ipcm® Protective Coatings n. 32 - December 2019

Page 38

SUCCESS STORIES

The Evolution of High Velocity Thermal Spray: From Shop Applications to Mission Critical Equipment Protection © IGS

Back in the 1995, high velocity thermal spray was used for specialized applications in aircraft components, valves and other similar equipment.

B

ack in the 1995, high velocity thermal spray was an established

gas stream was the ȴrst piece of the puzzle. This technical development

technology in a highly controlled shop application environment. It was

delivered a surface technology that worked well with commonly used

used for specialized applications in aircraft components, valves and other

welding materials in high temperature corrosion environments such as in

similar equipment. Users of the technology started to ask whether it could

the Pulp&Paper and Coal Power sectors of the time.

be e΍ectively applied in the ȴeld, to existing ȴxed assets in-situ. Field technology was also present at the time, however, it was a di΍erent

New hurdles

class of technology. Twin wire arc spray (TWAS) or thermal spray

At that stage IGS, with key clients, was exploring the wider utilization of

aluminium (TSA), are both low velocity thermal spray technologies that are

the technology into other industry sectors such as the upstream O&G

not able to produce reliable coatings to serve in critical erosion/corrosion

industry. They soon discovered that spraying o΍-the-shelf alloy feedstock

environments in ȴxed assets such as process vessels, towers, columns

materials using a high velocity process, produced particles that oxidized

or power boilers. The existing high velocity thermal spray equipment and

in ȵight creating an applied microstructure with permeability pathways

technology couldn’t be taken into the ȴeld e΍ectively or economically.

for corrosion. While this wasn’t an issue for high temperature erosion applications, it was a fundamental problem for environments with corrosive

Solution identified

media e.g. Chlorine or Sulfur, among other corrosive substances (Fig. 1).

Around 1995 a handful of engineers addressed that problem and took high velocity thermal spray technology into the ȴeld. It was successfully

Material development

deployed in the downstream oil and gas industry, originally in South

Signiȴcant Research and Development work was then undertaken by

Africa, and in the late 1990s this technology went global, being adopted by

IGS in the early 2000s into developing new high velocity thermal spray

multinational energy corporations.

feedstock materials, which would control the alloy integrity during the

High Velocity Thermal Spray (HVTS), also known as the High Velocity Alloy

application process. This way the applied microstructure would be ȴt for

Cladding, has continued to evolve. Atomizing the wire in a supersonic

the service environment of the asset. The R&D project focused on the

32

N.32 - 2019 DECEMBER - ipcm® Protective Coatings


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.