Spatial Variations in Elemental Otolith Elemental Fingerprints For Two Reef Fish Species

Page 1


SpatialVariationsinElementalOtolithElementalFingerprintsForTwoReefFishSpeciesin

NearshoreNurseryHabitatsinPuertoRicoand St.Croix(USVI)

1,EdwardDurbin2,RichardAppeldoorn3,AaronAdams4

1UniversityofRhodeIsland,Dept.Fisheries,AnimalandVeterinarySciences,Kingston,RI02881USA 2UniversityofRhodeIsland,GraduateSchoolofOceanography,Narragansett,RI02882USA 3UniversityofPuertoRico,Dept.MarineSciences,Mayaguez,PuertoRicoUSA 4MoteMarineLaboratory,Pineland,FL33945USA

Authorcorrespondence:imateo32@cox.net

IvanMateo

ABSTRACT

Juvenilesoftheeconomicallyimportantfishspecies Haemulonflavolineatum (Frenchgrunt)and Lutjanusapodus (schoolmaster)werecapturedin2mangrovestationsand2seagrassstationswithin PuertoRicoandSt.Croixin2006and2007todetermineifsettlementandnurseryareaswithinmangrove andseagrasshabitatscanbeidentifiedbychemicalsignaturesfromotolithmicrochemistry. ConcentrationsofRb,Co,Na,Mg,Ca,Mn,Mg,Sr,Ba,Pb,andCuweredeterminedindiscreteregions ofYOYotolithrepresentingthepost-settlementperiod(30-60days)usinglaserablationinductively coupledplasmamassspectrometry(LA-ICPMS).Stableoxygen(18O)andcarbonisotopic ratios(13C)in YOYotolithswerealsoanalyzedusingisotoperatiomassspectrometrytodetermineiffishfromknown nurserygroundshaddistinguishablesignatures.

ResultsofMANOVAforbothyearsshowedthatelementalsignaturesforbothspeciesdiffered significantly(P<0.001)amongthedistinctmangroveandseagrassnurserieswithinPuertoRicoandSt. Croix.Inaddition,univariatecontrastsindicatedthatconcentrationsofsixelements(Sr,Ba,Cu,Mg,Co, Na)andthetwostableisotopes(18Oand 13C)forbothspecieswithineachyeardifferedsignificantly amongmangroveandseagrassnurserieswithinIslands(ANOVA,P<0.001).Classificationsuccessfor FrenchgruntsandschoolmasternurseriessiteswithinSt.Croixforthetwoyearsrangedfrom87 to92% andfrom76to77%,respectively,whereasinPuertoRico,classificationsuccessforFrenchgruntsand schoolmasterforthetwoyearsrangedfrom80to84%and84to87%,respectively.Whenstationswere combinedamonghabitats,classificationsuccessbetweenmangroveandseagrasshabitatsinPuertoRico forFrenchgruntrangedfrom84to91%,andforschoolmasterrangedfrom94to99%.InSt.Croix, classificationsuccessforFrenchgruntwas95to96%,andforschoolmasterwas86to89%.

Sinceaccurateclassificationofjuvenilefishtotheirnurserysiteswasachieved,otolithchemistryanalysis canbeusedasanaturalhabitattaginassigningadultfishtotheirnurseryhabitat.

LISTOFTABLES

Table1.DetailsoftheLaserandICPMSusedinthestudy. 20

Table2.Sizedistributionbystation,habitat,andyearof H.flavolineatum and L.apodus 21

Table3.ResultsofMANOVAoftraceelementconcentrationandstableisotopiccompositionin otolithsofYOYof H.flavolineatum and L.apodus collectedinstationsinSt.Croix andPuertoRico. ....................................................................................................................22

Table4.JackknifedClassificationSuccessusingLinearDiscriminantFunctionAnalysisfor H. flavolineatum otolithscollectedinSt.CroixandPuertoRico. 23

Table5.ResultsofMANOVAoftraceelementconcentrationandstableisotopiccompositionin otolithsofYOYof H.flavolineatum and L.apodus collectedinstationsinSt.Croix andPuertoRico. 24

Table6.JackknifedClassificationSuccessusingLinearDiscriminantFunctionAnalysisfor L. apodus otolithscollectedinSt.CroixandPuertoRico. ........................................................25

Table7.UnivariateresultsoftheMANOVAof H.flavolineatum usingyearandstationas factors. ...................................................................................................................................26

Table8.UnivariateresultsoftheMANOVAof H.flavolineatum usingyearandhabitatas factors. 27

Table9.UnivariateresultsoftheMANOVAof L.apodus using yearandstationasfactors. 28

Table10.UnivariateresultsoftheMANOVAof L.apodus usingyearandhabitatasfactors..............29

Table11.Percentofsubadultsoriginatingfrommangroveandseagrassbasedonmaximum likelihoodmodelstoassignsubadultstohabitatorigin. 30

LISTOFFIGURES

Figure1.Studysitesselectedtocollectjuvenile H.flavolineatum and L.apodus inSt.Croix. 3

Figure2.Studysitesselectedtocollectjuvenile H.flavolineatum and L.apodus inPuertoRico. MG=mangrovearea,SG=seagrassarea. 4

Figure3.PictureoftheLAICPMSusedtoanalyzetraceelementalconcentrationsatthe GraduateSchoolofOceanographyURIICP-MSlaboratory. .................................................6

Figure4.CanonicalScoresPlotsfor H.flavolineatum,St.Croix(top)andPuertoRico(bottom) forsamplingyears2006and2007.

31

Figure5.CanonicalScoresPlotsfor L.apodus,St.Croix(top)andPuertoRico(bottom)for samplingyears2006and2007 32

Figure6.Spatialandtemporalvariabilityintraceelements andstableisotopesmeasuredin otolithsofYOY H.flavolineatum collectedinSt.Croix(USVI)in2006and2007. Alltraceelementdata[Element/Cax103]areLn(X+1)transformed..................................33

Figure 7.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY H.flavolineatum collectedinPuertoRicoin2006and2007.Alltrace elementdata[Element/Cax103]areLn(X+1)transformed. 34

Figure8.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY L.apodus collectedinSt.Croix(USVI)in2006and2007.Alltrace elementdata[Element/Cax103]are Ln(X+1)transformed.................................................35

Figure9.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY L.apodus collectedinPuertoRicoin2006and2007.Alltrace elementdata[Element/Cax103]areLn(X+1)transformed.

36

INTRODUCTION

Manycoastalfishspecieshavejuvenileandadultlifestagesthatoccupyspatiallyseparatedhabitats.The juvenilesoftenrecruittonearshore habitatswheretheyresideformonthstoyearsbeforemigratingto offshorehabitatstojointheadultpopulation.Inaddition,juvenilesofmanyspecieswiththislifehistory patternrecruittomorethanonetypeofnearshorehabitat,forexample,mangroveandseagrassmeadows, andthosedifferenthabitatsarelikelytovaryinquality.Thehighestqualityjuvenilehabitatsareoften referredtoas‘nursery’habitats.Determiningwhichjuvenilehabitatsarefunctioningasnurseryhabitats isimportanttobothunderstandingtheecologicalrolesofthedifferentjuvenilehabitatsandmanaging harvestedfishpopulationsandcoastalresources.Identificationofnurseryhabitatsisparticularly importantwhensomeofthenearshorehabitatsusedbyjuvenilefisharevulnerabletodegradationorloss. Otolithmicrochemistryprovidesapowerfulmeanstoidentifyspawningsitesandtotrackdispersaland retentionoffishthroughoutontogeny.Elementalfingerprintsinotolithscanbeusedtoreconstructlife historychronologiesoffishandcanbeappliedtopotentiallydeterminethesiteofnataloriginandif adultsexhibitfidelitytosuchsites,returningtothesitesoftheirnataloriginforspawning. Chemical habitattagsintheotolithsofjuvenilefish havebeenusedtodifferentiateindividualsfromdifferent estuarine/riverinesystems(Thorroldetal.1998a,Thorroldetal.1998b,GillandersandKingsford2000, Gillanders2002b)andalternativetypesofnearshorehabitats,includingestuaryversusrockyreef (GillandersandKingsford1996)andestuaryversussubtidalsandflats(Yamashitaetal.2000,Forrester andSwearer2002).Inaddition,throughchemicalanalysisofthejuvenilecoreofadultotoliths,the habitattaghasbeenusedtodeterminethe proportionoftheadultpopulationthatresidedindifferent juvenilehabitats(Yamashitaetal.2000,Thorroldetal.2001,Gillanders2002a)

TheFrenchgrunt Haemulonflavolineatum andtheschoolmaster Lutjanusapodus areeconomically importantspecies thatoccurintheWesternAtlantic,rangingfromBermudatoBrazil,includingthe CaribbeanSea.Theyoccurinlargeschoolsonrockyandcoralreefsto60mdepth.Juveniles(<2cm) settlefromtheplanktonafter20-30daysinahighlyaggregatedpattern(BrothersandMcfarland1983, Mcfarlandetal.1985,Shulman1985,Lindeman1997)withthemajorityoffish(95%)settlingonto seagrassandmangrovehabitatsandabout5%settlingontostructuressuchasrubbleorcoralheads (ShulmanandOgden1987,RookerandDennis1991,Nagelkerken2000).Afterafewweekstomonths thesmalljuvenilesmigratetojoinschoolsofintermediate-sizedindividualspresentinmangrovehabitats (Boulon1992;RookerandDennis1991;Nagelkerken2000a,b,c,Appeldoornetal.1997)orbackreef structures,usuallypatchreefs(OgdenandEhrlich1977,BrothersandMcFarland1981,Helfmanetal. 1982,McFarlandandHillis1982,MateoandTobias2001a,bAdamsandEbersole2002,Mateoand Tobias2004).Largejuvenileseventually emigratefromtheseschools,andarepresumedtomovetoforereefhabitats,wheretheyresideindividuallyorinsmallgroups(Appeldoornetal.1997;Nagelkerkenet al.2002).Adultsofmostspeciestypicallyformschoolsofafewtoseveralhundredfishesoncoralreefs bydayandfeedinadjacentseagrassandmangroveareasbynight(Appeldoornetal.1997,Nagelkerken etal.2002).

Thisprojectaimstoinvestigatetheutilityofnaturallyoccurringhabitattagstodeterminehabitatlinkages intropical nearshoreecosystemsbyjuvenileandadultfishpopulations.Thisisaninitialcrucialstepto quantifytherelativecontributionandconnectivityofnearshorehabitatsforadultfishpopulations.

Thespecificquestionsthatthisstudyattemptstoaddressare:

Cantropicalfishsettlementandnurseryareasbeidentifiedbychemicalsignaturesfromotolith microchemistry?

Arespatialdifferencesinthechemicalsignaturesfromtropicaljuvenilefishwithinnurseryareas consistenttemporally?

METHODOLOGY

Studysites

StCroix

SampleswerecollectedfromfiveareasintheIslandofStCroixUSVIfromfiveareas:AltonaLagoon, GreatPondBay,TeagueBay,SaltRiverandTurnerHole(Figure1).TurnerHoleandGreatPondand TeagueBaywereselectedasnon-mangroveenvironmentswhereasAltonaLagoonandSaltRiverwere selectedasmangroveenvironments.

TeagueBay,TurnerHoleandGreatPondarepartoftheStCroixEastEndMarinePark.Thisisthefirst territorialparkintheU.S.VirginIslands(TNC2002)andcontainsthelargestislandbarrierreefsystemin theCaribbean. TeagueBayis parttheTeagueBaybank-barrierreefsystem thatextendsfromPullPoint toLambPointonthenortheastcoastofSt.Croix(Figure1). Thereisalargeback-reeflagoonwiththe distancefromtheshoretothereefvaryingfrom500mto700m(Mateo&Tobias2001)andthedepth rangingfrom8mwestofTeaguePointto1minthebackreefatbotheasternandwesternendsofthe lagoon(Burkeetal.1989).Thezonationpatterninthisembaymentischaracteristicforatypicalreef (Burkeetal.1989)withseagrassandsediment-dwellingorganismsdominatinginthelagoon. The abrupttransitionfromthelagoontothebackreefismarkedbyscatteredcoralcolonies(Montastrea annularis and Porites spp.),severalspeciesofgorgonians,andfleshyalgae.

TurnerHolebayispartofthesoutheasternendbank-barrierreefsystemthatextendsfromEastPointto VagthusPoint(Hubbard1989).Thisembaymentisalmost1000mlongandapproximately300mwide. Depthinthelagoonrangesfromamaximumofapproximately8to1matbotheasternandwesternends andmostofthebottomiscoveredbyseagrasses(e.g., Thalassiatestudinum and Syringodiumfiliforme)in bedsofvaryingdensity.

GreatPondbehindGreatPondBay(Figure1)isthesecondlargestsaltpondintheVI(Tobias2001).The bank-barrierreefoffshoreaffordsprotectedbackreefwatersforextensiveturtlegrassmeadows.Itis approximately2kmlongandboundedonitslandwardsidebythebaymouthbarandseawardbya continuouscoral-algalreef(Bruceetal.1989).Theinshoreportionofthelagooniscoveredbythe seagrass, Thalassiatestudinum (turtlegrass)andlesseramountsof Syringodiumfiliforme (turtlegrass). Scatteredcoralheads,including Montastreaannularis, Diploriastrigosa, and Siderastrea spp., alsooccur inthelagoon.Lagoondepthsrangefrom1-7m.

TheSaltRiverestuaryisamangrove-fringedlagoononthenorthshoreofStCroixseparatedfrom the openoceanbyafringingreef(AdamsandTobias1999).Theshallow(4m)estuaryiscomposedofan outerbayandtwoparallelinnerbays(TritonBayandSugarBay)andcontainsasmallmarina.The majorityofmangrovehabitatisalongtheshorelinesof theinnerbays,withonlylimitedgrowthonthe westernshoreoftheouterembayment.Duetotheimportantnaturalvaluethatthisecosystemhas,the USVIDepartmentofPlanningandNaturalResourceshasidentifiedSaltRiverasanareaofparticular concern(APC)andanareaforpreparationandrestoration(APR).

AltonaLagoonisanenclosedmangrovelagoononthenortheastcoastofStCroix.Formerlyanopen estuary,thegradualdepositionofcalciumcarbonatesandsofbiogenicoriginovergeologictimehave formedabaymouthbartothenorth,connectingrockyheadlandsandseparatingthelagoonfromthe CaribbeanSea(Tobias1996).ThelagoonisconnectedtotheChristiansted Harborbackreefareabya singlenarrowchannel<10mwide.Sandbuildupinthethreeculvertsfurtherrestrictswaterexchangein AltonaLagoon.Maximumwaterdepthofthelagoonis3to5meters.Redmangrovescovertheentire shorelineofthelagoon.(Tobiasetal.1996).

Figure1.Studysitesselectedtocollectjuvenile H.flavolineatum and L.apodus inSt.Croix. MG=mangrovearea,SG=seagrassarea.

PuertoRico

SampleswerecollectedintwostudysitesontheIslandofPuertoRico:LaPargueraandGuayanillaBay (Figure2).Eachareacontainsbothmangroveandnon-mangrovehabitattypeswherejuvenileFrench GruntsandSchoolmasterarefound.

TheshelfofLaPargueraextends8-10kmoffshore;awell-developedcoralreefformationexistsatthe borderoftheshelfandservesasafirstbarrieragainstwaveaction.Twootherlinesofbarrierreefs providefurtherprotectionforthemangrovecoastlineandsubmergedseagrassbedsofLaParguera.La Pargueraisrecognizedfortheexceptionalvalueofitsmarineresources,whichincludetwo bioluminiscentbays(BahíaFosforescenteandMonsioJosé),acoastalmangrovefringewithseveralsmall lagoons,mangroveislandsassociatedwithcoralreefs,seagrassbeds,andperhapsthebestdeveloped, mostextensivecoralreefecosystemoftheisland.Asaresult,bothlocalandtransienttouristpopulations haveincreaseddramaticallyinrecentyearsimpactingthelocalenvironmentheavily.Tocontrolthis,the PuertoRicoPlanningBoardclassifiedLaPargueraasaZoneofSpecialPlanning.Infurtherrecognition oftheecologicalvalueofitsmarineresources,LaParguerahasalsobeendesignedasaNaturalReserve bytheDepartmentofNaturalResources.

GuayanillaBayisasemi-enclosedbaylocatedinthesouthcoastofPuertoRicoandcontainsboth mangroveandnon-mangrovejuvenilefishhabitats.Theshallowwatersarerichincoralreefsandcontain extensiveareasofseagrassthatprovideanaturalnurseryhabitatforvariousjuvenilefishspecieswith commercialvalueforlocalfishermen. (Castro &Garcia1996;Vicente&Associates2003). Industrial developmentonGuayanillaBaywasbasedonthecreationofahugepetrochemicalandoilrefining complexandsubsidiaryindustriestosustainlarge-scaleindustrialproductioninnearbyareas(Lopez 1979).

St.Croix
TeagueBay(SG)
Altona Lagoon(MG)
TurnerHole(SG)
GreatPond(MG)
SaltRiver(MG)

Figure2.Studysitesselectedtocollectjuvenile H.flavolineatum and L.apodus inPuertoRico.MG =mangrovearea,SG=seagrassarea.

Samplingofjuvenilefish

StCroix

FromMay9toMay192006andfromMay5 toMay252007,young-of-the-year(YOY)andsmall juvenilefishwerecollectedaroundmangroveareasandnon-mangroveareasinStCroixwithabeach seineandfishtraps.Thebeachseinenetusedforthisstudymeasured30.5mx122cm.Thenetmesh sizewas1.3cmstretchmesh.Fishtrapsusedinthisstudywererectangular(92cmx57cmx19cm)and madefromvinyl-coatedwirewith1.3cm2 barmesh.Thenumberoftrapsusedinthisstudywas10. Eachtrapwasbaitedwithapproximately0.5lbherring andhadasoaktimeof2days.Twentyto25 individualsofschoolmasterandfrenchgruntbetween3cmto12cmtotallengthwerecaughtin mangrovestations:(SaltRiver,Altonalagoon),andnon-mangrovestations(TeagueBay,TurnerHole, GreatPond)(Figure1).DistancesamongstationsinthenorthcoastofStCroixwereabout8to16km whereasinthesouthcoastdistancewas5km.Sampledfishwerekeptfrozenuntildissectiontoobtainthe otoliths.

PuertoRico

FromJune15toJune242006andSeptember152006,andfromJune12toJune222007,Young-of-theyear(YOY)andsmalljuvenilefishwerecollectedaroundmangroveareasandnon-mangroveareasin PuertoRicowithbeachseineandfishtraps.Thesamplingeffortwasdoneincollaborationbystafffrom UniversityofPuertoRico’sDepartmentofMarineSciences(Dr.RichardAppeldoorn).Twentyto25 individualsofschoolmasterandfrenchgruntbetween3cmto12cmtotallengthwerecaughtin mangrovestations(BahiaMontalva,MariaLanga,PuntaGuayanilla)andnon-mangrovestations(Corral, ElPalo)(Figure1).DistancesamongstationswithinLaParguerawereabout3to5km.Distancesamong

Pta.Guayanilla(MG)
MariaLanga(MG)
PuertoRico
Corral(SG)
ElPalo(SG)
Montalva (MG)

thetwobays(GuayanillaBay,LaParguera)was28km.Sampledfishwerekeptfrozenuntildissectionto obtaintheotoliths.

Samplingofadultfish

Twentytotwenty-fourfirstyear-oldsubadultsof L.apodus and H.flavolineatum werecollectedfrom reefsadjacenttoSaltRivermangrovelagooninStCroixwithspearfishingduringMay29toJune3, 2007.InPuertoRicofishwerecollectedfromtheLaPargueraareaaroundtheoffshoreTurrumotereef whichisadjacenttoBahiaMontalva(Mangrovestation)andCorral(seagrassstation),betweenJune22to June27,2007.Fishbetween15-20cmfork(FL)lengthfor L. apodus and12-15cmFLfor H. flavolineatum werekeptforanalysis.Thesesizerangesapproximate1year-oldfish(FishBase). Fish werekeptiniceorfrozenuntildissectiontoremovetheotoliths.

Otolithmicrochemistry

Preparationofjuvenileandadultotolithsfortracemetalandisotopeanalysis

Standardlength,forklength,andwetweightweremeasuredforeachfishpriortodissectiontoremove theotoliths.Bothleft(tracemetals)andright(stableisotopes)sagittalotolithswereremoved,cleanedof endolymphatictissue,rinsed3xwithMilli-Qwater,andallowedtodryinaClass100laminarflowhood. Sampleswereplacedinacidwashed2.5mlsnapcapcontainers.Eachotolithwasthenmeasuredand weighed(±0.01mg)onaThermoCahnmicrobalance.Atotalof384otolithswerepreparedfortrace metalandstableisotopesanalyses(FrenchgruntN=192,schoolmasterN=192)foryear2006.In2007a totalof372otolithswerepreparedfortracemetalandstableanalyses(FrenchgruntN=192,schoolmaster N=180).Foradultscollectedin2007,atotalof93otolithswerepreparedfortracemetalanalyses (FrenchgruntN=48,schoolmasterN=45).

TraceMetalAnalysis

OtolithsfortracemetalanalysiswereembeddedinThreeSystemEpoxyusingflatembeddingsilicon rubbermolds(Pelco#105)andleftfortwodayswhiletheepoxyhardened.Traversethinsectionsof400 µmweremadewithaBuehlerlowspeedsaw.Thesesectionsweremountedonamicroscope petrographicslidewiththermoplasticglueandgroundtothecoreinthesagittalplanewithlappingfilm (30,15,9and3microns).Surfacecontaminationwasremovedbyultrasonicallycleaningthesectioned otolithsinultrapurewaterfor5minutesandlefttodryfor24hoursinalaminarflowhood.Slideswere storedinpetrographicslideboxesuntilchemicalanalysis.

Traceelementalconcentrationswereanalyzedwithlaserablation-inductivelycoupledplasmamass spectrometry(LA-ICPMS)(ThermoX-SeriesIIQuadrupoleICP-MScoupledwithaUPS213Nd:Yag, NewWaveTechnologiesLaser)(Figure3).Priortomicrochemicalanalysis,otolithincrementnumber andwidthwasanalyzed(Image-Proimageanalysissoftware)sothatwecouldsampletracemetalsinthe appropriateregionsoftheotolith(larval,immediatepost-settlement,juvenile,recentgrowth).Forthe YOYandadultreeffish,classificationanalysisdatafromthepostsettlementperiodwasused.Before analysis,theareawaspreablatedtoreducesurfacecontamination.Threereplicatespotsinthe postsettlementzoneofeachotolithwerequantifiedataspotsizeof40µmwiththelaseroperatingat5 Hz,andascanrateof30seconds(Table1).Initiallyweexamined15elementsinjuvenilefrenchgrunt otoliths(Li,Rb,Co,Na,Mg,Al,S,Ca,Mn, Mg,Se,Sr,Ba,Pb,U).Nineelementswereconsistently detectibleabovebackgroundlevelsinjuvenileotoliths(Na,Sr,Ba,Mg,Mn,Ba,Cu,Co,Rb).All elementconcentrationswerestandardizedwithNIST612glassstandards(NationalInstituteofStandards andTechnology- U.S.DepartmentofCommerce).Thestabilityoflaserconditionswasevaluatedby examiningtherelativestandarddeviation(RSD)oftargetelementsintheNIST612glassstandards.

Stableisotopeanalysis:

Forinorganic 13Cand 18OstableisotopesanalysisofYOYfishtherightsagittalotolithsweregroundto powderandthepowderplacedinacidwashed2.5mlsnapcapcontainers.Forfirstyearsubadults,thethin

sectionsofeachotolithwereattachedtoamicroscopeslideandacomputer-drivenmicromillingmachine (WHOI,McleanLaboratory)wasusedtofreethejuvenilecorefromthesurroundingotolith.Thiscore materialwasthengoundandplacedinacidwashed2.5mlsnapcapcontainers.Stableisotopesofthese otolithsampleswere determinedatthelaboratoryofDr.PeterSwartatRSMAS,UniversityofMiami, usingisotoperatioanalysiswithanautomatedcarbonatedevice(commonacidbathat90°C)attachedtoa Finnigan- MAT251gasratiomassspectrometer.DatawereexpressedrelativetoPDB(Peedee Belemnite).Externalprecision(calculatedfromreplicateanalysesofaninternallaboratorycalcite standard)was0.02%for 13Cand0.03%for 18O.

Figure 3.PictureoftheLAICPMSusedtoanalyzetraceelementalconcentrationsattheGraduate SchoolofOceanographyURIICP-MSlaboratory.

StatisticalAnalysis

UnivariateandmultivariatemethodswereusedtodetermineifYOYotolithchemistryinthe postsettlementregionvariedamongsitesandbetweenyears.Todetectdifferencesintheconcentrations ofparticularelementsandmultielementfingerprintsamongsitesandbetweenyearsanalysesofvariance (ANOVA)andmultivariateanalysesofvariance(MANOVA)wereperformed.Pillai’stracewaschosen asthe teststatisticbecauseitismorerobusttosmallsamplesizes,unequalcellsizes,andsituationsin whichcovariancesarenothomogeneous.Tukey’sHSDtestwasusedtodetectaposterioridifferences amongmeans(α=0.05).Beforestatisticaltesting, residualswereexaminedfornormalityand homogeneityamongstations.Tomeetmodelassumptions,allanalyseswereperformedonnaturallog transformeddata.Canonicaldiscriminantfunctionanalyses(DFAs)onfrenchgruntandschoolmaster postsettlement datawereusedtovisualizespatialdifferenceswithinsitesandyearsandtoexamine classificationsuccessforjuvenilesfromdifferentsitesorhabitatsacrossyears.Crossvalidationswere performedbyusingjackknife(‘‘leaveoneout’’)proceduresin Systat.

Two-wayANOVAwasusedtotestifthereweredifferencesinsizeamongstationsandyearsforboth species.Wealsoexaminedrelationshipsbetweenotolithweightandotolithelementalcompositionand isotopicsignatureswithanalysisofcovariance(ANCOVA).Iftherewassignificantrelationship,we removedtheeffectofsize(otolithweightusedasaproxyforfishsize)toinsurethatdifferencesinfish sizeamongsamplesdidnotconfoundanysite-specificdifferencesinotolithchemistry.Concentrationsof elementwereweight-detrendedbysubtractionofthecommonwithin-grouplinearslopefromthe observedconcentration(concentration – bi(otolithweight))(Campanaetal.2000)

Amaximumlikelihoodbasedanalysiswasusedtodetermine(1)theabilityofelementalfingerprintsto recordcorrectlytheproportionofrecruitsfromdifferenthabitats,and(2)theproportionofadultfish originatingfromthedifferentnurseryhabitats.Forthislatteranalysis,weusedtheelemental concentrations andisotopicsignaturesofpostsettlementregionsofjuvenileandadultschoolmasterand FrenchgruntsfromspecificlocationsfromPuertoRicoandStCroix.ForPuertoRico,juvenileswere collectedfromCorral(seagrass)andMontalva(mangrove),andthesubadultswerecollectedfrom Turrumote,whileinStCroixbothjuvenilesandsubadultswerecollectedfromSaltRiver.

Themaximumlikelihoodestimatorwaschosenbecauseitperformsbetterthanclassification-based estimatorsandprovidesmaximumdiscriminatorypowerinmixedstocksituations(Millar1987,1990). Forexample,forclassifyingnewcases(e.g.adultsbasedonjuvenileelementalsignatures)discriminant analysisassumesequalprobabilitiesofclassificationtoeachjuvenilegroup.Although priorprobabilities canbechangedinmanystatisticalpackages,thepriorprobabilitiesarerarelyknowninnature.Sinceprior probabilitiesmaydeviategreatlyfrombeingequal,discriminantanalysisisgenerallynotrecommended. Maximumlikelihoodanalysisestimatestheproportionofeachreferencepopulation(e.g.mangrove)in theunknown(e.g.offshorereefs)mixtureandthusindividualfisharenotassignedtoaparticularsource (Campana1999,Gillanders2005).

RESULTS

SizeDistribution

MeanFL ofjuvenileFrenchgruntcollectedateachstationvariedbetween3.8and9.4cmwhilefor schoolmastermeanFLvariedbetween4.5and11.3cm(Table2).Thereweresignificantdifferencesin meanlengthamongstations(ANOVAp<0.001)andbetweenyears(ANOVAp<0.05)foreachspeciesin eachisland.

Multi-elelementalConcentrations

ResultsofMANOVAshowedthatmulti-elementalsignaturesofbothjuvenileFrenchgruntand schoolmasterdifferedsignificantlyamongstations(MANOVAp<0.001)andyear(MANOVA p<0.001) forStCroixandPuertoRico(Table3,Figure4,5).Therewasalsosignificantinteractionamongstation, andyear(MANOVAp<0.001)implyingthatthemultitagsignaturesdifferedamongyearsdependingon thestationstudied. Signaturesalsodifferedsignificantlyamonghabitats(MANOVAp<0.001)andyear (MANOVAp<0.001)(Table5).

ClassificationsuccessforFrenchgruntnurserysiteswithinSt.Croixforthetwoyearsrangedfrom87to 92%andinPuertoRicofrom80to84%(Table4,Figure4). Whenstationswerecombinedamong habitats,classificationsuccessbetweenmangroveandseagrasshabitatsvariedbetween95to96%inSt. Croixand84to91%inPuertoRico(Table4).

ForschoolmasterclassificationsuccesswithinthefourSt.Croixnurseriesvariedbetween76to77%and between84to87%inPuertoRico(Table6,Figure5).Whendatafromthemangrovehabitatsand seagrassnurserygroundswerecombinedtheresultsofthecrossvalidationprocedureshowthatthe classificationaccuracyof theotolithsfromthetwohabitatsvariedbetween86to89%inStCroixand from94to99%inPuertoRicoforallyears(Table6).

IndividualElementalConcentrations

FrenchGrunt:InSt.Croix,someofthetraceelementandstableisotopesexaminedshowedasignificant relationshipwiththecovariableotolithweightintheANCOVA,requiringtheeffectoftheotolithweight toberemovedforsubsequentANOVAanalysis(Table7).ForPuertoRico,therewerenosignificant relationshipsamongelementalconcentrationsandstableisotopeswiththecovariableotolithweightinthe ANCOVA(Table7).

TheindividualelementalconcentrationsandisotopicsignaturesofFrenchgruntsvariedsignificantly amongstations(ANOVAp<0.001)andyears(ANOVAp<0.001)forSt.CroixandPuertoRico(Table7). Therewasalsosignificantinteractionamongsitesandyear(ANOVAp<0.001)forbothIslands(Table7).

InStCroixthereweresignificantvariationsofSr,Ba,Na,Co, 13 Cand 18 Oamongsitesduringboth2006 and2007(ANOVAp<0.001,Tukeytestp<0.05),,whileCushowedsignificantvariationamongsitesonly in2006andMgin2007(ANOVAp<0.001,Tukeytestp<0.05),(Figure6).AllelementsbutCu,andboth stableisotopes,alsoshowedsignificantwithinstationvariabilitybetweenyears(Table7).ForPuerto Rico,elementalconcentrationsofNa,Sr,Ba,MgCo, 13Cand 18Ovariedsignificantlyamongsitesin2006 whereasin2007onlySr,Ba,Cu, 13Cand 18Ovariedamongsites(ANOVAp<0.001,Tukeytestp<0.05), (Figure7).TherewassignificantwithinstationvariabilitybetweenyearsforNa,Mg,Cobutnoneforthe othermetalsorforeitherstableisotope.Therewasnoapparenttrendinelementconcentrationsamong stationsforbothIslands(Figure6,7).Someelementsthatwerehigheratagivenstationinoneyearwere lowerduringthenextyearwhileinothecasesthereverseistrue(Figures6,7).Whenstationswere combinedbyhabitatSrand 13CweresignificantlyhigherinseagrasshabitatsinSt.CroixwhereasNa, Mg,Coand 18Owerehigherinmangrove(Table8).InPuertoRicoSr, 13Cand 18Oconcentrationswere significantlyhigherinseagrasswhileCo,Cuweresignificantlyhigherinmangrove.OnlyNaand 18O

variedacrossyearswhenstationswerecombinedbyhabitatforSt.Croix,whileforPuertoRicoonlyMg, Covaried.

Schoolmaster:InSt.Croix,onlyonetraceelementexamined(Ba)showedasignificantrelationshipwith thecovariableotolithweightintheANCOVA,requiringtheeffectofthecovariabletoberemovedfor bothIslands(Table9).

InStCroixandPuertoRico,theelementalconcentrationsandisotopicsignaturesofschoolmastervaried significantlyamongstations(ANOVAp<0.001)andyears(ANOVAp<0.001)(Table9).Therewasalso significantinteractionamongsitesandyear(ANOVAp<0.001).

ThereweresignificantvariationsamongsitesofNa,Sr,Ba,Mg,Co,and 13Cduring2006inSt.Croixand Ba,Co, 13Cand 18OinPuertoRico(ANOVAp<0.001,Tukeytestp<0.05),(Figure8,Figure9, respectively).During2007Na,Sr,Cu,Co, 13Cand 18OvariedamongsitesinSt.Croix(Figure8)andSr, Ba,Mg,Cu, 13Cand 18OforPuertoRicoin2007(ANOVAp<0.001,Tukeytestp<0.05),(Figure8, Figure9,respectively).TherewaswithinstationvariabilitybetweenyearsforNa,and 18OforSt.Croix, andSr,Ba,CoforPuertoRico(Table9).Therewerenoapparenttrendsinelementconcentrationsamong stationsforSt.Croix.Therewerenotemporalvariationsinisotopicsignatureswithinstations forPuerto Rico.Someelementsthatwerehigheratagivenstationwereloweronthenextyearandviceversa.When stationswerecombinedbyhabitatonlyNaand 18OelementalconcentrationsvariedacrossyearsforSt. Croix,andonlyBa,CoforPuertoRico.InSt.CroixSr,Cu,and 13Cweresignificantlyhigherinseagrass habitatswhereas 18Owashigherinmangrovehabitats.Therewerealsohigherbutnotstatistically differentconcentrationsBainseagrasshabitatsinStCroixandofMginmangrovehabitats.InPuerto RicoSr,Baand 13CweresignificantlyhigherinseagrasshabitatswhileMgand 18Oconcentrationswere higherinmangrovehabitats(Table10).

SubAdultConnectivity

Theresultsfromthemaximumlikelihoodanalysisshowedthatusingtracemetalandstableisotopedata forjuvenileschoolmastercollectedin2006,almost100%ofthesubadultscollectedin2007camefrom mangrovenurseryhabitatsinbothIslands(Table11).

ForFrenchgruntstheadultsoriginatedfrombothhabitatswith70%comingfrommangroveand30% fromseagrassinPuertoRicoand40%frommangroveand60%fromseagrasshabitatsinStCroix.

DISCUSSION

Theuseofachemicaltagtodiscriminatefishresidingindifferenthabitatsrequiresthattheotolithsoffish collectedfromthosehabitatsdifferintheirchemicalcomposition.Inordertousethistagtoidentifyadult fishthatonceresidedinthedifferentjuvenilehabitatsotolithsshouldbecharacterizedusingindividuals collectedfromallpossiblesourcehabitatsfortheadultpopulationunderstudy(Campanaetal.2000). OurresultsindicatethatotolithsofjuvenileschoolmasterandFrenchgruntsmeetthesecriteria.They differsignificantlyintheirchemicalcompositionbetweenmangroveandseagrasshabitatsandthe chemicalhabitattags(mangroveandseagrass)werepresentanddistinguishableinjuvenilescollected overlargeandsmallgeographicareas(5to28km).Thismakesitpossibletousethesemicrochemical tagsintheirotolithstodiscriminatebetweenfishcollectedfromdifferenthabitats:mangoveandseagrass. Byanalyzingthejuvenileportionofotolithsofadultfishwecanusethesediscriminatoryfunctionsto determinethehabitattypeinwhichtheadultfishspenttheirjuvenileperiod.Preliminaryresultsindicate thatnearlyalladultschoolmastercollectedspentthejuvenileperiodoftheirlivesinmangrovehabitats whileadultFrenchgruntswereapproximatelyequallydistributedbetweenbothhabitatsasjuveniles.

TheelementalcompositionofjuvenileschoolmasterandFrenchgruntotolithsvariedconsiderablyamong stationswithinislandsandbetweenyears.WefoundverystrongdifferencesintheconcentrationsofSr, Ba,Mg,NaandCoaswellasintheisotopicsignaturesof 13Cand 18Oamongstationswithinislands. Mostoftheseelementalfingerprintswithinstationsalsovariedsignificantlyacrossyears.Giventhese interannualdifferences,age-0schoolmasterandFrenchgruntelementalsignaturesmustbeanalyzedona year-class-specificbasis.Havingasuiteofyear-class-specificandregion-specificotolithelemental signaturesavailableshouldproveespeciallypowerfulascohort-specificandtime-specificapproachescan beappliedtoestimatemovementdynamicsandconnectivity

Wealsofoundsignificantdifferenceswhentracemetalandstableisotopeconcentrationswereanalyzed byhabitat.WithschoolmasterSr,Baand 13CweresignificantlyhigherinseagrassstationswhereasMg and 18Owerehigherinmangrovestations.ForFrenchgrunt,Srand 13Cwerealsohigherinseagrass. Therewerenocleardistinctiononwhatelementalsignatureswereconsistentlyhighestinmangroveas theseelementsvariedinmagnitudebyyearandIsland.

Thesignificantdifferenceswereportamongyear classesinage-0Frenchgruntandschoolmasterotolith elementalsignatureswassimilartointerannualdifferencesinotolithchemistryreportedforothermarine fishes(Miltonetal.1997,Campana1999,GillandersandKingsford2000,Gillanders2005).Miltonetal. (1997)observedinterannualvariationinotolithchemistrybetweentwoestuarinepopulationsoftropical shad(Tenualosatoli).Shadcollectedin1994wereelevatedinMg,Cu,Zn,Sr,andBaanddepletedinLi comparedwithfishcollected1yearlater.GillandersandKingsford(2000)alsodetectedinterannual variationintheMn,Sr,andBacompositionofjuveniletrumpeter(Pelatussexlineatus)otolithsand suggestedthatthismayhavebeenaresultofvariationinfreshwaterrun-offwithinandbetweenyears.

Thediscriminantmodelsbasedonthehabitat-relateddifferences(i.emangrovevs.seagrass)classified juvenileswithahighdegreeofaccuracy(about92%).Thisconfirmstheuseofotolithtracemetalsand stableisotopesaseffectivetagsofthenurseryareaofjuvenileschoolmaster and FrenchGrunts.By contrast,theclassificationsuccessratesforthediscriminantfunctionsbystationswithinislandswasa littlelower(generally>85%).Thisindicatesthatitisdifficulttoseparate stationswithinsamehabitatsfor coastalstations:wefoundgreateroverlapsbetweenmangrovevsmangroveandseagrassvsseagrass stationswhiletherewasverylittleoverlapbetweenhabitatswhenalldatawerecombined.

Apossibleexplanationforerrorintheclassificationmodelsbystationisthatmisclassifiedfishhad recentlymovedintothecollectionhabitatfromtheadjacentalternativehabitattype(Chittaroetal.2005, 2006).Movementofindividualsbetweenmangroveandnon-mangrovecoastalhabitatspriortocapture wouldresultinachemicaltagthatwaseithertypicalofthealternativehabitattypeorofanintermediate valuedependingonthetimingofthemovement.Byexaminingtheperiodofrecentgrowthintheotolith

edgeandcomparing theelementalconcentrationsintheotolithsoffishinhabitatingthebackreefandthe onescapturedonthebackreefandtransportedtoaenclosedenvironmentinthemangroveforaperiodof twoweeks,Chittaroetal(2004)founddifferencesinelemental fingerprintsintheotolithedge(periodof recentgrowth)betweenFrenchgruntcapturedfromthebackreefandfishtransportedtoanenclosurearea inthemangroveinBelize. Thisstudyshowedthatthereweresignificantdifferencesinelemental conentrationsonotolithsoffishinhabitatingabackreefversusafishinhabitatingamangroveinBelize. However,ontheirfollowupstudy(Chittaroetal.2005,2006),theyfoundlowdiscriminationin mangroveandbackreefnurserygroundsbasedotolithchemistry(usingtheotolithedge)amongjuveniles FrenchgruntandschoolmasterinthesiteofcaptureinBelize.Withinstationdiscriminationsuccesswas about46%forFrenchgruntand40%forschoolmaster, and75%and67%forhabitatrespectively; considerablylessthanwhatwefoundeitherwithineachspeciesperstationbyisland(85%)andwithin eachspecieswithinhabitats(92%).Theyconcludedthatsomeindividualscollectedfrommangrove habitatsintheirstudymighthaverecentlymovedintothebackreefduringtheirnightfeedingmigration. Thediscriminantmodelwouldhavemisclassifiedtheseindividualsbecausetheirotolithswouldcontaina ‘non-mangrove’habitattag.Errorinclassificationoffishinthereefmayhavebeencausedbythe reversephenomena – fishcollectedonthebackreefmighthaveamangrovesignaturebecausetheymight haverecentlymovedtothemangrovesitesduringtheirnightfeedingmigration.

Ouroverallbetterdiscriminationprobablyreflectsthefactthatweusedthestableisotopes 13Cand 18Oin additiontotracemetalsaloneasusedbyChittaroetal(2005,2006),aswellasthefactthatweusedthe otolithregionofthepostettlementperiod.Atthisearlylifestage,bothspeciesfishwouldhaveasize about2-3cmFL.ThesizerangeoftheFrenchgruntscapturedinBelizewas7-14cm(Chittaroetal. (2005)whiletheaveragesizeofschoolmasterwas17.6cm(Chittaroetal.2006).Bymeasuringchemical compositionoftheotolithsatthesametimeinthedevelopmentofeachspecieswereducedpossible effectsoffactorssuchasgrowthandmovementthatmightmaskresultsinelementalfingerprints. Further,bydeterminingachemicalsignatureintheotolithsduringanearlylifestage,thediscriminatory powerwouldincreaseasthesesmallfishmaymoverelativelyshortdistanceswithinhabitats(<100m) resultinginacharacteristicrepresentationofthehabitatthattheyspendtheirpostsettlementperiod.

Severalauthorshaveshownthatstableisotopescanalsobeusedtotracetheoriginormovementof organismsbecauseisotopicsignaturesinanimaltissuesreflectthoseoflocalfoodwebsoroftheaquatic habitatinwhichtheyhavegrown.Isotopicsignaturesoffoodwebsorwatermassesvaryspatially dependingon biogeochemicalprocesses (Hobson1999,Kennedyetal.2000).Thecontributionofdiet versuswatertotheisotopicsignalislikelytodependontheisotope.Severalstudieshaveusedavariety ofstableisotopes (e.g. δ13C, δ15N, δ34S)toinvestigatemovementlargelyusingtissuesamples (e.g.Fry 1981,1983,Fryetal.1999),althoughseveralstudieshaveinvestigatedtheuseofstableisotopesin otoliths (Dufouretal.1998,Kennedyetal.2002,Augleyetal.2007,Huxhametal.2007,Verweijetal. 2008).Fry (1981) examined δ13Cvaluesintissuesofbrownshrimp Penaeusaztecus astheymovedfrom inshoreseagrassbedstooffshoreareas.Offshorehabitatswithaphytoplankton-basedfoodwebare depletedin 13Crelativetoaseagrassbasedfoodweb.Sub-adultindividualscollectedoffshorehad δ13C valuestypicalofindividualsinseagrassmeadows,suggestingthattheyhadmovedfromseagrassto offshoreregions

Studiesusingstableisotopesinhardpartssuchasotolithshavebeenfewer((Dufouretal.1998,Kennedy etal.2002,Augleyetal.2007,Huxhametal.2007,Verweijetal.2008).Thesehavetheadvantageinthat thesignatureisfixedatthetimethematerialislaiddownintheotolithandmaybeusedtoindicatepast historycomparedwithtissueswherethecompositionmaychangerapidlydependingondiet.Theutility ofusingstableisotopestodiscriminatebetweenhabitatswasdemonstratedbyHuxhametal.(2007) where 13CinotolithsasamarkerforfishbetweenmangroveandoffshorepopulationsinGaziBayKenya. Otolithsoffishfrommangroveshaddepletedvaluesof 13Cwhilethosefromoffshorewereenriched.In ourstudy,carbonisotopesprovedtobeparticularlyusefulindiscriminatingnurseryoriginsof

schoolmasterandandFrenchgrunts;fishotolithsfrommostofthemangrovestationswerecharacterized byconsistentlylowerlevelsof 13Cwhereasfishfromseagrasshadotolithsthatwereenrichedwith 13C. SimilarlyVerweijetal.(2008)showedevidenceofconnectivityandmovementbetweenseagrassand offshorereefsforyellowtailsnapper, Ocyuruschrysurus,in Curacao.Basedoncomparisonsofisotopic signaturesof 13Contheedgezoneoftheotolithsinjuvenileyellowtailsnappercaughtinseagrassand adultsontheouterreef,theyfoundthat 13 Cinotolithsofyellowtailsnapperwasmoreenrichedthan adultsfoundattheouterreef.

AreMangroveNurseryHabitatsforSchoolmasterandFrenchGruntsinSt.CroixandPuertoRico?

ThepercentageoftheFrenchgruntsubadultsthatwereidentifiedashavingresidedasjuvenilein mangrovehabitatswasestimatedtorangebetween40%and70%forSaltRiverSt.Croix,andLa Parguera,PuertoRicowhereasforschoolmasteralmost100%ofallfishresidedinmangrovehabitatsin bothIslands.WhenwescaleduptheseresultstotheirhabitatareasPuertoRico:([MangroveMontalva Bay=3.7km2 Seagrass=Corral1.5km2]AguilarandAppeldoorn(2007);StCroix[MangroveSalt River=0.12km2 SeagrassSaltRiver=0.21km2]Kendalletal2001,thecontributionperareaof Montalva-CorraltoadultFrenchgruntpopulationsinTurrumotewas0.2km-2 forbothseagrassand mangrovehabitats.ForschoolmasterthecontributiontoadultpopulationsinTurrumotewas0.24km-2 for mangrovehabitatsand0.067km-2 forseagrasshabitats.InStCroixthecontributionofFrenchgrunt per areaofseagrassandmangroveinSaltRivertoadultpopulationswas2.85km-2 forseagrasshabitatsand 3.3km-2 formangrovehabitats.ForschoolmasterthecontributionperareatoadultpopulationsinSalt Riverwas7.5km-2 formangrovehabitatand0.5km-2 forseagrasshabitats.Theseresultssuggestthat mangrovehabitatsintheseregionsmaybeactingas‘nurseryhabitats’bycontributingmoreindividuals perunitareatoschoolmastertoadultpopulationthantheadjacentcoastalhabitatswhereasforFrench gruntsmangroveandseagrassmaycontributinginsimilarproportionstotheadultspopulationsinthe regionsstudiedinStCroixandPuertoRico(Becketal.2001,Dahlgrenetal.2006)

Thedisproportionatecontributionofonejuvenilehabitattotheadultpopulationsmaybeduetofishin thathabitathavinghigherdensities,highergrowthrates,lowermortality,ormoresuccessfulrecruitment totheadultpopulation(Becketal.2001).PastresearchonschoolmasterandFrenchgruntsalongthe Caribbeancoasthasfoundevidencethatmangrovecansupporthigherdensities(Nagelkerken,etal.2000, CocheretdelaMoriniereetal.2002,AguilarandAppeldoorn,2007)andfastergrowthrates(Mateoetal. 2008)thannonmangrovehabitats.Inastudy usingotolithmicrostructure,Mateoetal.(2008)found highergrowthratesinmangrovethannonmangrovehabitatsforschoolmasterandFrenchgruntatthe postsettlementperiodinPuertoRicoandSt.Croix.Thesefindingssuggestthatmangrovehabitatsmay beproducingmorejuvenileschoolmasterandFrenchgruntbecausetheysupportahigherdensityoffaster growingfishthatsuccessfullyrecruittotheadultpopulation.

Evidencefordisproportionatecontributionoftropicalshallowwaterhabitats(i.e seagrass)toadultreef fishpopulationshaverecentlybeenfoundforonespeciesyellowtailsnapper Ocyuruschrysurus (Verweij etal.2008).Thesefindingscombinedwiththoseofthecurrentstudysuggestthatnearshorehabitatssuch asmangrovelagoons andseagrassmeadowsmaycommonlyfunctionasnurseryhabitatsforjuvenilereef fishpopulations.ManymangroveandseagrasshabitatsintheUSCaribbeanandworldwideare vulnerabletolossordeteriorationfromavarietyofprocesses,includingerosion,pollution,and urbanization.Conservationofthesenearshore‘nursery’habitatsmaybeanimportantstepinmaintaining highlevelsofrecruitmenttoharvestedreeffishpopulations.Tomorefullydeterminetheimportanceof nearshorehabitatstothemaintenanceofreeffishpopulationsinUSCaribbean,thecontributionof nearshorehabitatsshouldbedeterminedoveralargerspatialscale.Identifyingtheregionsinwhich disproportionatecontributionoccurswouldhelptodeterminewhichestuarinehabitatsshouldbetargeted forprotection.

CONCLUSIONS

Inthisstudy,wehavedemonstratedthatjuvenileschoolmasterandFrenchgruntfromdifferentnursery sitescanbedistinguishedbasedontheirotolithchemistrywithahighclassificationsuccess.Ourongoing researchwithotolithswillfocusonwhetherindividualsorconsecutiveyearclassesoffishresidinginthe samenurseriesmaintainaconsistentelementalsignature.Theultimateobjectiveistouselaserablation ormicromillingtechniquestolookatthejuvenilecoreregionofotolithsfromadultreeffishfrom adjacentoffshorereefsandseeiftheirelementalsignaturescanbeusedtodeterminetheoriginofthese fish.Althoughmoreinformationonthespatialandtemporalvariationinwater chemistryandthe relationshipbetweenambientwaterandotolithchemistryisneededtofullyinterpretotolithgeochemical signatures,thedatapresentedhereindicatethatotolithchemistryholdspromiseinstudiesonalongshore fishmovementandconnectivityamongshallowwaternurserygroundsandadulthabitatsforreeffish species.

ACKNOWLEDGEMENTS

WewouldliketothankHectorRiveraandWilliamTobiasfromDFW-St.Croix,fishermenJoseSanchez andGersonMartinez,andSt.CroixAnchorDivefor theirhelpandsupportinSt.Croix.Specialthanks goestoMichaelNemeth,TonyMarziak,HectorRuiz,MarcosRosadoandGodofredoMartinezfromthe UniversityofPuertoRico,andtoPedroCollazoforsupportforassistanceinPR.Wewouldalsoliketo thankDrs.RichardKingsleyandKatherineKelleyfortheirassistancewiththetracemetalanalysisatthe ICPMSlabattheUniversityofRhodeIsland,GraduateSchoolofOceanography,andDr.PeterSwartfor thestableisotopeanalysesatRSMAS.WewouldalsothankDrChrisWeidmanforassistanceintheuse oftheMicromillmachineoveratWHOI.SpecialthanksgotoDr.DaisyDurantforhelpwiththe graphicsandeditingofthismanuscript.ThisstudywasfundedthroughPuertoRicoSeaGrantProgram, PADI Foundation,andSigmaXi.

LITERATURECITED

Adams,AandJ.Ebersole.2002.Useofback-reefandlagoonhabitatsandbycoralreeffishes.Mar.Ecol. Prog.Ser.228:213-226

AdamsA.J.andW.J.Tobias1999.RedMangroveproproothabitatasafinfishnurseryarea.Acasestudy ofSaltRiverStCroixUSVIProc.GulfCaribb.Fish.Inst.46:22-47

Aguilar-PereraA,AppeldoornRS2007Variationinjuvenilefishdensityalongthemangrove-seagrasscoralreefcontinuuminSWPuertoRico.Mar.Ecol.Prog.Ser.348,139-48

Appeldoorn,R.S.,C.W.Recksieck,R.L.Hill,F.E.PaganandG.D.Dennis.1997.Marineprotected areasandreeffishmovements;theroleofhabitatincontrollingontogeneticmovements.Proc8th Int.CoralReef.Symp.2:1917-1922

AugleyJ,Huxham M,FernandesTF,LyndonAR,BuryS(2007)Carbonstableisotopesinestuarine sedimentsandtheirutilityasmigrationmarkersfornurserystudiesintheFirthofForthandForth Estuary,Scotland.EstuarCoastShelfSci72:648-656

Beck,M.W.,K.L.Heck,Jr.,K.W.Able,D.L.Childers,D.B.Eggleston,B.M.Gillanders,B.Halpern, C.G.Hays,K.Hoshino,T.J.Minello,R.J.Orth,P.F.Sheridan,andM.P.Weinstein.2001.The identification,conservation,andmanagementofestuarineandmarinenurseriesforfishand invertebrates.BioSci.51:633–641.

Boulon,R.H.1992.UseofmangroveproprootshabitatsbyfishinthenorthernU.S.VirginIslands.Proc. GulfCarib.Fish.Inst.,41:189-204.

BrothersEB,McFarlandWN.1981.Correlationsbetweenotolithmicrostructure,growthandlifehistory transitionsinnewlyrecruitedFrenchgrunts[Haemulon¯avolineatum(Desmarest),Haemulidae]. Rappp-vReÂunConsintExplorMer178:369±374

Bruce,G.,J.Harkness,J.Hewlett,M.Hill,D.Hubbard,T.McGovern, C.Reed,andH.Roberts.1989. SedimentaryEnvironmentsofGreatPondBaySt.CroixUSVI.Pp.161-166, in D.Hubbard(ed.), TerrestrialandMarineGeologyofSt.Croix,U.S.VirginIslands,SpecialPubl.No.8,WestIndies Lab.,TeagueBay,St.Croix.

Burke,R.B.,W.H.Adey,andI.G.MacIntyre.1989.OverviewoftheHoloceneHistory,Architecture andStructuralComponentsofTeagueReefandLagoon. In D.Hubbard(ed.),Terrestrialand MarineGeologyofSt.Croix,U.S.VirginIslands,pp.111-117.SpecialPubl.No.8,WestIndies Lab.,TeagueBay,St.Croix.

Campana,S.E.1999.Chemistryandcompositionoffishotoliths:pathways,mechanismsand applications. Mar.Ecol.Prog.Ser.188:263-297.

CampanaS.E.,G.A.Chouinard,J.M.Hanson,A.FrechetandJ.Brattey.2000.Otolithelemental fingerprintsasbiologicaltracersoffishstocks.Fish.Res.46:343-357

CastroR.L.andJ.R.Garcia1996. Characterizationofmarinecommunitiesassociatedwith seagrass/algalbedsandshallowcoralreefshabitatsinGuayanillaandTallaboaBaysSouthwestern PuertoRico.FinalreportsubmittedtoGramatgesandAssociates.

Chittaro,P.M.,B.J.Fryer,andP.F.Sale,2004.DiscriminationofFrenchgrunts(Haemulon flavolineatum,Desmarest,1823)frommangroveandcoralreefhabitatsusingotolith microchemistry. J.Exp.Mar.Biol.Ecol.308,169-183.

Chittaro,P.M.,Usseglio,P., Fryer,B.J.,Sale,P.F.2005. Usingotolithmicrochemistryof Haemulon flavolineatum (FrenchGrunt)tocharacterizemangrovesandcoralreefsthroughoutTurneffeAtoll, Belize:Difficultiesatsmallspatialscales.Estuar.28:373-381.

Chittaro,P.M.,P.Usseglio,B.J.Fryer,ANDP.F.Sale.2006.Spatialvariationinotolithchemistryof LutjanusapodusatTurneffeAtoll,Belize.Estuar.Coast. ShelfSci.67:673–680.

CocheretdelaMorinièreE,PolluxBJA,NagelkerkenI,vanderVeldeG.2002.Post-settlementlifecycle migrationpatternsandhabitatpreferenceofcoralreeffishthatuseseagrassandmangrovehabitats asnurseries.EstuarCoast ShelfSci55:309–321

Dahlgren,C.P.,Kellison,G.T.,Adams,A.J.,Gillanders,A.J.,Kendall,M.S.,Layman,C.A.,Ley,J.A., Nagelkerken,I.,andSerafy,J.E.2006.Marinenurseriesandeffectivejuvenilehabitats:concepts andapplications.Mar.Ecol.Prog.Ser. 312:291–295.

DufourV,PierreC,RancherJ1998Stableisotopesinfishotolithsdiscriminatebetweenlagoonaland oceanicresidentsofTaiaroAtoll(TuamotuArchipelago,FrenchPolynesia).CoralReefs17:2328

Froese,R.andD.Pauly.Editors.2008.FishBase.WorldWideWebelectronicpublication.

FryB1981.NaturalstablecarbonisotopetagtracesTexasshrimpmigrations.FishBull79:337-345

FryB1983.FishandshrimpmigrationsinthenorthernGulfofMexicoanalyzedusingstableC,NandS isotoperatios.FishBull81:789-801

FryB,MumfordPL,RobbleeMB.1999.Stableisotopestudiesofpinkshrimp(Farfantepenaeus duorarum Burkenroad)migrationsonthesouthwesternFloridashelf.BullMarSci65:419-430

GarciaSais,J.1994.LaPargueraMarineFisheryReserve:afeasibilitystudy.AnnualReport111pp.

Gillanders,B.M.,andM.J.Kingsford.1996.Elementsinotolithsmayelucidatethecontributionof estuarinerecruitmenttosustainingcoastalreefpopulationsofatemperatereeffish.Mar.Ecol Prog.Ser.141:13-20.

GillandersBM,KingsfordMJ(2000)Elementalfingerprintsofotolithsoffishmaydistinguishestuarine nurseryhabitats.MarEcolProgSer201:73–86

Gillanders,BM,KWAble,JABrown,DBEggleston&PFSheridan.2003.Evidenceforconnectivity betweenjuvenile&adulthabitatsformobilemarinefauna:animportantcomponentofnurseries. Mar.Ecol.Prog.Ser.247:281-295

GillandersB.M.,2005.Usingelementalchemistryoffishotolithstodetermineconnectivitybetween estuarine andcoastalhabitats.Est.Coast.ShelfSci.64,47-57.

Helfman,G.S.,Meyer,J.L.&McFarland,W.N.1982. Theontogenyoftwilightmigrationpatternsin grunts(Pisces:Haemulidae).Anim.Behav. 30, 317–326.

HobsonKA1999.Tracingoriginsandmigrationofwildlifeusingstableisotopes:areview. Oecologia120:314-326

Huxham,M.,E.Kimani,J.Newton,andDJ.Augley.2007.Stableisotoperecordsfromotolithsastracers offishmigrationinamangrovesystem.J.FishBiol.70:1554–1567.

KendallML TakataOJensenZMHillisandMMonaco.2005AnecologicalcharacterizationoftheSalt RiverBayNationalHistoricalParkandEcologicalPreserve.NOAATechnicalMemoNOS NCCOS14

KennedyBP,KlaueA,BlumJD,FoltCL,NislowKH2002.Reconstructingthelivesoffish usingSrisotopesinotoliths.CanJFishAquatSci59:925-929

Kimmel,J.1979.ThermaleffectsonfishesofGuayanillaBay.Proc.Ener.Mar.Env.GuayanillaBay. CenterforEnergyandEnvironmentalResearch:36-46.

Lindeman,K.C.1997. DevelopmentofgruntsandsnappersofsoutheastFlorida;crossshelfdistributions andeffectsofbeachmanagementaltenatives.Ph.D.dissertation(unpublished).Universityof Miami.

Lopez,J.M.1979.ProceedingsoftheSymposiumonEnergy,Industry,and theMarineEnvironmentin GuayanillaBayCenterforEnergyandEnvironmentalResearchUniversityofPuertoRico MayaguezP.R.

Martin,F.D.yJ.W.Patus.1973.Acomparisonoffishfaunasinahighlystressedandlessstressed tropicalbay;GuayanillaandJobosBay,PuertoRico.27thAnnualConf.SoutheasternDiv.Amer. Fish.Soc.,HotSprings,Ark.

MateoI,TobiasW2001a.DistributionofshallowwatercoralreeffishesonthenortheastofStCroix, USVICarib.J.Sci., 37:210-226,

Mateo,IandW.Tobias.2001b.Theroleofnearshorehabitatsasnurserygroundsforjuvenilefisheson thenortheastcoastofSt.Croix.Proc.GulfCarib.Fish.Inst.52:512-530.

Mateo,I.andW.J.Tobias.2004.SurveyofNearshoreFishCommunitiesonTropicalBackreef Lagoons ontheSoutheasternCoastofSt.Croix. Carib.J.Sci40(3):327-343

MateoI,2008AssessingEssentialFishHabitatandConnectivityofTemperateandTropicalFish PopulationsUsingOtolithMicrochemistryandStableIsotopes.PhDDissertationDepartment FisheriesAnimalVeterinarySciencesUniversityRhodeIsland

McFarlandWN,HillisZM1982Observationsonagonisticbehaviourbetweenmembersofjuvenile Frenchandwhitegrunts-FamilyHaemulidae.BullMarSci32:255–268

McFarland,W.N.,Brothers,E.B.,Ogden,J.C.,Shulman,M.J.,Bermingham,E.L.,andKotchianPrentiss,N.M.1985.Recruitmentpatternsinyoungfrenchgrunts,Haemulonflavolineatum (familyHaemulidae)atSt.Croix,U.S.V.I.FishBull.83,413-426

Millar,R.M.1987.Maximumlikelihoodestimationofmixedstockfisherycomposition.Can.J.Fish. Aquat.Sci.44:583-590.

Millar,R.M.1990.Comparisonofmethodsforestimatingmixedstockfisherycomposition.Can.J.Fish. Aquat.Sci.47:2235-2241.

MiltonDA,ChenerySR,FarmerMJ,BlaberSJM(1997)Identifyingthespawningestuariesofthe tropicalshad, Teruboktenualosa Toli,usingotolithmicrochemistry.MarEcolProgSer153:1–13

NagelkerkenI,DorenboschM,VerberkWCEP,CocheretdelaMorinièreE,vanderVeldeG2000a. Day-nightshiftsoffishesbetweenshallow-waterbiotopesofaCaribbeanbay,withemphasison thenocturnalfeedingofHaemulidaeandLutjanidae.MarEcolProgSer194:55–64

NagelkerkenI,DorenboschM,VerberkWCEP,CocheretdelaMorinièreE,vanderVelde G2000b Importanceofshallow-waterbiotopesofaCaribbeanbayforjuvenilecoralreeffishes:patternsin biotopeassociation,communitystructureandspatialdistribution.MarEcolProgSer202:175–192

NagelkerkenI,vanderVeldeG,GorissenMW,Meijer GJ,van‘tHofT,denHartogC2000cImportance ofmangroves,seagrassbedsandtheshallowcoralreefasanurseryforimportantcoralreeffishes, usingavisualcensustechnique.EstuarCoastShelfSci51:31–44

NagelkerkenI&vanderVeldeG2002Donon-estuarinemangrovesharbourhigherdensitiesofjuvenile fishthanadjacentshallow-waterandcoralreefhabitatsinCuraçao(NetherlandsAntilles)? Mar. Ecol.ProgSer245:191-204

NOAA/DNR 1984.DeclaracióndeImpactoAmbientalFinalyPlandeManejo ParaelSanctuario MarinoNacionaldeLaParguera.NationalOceanicandAtmosphericAdministration/PuertoRico DepartmentofNaturalResources,277pp.

OgdenJC,EhrlichP.R.1977. Thebehaviorofheterotypicrestingschoolsofjuvenilegrunts (Pomadasyidae).MarBiol42:273–280

PlanDevelopmentTeam 1990.ThePotentialofMarineFisheryReservesforReefFishManagementin theU.S.SouthernAtlantic.NOAATechnicalMemorandumNMFS- SEFC-261,40pp

RookerJR,DennisGD1991.Diel,lunarandseasonalchangesinamangrovefishassemblageoff southwesternPuertoRico.BullMarSci49:684–698

Rooker,J.R.1995.Feedingecologyofschoolmastersnapper,Lutjanusapodus(Walbaum),from southwesternPuertoRico. Bull.Mar.Sci.56(3):881-894.

Shulman,M.J.1985.Recruitmentofcoralreeffishes:effectsofdistributionofpredatorsandshelter. Ecol.66:1056-1066.

Shulman,M.J.,andJ.Ogden.1987.Whatcontrolstropicalreeffishpopulations:recruitmentorbenthic mortality?AnexampleintheCaribbean reeffish Haemulonflavolineatum. Mar.Ecol.Prog.Ser. 39:223-242.

Swearer,S.E.,J.E.Caselle,D.W.Lea,andR.R.Warner.1999.Larvalretentionandrecruitmentinan islandpopulationofacoral-reeffish.Nature402:799-802.

Tobias,W.,Meyers, S.,Kojis,B.,&Dalmida-Smith,B.1996.FinalreporttotheU.S.FishandWildlife ServiceSportFishRestorationProgramrecreationalfisherieshabitatassessment:thedetermination ofmangrovehabitatfornurserygroundsofrecreationalfisheriesinSt. Croix St.Croix,U.S.V.I.: DepartmentofPlanningandNaturalResources

Tobias,W.2001.Mangrovehabitatasnurseryroundsforrecreationallyimportantfishspecies - Great Pond,StCroix,U.S.VirginIslands.Proc.GulfCarib.Fish.Inst.52:468-487.

TheNatureConservancy.2002.St.CroixEastEndMarineParkManagementPlan.Universityofthe VirginIslandsandDepartmentofPlanningandNaturalResources.U.S.V.I.,July18,2002.

Thorrold,S.R.,C.M.Jones,S.E.Campana,J.W.McLaren,andJ.W. H.Lam.1998a.Traceelement signaturesinotolithsrecordnatalriverofjuvenileAmericanshad(Alosasapidissima).Limnology andOceanography43:1826-1835.

Thorrold,S.R.,C.M.Jones,P.K.Swart,andT.E.Targett.1998b.Accurateclassificationof juvenile weakfish Cynoscionregalis toestuarinenurseryareasbasedonchemicalsignaturesinotoliths. Mar.Ecol.Prog.Ser.173:253-265.

Thorrold,S.R.,C.Latkoczy,P.K.Swart,andC.M.Jones.2001.Natalhominginamarinefish metapopulation.Science291:297-299.Thresher,R.E.1995.SessionIV:otolithcomposition, overviewI.Pages631-632 in D.H.Secor,J.M.Dean,andS.E.Campana,editors.Recent developmentsinfishotolithresearch.UniversityofSouthCarolinaPress,Columbia,South Carolina.

Thorrold,S.R.,andJ.A.Hare.2002.Otolithapplicationsinreeffishecology,pp243-264. In:Sale,P.F. [ed] CoralReefFishes.Dynamicsanddiversityinacomplexecosystem. AcademicPress

VerweijMC,NagelkerkenI,HansI,RuselerSM&MasonPRD.2008.Seagrassnurseriescontributeto coralreeffishpopulations. Limn.andOcean. 53:1540-1547

VicenteandAssociates.2003.BiologicalMonitoringProgramPlanImplementation:2000-2003. EcoElectricaLiquefiedNaturalGasImportTerminalandCo-generationPlant,Report.

TABLES

Table1.DetailsoftheLaserandICPMSusedinthestudy.

Laser

Wavelength 213nm

Mode Qswitched

Repetionrate 6Hz

Energy 0.9-1mJ

Spotsize 40µm

Mixingchamber He(0.36/min)

High ResolutionICP-MS

Resolution 300

Gasflow

Coolant 14/min

Auxiliary 1.55/min

Cone nickel

Detectionmodes Analogue(Ca,Sr)

Dwelltime 30s

Channels/peak 3(22%ofmasswindow)

Magnetsettlingtime 1msperamu+5ms

Table2.Sizedistributionbystation,habitat,andyearof H.flavolineatum and L.apodus.

StationsabbreviationsforSt.Croix:AL=AltonaLagoon,SR=SaltRiver,TB=TeagueBay,TH=Turner Hole,GP=GreatPond.

StationsabbreviationsforPuertoRico:CO=Corral,EL=ElPalo,ML=MariaLanga,MO=Montalva, GU=Pta.Guayanilla.

Island Species Habita t Statio

Island Species

Habita t Statio

Fishweremeasuredbyforklength(FL,cm).Numbersinparenthesisarestandarderror.

Table3.ResultsofMANOVAoftraceelementconcentrationandstableisotopiccompositionin otolithsofYOYof H.flavolineatum and L.apodus collectedinstationsinSt.CroixandPuertoRico.

MANOVAon[Sr/Ca],[Ba/Ca],[Cu/Ca],[Co/Ca],[Mg/Ca], 13C,and 18O.

MANOVAonmultielementalfingerprintson H.flavolineatum

Source

MANOVAonmultielementalfingerprintson L.apodus

Source

AllstatisticanalysisweredoneinLn(X+1)transformeddataandonPillaistatistic.

Table4.JackknifedClassificationSuccessusingLinearDiscriminantFunctionAnalysisfor H. flavolineatum otolithscollectedinSt.CroixandPuertoRico.

StationsabbreviationsforSt.Croix:AL=AltonaLagoon,SR=SaltRiver,TB=TeagueBay,TH=Turner Hole,GP=GreatPond.

StationsabbreviationsforPuertoRico:CO=Corral,EL=ElPalo,ML=MariaLanga,MO=Montalva, GU=Pta.Guayanilla.

- 2006

- 2007

Table5.ResultsofMANOVAoftraceelementconcentrationandstableisotopiccompositionin otolithsofYOYof H.flavolineatum and L.apodus collectedinstationsinSt.CroixandPuertoRico.

MANOVAon[Sr/Ca],[Ba/Ca],[Cu/Ca],[Co/Ca],[Mg/Ca], 13Cand 18O.

MANOVAonmultielementalfingerprintson H.flavolineatum.

Source Value F Numerator Denominator P

St.Croix

MANOVAonmultielementalfingerprintson L.apodus

A=StCroixB=PuertoRico

Source Value F Numerator Denominator P

AllstatisticanalysisweredoneinLn(X+1)transformeddataandonPillaistatistic.

Table6.JackknifedClassificationSuccessusingLinearDiscriminantFunctionAnalysisfor L. apodus otolithscollectedinSt.CroixandPuertoRico.

Stations abbreviationsforSt.Croix:AL=AltonaLagoon,SR=SaltRiver,TB=TeagueBay,TH=Turner Hole,GP=GreatPond.

StationsabbreviationsforPuertoRico:CO=Corral,EL=ElPalo,ML=MariaLanga,MO=Montalva, GU=Pta.Guayanilla.

- 2006

- 2007

Table7.UnivariateresultsoftheMANOVAof H.flavolineatum usingyearandstationasfactors. Source

Table8.UnivariateresultsoftheMANOVAof H.flavolineatum usingyearandhabitatasfactors.

Source

Table9.UnivariateresultsoftheMANOVAof L. apodus usingyearandstationasfactors. Source

St.Croix

Table10.UnivariateresultsoftheMANOVAof L.apodus usingyearandhabitatasfactors.

Table11.Percentofsubadultsoriginatingfrommangroveandseagrassbasedonmaximum likelihoodmodelstoassignsubadultstohabitatorigin.

- SaltRiver

PuertoRico - Turrumote,LaParguera

BasedondataSr,Ba,Mg,Cu,Na, 13Cand 18 Oinyear2007forjuvenilescapturedin2006. Percentofsubadultsoriginatingfrommangroveandseagrass

FIGURES

4.CanonicalScoresPlotsfor H.flavolineatum,St.Croix(top)andPuertoRico(bottom)for samplingyears2006and2007.

Figure
Montalva MariaLanga ElPalo Corral

5. CanonicalScoresPlotsfor L.apodus,St.Croix(top)andPuertoRico(bottom)for samplingyears2006and2007

Figure
Montalva
MariaLanga
ElPalo Corral

Figure6.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY H.flavolineatum collectedinSt.Croix(USVI)in2006and2007.Alltraceelement data[Element/Cax103]areLn(X+1)transformed.

SamplingYear

Figure7.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY H.flavolineatum collectedinPuertoRicoin2006and2007.Alltraceelementdata [Element/Cax103]areLn(X+1)transformed.

8.2

F=5.56,p=0.002

F=8.906,p=0.001

SamplingYears

Figure8.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredin otolithsofYOY L.apodus collectedinSt.Croix(USVI)in2006and2007.Alltraceelementdata [Element/Cax103]areLn(X+1)transformed.

SamplingYears

SamplingYears

Figure9.Spatialandtemporalvariabilityintraceelementsandstableisotopesmeasuredinotoliths ofYOY L.apodus collectedinPuertoRicoin2006and2007.Alltraceelementdata[Element/Cax 103]are Ln(X+1)transformed.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.