Student solutions manual to accompany atkins' physical chemistry 11th edition peter bolgar - Downloa

Page 1


StudentSolutionsManualtoAccompanyAtkins' PhysicalChemistry11thEditionPeterBolgar

https://ebookmass.com/product/student-solutions-manual-toaccompany-atkins-physical-chemistry-11th-edition-peterbolgar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Atkins’ Physical Chemistry 11th Edition Peter Atkins

https://ebookmass.com/product/atkins-physical-chemistry-11th-editionpeter-atkins/

ebookmass.com

Atkins’ Physical Chemistry 12th Edition Peter Atkins

https://ebookmass.com/product/atkins-physical-chemistry-12th-editionpeter-atkins-2/

ebookmass.com

Atkins’ Physical Chemistry 12th Edition Peter Atkins

https://ebookmass.com/product/atkins-physical-chemistry-12th-editionpeter-atkins/

ebookmass.com

The Hub: A Place for Reading and Writing

https://ebookmass.com/product/the-hub-a-place-for-reading-and-writing/

ebookmass.com

Friendship and Diversity 1st

Edition Carol Vincent

https://ebookmass.com/product/friendship-and-diversity-1st-ed-editioncarol-vincent/

ebookmass.com

M. Information Systems Paige Baltzan

https://ebookmass.com/product/m-information-systems-paige-baltzan/

ebookmass.com

The White Witch (Love Beyond Death - The Inns Book 4) Elizabeth N. Harris

https://ebookmass.com/product/the-white-witch-love-beyond-death-theinns-book-4-elizabeth-n-harris/

ebookmass.com

Cloud Nine Fearne Hill

https://ebookmass.com/product/cloud-nine-fearne-hill/

ebookmass.com

Essentials of the U.S. Health Care System 4th Edition, (Ebook PDF)

https://ebookmass.com/product/essentials-of-the-u-s-health-caresystem-4th-edition-ebook-pdf/

ebookmass.com

Drug

https://ebookmass.com/product/drug-use-and-abuse-ebook-pdf-version/

ebookmass.com

Student Solutions Manual to Accompany Atkins’ Physical Chemistry

ELEVENTH EDITION

Peter Bolgar

Haydn Lloyd

Aimee North

Vladimiras Oleinikovas

Stephanie Smith and James Keeler

Department of Chemistry

University of Cambridge UK

1

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © Oxford University Press 2018

The moral rights of the authors have been asserted

Eighth edition 2006

Ninth edition 2010

Tenth edition 2014

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data Data available

ISBN 978–0–19–255086–6

Printed in Great Britain by Bell & Bain Ltd., Glasgow

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

6BTheresponseofequilibriatotheconditions

17BIntegratedratelaws

18BDiffusion-controlledreactions

18CTransition-statetheory

18DThedynamicsofmolecularcollisions

18EElectrontransferinhomogeneoussystems

Preface

ismanualprovidesdetailedsolutionstothe(a) Exercises andtheodd-numbered Discussionquestions and Problems fromthe11th editionof Atkins’PhysicalChemistry.

Conventionsusedispresentingthesolutions

Wehaveincludedpage-speci creferencestoequations,sections, guresandotherfeatures ofthemaintext.Equationreferencesaredenoted[14B.3b–595],meaningeqn14B.3blocated onpage595(thepagenumberisgiveninitalics).Otherfeaturesarereferredtobyname, withapagenumberalsogiven.

Generallyspeaking,thevaluesofphysicalconstants(fromthe rstpageofthemaintext) areusedto5signi cant guresexceptinafewcaseswherehigherprecisionisrequired. Inlinewiththepracticeinthemaintext,intermediateresultsaresimplytruncated(not rounded)tothree gures,withsuchtruncationindicatedbyanellipsis,asin0.123...;the valueisusedinsubsequentcalculationstoitsfullprecision.

e nalresultsofcalculations,generallytobefoundinabox ,aregiventotheprecision warrantedbythedataprovided.Wehavebeenrigorousinincludingunitsforallquantities sothattheunitsofthe nalresultcanbetrackedcarefully. erelationshipsgivenon thebackofthefrontcoverareusefulinresolvingtheunitsofmorecomplexexpressions, especiallywhereelectricalquantitiesareinvolved.

Someoftheproblemseitherrequiretheuseofmathematicalso wareoraremucheasier withtheaidofsuchatool.Insuchcaseswehaveused Mathematica (WolframResearch, Inc.)inpreparingthesesolutions,buttherearenodoubtotheroptionsavailable.Someof the Discussionquestions relatedirectlytospeci csectionofthemaintextinwhichcasewe havesimplygivenareferenceratherthanrepeatingthematerialfromthetext.

Acknowledgements

Inpreparingthismanualwehavedrawnontheequivalentvolumepreparedforthe10th editionof Atkins’PhysicalChemistry byCharlesTrapp,MarshallCady,andCarmenGiunta.In particular,thesolutionswhichusequantumchemicalcalculationsormolecularmodelling so ware,andsomeofthesolutionstothe Discussionquestions,havebeenquoteddirectly fromthesolutionsmanualforthe10th edition,withoutsigni cantmodi cation.More generally,wehavebene tedfromtheabilitytorefertotheearliervolumeandacknowledge, withthanks,thein uencethatitsauthorshavehadonthepresentwork.

ismanualhasbeenpreparedbytheauthorsusingtheLATEXtypesettingsystem,in theimplementationprovidedbyMiKTEX(miktex.org);thevastmajorityofthe gures andgraphshavebeengeneratedusingPGFPlots.Wearegratefultothecommunitywho maintainanddeveloptheseoutstandingresources.

Finally,wearegratefultotheeditorialteamatOUP,JonathanCroweandRoseanna Levermore,fortheirinvaluablesupportinbringingthisprojecttoaconclusion.

Errorsandomissions

Insuchacomplexundertakingsomeerrorswillnodoubthavecreptin,despitetheauthors’ beste orts.Readerswhoidentifyanyerrorsoromissionsareinvitedtopassthemontous byemailto pchem@ch.cam.ac.uk.

Thepropertiesofgases

1A Theperfectgas

Answerstodiscussionquestions

D1A.1 Anequationofstateisanequationthatrelatesthevariablesthatde nethe stateofasystemtoeachother.Boyle,Charles,andAvogadroestablishedthese relationsforgasesatlowpressures(perfectgases)byappropriateexperiments.

Boyledeterminedhowvolumevarieswithpressure(V ∝ 1/ p),Charleshow volumevarieswithtemperature(V ∝ T ),andAvogadrohowvolumevaries withamountofgas(V ∝ n ).Combiningalloftheseproportionalitiesintoone gives

∝ nT p

Insertingtheconstantofproportionality, R ,yieldstheperfectgasequation

V = R nT p or pV = nRT

Solutionstoexercises

E1A.1(a) Fromtheinsidethefrontcovertheconversionbetweenpressureunitsis:1atm ≡ 101.325kPa ≡ 760Torr;1baris105 Paexactly.

(i) Apressureof108kPaisconvertedtoTorrasfollows 108kPa × 1atm 101.325kPa × 760Torr 1atm = 810Torr

(ii) Apressureof0.975baris0.975 × 105 Pa,whichisconvertedtoatmas follows 0.975 × 105 Pa × 1atm 101.325kPa = 0.962atm

E1A.2(a) eperfectgaslaw[1A.4–8], pV = nRT ,isrearrangedtogivethepressure, p = nRT /V eamount n isfoundbydividingthemassbythemolarmassof Xe,131.29gmol 1 p = n (131g) (131.29gmol 1 ) (8.2057 × 10 2 dm3 atmK 1 mol 1 ) × (298.15K) 1.0dm3 = 24.4atm

Sono ,thesamplewouldnotexertapressureof20atm,but24.4atm ifitwere aperfectgas.

E1A.3(a) Becausethetemperatureisconstant(isothermal)Boyle’slawapplies, pV = const. ereforetheproduct pV isthesamefortheinitialand nalstates

einitialvolumeis2.20dm3 greaterthanthe nalvolumeso Vi = 4.65+2.20 = 6.85dm3 . p i = Vf Vi × p f = 4.65dm3 6.85dm3 × (5.04bar) = 3.42bar

(i) einitialpressureis3.42bar

(ii) Becauseapressureof1atmisequivalentto1.01325bar,theinitialpressure expressedinatmis 1atm 1.01325bar × 3.40bar = 3.38atm

E1A.4(a) Ifthegasisassumedtobeperfect,theequationofstateis[1A.4–8], pV = nRT . Inthiscasethevolumeandamount(inmoles)ofthegasareconstant,soit followsthatthepressureisproportionaltothetemperature: p ∝ T eratio ofthe nalandinitialpressuresisthereforeequaltotheratioofthetemperatures: p f / p i = Tf / Ti . epressureindicatedonthegaugeisthatinexcess ofatmosphericpressure,thustheinitialpressureis24 + 14.7 = 38.7lbin 2 . Solvingforthe nalpressure p f (remembertouseabsolutetemperatures)gives p f = Tf Ti × p i = (35 + 273.15) K ( 5 + 273.15) K × (38.7lbin 2 ) = 44.4...lbin 2

epressureindicatedonthegaugeisthis nalpressure,minusatmospheric pressure:44.4... 14.7 = 30lbin 2 . isassumesthat(i)thegasisbehaving perfectlyand(ii)thatthetyreisrigid.

E1A.5(a) eperfectgaslaw pV = nRT isrearrangedtogivethepressure p = nRT V = n 255 × 10 3 g 20.18gmol 1 × (8.3145 × 10 2 dm3 barK 1 mol 1 ) × (122K) 3.00dm3 = 0.0427bar

E1A.6(a)

Notethechoiceof R tomatchtheunitsoftheproblem.Analternativeisto use R = 8.3154JK 1 mol 1 andadjusttheotherunitsaccordingly,togivea pressureinPa.

p = [(255 × 10 3 g)/(20.18gmol 1 )] × (8.3145JK 1 mol 1 ) × (122K) 3.00 × 10 3 m3

= 4.27 × 105 Pa

where1dm3 = 10 3 m3 hasbeenusedalongwith1J = 1kgm2 s 2 and1Pa = 1kgm 1 s 2

evapourisassumedtobeaperfectgas,sothegaslaw pV = nRT applies. e taskistousethisexpressiontorelatethemeasuredmassdensitytothemolar mass.

First,theamount n isexpressedasthemass m dividedbythemolarmass M to give pV = (m / M )RT ;divisionofbothsidesby V gives p = (m /V )( RT / M ). equantity (m /V ) isthemassdensity ρ ,so p = ρ RT / M ,whichrearranges to M = ρ RT / p;thisistherequiredrelationshipbetween M andthedensity.

M = ρ RT p = (3.710kgm 3 ) × (8.3145JK 1 mol 1 ) × ([500 + 273.15] K) 93.2 × 103 Pa = 0.255...kgmol 1

where1J = 1kgm2 s 2 and1Pa = 1kgm 1 s 2 havebeenused. emolarmass ofSis32.06gmol 1 ,sothenumberofSatomsinthemoleculescomprising thevapouris (0.255... × 103 gmol 1 )/(32.06gmol 1 ) = 7.98. eresultis expectedtobeaninteger,sotheformulaislikelytobeS8 .

E1A.7(a) evapourisassumedtobeaperfectgas,sothegaslaw pV = nRT applies;the taskistousethisexpressiontorelatethemeasureddatatothemass m . is isdonebyexpressingtheamount n as m / M ,where M isthethemolarmass. Withthissubstitutionitfollowsthat m = MPV / RT . epartialpressureofwatervapouris0.60timesthesaturatedvapourpressure m = MpV RT = (18.0158gmol 1 ) × (0.60 × 0.0356 × 105 Pa) × (400m3 ) (8.3145JK 1 mol 1 ) × ([27 + 273.15] K) = 6.2 × 103 g = 6.2kg

E1A.8(a) Consider1m3 ofair:themassofgasistherefore1.146kg.Ifperfectgasbehaviourisassumed,theamountinmolesisgivenby n = pV / RT

n = pV RT = (0.987 × 105 Pa) × (1m3 ) (8.3145JK 1 mol 1 ) × ([27 + 273.15] K) = 39.5...mol

(i) etotalamountinmolesis n = n O2 + n N2 . etotalmass m iscomputed fromtheamountsinmolesandthemolarmasses M as

m = n O2 × M O2 + n N2 × M N2

esetwoequationsaresolvedsimultaneouslyfor n O2 togivethefollowingexpression,whichisthenevaluatedusingthedatagiven

n O2 = m M N2 n M O2 M N2 = (1146g) (28.02gmol 1 ) × (39.5...mol) (32.00gmol 1 ) (28.02gmol 1 ) = 9.50...mol

emolefractionsaretherefore x O2 = n O2 n = 9.50...mol 39.5...mol = 0.240 x N2 = 1 x O2 = 0.760

epartialpressuresaregivenby p i = x i p tot

p O2 = x O2 p tot = 0.240(0.987bar) = 0.237bar

p N2 = x N2 p tot = 0.760(0.987bar) = 0.750bar

(ii) esimultaneousequationstobesolvedarenow n = n O2 + n N2 + n Ar m = n O2 M O2 + n N2 M N2 + n Ar M Ar

Becauseitisgiventhat x Ar = 0.01,itfollowsthat n Ar = n /100. etwo unknowns, n O2 and n N2 ,arefoundbysolvingtheseequationssimultaneouslytogive

n N2 = 100 m n ( M Ar + 99 M O2 ) 100( M N2 M O2 ) = 100 × (1146g) (39.5...mol) × [(39.95gmol 1 ) + 99 × (32.00gmol 1 )]

100 × [(28.02gmol 1 ) (32.00gmol 1 )] = 30.8...mol

From n = n O2 + n N2 + n Ar itfollowsthat

n O2 = n n Ar n N2 = (39.5...mol) 0.01 × (39.5...mol) (30.8...mol) = 8.31...mol

emolefractionsare

x N2 = n N2 n = 30.8...mol 39.5...mol = 0.780 x O2 = n O2 n = 8.31...mol 39.5...mol = 0.210

epartialpressuresare

p N2 = x N2 p tot = 0.780 × (0.987bar) = 0.770bar

p O2 = x O2 p tot = 0.210 × (0.987bar) = 0.207bar

E1A.9(a)

Note:the nalvaluesarequitesensitivetotheprecisionwithwhichtheintermediateresultsarecarriedforward.

evapourisassumedtobeaperfectgas,sothegaslaw pV = nRT applies. e taskistousethisexpressiontorelatethemeasuredmassdensitytothemolar mass.

First,theamount n isexpressedasthemass m dividedbythemolarmass M to give pV = (m / M )RT ;divisionofbothsidesby V gives p = (m /V )( RT / M ) equantity (m /V ) isthemassdensity ρ ,so p = ρ RT / M ,whichrearranges to M = ρ RT / p;thisistherequiredrelationshipbetween M andthedensity. M = ρ RT p = (1.23kgm 3 ) × (8.3145JK 1 mol 1 ) × (330K)

20.0 × 103 Pa = 0.169kgmol 1

erelationships1J = 1kgm2 s 2 and1Pa = 1kgm 1 s 2 havebeenused.

E1A.10(a) Charles’law[1A.3b–7]statesthat V ∝ T atconstant n and p,and p ∝ T at constant n and V .Fora xedamountthedensity ρ isproportionalto1/V ,soit followsthat1/ ρ ∝ T .Atabsolutezerothevolumegoestozero,sothedensity goestoin nityandhence1/ ρ goestozero. eapproachisthereforetoplot 1/ ρ againstthetemperature(in ○ C)andthenbyextrapolatingthestraightline ndthetemperatureatwhich1/ ρ = 0. eplotisshowninFig1.1.

θ /○ C ρ /(gdm 3 )(1/ ρ )/(g 1 dm3 )

851.877 0.5328 01.294 0.7728

1000.946 1.0571

edataareagood ttoastraightline,theequationofwhichis (1/ ρ )/(g 1 dm3 ) = 2.835 × 10 3 × (θ /○ C) + 0.7734

einterceptwith1/ ρ = 0isfoundbysolving 0 = 2.835 × 10 3 × (θ /○ C) + 0.7734

isgives θ = 273 ○ C astheestimateofabsolutezero.

E1A.11(a) (i) emolefractionsare x H2 = n H2 n H2 + n N2 = 2.0mol 2.0mol + 1.0mol = 2 3 x N2 = 1 x H2 = 1 3

(ii) epartialpressuresaregivenby p i = x i p tot . etotalpressureisgiven bytheperfectgaslaw: p tot = n tot RT /V

p H2 = x H2 p tot = 2 3 × (3.0mol) × (8.3145JK 1 mol 1 ) × (273.15K) 22.4 × 10 3 m3 = 2.0 × 105 Pa

p N2 = x N2 p tot = 1 3 × (3.0mol) × (8.3145JK 1 mol 1 ) × (273.15K) 22.4 × 10 3 m3 = 1.0 × 105 Pa

Expressedinatmospherestheseare2.0atmand1.0atm,respectively.

(iii) etotalpressureis

(3.0mol) × (8.3145JK 1 mol 1 ) × (273.15K) 22.4 × 10 3 m3 = 3.0 × 105 Pa or3.00atm.

Alternatively,notethat1molatSTPoccupiesavolumeof22.4dm3 ,whichis thestatedvolume.Asthereareatotalof3.0molpresentthe(total)pressure mustthereforebe3.0atm.

Solutionstoproblems

P1A.1 (a) eexpression ρ gh givesthepressureinPaifallthequantitiesarein SIunits,soitishelpfultoworkinPathroughout.Fromthefrontcover, 760Torrisexactly1atm,whichis1.01325×105 Pa. edensityof13.55gcm 3 isequivalentto13.55 × 103 kgm 3 .

p = p ex + ρ gh

= 1.01325 × 105 Pa + (13.55 × 103 kgm 3 ) × (9.806ms 2 )

× (10.0 × 10 2 m) = 1.15 × 105 Pa

Figure1.1

(b) ecalculationofthepressureinsidetheapparatusproceedsasin(a)

p = 1.01325 × 105 Pa + (0.9971 × 103 kgm 3 ) × (9.806ms 2 ) × (183.2 × 10 2 m) = 1.192... × 105 Pa

evalueof R isfoundbyrearrangingtheperfectgaslawto R = pV / nT

R = pV nT = (1.192... × 105 Pa) × (20.000 × 10 3 m3 ) [(1.485g)/(4.003gmol 1 )] × ([500 + 273.15] K)

= 8.315JK 1 mol 1

P1A.3 eperfectgaslaw pV = nRT impliesthat pVm = RT ,where Vm isthemolar volume(thevolumewhen n = 1).Itfollowsthat p = RT /Vm ,soaplotof p against T /Vm shouldbeastraightlinewithslope R . However,realgasesonlybecomeidealinthelimitofzeropressure,sowhatis neededisamethodofextrapolatingthedatatozeropressure.Oneapproachis torearrangetheperfectgaslawintotheform pVm / T = R andthentorealise thatthisimpliesthatforarealgasthequantity pVm / T willtendto R inthelimit ofzeropressure. erefore,theinterceptat p = 0ofaplotof pVm / T against p isanestimateof R .Fortheextrapolationofthelinebackto p = 0tobereliable, thedatapointsmustfallonareasonablestraightline. eplotisshownin Fig1.2. p/atm Vm /(dm3 mol 1 )( pVm / T )/(atmdm3 mol 1 K 1 )

0.75000029.8649 0.0820014

0.50000044.8090 0.0820227

0.25000089.6384 0.0820414

p/atm ( pV m / T )/( atmdm 3 mol 1 K 1 )

Figure1.2

edatafallonareasonablestraightline,theequationofwhichis ( pVm / T )/(atmdm3 mol 1 K 1 ) = 7.995 × 10 5 × ( p/atm) + 0.082062

eestimatefor R isthereforetheintercept,0.082062atmdm3 mol 1 K 1 . edataaregivento6 gures,buttheydonotfallonaverygoodstraightline sothevaluefor R hasbeenquotedtoonefewersigni cant gure.

P1A.5 Foraperfectgas pV = nRT whichcanberearrangedtogive p = nRT /V . e amountinmolesis n = m / M ,where M isthemolarmassand m isthemassof thegas. erefore p = (m / M )( RT /V ). equantity m /V isthemassdensity ρ ,andhence

p = ρ RT / M

Itfollowsthatforaperfectgas p/ ρ shouldbeaconstantatagiventemperature. Realgasesareexpectedtoapproachthisasthepressuregoestozero,soa suitableplotisof p/ ρ against p;theinterceptwhen p = 0givesthebestestimate of RT / M . eplotisshowninFig.1.3.

p/kPa ( p / ρ )/( kPakg 1 m 3 )

Figure1.3

edatafallonareasonablestraightline,theequationofwhichis ( p/ ρ )/(kPakg 1 m 3 ) = 0.04610 × ( p/kPa) + 53.96

P1A.7

einterceptis ( p/ ρ )lim p →0 ,whichisequalto RT / M . M = RT ( p/ ρ )lim p →0 = (8.3145JK 1 mol 1 ) × (298.15K) 53.96 × 103 Pakg 1 m3 = 4.594×10 2 kgmol 1

eestimateofthemolarmassistherefore45.94gmol 1 .

(a) Foraperfectgas pV = nRT soitfollowsthatforasampleatconstant volumeandtemperature, p 1 / T1 = p 2 / T2 .Ifthepressureincreasesby ∆ p foranincreaseintemperatureof∆T ,thenwith p 2 = p 1 + ∆ p and T2 = T1 + ∆T isfollowsthat

Foranincreaseby1.00K,∆T = 1.00Kandhence

= (6.69 × 103 Pa) × (1.00K) 273.16K = 24.5Pa

Anotherwayoflookingatthisistowritetherateofchangeofpressure withtemperatureas

p

T = p 1 T1 = 6.69 × 103 Pa 273.16K = 24.5...PaK 1

(b) Atemperatureof100.00 ○ Cisequivalenttoanincreaseintemperature fromthetriplepointby100.00 + 273.15 273.16 = 99.99K

p′ = ∆T ′ × ( ∆ p ∆T ) = (99.99K) × 6.69 × 103 Pa 273.16K = 2.44... × 103 Pa

e nalpressureistherefore6.69 + 2.44... = 9.14kPa

(c) Foraperfectgas∆ p/∆T isindependentofthetemperaturesoat100.0 ○ C a1.00Kriseintemperaturegivesapressureriseof24.5Pa ,justasin(a).

P1A.9 emolarmassofSO2 is32.06 + 2 × 16.00 = 64.06gmol 1 .Ifthegasisassumed tobeperfectthevolumeiscalculatedfrom pV = nRT

V = nRT p = n ( 200 × 106 g 64.06gmol 1 ) (8.3145JK 1 mol 1 ) × ([800 + 273.15] K) 1.01325 × 105 Pa

= 2.7 × 105 m3

Notetheconversionofthemassinttomassing;repeatingthecalculationfor 300tgivesavolumeof4.1 × 105 m3 . evolumeofgasisthereforebetween0.27km3 and0.41km3

P1A.11

Imagineacolumnoftheatmospherewithcrosssectionalarea A. epressure atanyheightisequaltotheforceactingdownonthatarea;thisforcearises fromthegravitationalattractiononthegasinthecolumn above thisheight–thatis,the‘weight’ofthegas.

Supposethattheheight h isincreasedbyd h . eforceonthearea A isreduced becauselessoftheatmosphereisnowbearingdownonthisarea.Speci cally, theforceisreducedbythatduetothegravitationalattractiononthegascontainedinacylinderofcross-sectionalarea A andheightd h .Ifthedensityof thegasis ρ ,themassofthegasinthecylinderis ρ × A d h andtheforcedueto gravityonthismassis ρ gA d h ,where g istheaccelerationduetofreefall. e changeinpressured p onincreasingtheheightbyd h isthisforcedividedby thearea,soitfollowsthat d p = ρ g d h

eminussignisneededbecausethepressuredecreasesastheheightincreases. edensityisrelatedtothepressurebystartingfromtheperfectgasequation, pV = nRT .Ifthemassofgasis m andthemolarmassis M ,itfollowsthat n = m / M andhence pV = (m / M )RT .Takingthevolumetotherightgives p = (m / MV )RT equantity m /V isthemassdensity ρ ,so p = ( ρ / M )RT ; thisisrearrangedtogiveanexpressionforthedensity: ρ = Mp/ RT isexpressionfor ρ issubstitutedintod p = ρ g d h togived p = ( Mp/ RT ) g d h . Divisionby p resultsinseparationofthevariables (1/ p) d p = ( M / RT ) g d h ele -handsideisintegratedbetween p 0 ,thepressureat h = 0and p,the pressureat h eright-handsideisintegratedbetween h = 0and h

p p

1

0 Mg RT d h [ln p] p p 0 = Mg RT [ h ] h 0 ln p p 0 = Mgh RT

eexponentialofeachsideistakentogive p = p 0 e h / H with H = RT Mg

Itisassumedthat g and T donotvarywith h .

(a) epressuredecreaseacrosssuchasmalldistancewillbeverysmallbecause h / H ≪ 1.Itisthereforeadmissibletoexpandtheexponentialand retainjustthe rsttwoterms:e x ≈ 1 + x p = p 0 (1 h / H )

isisrearrangedtogiveanexpressionforthepressuredecrease, p p 0

p p 0 = p 0 h / H

P1A.13

Ifitisassumedthat p 0 isoneatmosphereandthat H = 8km, p p 0 = p 0 h / H = (1.01325 × 105 Pa) × (15 × 10 2 m) 8 × 103 m = 2Pa (b) epressureat11kmiscalculatedusingthefullexpression p = p 0 e h / H = (1atm) × e (11km)/(8km) = 0.25atm

Imagineavolume V oftheatmosphere,attemperature T andpressure p tot . Iftheconcentrationofatracegasisexpressedas X partspertrillion(ppt),it meansthatifthatgaswerecon nedtoavolume X × 10 12 × V attemperature T iswouldexertapressure p tot .Fromtheperfectgaslawitfollowsthat n = pV / RT ,whichinthiscasegives n trace = p tot ( X × 10 12 × V ) RT

Takingthevolume V tothele givesthemolarconcentration, c trace

c trace = n trace V = X × 10 12 × p tot RT

Analternativewayoflookingatthisistonotethat,atagiventemperatureand pressure,thevolumeoccupiedbyagasisproportionaltotheamountinmoles. Sayingthatagasispresentat X pptimpliesthatthevolumeoccupiedbythe gasis X × 10 12 ofthewhole,andthereforethattheamountinmolesofthegas is X × 10 12 ofthetotalamountinmoles

n trace = ( X × 10 12 ) × n tot

isisrearrangedtogiveanexpressionforthemolefraction x trace

x trace = n trace n tot = X × 10 12 epartialpressureofthetracegasistherefore

p trace = x trace p tot = ( X × 10 12 ) × p tot

econcentrationis n trace /V = p trace / RT ,so

c trace = n trace V = X × 10 12 × p tot RT

(a) At10 ○ Cand1.0atm

c CCl3 F = X CCl3 F × 10 12 × p tot RT = 261 × 10 12 × (1.0atm) (8.2057 × 10 2 dm3 atmK 1 mol 1 ) × ([10 + 273.15] K) = 1.1 × 10 11 moldm 3

c CCl2 F2 = X CCl2 F2 × 10 12 × p tot RT = 509 × 10 12 × (1.0atm) (8.2057 × 10 2 dm3 atmK 1 mol 1 ) × ([10 + 273.15] K) = 2.2 × 10 11 moldm 3

(b) At200Kand0.050atm

c CCl3 F = X CCl3 F × 10 12 × p tot RT = 261 × 10 12 × (0.050atm) (8.2057 × 10 2 dm3 atmK 1 mol 1 ) × (200K)

= 8.0 × 10 13 moldm 3

c CCl2 F2 = X CCl2 F2 × 10 12 × p tot RT = 509 × 10 12 × (0.050atm) (8.2057 × 10 2 dm3 atmK 1 mol 1 ) × (200K)

= 1.6 × 10 12 moldm 3

1B Thekineticmodel

Answertodiscussionquestions

D1B.1 ethreeassumptionsonwhichthekineticmodelisbasedaregiveninSection1B.1onpage11.

1. egasconsistsofmoleculesinceaselessrandommotionobeyingthe lawsofclassicalmechanics.

2. esizeofthemoleculesisnegligible,inthesensethattheirdiameters aremuchsmallerthantheaveragedistancetravelledbetweencollisions; theyare‘point-like’.

3. emoleculesinteractonlythroughbriefelasticcollisions.

Anelasticcollisionisacollisioninwhichthetotaltranslationalkineticenergy ofthemoleculesisconserved.

D1B.3

Noneoftheseassumptionsisstrictlytrue;however,manyofthemaregoodapproximationsunderawiderangeofconditionsincludingconditionsofambient temperatureandpressure.Inparticular,

(a) Moleculesaresubjecttolawsofquantummechanics;however,forall butthelightestgasesatlowtemperatures,non-classicale ectsarenot important.

(b) Withincreasingpressure,theaveragedistancebetweenmoleculeswilldecrease,eventuallybecomingcomparabletothedimensionsofthemolecules themselves.

(c) Intermolecularinteractions,suchashydrogenbonding,andtheinteractionsofdipolemoments,operatewhenmoleculesareseparatedbysmall distances. erefore,asassumption(2)breaksdown,sodoesassumption (3),becausethemoleculesareo encloseenoughtogethertointeracteven whennotcolliding.

Foranobject(beitaspacecra oramolecule)toescapethegravitational eldoftheEarthitmustacquirekineticenergyequalinmagnitudetothe gravitationalpotentialenergytheobjectexperiencesatthesurfaceoftheEarth. egravitationalpotentialbetweentwoobjectswithmasses m 1 and m 2 when separatedbyadistance r is

V = Gm 1 m 2 r

where G isthe(universal)gravitationalconstant.Inthecaseofanobjectof mass m atthesurfaceoftheEarth,itturnsoutthatthegravitationalpotential isgivenby

V = GmM R

where M isthemassoftheEarthand R itsradius. isexpressionimpliesthat thepotentialatthesurfaceisthesameasifthemassoftheEarthwerelocalized atadistanceequaltoitsradius.

AsamassmovesawayfromthesurfaceoftheEarththepotentialenergyincreases(becomeslessnegative)andtendstozeroatlargedistances. ischange inpotentialenergymustallbeconvertedintokineticenergyifthemassisto escape.Amass m movingatspeed υ haskineticenergy 1 2 m υ 2 ;thisspeedwill bethe escapevelocity υ e when

equantityinthesquarerootisrelatedtotheaccelerationduetofreefall, g ,inthefollowingway.Amass m atthesurfaceoftheEarthexperiences agravitational force given GMm / R 2 (notethattheforcegoesas R 2 ). is forceacceleratesthemasstowardstheEarth,andcanbewritten mg . etwo expressionsfortheforceareequatedtogive

isexpressionfor GM / R issubstitutedintotheaboveexpressionfor υ e togive

e =

2GM R = √2 Rg

eescapevelocityisthereforeafunctionoftheradiusoftheEarthandthe accelerationduetofreefall.

eradiusoftheEarthis6.37 × 106 mand g = 9.81ms 2 sotheescapevelocity is1.11 × 104 ms 1 .Forcomparison,themeanspeedofHeat298Kis1300ms 1 andforN2 themeanspeedis475ms 1 .ForHe,onlyatomswithaspeedin excessofeighttimesthemeanspeedwillbeabletoescape,whereasforN2 the speedwillneedtobemorethantwentytimesthemeanspeed. efractionof moleculeswithspeedsmanytimesthemeanspeedissmall,andbecausethis fractiongoesase υ 2 itfallso rapidlyasthemultipleincreases.Atinyfraction ofHeatomswillbeabletoescape,butthefractionofheaviermoleculeswith su cientspeedtoescapewillbeutterlynegligible.

Solutionstoexercises

E1B.1(a) (i) emeanspeedisgivenby[1B.9–16], υ mean = (8 RT /π M )1/2 ,so υ mean ∝ √1/ M . eratioofthemeanspeedsthereforedependsontheratioof themolarmasses

υ mean,H2

mean,Hg = ( M Hg M H2 )

(ii) emeantranslationalkineticenergy ⟨ E k ⟩ isgivenby 1 2 m ⟨ υ 2 ⟩,where ⟨ υ 2 ⟩ isthemeansquarespeed,whichisgivenby[1B.7–15], ⟨ υ 2 ⟩ = 3 RT / M . emeantranslationalkineticenergyistherefore

emolarmass M isrelatedtothemass m ofonemoleculeby M = mN A , where N A isAvogadro’sconstant,andthegasconstantcanbewritten R = kN A ,hence

emeantranslationalkineticenergyisthereforeindependentofthe identityofthegas,andonlydependsonthetemperature:itisthesame forH2 andHg.

isresultisrelatedtotheprincipleofequipartitionofenergy:amolecule hasthreetranslationaldegreesoffreedom( x , y ,and z )eachofwhich contributes 1 2 kT totheaverageenergy.

E1B.2(a) ermsspeedisgivenby[1B.8–15], υ rms = (3 RT / M )1/2 . υ rms,H2 = ( 3 RT M H2 )1/2 = ( 3 × (8.3145JK 1 mol 1 ) × (293.15K) 2 × 1.0079 × 10 3 kgmol 1 )1/2 = 1.90kms 1

where1J = 1kgm2 s 2 hasbeenused.Notethatthemolarmassisinkgmol 1 . υ rms,O2 = ( 3 × (8.3145JK 1 mol 1 ) × (293.15K) 2 × 16.00 × 10 3 kgmol 1 )1/2 = 478ms 1

E1B.3(a) eMaxwell–Boltzmanndistributionofspeeds, f (υ ),isgivenby[1B.4–14]. efractionofmoleculeswithspeedsbetween υ 1 and υ 2 isgivenbytheintegral

Iftherange υ 2 υ 1 = δ υ issmall,theintegraliswell-approximatedby f (υ mid ) δ υ

where υ mid isthemid-pointofthevelocityrange: υ mid = 1 2 (υ 2 + υ 1 ).Inthis exercise υ mid = 205ms 1 and δ υ = 10ms 1 .

fraction = f (υ mid ) δ υ = 4π × ( M 2π RT )3/2 υ 2 mid exp ( M υ 2 mid 2 RT ) δ υ = 4π × ( 2 × 14.01 × 10 3 kgmol 1 2π × (8.3145JK 1 mol 1 ) × (400K) )3/2 × (205ms 1 )2 × exp ( (2 × 14.01 × 10 3 kgmol 1 ) × (205ms 1 )2 2 × (8.3145JK 1 mol 1 ) × (400K) ) × (10ms 1 ) = 6.87 × 10 3

where1J = 1kgm2 s 2 hasbeenused. us,0.687%ofmoleculeshavevelocitiesinthisrange.

E1B.4(a) emeanrelativespeedisgivenby[1B.11b–16], υ rel = (8 kT /π µ )1/2 ,where µ = m A m B /(m A + m A ) isthee ectivemass.Multiplyingtopandbottomof theexpressionfor υ rel by N A andusing N A k = R gives υ rel = (8 RT /π N A µ )1/2 inwhich N A µ isthemolare ectivemass.FortherelativemotionofN2 andH2 thise ectivemassis

N A µ = M N2 M H2 M N2 + M H2 = (2 × 14.01gmol 1 ) × (2 × 1.0079gmol 1 ) (2 × 14.01gmol 1 ) + (2 × 1.0079gmol 1 ) = 1.88...gmol 1

υ rel = ( 8 RT π N A µ )1/2 = ( 8 × (8.3145JK 1 mol 1 ) × (298.15K) π × (1.88... × 10 3 kgmol 1 ) )1/2 = 1832ms 1

evalueofthee ectivemass µ isdominatedbythemassofthelightermolecule, inthiscaseH2

E1B.5(a) emostprobablespeedisgivenby[1B.10–16], υ mp = (2 RT / M )1/2 ,themean speedisgivenby[1B.9–16], υ mean = (8 RT /π M )1/2 ,andthemeanrelative speedbetweentwomoleculesofthesamemassisgivenby[1B.11a–16], υ rel = √2 υ mean . M CO2 = 12.01 + 2 × 16.00 = 44.01gmol 1 .

υ mp = ( 2 RT M )1/2 = ( 2 × (8.3145JK 1 mol 1 ) × (293.15K) 44.01 × 10 3 kgmol 1 )1/2 = 333ms 1

υ mean = ( 8 RT π M )1/2 = ( 8 × (8.3145JK 1 mol 1 ) × (293.15K) π × (44.01 × 10 3 kgmol 1 ) )1/2 = 376ms 1 υ rel = √2 υ mean = √2 × (376ms 1 ) = 531ms 1

E1B.6(a) ecollisionfrequencyisgivenby[1B.12b–17], z = συ rel p/ kT ,withtherelative speedfortwomoleculesofthesametypegivenby[1B.11a–16], υ rel = √2 υ mean . emeanspeedisgivenby[1B.9–16], υ mean = (8 RT /π M )1/2 .Fromthe Resourcesection thecollisioncross-section σ is0.27nm2 z = συ rel p kT = σ p kT × √2 × ( 8 RT π M )1/2 = (0.27 × 10 18 m2 ) × (1.01325 × 105 Pa) (1.3806 × 10 23 JK 1 ) × (298.15K) × √2 × ( 8 × (8.3145JK 1 mol 1 ) × (298.15K) π × (2 × 1.0079 × 10 3 kgmol 1 ) )1/2 = 1.7 × 1010 s 1

where1J = 1kgm2 s 2 and1Pa = 1kgm 1 s 2 havebeenused.Notethe conversionofthecollisioncross-section σ tom2 :1nm2 = (1 × 10 9 )2 m2 = 1 × 10 18 m2

E1B.7(a) emeanspeedisgivenby[1B.9–16], υ mean = (8 RT /π M )1/2 ecollision frequencyisgivenby[1B.12b–17], z = συ rel p/ kT ,withtherelativespeedfor twomoleculesofthesametypegivenby[1B.11a–16], υ rel = √2 υ mean . emean freepathisgivenby[1B.14–18], λ = kT / σ p

(i) emeanspeediscalculatedas

υ mean = ( 8 RT π M )1/2 = ( 8 × (8.3145JK 1 mol 1 ) × (298.15K) π × (2 × 14.01 × 10 3 kgmol 1 ) )1/2 = 475ms 1

(ii) ecollisioncross-section σ iscalculatedfromthecollisiondiameter d as σ = π d 2 = π × (395 × 10 9 m)2 = 4.90... × 10 19 m2 .Withthisvalue themeanfreepathiscalculatedas

λ = kT σ p = (1.3806 × 10 23 JK 1 ) × (298.15K) (4.90... × 10 19 m2 ) × (1.01325 × 105 Pa) = 82.9×10 9 m = 82.9nm

where1J = 1kgm2 s 2 and1Pa = 1kgm 1 s 2 havebeenused.

(iii) ecollisionrateiscalculatedas

z = συ rel p kT = σ p kT × √2 × ( 8 RT π M )1/2 = (4.90... × 10 19 m2 ) × (1.01325 × 105 Pa) (1.3806 × 10 23 JK 1 ) × (298.15K) × √2 × ( 8 × (8.3145JK 1 mol 1 ) × (298.15K) π × (2 × 14.01 × 10 3 kgmol 1 ) )1/2 = 8.10 × 109 s 1

Analternativeforthecalculationof z istouse[1B.13–18], λ = υ rel /z , rearrangedto z = υ rel / λ

2 × (475ms 1 ) 82.9 × 10 9 m = 8.10 × 109 s 1

E1B.8(a) econtainerisassumedtobesphericalwithradius r andhencevolume V = 4 3 π r 3 isvolumeisexpressedintermsthetherequireddiameter d = 2r as V = 1 6 π d 3 .Rearrangementofthisexpressiongives d d = ( 6V π )1/3 = ( 6 × 100cm3 π )1/3 = 5.75...cm

emeanfreepathisgivenby[1B.14–18], λ = kT / σ p isisrearrangedto givethepressure p with λ equaltothediameterofthevessel p = kT σ d = (1.3806 × 10 23 JK 1 ) × (298.15K) (0.36 × 10 18 m2 ) × (5.75... × 10 2 m) = 0.20Pa

Notetheconversionofthediameterfromcmtom.

E1B.9(a) emeanfreepathisgivenby[1B.14–18], λ = kT / σ p. λ = kT σ p = (1.3806 × 10 23 JK 1 ) × (217K) (0.43 × 10 18 m2 ) × (0.05 × 1.01325 × 105 Pa) = 1.4 × 10 6 m=1.4µm

Solutionstoproblems

P1B.1 Arotatingslotted-discapparatusconsistsofaseriesofdisksallmountedona commonaxle(sha ).Eachdischasanarrowradialslotcutintoit,andtheslots onsuccessivediscsaredisplacedfromoneanotherbyacertainangle. ediscs arethenspunataconstantangularspeed.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Student solutions manual to accompany atkins' physical chemistry 11th edition peter bolgar - Downloa by Education Libraries - Issuu