Stahl in der Sanierung
Kupolofen
Gusseisen
Puddelofen
Schweißstahl
Eisenerz Hochofen Roheisen
Stöße und Frost besitzt. Stahl kommt hiernach bei den Hochbaukonstruktionen nur als untergeordnetes Nebenmaterial zu Bolzen, Keilen und Lagerrollen usw. in Anwendung.« [1] Historische Stahlkonstruktionen unterscheiden sich in ihrer grundsätzlichen Struktur kaum von heutigen: zum Skelett verbundene Walzprofile, aufgelöste Träger (z. B. Fachwerkträger) sowie Verbundkonstruktionen mit Stahlbeton. Es ist also nicht die Konstruktion an sich, die bei einer Sanierung Probleme bereiten kann, sondern die Andersartigkeit der vorhandenen Baustoffe und deren Verbindungen sowie die neu aufzubringenden Beschichtungen gegen Korrosion oder Brandbelastung. Somit gilt es, folgende Fragen zu klären, bevor ein Sanierungskonzept erarbeitet werden kann: • Um welche Stahlsorte handelt es sich? Historische Stahlerzeugnisse weisen teilweise andere Festigkeitswerte auf, lassen sich nicht oder kaum schweißen und neigen zum Sprödbruch. Diese Aspekte sind zur Bewertung der Standsicherheit wichtig. • Gibt es Schwachstellen bei Verbindungen? Niete, das bevorzugte Verbindungsmittel bis in die Nachkriegszeit, müssen auf festen Sitz überprüft werden. Verschweißungen können schlecht ausgeführt oder, z. B. durch Bewegungen, beschädigt sein. • Woraus besteht die Beschichtung? Frühere Beschichtungssysteme enthalten häufig Bestandteile wie Blei oder Asbest. Problematisch wird dies vorrangig beim Entfernen der Beschichtung, denn der anfallende Staub ist hoch toxisch. Das vorliegende Kapitel soll bei der Beurteilung alter Stahlbauwerke eine Hilfestellung geben. Deren Ertüchtigung erstreckt sich vorrangig auf die folgenden Bereiche: • Tragfähigkeit: Lasterhöhungen, z. B. durch erhöhte Eigenlasten aus sekundären Sanierungsmaßnahmen zum verbesserten Wärmeund Schallschutz, müssen im alten Tragwerk nachgewiesen werden. Ausgetauschte Tragglieder bzw. deren Verstärkung sind mit der alten Konstruktion zu verbinden. • Korrosion: Vorhandene Korrosion muss entfernt werden, eventuell einschließlich der alten Schutzanstriche. Neue Beschichtungen
Konverter
Windfrischstahl
SiemensMartin-Ofen
SiemensMartin-Stahl
Elektroofen
Elektrostahl
Walzstahl Stahlguss Schmiedestahl
C 3.2
C 3.3
sind auf Verträglichkeit mit dem alten System zu untersuchen. • Brandschutz: Die deutlich verschärften Bauvorschriften – Stahl galt früher noch als brandsicher – bedingen die nachträgliche Verkleidung oder Beschichtung der Stahlbauteile. Das hierfür bis in die 1980er-Jahre bevorzugt eingesetzte Asbest muss entfernt werden.
• Die Wandstärke der Hohlkörper soll zwischen 1 und 8 cm liegen. • Die Wandstärke soll möglichst gleichmäßig sein. • Der Hohlkörper, meist aus Holz, muss nach dem Gießen leicht aus dem Bauteil zu entfernen sein. • Scharfe Innenecken sind zu vermeiden, Außenecken sind abzurunden. • Die Länge soll 5 m nicht überschreiten. [2]
Historische Eisenerzeugnisse
Die Eigenschaften historischer Eisenerzeugnisse stehen in direktem Zusammenhang mit ihrer Herstellung. Wichtig ist es, diese zu kennen, denn jedes Material bedarf einer eigenen Sanierungsstrategie (Abb. C 3.4, S. 156). Gusseisen Bei Gusseisen handelt es sich im Grunde um Roheisen, das zur Jahrhundertwende auch als solches bezeichnet wird. Dem im Bauwesen verwendeten »grauen Gusseisen« wurde im Gegensatz zum »weißen Gusseisen« im Herstellungsprozess Kohlenstoff zugesetzt, der das Material elastischer machte. Heute findet Gusseisen im Bauwesen kaum noch Verwendung. Lediglich große und besonders gestaltete Formteile wie beispielsweise jene des Centre Pompidou in Paris werden in Ausnahmefällen noch aus Gusseisen hergestellt. Ein Nachteil von Gusseisen ist die kaum vorhandene Zugfestigkeit, weshalb es ausschließlich bei Stützen zum Einsatz kam, die zudem nur mittig beansprucht werden durften. Dies gilt es im Umbau beizubehalten. Außerdem ließ sich Gusseisen nicht ohne Fehler wie Hohlräume (sogenannte Lunker) und Schlackeeinschlüsse herstellen. Dieser Inhomogenität wurde auch schon in der Gründerzeit durch höhere Sicherheiten, z. B. größere Wandstärken der Hohlprofile Rechnung getragen. Für die Verwendung von Gusseisen sprach im 19. Jahrhundert vor allem die Möglichkeit, auch verwinkelte bzw. stark verzierte Formteile herstellen zu können. Schmiedbar war historisches Gusseisen jedoch nicht, denn dafür hätte sein Kohlenstoffgehalt unter 2 % liegen müssen. Der gebräuchlichste Einsatz von Gusseisen waren sichtbare, druckbelastete Säulen geringer Höhe. Nach historischen Quellen galten folgende Fertigungsregeln:
Gusseisenstützen wurden meist liegend und nur selten in einem Stück gegossen. In Schaft, Fuß und Kopf geteilt, erfolgte das Ineinanderstecken erst bei der Montage. Die Wandstärken eingeschossiger Säulen betrugen in der Regel 20 – 40 mm. Aufwendige Verzierungen aus Gusseisen oder Bronze wurden häufig als gesonderte Bauteile mittels Stiftschrauben an der rohen Säule unsichtbar befestigt. Neben frei stehenden, verzierten Säulen kamen noch sogenannte gusseiserne Wände, bestehend aus zwei Rechteckrohren mit einem meist unterbrochenen Verbindungssteg, zur Ausführung. Sie dienten in tragenden Außenwänden als Stützen, beispielsweise für die erdgeschossigen Schaufenster von Geschäftshäusern. Schmiedeeisen und historischer Stahl Schmiedeeisen hat einen Kohlenstoffgehalt von 0,03 bis 0,4 %. Es ist nicht härtbar, jedoch leicht schmied- und schweißbar. Unterschieden wird es in Schweißeisen (hergestellt im sogenannten Puddelverfahren) und Flusseisen (hergestellt in den sogenannten Windfrischverfahren). Historischer Stahl hat einen Kohlenstoffgehalt von 0,4 bis 2 % (Abb. C 3.2). Er war zwar härtbar, jedoch weniger gut schmied- und kaum schweißbar. Auch hier unterscheidet man je nach Verfahren in Schweißstahl und Flussstahl. Das 1784 vom Engländer Henry Cort entwickelte Puddelverfahren stellte einen Durchbruch in der Stahlherstellung dar. Die Trennung von Brennkammer und Schmelztiegel sowie das Zuführen von sauerstoffhaltiger, heißer Luft reduzierten den Kohlenstoffgehalt soweit, dass schmied- und schweißbarer Stahl gewonnen werden konnte. Die Zuführung von Luft geschah durch manuelles Umrühren der Schmelze. Die Qualität des Stahls hing also
155