∂ 2015 ¥ 1/2
Technik
73
1
Gigant-Isolierglasscheibe, glass technology live, Messe Düsseldorf 2014 2– 4 Apple Store an der 5th Avenue, New York Verglasung: Sedak 1 3
L arge-format insulated glass unit, glass technology live, 2014, fair in Düsseldorf 2– 4 Apple Store on Fifth Avenue in New York, glazing: Sedak
4
York. Der von Bohlin Cywinski Jackson Architects und dem Ingenieurbüro Eckersley O’Callaghan geplante Glaswürfel mit 10 m Kantenlänge wurde 2006 eröffnet. Die gläserne Tragkonstruktion bestand ursprünglich aus 24 vertikalen und 10 horizontalen Glasschwertern aus 5 ≈ 12 mm TVG mit einer maximalen Einzelglaslänge von 6,90 m. Daher mussten die Gläser für die erforder liche Länge von 10 m noch stoßlaminiert werden. In der überarbeiteten Konstruktion von 2011 konnten für die Fassade bereits Scheibengrößen von 10,30 ≈ 3,30 m als Fünffach-VSG eingesetzt werden und somit die Anzahl der Scheiben von vormals 72 auf 12 verringert werden. Analog dazu wurden die Elemente der biegesteifen selbsttragenden Dachkonstruktion von 36 auf 3 reduziert. Erstmalig wurden Verbindungsstücke aus Titan in die Gläser einlaminiert, die die Außenscheiben beinahe unsichtbar in den Vertikalfugen an die Glasschwerter anbinden. Durch den Einsatz neuester Glastechnologie mit deutlich weniger Fügepunkten wurde eine unvergleichlich transparente Erscheinung erreicht (Abb. 2 – 4). Verformung von Gläsern Gekrümmte und frei geformte Glasober flächen gehören mittlerweile zum gängigen Repertoire der Architektur. Bei der Herstellung solcher Gläser wird zwischen Warmverformen und dem so genannten Laminationsbiegen oder Kaltbiegen unterschieden. Beim Warmverformen wird die Scheibe erwärmt und auf einer Form oder mit Hilfe der Schwerkraft plastisch verformt. Nach dem Abkühlen behält die Scheibe ihre Form. Neben gebogenen Floatgläsern können gebogene thermisch vorgespannte Gläser, Verbundgläser und Isoliergläser produziert werden. Für einfache zylindrisch gebogene Scheiben stehen mittlerweile automatisierte Prozesse zur Verfügung, die die Herstellung von vorgespanntem Glas mit Größen bis zu 3,21 ≈ 5,00 m und Biegeradien von minimal ca. 1,00 m, in Abhängigkeit von der Glas dicke, erlauben. Das Laminationsbiegen oder Kaltbiegen hingegen beruht auf dem Prinzip der Glaslamination mit Kunststoff
zwischenlagen. Bei der formunterstützenden Laminierung werden die Gläser mit schubweichen Zwischenlagen (PVB) laminiert und dann beim Einbau über einen formgebenden äußeren Anpressdruck in die gewünschte Geometrie gebracht (Montagebiegen). Dagegen wird bei formgebender Laminierung der Scheibenstapel vor dem Laminationsprozess im Autoklaven in die gewünschte Geometrie gezwungen. Durch die Verwendung einer schubsteifen Zwischenlage (SG-Folie) behält dieser danach dauerhaft seine endgültige Form, ohne auf formgebende Unterkonstruktionen angewiesen zu sein. Der wesentliche Vorteil des Laminationsbiegens ist die hohe optische Qualität der Gläser, da diese im Gegensatz zur Warmverformung unterhalb der Erweichungstemperatur des Glases verarbeitet werden und somit sehr ebene Oberflächen besitzen. Durch die schubsteife Laminierung ergibt sich ein annähernd monolithisches Tragverhalten. Der Einsatz normgerechter ESG-Gläser sowie bedruckter und beschichteter Gläser ist möglich. Die Herstellung von Scheiben mit komplexer, zweisinnig gekrümmter Geometrie oder sehr engen Radien hingegen lässt sich bisher nur mit Warmverformung realisieren. Die Leistungsfähigkeit und spezifischen Vorteile der einzelnen Verfahren werden an verschiedenen aktuellen Produktentwicklungen und Architekturbeispielen deutlich. Sie eröffnen neue gestalterische Möglichkeiten, indem sie maximale Transparenz mit hoher Funktionalität oder komplexen Geometrien verbinden. Für das Glasdach über einem Atrium im Aria-Hotel in Budapest kamen die bisher größten Isolierglaseinheiten aus laminationsgebogenen Gläsern zum Einsatz. Die fünf Elemente sind jeweils 3,20 m breit und besitzen eine Spannweite von 8,13 m. Die entlang des Dachrands und auf vier laminierten Glasträgern aufgelagerte, hochtransparente Überdachung zeigt eindrucksvoll den momentanen Entwicklungsstand in der Anwendung von Isoliergläsern im Überkopfbereich (Abb. 6). Ein Beispiel für den kombinierten Einsatz unterschiedlicher Lamina-
tions-/Biegeprozesse zur Herstellung komplex geformter Gläser stellt der anspruchsvolle Entwurf für die 15 m hohen Glashäuser des 2014 eröffneten Bombay Sapphire Headquarters von Heatherwick Studio dar (Abb. 5, 7). Die fächerförmige Gebäude hülle der zentralen, öffentlich zugänglichen Gewächshäuser setzt sich aus gebogenen Edelstahlträgern, Zugseilen aus Edelstahl und den in einem zweistufigen Prozess verformten Glasscheiben zusammen. Die Abtragung der Vertikalkräfte erfolgt über die Edelstahlträger, während die Glasscheiben zur Aussteifung in Querrichtung eingesetzt wurden. Durch den Einsatz von Zugseilen im Bereich der Glasfugen konnten die Ansichtsbreiten der Träger auf ein Minimum reduziert werden. Um maximale Lichtdurchlässigkeit und Transparenz zu erreichen, werden VSG-Einheiten aus 2≈ 6 mm eisenarmem, ultraweißem ESG mit einer Zwischenlage aus SG-Folie verwendet. Diese sind auf der Fassadeninnenseite zusätzlich mit einer hydrophoben Beschichtung versehen. Die einsinnig zylindrisch gekrümmten Glaselemente mit einem Krümmungsradius unter 16,00 m wurden in einem ersten Arbeitsschritt im Werk warm verformt. Scheibenradien über 16,00 m wurden durch form unterstützende Kaltlamination erreicht. Die endgültige Formgebung in zweisinnig (doppelt) gekrümmte Glassegmente entstand durch Montagebiegen vor Ort. Diese Vorgehensweise ermöglichte es, sämtliche geforderten Krümmungsradien der Gebäudehülle bis zu einem Minimalradius von 2,03 m zu realisieren. So konnte die gewünschte gestalterische Wirkung in optimaler Weise erreicht werden. Die erhöhte Stabilität leicht verformter Gläser nutzt eine kürzlich vorgestellte Entwicklung im Bereich großer vertikaler DreifachIsolierverglasungen. Die Scheiben in For maten bis zu 2 m Breite und 5 – 8 m Höhe (12 m sind geplant) sind nur zweiseitig am oberen und unteren Rand gelagert (Abb. 8). Aufgrund ihrer linsenförmigen Geometrie können sie freitragend ohne vertikale Unter konstruktion verwendet werden. Durch die statische Überhöhung der äußeren Scheiben