Líquidos y electrolitos en la niñez
Membrana semipermeable Solutos Líquidos
en contra de ese gradiente de concentración. La bomba Na+/K+, que desplaza sodio desde el espacio intracelular al extracelular, en el que la concentración de sodio es mayor y provoca la entrada de potasio al espacio intracelular, en el que la concentración de potasio es mayor es el mejor ejemplo (véase figura 7). Otros solutos que requieren transporte activo son los iones de calcio, hidrogeniones, aminoácidos y ciertos azúcares. Ósmosis es el flujo de solventes desde una solución con menor concentración de solutos (hipotónica) a una solución con mayor concentración de solutos (hipertónica). En la ósmosis la membrana es permeable al agua, pero es selectivamente permeable a las partículas. Este tipo de transporte se detiene cuando suficiente cantidad de líquidos se ha desplazado por la membrana para igualar la concentración de solutos a ambos lados de la membrana (véase figura 8). En el sistema vascular solo las paredes delgadas de los capilares permiten el paso de solutos. La filtración capilar a través de ellas tiene un papel crítico en el balance de líquidos. La presión hidrostática capilar del extremo arterial permite el paso de líquido y partículas desde los capilares al espacio intersticial. Para equilibrar el proceso, la presión oncótica coloidal del plasma generada por las proteínas plasmáticas tiende a desplazar los
Área de mayor concentración
Área de menor concentración
Menor concentración de sólidos= mayor concentración de agua Mayor concentración de sólidos= menor concentración de agua
Figura 8. Ósmosis La membrana es permeable al agua y selectivamente permeable a las partículas. Un ejemplo es el desplazamiento de líquido hacia concentraciones altas de sodio o glucosa
líquidos y los productos de desecho desde los espacios intersticiales hacia las vénulas en el extremo opuesto del capilar. La presión capilar es menor y la presión osmótica coloidal es mayor en el extremo venoso del lecho capilar, lo que permite el regreso de solutos y solventes al torrente sanguíneo (véase figura 9). La presión coloidosmótica plasmática está determinada principalmente por la albúmina. Es como un “gran imán” que atrae agua (véase figura 10).
Regulación del balance hídrico corporal Un gran número de procesos corporales intervienen de manera simultánea para mantener el balance de líquidos. La comprensión precisa de los mecanismos de los procesos reguladores,
Presión hidrostática
Líquidos y sólidos saliendo del capilar
ATP
Membrana semipermeable
Energía para transporte contra un gradiente de presión Solutos
Figura 7. Transporte activo Es un tipo de difusión que precisa gasto energético para desplazar partículas contra un gradiente de concentración
10 I Precop SCP
I
Ascofame
Solutos
Capilar Pared del capilar
Figura 9. Presión hidrostática