(23°C,50%rH),measuredatfourtimepointsandspatially dissolvedin fivepapersheets.Forsolvingthecomplexdifferential equations(derivedfrommodelsforwatervaportransport), fittingto theexperimentaldata,andobtainingtheparameters,theyused physics-informedneuralnetworks(PINNs)andsuccessfully comparedwith finiteelementmethods.In Serebrennikovaetal. (2024),thedimethylsulfoxideexperiment(polarcomponent), extendedto12weeks,andanotheronewithtetradecane(nonpolar)werecomparedwith fivedifferentmathematicalmodels, whichwereevaluatedbyPINN.Threeofthemwerebasedon Fick’slawofdiffusion,withandwithoutaspecifictermfor sorptionanddesorption.Inaddition,pseudo-first-order adsorptionandsecond-orderreversiblesorptionmodelswere included.TheFickianbehaviormodelsdidnot fitthedata.The best fitwasobservedforapseudo-first-orderadsorptionmodel (withoutdesorptionfromthe fiber);however,afurthersearchfora suitablefunctionwascalledfor.Ingeneral,theauthorsconcluded thatPINNsrepresentaversatilemathematicaltooleithertovalidate ortorefutethecapabilityoftheoreticalmodelstodescribe experimentaldata.

5.4Partitioncoefficients

Althoughmainlythediffusionprocessesandestimationof diffusioncoefficientsDpaper areaddressedforthemigration modeling,accesstoothercrucialparameter thepartition coefficientKpaper/food isalsolimited.Thepartitioncoefficients describetheconcentrationratio(mass/volume)inthe equilibrium.Forvolatiles,apromisingapproachdeterminesthe partitioncoefficientsofpaperandfoodorMPPOversusair.From thequotientofboth,thepartitioncoefficientsKpaper/food canbe derived. Haack(2006) determinedtheadsorptionisothermsofthe volatilemodelsubstancessuchashexanolandothersintopaper material(at40°C–120°C),aswellasintothefoodstuffchocolate, cookies,andpasta includingMPPOasfoodsimulantat 100°C andcalculatedpartitioncoefficientsfromthedata.For hexanol,butylacrylate,nonanal,anddiphenyloxide,Kpaper/food valuesforthethreefoodsrangedfrom0.03to0.88andKpaper/MPPO forMPPOfrom0.02to0.08,beingstronglyonthefoodside.For butanol,Kpaper/food wasbetween1and4.3forfoodsandKpaper/MPPO was3.3.Overall,thesedatademonstratethehighoratleast

comparableadsorptivepropertiesofMPPOversusdryfoods. TheseKvalueslargelyoverlappedwiththoseobtainedbycurve fittingofmigrationkineticswithinFAIR-CT98-4318(Raffaeland Simoneau,2002; CastleandFranz,2003). Triantafyllouetal.(2005) determinedpartitioncoefficientsofadditionalsubstancesbetween paperandairat70°Cand100°C.Migrationkineticsatthese temperaturesintoTenax(Triantafyllouetal.,2002)and semolina,instantbabycream,andmilkpowder(Triantafyllou etal.,2007)uptoequilibriumarereportedfromthisgroup; however,partitioncoefficientswerenotcalculated.

WithintheGermanresearchprojectIGF19016N(Fengleretal., 2019),partitioncoefficientsformineraloilcomponents(MOSHand MOAH)weredeterminedandpublishedintheguidelinedocument (Gruberetal.,2019).PartitioncoefficientsofMOSHandMOAH betweenpaperandfoodrangebetween1,000(crystalizedsugaror honey)and1(chocolateorchoppednuts).

6Discussion

Fromthepublishedresults,key findings,andinterpretations summarizedunder Sections4 and 5,severaldiscussionpointsarise, whicharepresentedinthefollowing,conciseway:

Standardmethodstoestimatethetransfertofoodsare extractswithwater(coldandhot),solvents(ethanoland isooctane),andmigrationtestingintoMPPO.Froma physical –chemicalpointofview,theextractsdetermine concentrationsatpartitioningequilibriuminwaterorsolvent. Thesestandardmethodshavebeenfoundtoholdpotentialfor overestimationand,insomecases,underestimationofmigration intofoods,eitherduetodifferencesinpartitioningcoef fi cientsof paperversusfoodorextractan tand/orbeingfarawayfrom reachingequilibriuminrealapplications.Therefore,the extractscannotbeconsideredtoreliablyrepresentthereal exposureoftheconsumerfrompaperfoodcontactmaterials inmostcases.However,onlyalittlestudyeffortsweremade towardwettingoraqueousandfattycontacts.

MigrationintoMPPOisusedforsimulatingdryfoods(EUfood contactmaterialsimulantE)andheatcontactinovenapplications. Forthelatter,therearedivergingprotocolsregardingthetest temperaturebetweenMemberStates,EUreferencelaboratories, andCouncilofEuropeTechnicalGuidethatwillneed harmonization.However,fortheevaluationofthesehightemperatureapplications,noscientificworkwasfound.Fora sounddecision,notonlyoventemperaturesbutalsotheusually lowertemperaturesatthedirectcontactareainrealbaking applicationsforlargefoodpieces(cakesandroast)ortheshorter timesatthesehightemperaturesforcookiesshouldbeconsidered. Furthermore,forsettingharmonizedtestconditions,temperature limitationstoMPPOshouldbetakenintoconsideration.At temperaturesof200°Candhigherandinthepresenceofoxygen fromair,MPPOstartstodegradeoxidatively,whichlimitsthe numberofpossiblereusesafterreconditioning.

Toexperimentallysimulatemigrationfrompaperintodry foods,thereisabroaddiscussioninthereviewedliteratureif MPPOissuitableatall,orsuitableunderwhichtestconditions. MPPOhasahighlyadsorptivepowerduetoitsporositywithalarge innersurfaceanditschemistry.IfcomparingMPPOanddryfoods

atidenticaltestconditions,MPPOoftenhighlyoverestimates migrationintofoodsbutmayalsobeinthesamerange (chocolate)orevenlesssevere(milkpowder).However,this conclusiondependsnotonlyonthepropertiesofthefoodbut alsoonthatofthesubstances,mainlythevolatility.Forroom temperatureapplications,migrationmayincreaseovermonthsor years,withoutreachingequilibrium.Thus,acceleratedtestsare necessary.However,becauseofthecompletelydifferenttransport mechanismofgasphasetransfer,desorption,andadsorptiononthe paper fibersincomparisontoplasticpolymers,anincreasein temperaturenotonlyacceleratesthediffusionratebutalso mobilizessubstancesoflowervolatilitythatwouldnotmigrateat detectableamountsatroomtemperature.Thecombinationofthe highadsorptivepowerofMPPOandaccelerationbyincreased temperatureinmanycasesleadstoahighoverestimationof migration,asshowninmanyofthereviewedpapers.The conclusionsdiffer:someappreciatetheconservative characteristics(VanDenHouweetal.,2018),whereasothers judgeMPPOasunsuitablebecauseoftheoverestimative characteristic(Zurfluhetal.,2013; Eicheretal.,2015).

Oneapproachtoovercomethisproblemistode fi neacertain time –temperatureconditionformigrationtests(e.g.,30minat 70 °Cforshort-termcontacts),whichcoversthemigrationinto foodinaslightlyoverestimatingway( Dimaetal.,2011 ).Such approacheswillneedagoodstatisticalbasis.Becauseofthe manifoldin fl uencefactorsonmigration,acertain time –temperatureconditionisexpectedtobevalidfora restrictedrangeofsubstancesandfoodapplications.Another approachistode fi neconventionaltransferratesintofoods (i.e.,typicalorworsecasepercentageofconcentrationin material)andanalyzethepapermaterial( Zur fl uhetal.,2013 ). Suchaconceptignoresthein fl uenceofthematerialthicknesson thetransferrate.Furthermore,andmoreimportantly,itwill impededevelopmentsfortheimplementationofbarrier propertieswithinthepapermakingprocess.Reductionfactors appliedtotheresultofmigrationintoMPPOareafurther possibility( Castle,2015 ).Fromcomparativedataofmigration intocertainfoodgroupsorstorageapplications,typical overestimatingfactorsofMPPOtestwerederivedand conservativefactorswerede fi ned,whichshallbeappliedfor theevaluationofMPPOtestresults.However,thismustbe differentiatedbasedonthevolatilityofthemigrating substanceandthetypeoffood.Simplereductionfactorswill betoocrude.Therefore, Bradleyetal.(2014) proposedfurther developmentofmodelingasthebettersolution.Adaptingthe geometryofthesimulanttothatoffoodsusingrodsinsteadof fi neparticulateadsorbentsisanexperimentalwaytoreducethe differencestorealfoods( FenglerandGruber,2022 )orusingreal foods( Eicheretal.,2015 ; VanDenHouweetal.,2018 ).

Acceptedandvalidatedmodels whichcansimulatethe migrationoutofpaperboardsintovariousfoodsconsidering thepropertiesofthesubstances,in fl uencesofhumidity,paper andfoodproperties,andtemperature willbeasolutionto overcomealltheseshortcomingsoftheexperimentaltests. However,thereisahighdemandforresearch.Inthewordsof Nguyen,themechanismsandrelationshipsarestillpoorly understood( Nguyenetal.,2017 ).Atroomtemperatureand below,anon-Fickianbehaviorwasmainlyobserved.Piringer

introducedavirtualsurfacelayertodescribetheexperimental databyFickiandiffusion( ZülchandPiringer,2010 ),allowingthe useofthesamesoftwareestablishedforplastics.Thediffusion coef fi cientsareestimatedfromasemiempiricalequationusing 95%con fi denceupperboundparameters.Thisandother statisticalapproaches(Weibullandpartialleastsquare regression)mightbeapplicablewaysforconformitytesting butwouldneedfurtherexplorationonapplicabilityoutside thedatasetsusedforestablishmentoftheparameters.The majorresearchfocusedonrelativelyvolatilesubstances ( SupplementaryTableS1 ).Fornon-volatilesandtransfer mechanismsotherthanthosevia thegasphase,onlylittle workispublished.

Forunderstandingtheimpactsofin fl uencingparameters, de fi ningoverestimatingparametersisnotsuf fi cient.Transport inthegasphaseoftheporesanddesorptionandadsorptionon the fi bersneedtobeconsidered.Thesehighlycomplex interactionscannotbesimplyderivedfromexperiments. However,initialstepsarealreadytaken: Hauderetal.(2013) implementedatermforthevaporpressure; Huangetal.(2013) introducedpaperporosityinthemodelingequation.For volatiles,therandomwalksimulationinthepores( Aurela andKetoja,2002 )willbeapplicablebutforlessvolatiles, adsorptionanddesorptiononthe fi berswillplayanonnegligiblerole.Computationalapproachesbymultivariate dataanalysisandneuronalnetworks,incombinationwith physicalconsiderations,arepromising.Thesecanhelp identifytheinterrelationsofvariousparametersandtestthe applicabilityofproposeddifferentialequationsandboundary conditionstoexperimentaldata.However,thetestedmodelsin Serebrennikovaetal.(2024) couldnotyetsuf fi cientlydescribe theprocessesanddemandforfurtherwork.

7Conclusion

Numerousscientificattemptshavebeenmade andarestill ongoing toexplorethedeficienciesareandthealternativescientific solutionstoovercometheshortcomingsofexistingtesting approachesanddatagaps.Thescientificeffortswerefocused,in the firstplace,onthetransferfrompaperintodryfoodsundertwo aspects:(i)howandunderwhichtime–temperatureconditions migrationintodryfoodscouldbesimulatedand(ii)whatwould beanappropriatemodeltosimulateandpredict migrationintofood.

Aspect(i):MPPOseemstobethemostsuitabledryfood simulantduetoitshighadsorptiveproperties,whichmakesita moreseveretestmediumthananydryfoodbutinmanycases,a toosevereone.Forspeci fi capplications,representativemodel foodslikepolentaoradsorbingrodsmayserveasoptions. However,whenitcomestothechoiceoftime –temperature contactconditions,thereisnotenoughclarityandtargeted precisiontomatchexactlyor,atleast,verycloselythefood contactapplicationtobesimulated.Severaloptionsarediscussed butageneralapproachseemstobedif fi cult.Mostofthemare relatedtospeci fi csubstancegroupsorvolatilityrangesand applications.Itneedstobeexploredifthehumidity conditionsintheexperimentsneedtobede fi nedornot,and

ifyes,thenatwhichlevel.Fromalegalcompliancepointofview, harshandveryseveretime –temperatureconditionscanbe selected,buttheresultsarelikelytoallowonlyprovingbut notdisapprovingcomplianceandthereforeunnecessarily disqualifypaperfoodcontactmaterials.Estimationof exposurewouldfailanyway.

Aspect(ii):Outofthedifferentmodelingapproaches,a physical–chemicalmodelbasedontheknowledgeofthe underlyingmasstransportmechanismsandprocesses,aswellas onthedeterminingparameters,suchasdiffusionconstantsand partitioncoefficients,are,inouropinion,themostpromisingand sustainableapproach.However,thereisalackofqualitativeand quantitativeunderstandingofthefactorsanddeterminantsof transportandpartitioningprocessesinandfrompaper.For complianceevaluations,itwillbeadvantageousiftheplastics modelcanserveastheformattobeadaptedtopaperalongwith themainpaper-relatedcharacteristics,inwhichthevaporpressure ofmigrantsplaysanimportantrole,aswasfoundinalmostall studies.Forunderstandingtheprocesses,modelsmustbemore complex.Towardwettingorfattycontact,moreresearchis alsoneeded.

Overall,thepublishedscientificdataandcollectiveknowledgein thisarea,alongwithmodernmoleculardynamicsscience,forma promisingsolidbasisforfutureworkto filltheopendatagapsand generatetheneededknowledge,thusendingupwithamigration modelofbroadapplicabilityandgeneralacceptance.

Authorcontributions

AS:Conceptualization,fundingacquisition,writing–original draft,andwriting–reviewandediting.LH:Fundingacquisition andwriting–originaldraft.RF:Conceptualizationand writing–originaldraft.

References

Aurela,B.,andKetoja,J.A.(2002).Diffusionofvolatilecompoundsin fibrenetworks: experimentsandmodellingbyrandomwalksimulation. FoodAddit.Contam. 19, 56–62.doi:10.1080/02652030110083711

Aurela,B.,Kulmala,H.,andSoderhjelm,L.(1999).Phthalatesinpaperandboard packagingandtheirmigrationintotenaxandsugar. FoodAddit.Contam. 16,571–577. doi:10.1080/026520399283713

Baele,M.,Vermeulen,A.,Claes,M.,Ragaert,P.,andDeMeulenaer,B.(2020). Migrationofsurrogatecontaminantsfrompaperboardtofoods:effectoffoodand surrogateproperties. FoodAddit.Contam.PartA 37,2165–2183.doi:10.1080/ 19440049.2020.1778184

Barnkob,L.L.,andPetersen,J.H.(2013).Effectofrelativehumidityonthe migrationofbenzophenonefrompaperboardintothefoodsimulantTenax ® and modellinghereof. FoodAddit.Contam.PartA 30,395 –402.doi:10.1080/19440049. 2012.741717

Begley,T.,Castle,L.,Feigenbaum,A.,Franz,R.,Hinrichs,K.,Lickly,T.,etal. (2005).Evaluationofmigrationmodelsthatmightbeusedinsupportof regulationsforfood-contactplastics. FoodAddit.Contam. 22,73 –90.doi:10. 1080/02652030400028035

Begley,T.H.,Hsu,W.,Noonan,G.,andDiachenko,G.(2008).Migrationof fl uorochemicalpaperadditivesfromfood-contactpaperintofoodsandfood simulants. FoodAddit.Contam.PartA 25,384 –390.doi:10.1080/ 02652030701513784

Beldi,G.,Senaldi,C.,Robouch,P.,andHoekstra,E.(2023). Testingconditionsfor kitchenwarearticlesincontactwithfoodstuffs:plastics,metals,siliconeandRubber, paperandboard-theEURL-FCMharmoisedapproachseries,” in JRCtechnicalreport (Luxembourg:PublicatonsOfficeoftheEuropeanUnion).doi:10.2760/80698

Funding

Theauthorsdeclarethat financialsupportwasreceivedforthe research,authorship,and/orpublicationofthisarticle.Thework waspartlyfundedbyIndustrievereinigungLebensmitteltechnologie undVerpackung,85354Freising(www.ivlv.org withinIVLVproject “Migrationfrompaperandboard2”).Projectcanbefoundin projectdatabase https://www.ivlv.org/en/project/migration-frompaper-and-board-2/

Conflictofinterest

Theauthorsdeclarethattheresearchwasconductedinthe absenceofanycommercialor financialrelationshipsthatcouldbe construedasapotentialconflictofinterest.

Publisher’snote

Allclaimsexpressedinthisarticlearesolelythoseoftheauthorsand donotnecessarilyrepresentthoseoftheiraffiliatedorganizations,or thoseofthepublisher,theeditors,andthereviewers.Anyproductthat maybeevaluatedinthisarticle,orclaimthatmaybemadebyits manufacturer,isnotguaranteedorendorsedbythepublisher.

Supplementarymaterial

TheSupplementaryMaterialforthisarticlecanbefoundonline at: https://www.frontiersin.org/articles/10.3389/fchem.2024.1397913/ full#supplementary-material

SUPPLEMENTARYTABLES1 Substancesusedinpapermigrationstudies.

BfR(2015). “UntersuchungderStoffübergängevonBedarfsgegenständenausPapier, KartonundPappe.LeitfadendesBfRvom26, in Methodensammlungzur UntersuchungvonPapier,KartonundPappefürdenLebensmittelkontakt

BfR(2022a). “1AllgemeineMethodenzurUntersuchungvonPapier,Kartonund Pappe1.2HerstellungeinesKaltwasserextraktes,” in Methodensammlungzur UntersuchungvonPapier,KartonundPappefürdenLebensmittelkontakt

BfR(2022b). “ 1.AllgemeineMethodenzurUntersuchungvonPapier, KartonundPappe.1.3HerstellungeinesHeißwasserextraktes, ” in MethodensammlungzurUntersuchungvonPapier,KartonundPappefürden Lebensmittelkontakt

Biedermann,M.,andGrob,K.(2010).Isrecyclednewspapersuitableforfoodcontact materials?Technicalgrademineraloilsfromprintinginks. Eur.FoodRes.Technol. 230, 785–796.doi:10.1007/s00217-010-1223-9

Biedermann,M.,andGrob,K.(2012).On-linecoupledhighperformance liquidchromatography –gaschromatographyfortheanalysisofcontamination bymineraloilPart2:migrationfrompaperboardintodryfoods:interpretation ofchromatograms. J.Chromatogr.A 1255,76 –99.doi:10.1016/j.chroma.2012. 05.096

Biedermann,M.,andGrob,K.(2013).Assuranceofsafetyofrecycledpaperboardfor foodpackagingthroughcomprehensiveanalysisofpotentialmigrantsisunrealistic. J.Chromatogr.A 1293,107–119.doi:10.1016/j.chroma.2013.04.009

Biedermann,M.,Ingenhoff,J.-E.,Dima,G.,Zur fl uh,M.,Biedermann-Brem, S.,Richter,L.,etal.(2013a).Migrationofmineraloilfromprintedpaperboard intodryfoods:surveyoftheGermanmarketPartII:advancementofmigration duringstorage. Eur.FoodRes.Technol. 236,459 –472.doi:10.1007/s00217-0121909-2

Biedermann,M.,Ingenhoff,J.-E.,Zurfluh,M.,Richter,L.,Simat,T.,Harling,A.,etal. (2013b).Migrationofmineraloil,photoinitiatorsandplasticisersfromrecycled paperboardintodryfoods:astudyundercontrolledconditions. FoodAddit. Contam.PartA 30,885–898.doi:10.1080/19440049.2013.786189

BMEL(2022a) EinschwarzerTagfürdenVerbraucherschutz(16Dez2022) BundesministeriumfürErnährungundLandwirtschaft(Deutschland).Availableat: https://www.bmel.de/SharedDocs/Meldungen/DE/Presse/2022/221216-mineraloelbelastungen.html

BMEL(2022b). “VerordnungdesBundesministeriumfürErnährungund Landwirtschaft:ZweiundzwanzigsteVerordnungzurÄnderungder(notsetinto force!),” in BundesratDrucksache,390/22.(19.08.229).(Germany).

Bradley,E.L.,Castle,L.,andSpeck,D.R.(2014).Modelstudiesofmigrationfrom paperandboardintofruitandvegetablesandintoTenaxasafoodsimulant. FoodAddit. Contam.PartA 31,1301–1309.doi:10.1080/19440049.2014.914633

Bradley,E.L.,Castle,L.,andSpeck,D.R.(2015).Acomparisonofthemigrationof ‘spiked’ and ‘intrinsic’ substancesfrompaperandboardintoraisinsandintotenaxasa foodsimulant. Packag.Technol.Sci. 28,509–517.doi:10.1002/pts.2117

Canavar,Ö.,Kappenstein,O.,andLuch,A.(2018).Theanalysisofsaturatedand aromaticmineraloilhydrocarbonsindryfoodsandfromrecycledpaperboardpackages byonlineHPLC–GC–FID. FoodAddit.Contam.PartA 35,2471–2481.doi:10.1080/ 19440049.2018.1543955

Castle,L.(2015). “SystematicderivationofCorrectionFactors(CFs)torelate chemicalmigrationlevelsfrompaperandboardintofoods,withthemigrationor extractionvaluesobtainedusingfoodsimulantsorsolvents,” in Cepi.Orginal2014, 2015modifiedafterCEPIreview.Brussels:CEPIPublications.

Castle,L.,andFranz,R.(2003) EU-projectFAIR-CT98-4318 ”recyclability”."Programmeon therecyclabilityoffoodpackagingmaterialswithrespecttofoodsafetyconsiderationspolyethyleneterephthalate(PET),paperandboardandplasticscoveredbyfunctionalbarriers Section2.PaperandBoard.Consolidatedprojectreportfortheperiod01-01-99to30-04-02.

CEN(1993a) EN645:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofacoldwaterextract

CEN(1993b) EN647:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofahotwaterextract

CEN(2002a) EN1186-13:2002Materialsandarticlesincontactwithfoodstuffsplastics-Part13Testmethodsforoverallmigrationathightemperatures

CEN(2002b) TechnicalSpecificationCEN/TS14234:2002Materialsandarticlesin contactwithfoodstuffs-polymericcoatingsonpaperandboard-guidetoselectionof conditionsandtestmethodsforoverallmigration

CEN(2003) EN14338:paperandboardintendedtocomeintocontactwithfoodstuffsconditionsfordeterminationofmigrationfrompaperandboardusingmodified polyphenyleneoxide(MPPO)asasimulant

CEN(2007) EN15519:paperandboardintendedtocomeintocontactwithfoodstuffspreparationofaorganicsolventextract

CEN(2019) EN17163:2019Pulp,paperandboard – determinationofprimary aromaticamines(PAA)inawaterextractbyaLC-MSmethod

Cepi(2023) AChecklistforEUClimateandEnergyPolicies-thewayforwardforthe pulpandpaperindustry.Availableat: https://www.cepi.org/a-checklist-for-eu-andclimate-policies/:ConfederationofEuropeanPaperIndustries Cepi2019(2021). “Foodcontactguidelinesforthecomplianceofpaperandboard materialsandarticles(03/2019);corrigendum(02/2021),” inCEPIpositionpaper. ConfederationofEuropeanpaperindustries

CoE(2020) ResolutionCM/Res(2020)9onthesafetyandqualityofmaterialsand articlesforcontactwithfood(AdoptedbytheCommitteeofMinisterson7October 2020atthe1385thmeetingoftheMinisters’ Deputies).Strasbourg:CouncilofEurope, CommitteeofMinisters.Availableat: https://rm.coe.int/09000016809fe04a CoE(2021).Paperandboardusedinfoodcontactmaterialsandarticles.Availableat: https://freepub.edqm.eu/publications/:EuropeanDirectoratefortheQualityofMedicines& HealthCareoftheCouncilofEurop e(EPDQM),EuropeanCommitteef orFoodContact MaterialsandArticles(CD-P-MCA) Commission,European(2024a).ChemicalsStrategy:theEU’schemicalstrategyfor sustainabilitytowardsatoxic-freeenvironment.Availableat: https://environment.ec. europa.eu/strategy/chemicals-strategy_en (AccessedFebruary12,2014).

Commission,European(2024b).TheEuropeangreendeal.Availableat: https:// commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-greendeal_en (AccessedFebruary12,2014).

Conchione,C.,Picon,C.,Bortolomeazzi,R.,andMoret,S.(2020).Hydrocarbon contaminantsinpizzaboxesfromtheItalianmarket. FoodPackag.ShelfLife 25,100535. doi:10.1016/j.fpsl.2020.100535

Crank,J.(1975) Themathematicsofdiffusion.Oxford:OxfordUniversityPress. Deshwal,G.K.,Panjagari,N.R.,andAlam,T.(2019).Anoverviewofpaperandpaper basedfoodpackagingmaterials:healthsafetyandenvironmentalconcerns. J.FoodSci. Technol. 56,4391–4403.doi:10.1007/s13197-019-03950-z

Dima,G.,Verzera,A.,andGrob,K.(2011).Migrationofmineraloilfromparty platesofrecycledpaperboardintofoods:1.Isrecycledpaperboard fi tforthe

purpose?2.Adequatetestingprocedure. FoodAddit.Contam.PartA 28, 1619 –1628.doi:10.1080/19440049.2011.590457

EC(2023).Europieancommissionfood,farming, fisheries-foodsafety:contaminants catalogue-mineraloilhydrocarbons(MOH).Availableat: https://food.ec.europa.eu/ safety/chemical-safety/contaminants/catalogue_en (AccessedMarch06,2024).

EFSA(2012a)ReportofESCOWGonnon-plasticfoodcontactmaterials. EFSA SupportingPublications,EN-139.doi:10.2903/sp.efsa.2011.EN-139

EFSA(2012b).ScientificOpiniononExploringoptionsforprovidingadviceabout possiblehumanhealthrisksbasedontheconceptofThresholdofToxicological Concern(TTC). EFSAJ. 10,103.doi:10.2903/j.efsa.2012.2750

Eicher,A.,Biedermann,M.,Zurfluh,M.,andGrob,K.(2015).Migrationby ‘direct’ or ‘indirect’ foodcontact? ‘Dry’ and ‘wetting’ foods?Experimentaldatafor ‘touching’ contactofdryfoodswithpaperandboard. FoodAddit.Contam.PartA 32,110–119. doi:10.1080/19440049.2014.975753

EP(2016).P8_TA(2016)0384Europeanparliamentresolutionof6october2016on theimplementationofthefoodcontactmaterialsregulation(EC)No1935/2004(2015/ 2259(INI)). OfficialJ.Eur.Union 19(6),215/57–64.

EU(2004).REGULATION(EC)No1935/2004OFTHEEUROPEAN PARLIAMENTANDOFTHECOUNCILof27October2004onmaterialsand articlesintendedtocomeintocontactwithfoodandrepealingDirectives80/590/ EECand89/109/EEC. OfficialJ.Eur.Union

EU(2006).COMMISSIONREGULATION(EC)No2023/2006of22December 2006ongoodmanufacturingpracticeformaterialsandarticlesintendedtocomeinto contactwithfood. OfficialJ.Eur.Union

EU(2011).COMMISSIONREGULATION(EU)No10/2011of14January2011on plasticmaterialsandarticlesintendedtocomeintocontactwithfood. OfficialJ.Eur. Union

EU(2023).Consolidatedtext:COMMISSIONREGULATION(EU)No10/2011of 14January2011onplasticmaterialsandarticlesintendedtocomeintocontactwith food.Availableat: https://eur-lex.europa.eu/eli/reg/2011/10/2023-08-31

Fengler,R.,andGruber,L.(2022).Migrationofmineraloilhydrocarbonsfrom contaminatedpaperboardintothefoodsimulantsTenaxandSorb-Star acomparison. Packag.Technol.Sci. 35,603–620.doi:10.1002/pts.2671

Fengler,R.,Gruber,L.,Kirse,C.,andSchmidt,P.(2019).AbschlussberichtzuAiF 19016N-MessungundVorhersagederMigrationvonMineralölkomponenten(MOH) ausVerpackungeninLebensmittelalsBeitragzurMinimierungderKontamination. Availableat: https://www.fei-bonn.de/gefoerderte-projekte/projektdatenbank/aif19016-n.projekt

Gärtner,S.,Balski,M.,Koch,M.,andNehls,I.(2009).Analysisandmigrationof phthalatesininfantfoodpackedinrecycledpaperboard. J.Agric.FoodChem. 57, 10675–10681.doi:10.1021/jf902683m

Geueke,B.,Groh,K.,andMuncke,J.(2018).Foodpackaginginthecirculareconomy: overviewofchemicalsafetyaspectsforcommonlyusedmaterials. J.Clean.Prod. 193, 491–505.doi:10.1016/j.jclepro.2018.05.005

Grob,K.(2022).Howtomaketheuseofrecycledpaperboard fitforfoodcontact?A contributiontothediscussion. FoodAddit.Contam.PartA 39,198–213.doi:10.1080/ 19440049.2021.1977853

Gruber,L.,Fengler,R.,Franz,R.,Welle,F.,Briesen,H.,Kirse,C.,etal.(2019) GuidelinefortheasessmentofMOSH/MOAHmigrationfrompackagingintofoodwith theaimofminimization.Berlin:BundfürLebensmittelkundeundLebensmitelkunde. V.BLL.Availableat: https://www.fei-bonn.de/download/leitlinie-moh-minimierungengl.pdf

Gruner,A.,andPiringer,O.G.(1999).Componentmigrationfromadhesivesusedin paperandpaperboardpackagingforfoodstuffs. Packag.Technol.Sci. 12,19–28.doi:10. 1002/(sici)1099-1522(199901/02)12:1<19::aid-pts445>3.0.co;2-3

Guazzotti,V.,Limbo,S.,Piergiovanni,L.,Fengler,R.,Fiedler,D.,andGruber,L. (2015).Astudyintothepotentialbarrierpropertiesagainstmineraloilsofstarch-based coatingsonpaperboardforfoodpackaging. FoodPackag.ShelfLife 3,9–18.doi:10.1016/ j.fpsl.2014.09.003

Haack,G.(2006) UntersuchungenzuWechselwirkungenzwischenLebensmittelverpackungen aufKartonbasismitderenFüllgütern – BestimmungundAbschätzungvon VerteilungskoeffizientenzwischenKartonsundLebensmittel(simulantien).München:TU München.Availableat: https://mediatum.ub.tum.de/603778

Han,B.,Ding,L.,Su,R.,Chen,L.,Wang,L.,Qi,W.,etal.(2016).Migrationof photoinitiatorsfrompapertofattyfoodsimulants:experimentalstudiesandmodel application. FoodAddit.Contam.PartA 33,876–884.doi:10.1080/19440049.2016.1166524

Hauder,J.,Benz,H.,Rüter,M.,andPiringer,O.G.(2013).Thespecificdiffusion behaviourinpaperandmigrationmodellingfromrecycledboardintodryfoodstuffs. FoodAddit.Contam.PartA 30,599–611.doi:10.1080/19440049.2012.762605

Hoekstra,E.,Brandsch,R.,Dequatre,C.,Mercea,P.,Milana,M.-R.,Störmer,A.,etal. (2015) Practicalguidelinesontheapplicationofmigrationmodellingfortheestimationof specificmigration

Huang,C.-X.,Duan,D.-D.,Yan,M.-M.,andWang,S.-F.(2013).Migrationprediction modelofresidualcontaminantsfromfoodpackagingpaperanditsexperimental verification. Packag.Technol.Sci. 26,59–69.doi:10.1002/pts.2005

Jaén,J.,Domeño,C.,Úbeda,S.,Aznar,M.,andNerín,C.(2022).Migrationofmineral oilaromatichydrocarbons(MOAH)fromcardboardcontainerstodryfoodand predictiontool. Foodcontrol. 138,109016.doi:10.1016/j.foodcont.2022.109016

Jickells,S.M.,Poulin,J.,Mountfort,K.A.,andFernandez-Ocana,M.(2005). Migrationofcontaminantsbygasphasetransferfromcartonboardandcorrugated boardboxsecondarypackagingintofoods. FoodAddit.Contam. 22,768–782.doi:10. 1080/02652030500151992

Koster,S.,Bani-Estivals,M.-H.,Buonumo,M.,Bradley,E.L.,Chagnon,M.-C.,Garcia, L.,etal.(2015). “GuidanceonthebestpracticesontheriskassessmentofNon IntentionallyAddedSubstances(NIAS)infoodcontactmaterialsandarticles,” in ILSIEuropereportseries (Brussels:InternationalLifeSciencesInstitute(ILSI),ILSI EuropePackagingMaterialsTaskForce).

Kourkopoulos,A.,Sijm,D.T.H.M.,andVrolijk,M.F.(2022).Currentapproaches andchallengesofsamplepreparationproceduresforthesafetyassessmentofpaperand cardboardfoodcontactmaterials:acomprehensivereview. Compr.Rev.FoodSci.Food Saf. 21,4108–4129.doi:10.1111/1541-4337.13009

Laine,C.,Pitkänen,M.,Ohra-Aho,T.,Gestranius,M.,andKetoja,J.A.(2016).Noveltest approachforevaluatingandmodellingbarrierpropertiesoffoodcontactmaterialsagainst mineraloilcontaminants. Packag.Technol.Sci. 29,571–583.doi:10.1002/pts.2239

Leeman,W.,andKrul,L.(2015).Non-intentionallyaddedsubstancesinfoodcontact materials:howtoensureconsumersafety. Curr.Opin.FoodSci. 6,33–37.doi:10.1016/j. cofs.2015.11.003

Lestido-Cardama,A.,Störmer,A.,andFranz,R.(2020).Dialkylketonesin paperboardfoodcontactmaterials-methodofanalysisinfattyfoodsand comparativemigrationintoliquidsimulantsversusfoodstuffs. Molecules 25, 915.doi:10.3390/molecules25040915

Lorenzini,R.,Biedermann,M.,Grob,K.,Garbini,D.,Barbanera,M.,andBraschi,I. (2013).Migrationkineticsofmineraloilhydrocarbonsfromrecycledpaperboardtodry food:monitoringoftworealcases. FoodAddit.Contam.PartA 30,760–770.doi:10. 1080/19440049.2013.766765

Lorenzini,R.,Fiselier,K.,Biedermann,M.,Barbanera,M.,Braschi,I.,andGrob,K. (2010).Saturatedandaromaticmineraloilhydrocarbonsfrompaperboardfood packaging:estimationoflong-termmigrationfromcontentsinthepaperboardand dataonboxesfromthemarket. FoodAddit.Contam.PartAChem.Analysis,Control, Expo.RiskAssess. 27,1765–1774.doi:10.1080/19440049.2010.517568

Mercea,P.(2008). “Modelsfordiffusioninpolymers,” in Plasticpackaging: interactionswithfoodandpharmaceuticals EditorsO.G.PiringerandA.L.Baner2 (WeinheimWiley-VCH),123–162.

Mercea,P.V.,Kalisch,A.,Ulrich,M.,Benz,H.,Piringer,O.G.,Toşa,V.,etal.(2018). Modellingmigrationofsubstancesfrompolymersintodrinkingwater.Part1-diffusion coefficientestimations. Polym.Test. 65,176–188.doi:10.1016/j.polymertesting.2017. 11.025

Merkel,S.,Kappenstein,O.,Sander,S.,Weyer,J.,Richter,S.,Pfaff,K.,etal.(2018). Transferofprimaryaromaticaminesfromcolouredpapernapkinsintofourdifferent foodmatricesandintocoldwaterextracts. FoodAddit.Contam.PartA 35,1223–1229. doi:10.1080/19440049.2018.1463567

Nerin,C.,Bourdoux,S.,Faust,B.,Gude,T.,Lesueur,C.,Simat,T.,etal.(2022). Guidanceinselectinganalyticaltechniquesforidentificationandquantificationofnonintentionallyaddedsubstances(NIAS)infoodcontactmaterials(FCMS). FoodAddit. Contam.PartA-Chem.AnalysisControlExpo.RiskAssess. 39,620–643.doi:10.1080/ 19440049.2021.2012599

Nerín,C.,Contín,E.,andAsensio,E.(2007).KineticmigrationstudiesusingPorapak assolid-foodsimulanttoassessthesafetyofpaperandboardasfood-packaging materials. Anal.Bioanal.Chem. 387,2283–2288.doi:10.1007/s00216-006-1080-3

Nguyen,P.M.,Goujon,A.,Sauvegrain,P.,andVitrac,O.(2013).Acomputer-aided methodologytodesignsafefoodpackagingandrelatedsystems. AIChEJ. 59, 1183–1212.doi:10.1002/aic.14056

Nguyen,P.-M.,Julien,J.M.,Breysse,C.,Lyathaud,C.,Thébault,J.,andVitrac,O. (2017).ProjectSafeFoodPackDesign:casestudyonindirectmigrationfrompaperand boards. FoodAddit.Contam.PartA 34,1703–1720.doi:10.1080/19440049.2017. 1315777

Oldring,P.,Faust,B.,Gude,T.,Lesueur,C.,Simat,T.,Stoermer,A.,etal.(2023). “An overviewofapproachesforanalysingNIASfromdifferentFCMs,” in ILSIEuropereport series(blackandwhitereport) (Brussels:Zenodo).doi:10.5281/zenodo.7801292

Pan,J.J.,Chen,Y.F.,Zheng,J.G.,Hu,C.,Li,D.,andZhong,H.N.(2021).Migration ofmineraloilhydrocarbonsfromfoodcontactpapersintofoodsimulantsand extractionfromtheirrawmaterials. FoodAddit.Contam.PartAChem.Anal. ControlExpo.RiskAssess. 38,870–880.doi:10.1080/19440049.2021.1891300

Piringer,O.,Wolff,E.,andPfaff,K.(1993).Useofhightemperature-resistant sorbentsassimulantsfortesting. FoodAddit.Contam. 10,621–629.doi:10.1080/ 02652039309374189

Piringer,O.G.(2008).Predictionofdiffusioncoefficientsinplasticmaterials. Rev. Chim. 59,1186–1189.doi:10.37358/rc.08.11.1996

Pivnenko,K.,Eriksson,E.,andAstrup,T.F.(2015).Wastepaperforrecycling: overviewandidentificationofpotentiallycriticalsubstances. WasteManag. 45, 134–142.doi:10.1016/j.wasman.2015.02.028

Poças,M.D.F.,Oliveira,J.C.,Pereira,J.R.,Brandsch,R.,andHogg,T.(2011). Modellingmigrationfrompaperintoafoodsimulant. Foodcontrol. 22,303–312.doi:10. 1016/j.foodcont.2010.07.028

Raffael,B.,andSimoneau,C.(2002) Proceedingsofthe finalEUProjectworkshop FAIRCT-98-4318 “Recyclabilityoffoodpackagingmaterialswithrespecttofoodsafety considerations:polyethyleneterephthalate(PET),paperandboardandplasticscovered byfunctionalbarriers”

Roduit,B.,Borgeat,C.H.,Cavin,S.,Fragniere,C.,andDudler,V.(2005).Application ofFiniteElementAnalysis(FEA)forthesimulationofreleaseofadditivesfrom multilayerpolymericpackagingstructures. FoodAddit.Contam. 22,945–955. doi:10.1080/02652030500323997

Serebrennikova,A.,Teubler,R.,Hoffellner,L.,Leitner,E.,Hirn,U.,andZojer,K. (2022).Transportoforganicvolatilesthroughpaper:physics-informedneuralnetworks forsolvinginverseandforwardproblems. Transp.PorousMedia 145,589–612.doi:10. 1007/s11242-022-01864-7

Serebrennikova,A.,Teubler,R.,Hoffellner,L.,Leitner,E.,Hirn,U.,andZojer,K. (2024).Physicsinformedneuralnetworksrevealvalidmodelsforreactivediffusionof volatilesthroughpaper. Chem.Eng.Sci. 285,119636.doi:10.1016/j.ces.2023.119636

Simoneau,C.,Raffael,B.,Garbin,S.,Hoekstra,E.,Mieth,A.,AlbertoLopes,J.F.,etal. (2016) Non-harmonisedfoodcontactmaterialsintheEU:regulatoryandmarket situation:baselinestudy: finalreport

Sturaro,A.,Rella,R.,Parvoli,G.,Ferrara,D.,andTisato,F.(2006).Contaminationof dryfoodswithtrimethyldiphenylmethanesbymigrationfromrecycledpaperandboard packaging. FoodAddit.Contam. 23,431–436.doi:10.1080/02652030500526052

Summerfield,W.,andCooper,I.(2001).Investigationofmigrationfrompaperand boardintofood-developmentofmethodsforrapidtesting. FoodAddit.Contam. 18, 77–88.doi:10.1080/02652030010004674

Technavio(2023).Foodcontactpapermarketbymaterial,typeandgeographyforecastandanalysis2023-2027.Availableat: https://www.technavio.com/report/foodcontact-paper-market-industry-analysis (AccessedFebruary12,2024).

Tosa,V.,Kovacs,K.,Mercea,P.,andPiringer,O.G.(2008). A finitedifference methodformodelingmigrationofimpuritiesinmultilayersystems,” in Numerical analyisisandappliedmathematics,internationalconference2008 EditorsT.F.Simos, G.Psihoyios,andC.Tsitouras(AmericanInstituteofPhysics),802–805.

Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2002).Migration studiesfromrecycledpaperpackagingmaterials:developmentofananalyticalmethod forrapidtesting. Anal.Chim.Acta 467,253–260.doi:10.1016/s0003-2670(02)00189-7

Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2005).Determination ofpartitionbehavioroforganicsurrogatesbetweenpaperboardpackagingmaterialsand air. J.Chromatogr.A 1077,74–79.doi:10.1016/j.chroma.2005.04.061

Triantafyllou,V.I.,Akrida-Demertzi,K.,andDemertzis,P.G.(2007).Astudyonthe migrationoforganicpollutantsfromrecycledpaperboardpackagingmaterialstosolid foodmatrices. FoodChem. 101,1759–1768.doi:10.1016/j.foodchem.2006.02.023

Urbelis,J.H.,andCooper,J.R.(2021).Migrationoffoodcontactsubstancesintodry foods:areview. FoodAddit.Contam.PartA 38,1044–1073.doi:10.1080/19440049. 2021.1905188

VanDenHouwe,K.,VanLoco,J.,Lynen,F.,andVanHoeck,E.(2018).Theuseof Tenax® asasimulantforthemigrationofcontaminantsindryfoodstuffs:areview. Packag.Technol.Sci. 31,781–790.doi:10.1002/pts.2320

Vollmer,A.,Biedermann,M.,Grundböck,F.,Ingenhoff,J.-E.,Biedermann-Brem,S.,Altkofer, W.,etal.(2011).Migrationofmineraloilfromprintedpaperboardintodryfoods:surveyofthe Germanmarket. Eur.FoodRes.Technol. 232,175–182.doi:10.1007/s00217-010-1376-6

Welle,F.(2013).Anewmethodforthepredictionofdiffusioncoefficientsinpoly(ethylene terephthalate). J.Appl.Polym.Sci. 129,1845–1851.doi:10.1002/app.38885

Wellenreuther,F.,Detzel,A.,Krüger,M.,andBusch,M.(2022). “"Updatedlife-cycle assessmentofgraphicandtissuepaper-spotlightreport,” inTEXTE. Umweltbundesamt(Germanenvironmentagency)

Wolf,N.,Hoyer,S.,andSimat,T.J.(2023).Effectofrelativehumidityonthe desorptionofodour-activevolatileorganiccompoundsfrompaperandboard:sensory evaluationandmigrationtoTenax® FoodAddit.Contam.PartA 40,1096–1113.doi:10. 1080/19440049.2023.2238845

Zabaleta,I.,Blanco-Zubiaguirre,L.,Baharli,E.N.,Olivares,M.,Prieto,A.,Zuloaga, O.,etal.(2020).Occurrenceofper-andpolyfluorinatedcompoundsinpaperandboard packagingmaterialsandmigrationtofoodsimulantsandfoodstuffs. FoodChem. 321, 126746.doi:10.1016/j.foodchem.2020.126746

Zhang,K.,Noonan,G.O.,andBegley,T.H.(2008).Determinationof2,6diisopropylnaphthalene(DIPN)andn-dibutylphthalate(DBP)infoodandpaper packagingmaterialsfromUSmarketplaces. FoodAddit.Contam.PartA 25, 1416–1423.doi:10.1080/02652030802163380

Zülch,A.,andPiringer,O.(2010).Measurementandmodellingofmigrationfrom paperandboardintofoodstuffsanddryfoodsimulants. FoodAddit.Contam.PartA 27, 1306–1324.doi:10.1080/19440049.2010.483693

Zurfluh,M.,Biedermann,M.,andGrob,K.(2013).Simulationofthemigrationof mineraloilfromrecycledpaperboardintodryfoodsbyTenax? FoodAddit.Contam. PartA 30,909–918.doi:10.1080/19440049.2013.790089

FROM

Volume 10, Number 3, 2024

PAPERmaking!

Heart-healthy diet: 8 steps to prevent heart disease

Paper Technology

International® PITA Annual Review

Essential Guide to Aqueous Coating

Volume 10, Number 3, 2024

FRUITS AND VEGETABLES TO CHOOSE

FRUITS AND VEGETABLES TO LIMIT

GRAIN PRODUCTS TO CHOOSE

Volume 10, Number 3, 2024

GRAIN PRODUCTS TO LIMIT OR

AVOID

WHITE, REFINED FLOUR.

FATS TO CHOOSE

FATS TO LIMIT

Volume 10, Number 3, 2024

PROTEINS TO CHOOSE

PROTEINS TO LIMIT OR AVOID

Volume 10, Number 3, 2024

LOW-SODIUM ITEMS TO CHOOSE

HIGH-SODIUM ITEMS TO LIMIT OR AVOID

FROM

Volume 10, Number 3, 2024

PAPERmaking!

Negotiation Skills?

1. Create lasting relationships

2. Offer long-term actionable solutions 3. Avoid future issues

4. Improve reputation

5. Deliver value

1. Active listening

2. Emotional intelligence 3. Specific questions 4. Planning 5. Adaptability

Integrity 7. Communication

8. Patience 9. Problem-solving 10. Decision-making

FROM

Volume 10, Number 3, 2024

PAPERmaking!

Secret Windows Keyboard Shortcuts

Technology International® PITA Annual Review Essential Guide to Aqueous Coating

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Volume 10, Number 3, 2024

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Installed quickly – time saved

Compact design – space saved

Strong in use – productivity increased

Volume 10, Number 3, 2024

Safety locking device PSENmlock mini in detail

Volume 10, Number 3, 2024

Safeguarding of swing gates and sliding gates with PSENslock 2

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

CALENDAR OF EVENTS – 2025

PITA TRAINING COURSES

Cristina Lugli

Food Contact (1 day)

11 Feb.

This course will focus on the scenario of paper and board materials and articles for Food Contact (P&B FCMs), and it is intended specifically for all operators along the paper and board supply chain: producers, converters and retailers; providing essential training for operators who wish to develop a better understanding of technical and legislative requirements in the Food Contact materials market

Jo Thorne

EPR Permits (1 day)

15 Oct.

This intensive one-day course will provide an understanding of the environmental impacts of paper making within the UK and the applicable regulatory landscape. It covers the day-to-day practicalities of compliance with these regulatory requirements, specifically including Best Available Techniques for minimising environmental impact, covering areas such as environmental management systems, waste management, control of emissions to air and water, and water abstraction/efficiency, Climate Change Adaptation and Fire Prevention Planning.

Ian Padley

Modern Papermaking (2 days)

TBA

This two-day course will provide an introduction to papermaking in the 21st Century. The course will be of relevance to any paper industry operative or supplier – no previous academic knowledge required. The course will cover all the basics: from fibres, and how they are treated and prepared; to papermachines and how they transform these fibres into the paper web. Ancillary services are also looked at in relation to papermaking, along with an introduction to finishing and converting practices

Mark Smith

Introduction to Wet End Chemistry (2 days)

TBA

This essential course provides an understanding of how colloidal materials can be used and controlled to give you desired paper properties and improved paper machine efficiency. Vital knowledge for anyone operating a paper machine.

Papierzentrum Gernsback

Fundamentals of Papermaking (2½)

TBA

This course provides a fast-track introduction to papermaking (limited to operations between ‘Mixing Chest’ & ‘Reel up’). The intention is to raise the knowledge of process, technician & support staff to an intermediate level or shared understanding regarding modern Paper Machine Operations

We also have the possibility of running the following courses, if there is sufficient interest expressed by companies or individuals (please email daven@pita.org.uk):

Peter Luimes

Fundamentals of Wastewater Treatment (2 days)

This course will focus on optimising biological treatment plants to meet BAT, reduce operating costs and generate revenue. The course will be of relevance to any paper industry site operating or considering investment in an activated sludge plant, a biological filter or anaerobic digestion plant. BAT8 covers the monitoring of ‘key process parameters and of emissions to water and air’. Make sure you are ready for it with this course!

Ian Padley

Paper Appreciation (1 day)

This course is aimed at new-starters to the paper industry, and not necessarily those working in production or technical roles. It provides a general overview of the industry, and introducers attendees to the wide range of products that can be made from cellulose fibre.

Ian Padley

Introduction to Tissue (2 days)

This Introductory course provides an insight into the modern tissue mill and the peculiarities of tissue when compared with conventional paper products. It is similar to the Modern Papermaking course, but slanted towards the hygiene sector.

Ian Padley

Holistic Tissue Quality Workshop (2 days)

This is a completely new course, aimed at reviewing how tissue process management influences quality off the machine. The workshop assumes a basic working knowledge of tissue industry process. For completely new starters we suggest our 2-day introduction to tissue as a precursor. The targets are as follows:

Tissue industry suppliers, especially for consumables from fibre to chemicals Familiarisation training for people new to operations roles and general interest for anyone wanting an overview of a balanced, multi-platform approach to tissue quality ex-machine.

Alternatively, for an experienced production/operations team, we would suggest a bespoke approach based on the customers own process and incorporating stakeholder interviews, audit and a more interactive workshop/problem solving approach. Please contact us to discuss this option.

INTERNATIONAL CONFERENCES & EXHIBITIONS

CPI LAUNCHES PAPER INDUSTRY GOLD AWARDS FOR 2025

The Confederation of Paper Industries (CPI), in partnership with the Paper Gold Medal Association (PGMA), is delighted to launch the 2025 Paper Industry Gold Awards.

The annual awards will be held on Tuesday 17th June 2025 at the prestigious and historic Stationers’ Hall in London.

Now in their 4th year, the Paper Industry Gold Awards are back once again to celebrate and recognise excellence and achievement in the UK’s Paper -based Industries. This year sees the return of seven main awards categories. The Sustainable Innovation and Net Zero awards have been combined and we are delighted to announce the launch of a brand-new award for 2025 for Young Talent, a reward that will be presented to an individual who demonstrates innovation, commitment, and leadership. The Young Talent Award seeks to inspire the next generation and highlight the Paper Industry’s dedication to fostering future leaders by positioning the industry as an attractive and dynamic career choice for ambitious young people.

The Awards were first launched in 2022 and are becoming a well- established event in the UK’s Paper-based Industries calendar.

The 2025 Awards have officially been launched today, marking an exciting new chapter in recognising outstanding achievements. This year, they feature s even distinct categories, highlighting various talents and contributions. Notably, there is a brand-new award dedicated to Young Talent, designed to celebrate the exceptional skills and creativity of emerging individuals in their respective fields.

The awards categories are:

1. Recycling Award,

2. Community Engagement Award,

3. Health and Safety Award,

4. Sustainable Innovation & Net Zero Award,

5. Skills Award,

6. Equality, Diversity, and Inclusion (EDI) Award, and

7. Young Talent Award

The Paper Gold Medal will also be awarded at the ceremony - this award will recognise an outstanding, lifelong contribution to this industry.

At the ceremony, CPI will also present certificates to the first cohort of apprentices to complete their three years in the relaunched CPI Papermaking Apprenticeship Scheme.

You can find the criteria and entry forms for these awards, and the nomination form for the Paper Gold Medal at www.paper.org.uk/awards.

The awards are free to enter and provide a great opportunity to promote the UK’s Paperbased Industries and give companies and individual staff members the recognition they deserve.

Andrew Large, the Director General of CPI, said: “The Paper Industry Gold Awards are a fantastic opportunity to recognise the outstanding contributions of individuals and companies within the UK's Paper-based Industries. We encourage nominations from across the sector to help us celebrate the innovation, dedication, and talent that drive our industry forward.

We look forward to receiving the entries and showcasing the incredible talent and dedication that define the future of the Paper Industry.”

The deadline to enter is Friday 28th March 2025

For further information contact Elisse Hare ( mailto:ehare@paper.org.uk).

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

The following pages contain a summary of the various installations and orders from around the world of papermaking, wood panel and saw mills, and bio-power generation, received between the start of July 2024 and mid-November 2024. Paper Technology International PITA Annual Review Essential Guide to Aqueous Coating

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Most journals and magazines devoted to the paper industry contain a mixture of news, features and some technical articles. Very few contain research items, and even fewer of these are peer-reviewed.

This listing contains the most recent articles from three of the remaining specialist English language journals alongside one Korean journal and one Japanese journal, all of which publish original peer-reviewed research:

IPPITA JOURNAL (Peer-reviewed and other)

JAPAN TAPPI JOURNAL (English abstract only)

JOURNAL OF KOREA TAPPI (English abstract only)

NORDIC PULP & PAPER RESEARCH JOURNAL

TAPPI JOURNAL

JAPAN TAPPI JOURNAL

JOURNAL OF KOREA TAPPI

Paper Technology

International PITA Annual Review

Essential Guide to Aqueous Coating – which is now available in digital formal

Energy Saving I

Topics & Information

Introduction of Research Laboratories 157

Energy Saving Carbon Neutral

Volume 10, Number 3, 2024

Topics & Information

Introduction of Research Laboratories 157

Pulp

Topics & Information

Introduction of Research Laboratories 158

Papermaking Technology

10, Number 3, 2024

Topics & Information

Papermaking Technology II

Topics & Information

Introduction of Research Laboratories 159

Pulp and Paper Mills in Japan 107

Pulp and Paper Research Conference/Patent

Volume 10, Number 3, 2024

Topics & Information

Research Report

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

Volume 10, Number 3, 2024

PAPERmaking!

FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL® R T P O P T

Volume 10, Number 3, 2024

The general peer-reviewed scientific and engineering press consists of several thousand journals, conference proceedings and books published annually. In among the multitude of articles, presentations and chapters is a small but select number of items that relate to papermaking, environmental and waste processing, packaging, moulded pulp and wood panel manufacture. The abstracts contained in this report show the most recently published items likely to prove of interest to our readership, arranged as follows:

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 9

Page 10

Page 11

Page 13

Coating

Environment

Fillers

Moulded Pulp

Nano-Science

Packaging Technology

Paper Chemicals Papermaking

Pulp Testing

Tissue

Waste Treatment

Wood Panel

Paper

Technology International® PITA Annual Review

Essential Guide to Aqueous Coating

10, Number 3, 2024

Conversion and Biorefinery

Biomass

Materials Today Communications

Environmental

Engineering & Management Journal (EEMJ)

Industrial Crops and Products

Journal of Applied Polymer Science

Journal of Bioresources and Bioproducts

Journal of Natural Fibers

Polymer
Cellulose

Progress in Organic Coatings

Waste Management

10, Number 3, 2024

Journal of Dispersion Science and Technology

Drying Technology: An International Journal

IEEE Transactions on Automation Science and Engineering

Machine Learning, Multi Agent and Cyber Physical Systems

Russian Journal of Nondestructive Testing

Environmental Science and Pollution Research

Cellulose

BioResources

Cellulose Chemistry And Technology

European Journal of Wood and Wood Products

BioResources

Journal of Materials Science & Engineering

Bio-Based Building Materials

Environmental & Social Management Journal

European Journal of Wood and Wood Products

Journal of Green Technology and Environment

Wood Material Science & Engineering

PRODUCTION ENGINEER

Your next workplace

Holmen Board and Paper is a Swedish company and a member of the Holmen Group. The Workington Mill produces premium paperboard under the brand Incada. Our paperboard is an integral part of the shopping experience for our clients’ customers. Since 2013 we have powered the mill almost entirely by fossil fuel free energy. We value our employees and products highly. Today we are approximately 340 co-workers. Our integrated pulp and paperboard mill is located to the west of the beautiful Lake District in the north of England.

Your future challenge

Are you proactive, analytical and quality focussed? Someone who enjoys developing processes and driving improvements? We are looking for a Production Engineer who can lead on all development activities on the Board Machine, including capital investments, in line with the area KPI’s and Holmen success of the business.

If you’re looking for the opportunity to be part of a great work community, looking to develop yourself, engage and make a positive impact with a pioneering customer and employee orientated business, we’d love to hear from you.

Reporting to the Production Manager - Paperboard, the successful candidate will: Drive health and safety, environmental and food safety improvements across all shifts. Proactively identify and lead on process improvement and development projects to increase

Lead and contribute to capital investment projects.

Be the area representative on cross-functional project groups and report into cross-functional meetings. Be involved in customer and quality related improvements and problem-solving activities (RCA).

The successful Production Engineer will possess:

An excellent knowledge of the pulp and papermaking processes. Have strong analytical and problem-solving skills.

The following are also desired:

Degree level education in a relevant engineering/science or papermaking discipline, or equivalent experience.

Appropriate training in Health & Safety. A proactive approach to improvement activities.

A competitive salary.

Fantastic Contributory pension plan.

Private Health Insurances. Life assurance.

33 days annual leave (inclusive of bank holidays) and the option to buy additional holidays every year.

Opportunities to develop and grow.

Full PPE and annual uniform/PPE allowance.

On site Occupational Health.

Cycle to work scheme.

Social Club with regular events throughout the year.

Family friendly procedures including enhanced maternity leave and menopause procedure.

To apply, please click the “Apply for this position” link at the end of the advert and upload your CV to arrive by 1600 hours on Friday 20th December 2024.

Holmen is an equal opportunities employer that values diversity and is strongly committed to providing equal opportunities for all candidates and employees.

Employment level: Permanent employment

Working hours: Day

Occupation degree: Full time Location: Workington

Last day of application: 20 December, 2024

Val Warren

Human Resources Advisor

T: 01900 600127

E: val.warren@holmen.com

Gary Pickering

Production Manager Paperboard

T: 01900 600351

E: gary.pickering@holmen.com

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.