Elevation Regimes Modulated the Responses of Canopy Structure of Coastal Mangrove Forests

Page 1


remote sensing

Article

ElevationRegimesModulatedtheResponsesofCanopy StructureofCoastalMangroveForeststoHurricaneDamage

QiongGaoandMeiYu*

Citation: Gao,Q.;Yu,M.Elevation RegimesModulatedtheResponsesof CanopyStructureofCoastal MangroveForeststoHurricane Damage. RemoteSens. 2022, 14,1497. https://doi.org/10.3390/rs14061497

AcademicEditor:ChandraGiri

Received:9February2022

Accepted:18March2022

Published:20March2022

Publisher’sNote: MDPIstaysneutral withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Copyright: ©2022bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

DepartmentofEnvironmentalSciences,UniversityofPuertoRico,RioPiedras,SanJuan,PR00926,USA; q.gao@ites.upr.edu

* Correspondence:meiyu@ites.upr.edu

Abstract: Mangroveforestshaveuniqueecosystemfunctionsandservices,yetthecoastalmangroves intropicsareoftendisturbedbytropicalcyclones.HurricaneMariasweptPuertoRicoandnearby CaribbeanislandsinSeptember2017andcausedtremendousdamagetothecoastalmangrove systems.Understandingthevulnerabilityandresistanceofmangroveforeststodisturbancesis pivotalforfuturerestorationandconservation.Inthisstudy,weusedLiDARpointcloudstoderive thecanopyheightoffivemajormangroveforests,includingtruemangrovesandmangroveassociates, alongthecoastofPuertoRicobeforeandafterthehurricanes,whichallowedustodetectthe spatialvariationsofcanopyheightreduction.Wethenspatiallyregressedthepre-hurricanecanopy heightandthecanopyheightreductiononbiophysicalfactorssuchastheelevation,thedistance torivers/canalswithinandnearby,thedistancetocoast,treedensity,andcanopyunevenness. Theanalysesresultedinthefollowingfindings.Thepre-hurricanecanopyheightincreasedwith elevationwhenelevationwaslowandmoderatebutdecreasedwithelevationwhenelevationwas high.Thecanopyheightreductionincreasedquadraticallywiththepre-hurricanecanopyheight,but decreasedwithelevationforthefoursitesdominatedbytruemangroves.ThesiteofPalmadelMar dominatedby Pterocarpus,amangroveassociate,experiencedthestrongestwind,andthecanopy heightreductionincreasedwithelevation.Thecanopyheightreductiondecreasedwiththedistance torivers/canalsonlyforsiteswithlowtomoderatemeanelevationof0.36–0.39m.Inadditiontothe hurricanewinds,therainfallduringhurricanesisanimportantfactorcausingcanopydamageby inundatingtheaerialroots.Insummary,thepre-hurricanecanopystructures,physicalenvironment, andexternalforcesbroughtbyhurricanesinterplayedtoaffectthevulnerabilityofcoastalmangroves tomajorhurricanes.

Keywords: urbanmangroves;LiDAR;canopystructure;hurricanedamage;Caribbean

1.Introduction

Growingundermultiplephysiologicalstresses,coastalmangrovespossessunique ecosystemfunctionstomaintainhighcarbonsequestration[1,2],topurifycoastalwater, tohostanumberofvertebrateandinvertebratespecies[3],tooffsetthesealevelrisevia verticalaccretion[4,5],andtoprotectsocietalpropertiesofcoastalcommunitiesduring tropicalstorms[6].However,thecanopiesofcoastalmangrovesarelikelytobeseverely damagedbytropicalstorms,thusgreatlyreducingthefunctionsofmangroveforests[7–9]. Understandingthevulnerabilityandresistanceofmangrovesunderstormdisturbanceis vitaltorestoreandtoconservecoastalwetlands.

Inadditiontothegreatwindspeedofstorms,severalbiophysicalfeaturesmay elucidatethevulnerabilityoftropicalforeststodisturbance;emergenttreesorhigher canopy,smallertreediameter,lowertreedensity,andlowersoil-rootanchoragemayincur morecanopydamage[10,11].Mangroveswithhighercanopytendtointerceptmorewind force,treeswithsmallerdimeterhaveasmallshearmodulus,alowertreedensitymakes thewindeasiertotraversethecanopy,andalowersoil-rootanchoragemakesthecoastal

foresteasiertofallorslantunderstormwind[11].Inaddition,stormsoftenbringagreat amountofrainfallandseawatersurge[12],whichmayfloodcoastalmangrovesand immersetheiraerialroots,andtheprolongedimmersionmayleadtodelayeddeathof mangrovetrees[13].

Canopyheight,stemdensity,andtreediameterarelikelytobeshapedbythephysical environment,aswellastropicalstorms[14].Formangrovesinthetropics,salinityisa majorlimitingfactorinmostcircumstances[15–17].Althoughmangroverootscanexclude andleavescanexcretevariableamountsofsalts,thecanopyheightwasfoundtodecrease withsoilsalinity,whichisaresultofinterplaybetweensaltbroughtbytheseatidesor groundwaterandthehydrologicalprocesses[18,19].Amplerainfall,overlandflow,and riverdischargemaycarrysaltawayordilutethesaltconcentrationinsoil,whereastides bringthesalttomangroveforest,andevapotranspirationremovesmostlypurewaterand letssaltaccumulatewithinthesoil.Hence,thesoilsalinitydependsonboththeclimate regionandthefrequencyoftides[20].Inadditiontosalinity,mangrovegrowthmayalso bethreatenedbydeficiencyofnutrients,whichdependsnotonlyontheparentmaterials andmineralization,butalsoonexternalsourcessuchasurbanprocesses.

Theimpactofhumanactivitiesmayalsoaffectthemangrovegrowthandthevulnerabilityduringtropicalstorms.Mostoftheworldpopulationlivesnearcoastsand oftencompeteforhabitatwithmangroves.Mangroveforestsandneighborhoodurban areasmaybeconnectedviaaerodynamicsandhydrology,andtheconnectionsviasewage canals/pipesprovidefreshwaterandnutrientstomangroveforests,thusaffectingtheir growth[21].Thisisespeciallyimportantforcoastalmangroveforestsinheavilypopulated islands,wheremangrovesareinclosedistancetourbancommunitiesandwerehistorically drainedforagricultureandurbandevelopment[22].

Theeffectsofsalinityandnutrientsonmangrovegrowthdependonthespeciessalt toleranceandnutrientbudget[15,23].Threemajorspeciesoftruemangroves[24]are foundonCaribbeanislands:redmangrove(Rhizophoramangle)withstiltrootsgrowing inthecoastalwater,blackmangrove(Avicenniagerminans)oftenfoundinshallowwater ormuddysoilwithpneumatophoresgrowingfromhorizontalcableroots,andwhite mangrove(Lagunculariaracemosa)growinginslightlydrierconditionsthanblackmangrove. Redandblackmangroveshaveahightolerancetosalt,whereaswhitemangroveshave moderatetolerance[15].Inadditiontotheabovetruemangrovespecies,therearemangrove associateswhichwereonceclassifiedasmangrovesinhistory[25].Buttonwoodmangrove (Conocarpuserectus)isoccasionallyfoundinrelativelydryspots,and Pterocarpusofficinalis as ahardwoodisalsofoundinbrackishwater.Thesespecieshaverelativelylowertolerance tosalinityandoftengrowtogetherwithtruemangroves.Therefore,whenwemention mangroveforests,weimplybothtruemangrovesandmangroveassociates.

Theimpactoftropicalstormsoncoastalmangrovescanbeassessedbygroundinventory,aswellasremotesensing[26,27].Groundinventoryisoftenlimitedbyscales[28]. Remotesensing,usingaerialphotosandsatellite-basedmultispectralimagesas2Dtools, isoftenlimitedtotheassessmentofgreennessandfallsshortintheassessmentofthe verticaldimension[7,29–31].AirborneLiDAR(lightdetectionandranging)providesan idealtooltomeasurethe3Dchangesinthemangrovecanopyatlandscapescales.A LiDARinstrumentonboardanaircraftemitsnear-infraredlaserbeamswhichhittheleaves, branches,trunks,andground,resultinginmultiplereturnsofthelaserbeams[32].The heightofthereturnsisrecordedbytheLiDARinstrumentsasameasurementofthetop andinternalcanopystructure.

TwomajorhurricanesinSeptember2017impactedtheCaribbeanregion,especially theislandofPuertoRico[7,33].HurricaneIrmapassedbyon6SeptemberasaCategory5, whileHurricaneMariatraversedPuertoRicoon20Septemberasahigh-endCategory4, whichresultedintremendousdamagetothecoastalmangroveecosystems.Treeswere defoliatedandstemswererupturedorslanted(photosinAppendix A),thuslargely reducingthecanopyheight.LiDAR-basedassessmentofthehurricanesdamageoncoastal mangrovesisvitaltounderstandtheirvulnerabilityatlandscapescales.Theapplication

ofLiDARdatatothelargestbasinmangrovesinPuertoRicoshowedthatelevation,tree density,anddistancetofreshwaterorsewagecanalsareimportanttoexplainthespatial variationsofthepre-hurricanecanopyheight,aswellasthecanopyheightreductionby thehurricanes[34].However,itisunknownwhetherthesefindingscanbegeneralizedto themangrovesofvarioustypeswithdiverseenvironmentalsettings.

Theobjectiveofthisstudywastoexplorethespatialvariationofthepre-hurricane canopystructureofmultiplemangroveforestsalongthePuertoRicocoast,aswellasthe damagetothecanopyduetothemajorhurricanesin2017.Wehypothesizedthatthe pre-hurricanecanopyheightofcoastalmangroveforestsisafunctionofthetopography, thedistancetotherivers/canalswithinandnearby,andthedistancetothecoast,asthese variablesmaymodifythehydrology,salinity,andnutrientsupply.Wealsohypothesized thatthecanopyheightreductionbyhurricanesisalsoafunctionoftheabovefactors,but moreimportantlydeterminedbythepre-hurricanecanopystructure.

2.MaterialsandMethods

2.1.SiteDescription

PuertoRicoliestotheeastendoftheGreatAntillesislands(Figure 1,upperpanel) withacentrallatitudeof18.22◦N.RainfallinPuertoRicovariesgreatlyfrom~1000mmin thesouthwestto~4000mmintheeastmountainpeak,whichshieldstherainfallbrought bytheeasterlytradewinds.Ingeneral,thenorthernandeasterncoastsreceivemore rainfallthanthesouthernandwesterncoasts.Amplerainfallonthenorthcoasttends toproducemorestreamdischargeandoverlandflowthanthesouthcoast,whichdilute thesalinity.Thedifferencebetweenthenorthernandsoutherncoastsalsoarisesfrom bathymetry.ThenortherncoastisboundedbytheAtlanticOceanwiththedeepesttrench, whereasthesoutherncoastfacesthemuchshallowerCaribbeanSea.Thus,thetidalenergy onthenortherncoastishigherthanthatonthesoutherncoast.Theconsequenceisthatthe northerncoasthasdevelopedmoreandlargefluvialplainsandsandybeachesthanthe southerncoast.Basinandriverinemangroveforestsaremostlyfoundonthenortherncoast, whereasfringeandover-washedmangroveforestsareusuallyfoundonthesoutherncoast. Historically,PuertoRicooncehadabout11,000haofmangrovesin1800s,whichdeclined toabout6000hain1960sduetotheexpansionofagricultureandurbandevelopment[22]. Theconservationofwetlandsguidedbyinternationalandnationallawsledtotherecovery toabout8000hainlarge,aggregatedpatches[5,22,35,36].PuertoRicohasallthreetrue mangrovespecies,aswellasthemangroveassociates,foundintheCaribbean.

Thisstudyanalyzedfivemangroveforests,includingtruemangrovesandmangrove associates,alongthePuertoRicocoast,fourofwhichwereintheeastandnortheast,along withonesiteinthesouthwest(Figure 1,thelowerpanel).Thesesiteswereselectedmostly onthebasisofdataavailability.Thefoursitesintheeastandnortheast(PalmadelMar, Fajardo,CañoMartínPeña,andToaBaja)werealsoclosertothepathofHurricaneMaria thanLaParguerainthesouthwest.TheforestinPalmadelMarisdominatedby Pterocarpus officinalis,amangroveassociate,whereastheotherfouraredominatedbytruemangroves.

2.2.DataSource

Toinvestigatethespatialpatternsofthemangrovecanopyandtoassessthehurricanes damage,weusedairborneLiDARdataprovidedbytwocampaignsbeforeandafterthe hurricanes.InMarch2017,thecampaignofGoddard’sLiDAR,Hyperspectral,andThermal Imager(G-LiHT)[37]bytheNationalAeronauticsandSpaceAdministration(NASA) coveredanumberoftransectstripsinPuertoRico.AfterthehurricanesinSeptember 2017,USGSLiDARcampaignsin2018(https://nationalmap.gov/3DEP/,accessedon 15March2022)coveredmostoftheisland.Bothcampaignsprovideddataintheform ofpointclouds.Hence,theboundariesofthefivesiteswerederivedonthebasisofthe intersectionsofcoverageofG-LiHTandUSGSLiDARandtheforestedwetlanddelineated bytheNOAA2010C-CAP(CoastalChangeAnalysisProgram)land-covermap,andthen wereshrunkforsimplicity[38].TheLiDARdataoftheG-LiHTtransects(Table 1)were

usedtoderivethecanopyheightbeforethehurricanes,whichwehereafterrefertoas the‘pre-hurricanecanopyheight’,whiletheUSGSdatawereusedtoderivethecanopy heightafterthehurricanes(Table 1),whichwehereafterrefertoasthe‘post-hurricane canopyheight’.ForG-LiHTdata,thenormalpointspacingofthepointcloudis0.24m withhorizontalandverticalaccuraciesof1m(https://glihtdata.gsfc.nasa.gov/,accessed on15March2022),whereasthenormalpointspacing,verticalaccuracy,andhorizontal accuracyofUSGSLiDARpointcloudare0.34,0.1,and1m,respectively.

Figure1. PuertoRicogeographicallocation(up)andlocationoffivesitesalongitscoast(low).Red andbluelinesdepictthepathsofHurricaneMariaandHurricaneIrma,respectively.

Table1. Pre-andpost-hurricaneLiDARpoint-cloudimagesprovidedbytheNASAG-LiHTandthe USGS3DElevationProgram.

SitePre-HurricaneGLiHTTransectsPost-HurricaneUSGSTiles

CañoMartínPeñaPR_10March2017_118

E_2018_19QHA37506600, E_2018_19QHA39006600 FajardoPR_15March2017_75

PalmadelMar

PR_12March2017_58a, PR_12March2017_58b

H_2018_20QKF81005700, H_2018_20QKF81005850

H_2018_20QKF66002850, H_2018_20QKF67502700, H_2018_20QKF67502850

LaPargueraPR_8March2017_114A_2018_19QFV28001200

ToaBaja

PR_10March2017_117, PR_17March2017_199

G_2018_19QGA22506750, G_2018_19QGA22506900, G_2018_19QGA24006900, G_2018_19QGA25506900

EachG-LiHTtransectconsistsofafewtiles,andeachtileisapproximately80mby 500m;onlythosetileswithinthesiteswereanalyzed.TheUSGSLiDARtilesforthe post-hurricaneanalysesarealsolistedinTable 1.InadditiontotheLiDARpointclouds, weusedthedigitalelevationmodel(DEM)of1mresolutionprovidedbytheUSGS3D

ElevationProgram(https://www.usgs.gov/3d-elevation-program,accessedon15March 2022),whichhasaverticalaccuracyof10cm(RMSEz,RootMeanSquareErrorinz).

2.3.AnalysisofPre-HurricaneCanopyHeightandCanopyHeightReductionbytheHurricanes Mangroveforestcanopieswerederivedasfollows:WefirstclippedtheLiDARtiles accordingtotheboundaryofeachsite.Thecanopyheightbeforeandafterthehurricanes werederivedat1mresolutionfromtheG-LiHTandUSGSpointclouds,respectively,using thegrid_canopy()andnormalize_height()functionsprovidedbythe‘lidR’packageversion 3.1.3[39].Tohelpexplainthecanopyheightreduction,wealsotriedtodetecttreesand treeheightsusingthefind_trees()functionusinglocalmaximumalgorithm.Thisalgorithm maynotbeabletoidentifysmalltreeswithcrownsoverlappingwiththeadjacenttrees. However,theparameterssetinapreviousstudyallowedustoverifythedensityderived againstagroundsurveyfortreeswithstemdiametergreaterthan10cm[34].Wenamedthe treedensityderivedusingthismethodas‘algorithm-derivedtreedensity’.Thereduction incanopyheightbyhurricaneswasfurthercomputedasthepre-hurricanecanopyheight minusthepost-hurricanecanopyheight.

Consideringthesalinityandnutrientavailabilitywhichareaffectedbytherivers,the freshwaterorsewagecanalswithinornearby,aswellasthecoastalwater,wecalculated thedistancetotherivers/canalsandthedistancetothecoastat1mresolution.Average gustwindspeedandhurricanerainfallforeachsitewereestimatedonthebasisofground measurementsandkriginginterpolations[31,40].

Totestourhypothesesandtoexplainthespatialvariationinpre-hurricanecanopy height,aswellasthecanopyheightreductionbythehurricanes,weappliedspatialregressiontomodeltheresponseofpre-hurricanecanopyheightandcanopyheightreduction totheabovementionedcovariatesforeachsite.Thespatialerrormodeltookthefollowingform:

y = xβ + u, u = λWu + ,(1) where y isthedependentvariablerepresentedasan n × 1matrix(n,numberofrecords inthedataset), x isoneormultiple(m)independentvariables(covariates)representedby an n × (m +1)matrix, β isan(m +1) × 1coefficientmatrixtobeestimated,and u isan n × 1 spatialerrormatrix. W isan n × n weightmatrixdeterminedbytheneighborhood structure, λ isthespatialautocorrelationcoefficient,and ε isthenormali.i.d.(independent andidenticallydistributed)residual.

Toapplythespatialerrormodel,allthespatialvariableswereaggregatedinto20m gridstoobtainthemeanquantities.Inaddition,wecomputedthestandarddeviationofthe pre-hurricanecanopyheightforthe20mgridtoreflecttheunevennessofthepre-hurricane canopyheight.Thevariablesat20mresolutionwerenormalizedintherangeof0to1,so thatwecouldcomparethecoefficientsestimatedbytheregressions.

Toexplorethespatialresponsesofthemangrovesacrosssites,wealsopooledthedata ofallsitesforthesamesetofspatialregression.Thiswasdonebysampling150gridcells of20m × 20mfromeachsiteinthreestratadefinedas0–33,33–67,and67–100percentiles ofthepre-hurricanecanopyheight.Thespatialregressionswerethenconductedforthe pooleddatasets.

Thecovariatesincludedintheregressionofthepre-hurricanecanopyheightwerethe elevation,thedistancetowithinornearbyrivers/canals,thedistancetocoastalsaltwater, andthealgorithm-derivedtreedensity.Theadditionalcovariatesfortheregressionofthe canopyheightreductionbythehurricaneswerethepre-hurricanecanopyheightandthe canopyroughness.Thepooledregressionalsoincorporatedthemeangustwindspeed andtotalrainfallduringthehurricanetoexplainthedifferenceacrosssites.Allthedata analysesandmappingweredonewithR[41]andArcGISPro(ESRI,Redlands,CA,USA).

3.Results

3.1.SpatialVariationandSummaryStatisticsoftheCanopyHeightsbeforeandafter theHurricanes

Elevationwasfoundtobethemostimportantenvironmentalvariableexplainingthe pre-hurricanecanopyheight,aswellasthecanopyheightreductionbythehurricanes[34]. Theelevationprofilesofthefiveforests(Figure 2,Table 2)showedgreatvariationsacross thesites.TheFajardositehadthehighestelevationwithamean ± SDof1.61 ± 1.07m, followedbyPalmaDelMarwith1.03 ± 0.38m.LaParguera(fringemangroves)inthe southwesthadthelowestelevationwithamean ± SDof0.16 ± 0.07m.CañoMartínPeña andToaBajahadmoderateelevationswithmeans ± SDof0.36 ± 0.32and0.39 ± 0.31m, respectively.

Figure2. DEMofthefivemangroveforests.Blueandlight-greenlinesdepictriversandcanalsof freshwater/sewage,respectively.

Table2. Summaryofthecanopyheightsbefore(CHM_2017)andafterthehurricanes(CHM_2018), canopyheightreduction,algorithm-derivedtreedensity,andthecovariatesofDEM,distanceto rivers/canalsandtocoast,andhurricanerainfallandgustwindbasedonthe20mgridmaps.

Thepre-hurricanecanopyheight(CHM_2017,Figure 3)showsthattherewerewide variationsinmangrovecanopyheightwithinandbetweensites(Table 2).Themeancanopy heightofCañoMartínPeña,PalmadelMar,andToaBajawereintherangeof9.3–11.7m, higherthanthatinFajardoandLaParguera(6.7and6.2m,respectively).Comparedto thepre-hurricanecanopyheight,themeanpost-hurricanecanopyheight(CHM_2018)was moreevenbothwithinandacrossthesites(Figures 3 and 4).Themeanheightvariedfrom 4.2minPalmadelMarto6.1minCañoMartínPeña.Wefoundapatternthatahigher pre-hurricanecanopyledtoagreaterreductionbythehurricanes(Figure 5).ToaBajawith thehighestmeanpre-hurricanecanopyshowedthegreatestreductionof6.1m,whereasLa Parguerawiththelowestpre-hurricanecanopyexperiencedthesmallestreductionof0.5m (Table 2).Themeanalgorithm-derivedpre-hurricanetreedensityreachedthegreatestlevel inCañoMartínPeñaandToaBaja(2135ha 1 and2132ha 1,respectively),butwaslower inLaPargueraandPalmadelMar(1674ha 1 and1682ha 1,respectively).

Figure3. Thepre-hurricanecanopyheight,derivedfromtheG-LiHTpoint-clouddata.

TheforestsinPalmadelMarandFajardoaretheclosesttorivers/canalswithmean distanceof57.8 ± 55.3and83.8 ± 60.8m(Table 2),respectively,whereastheforestin LaPargueradoesnothaveanyriversorcanalsnearbyandthenearestrivers/canalsare 948.1 ± 157.9m away.TheforestnearCañoMartínPeñahastheclosestmeandistanceto coastalwater(101.2m)becausewetreatedthewaterintheChannelofMartínPeñaassalty. The Pterocarpus forestinPalmadelMargrowsinwardtothelandandisconnectedtothe coastbychannelsandariver,suchthattheforesthasthefarthestmeandistancetothe coast(710.3m).Thegreatmeandistanceof516.9mtothecoastandthemediumdistance of341.5mtotheriver/canalsoftheToaBajaForestarelargelybecauseofitslargeareaof 71.1ha.

Windspeedandrainfallinterpolatedfromthegroundobservationsduringthehurricane[31,40]showedthatthemeangustwindspeedwasthehighestatPalmadelMar (49.5m s 1,Table 2),thesiteclosesttothelandfallofHurricaneMaria,whereasLaParguera inthesouthwestfarthestfromthehurricanepathhadthelowestmeangustwindspeed (34.1m s 1).Theotherthreesitesinbetweenalsohadgustspeedsofmorethan44m s 1 . Thehurricane-broughtrainfallshowedmorevariationacrosssitesthangustwindspeed.

ToaBajaandCañoMartínPeñaexperiencedthehighestrainfallof497.2and427.8mm, respectively,whereastheforestatLaParguerareceivedonly91.1mm.PalmadelMar,even closertothelandfallofMaria,onlyreceived286.5mmrainfall.

Figure4. Thepost-hurricanecanopyheight,derivedfromtheUSGSLiDARpointclouds.

Figure5. Canopyheightreductioncalculatedasthepre-hurricanecanopyheightminustheposthurricanecanopyheight.

3.2.SpatialRegressionModelsofthePre-HurricaneCanopyHeightandtheCanopyHeight ReductionbytheHurricanes

Thespatialregressionofthepre-hurricanecanopyheightyieldedequationswith significantcoefficientslistedinTable 3.Forexample,theequationforPalmadelMarwas

,(2)

where h isthenormalizedpre-hurricanecanopyheight, z isthenormalizedelevation, and d isthenormalizedalgorithm-derivedtreedensity.ForsymbolsinTable 3, sc isthe normalizeddistancetocoast,and λ isthespatialautocorrelationcoefficient.Thespatial errormodelforPalmadelMarhada λ of0.90and r2 of0.68.Exceptfortheforestin Fajardo,thepre-hurricanecanopyheightdependedsignificantlyontheelevation,butthis dependencedifferedacrosssites(Table 3).ForLaParguera,thepre-hurricanecanopy heightincreasedlinearlywithelevation.Similarly,thepre-hurricanecanopyheightofthe forestsinCañoMartínPeñaandToaBajaincreasedwithelevationwhenelevationwaslow, butthendecreasedwithelevationwhenelevationwashigherastheabsolutevalueofthe z2 coefficientwasgreaterthanthatof z.Thepre-hurricanecanopyheightofthesethree sitesalsosignificantlydecreasedwiththedistancetothecoast.Thepre-hurricanecanopy heightinPalmadelMardecreasedquadraticallywithelevation.

Table3. Spatialregressionofnormalizedpre-hurricanecanopyheight(h)onnormalizedcovariates. z,theelevation; d,thenormalizedalgorithm-derivedtreedensity; sc, thedistancetothecoast; λ,the spatialautocorrelationcoefficient; r2,thecoefficientofdetermination.Allcoefficientsweresignificant at α =0.05.

Thedependenceofthepre-hurricanecanopyheightonthealgorithm-derivedtree densitydifferedacrosssites;threesites(LaParguera,PalmadelMar,andFajardo)had pre-hurricanecanopyheightdecreaseswithdensity,whereasthepre-hurricanecanopy heightincreasedwithdensityinToaBaja.Thedensitywasnotasignificantexplanatorof thepre-hurricanecanopyheightinCañoMartínPeña.

TheequationsofthespatialerrormodelforthecanopyheightreductionwithsignificantcoefficientsareshowninTable 4 andcouldbeexpressedasfollowsfortheToa Bajasite:

where ∆h isthenormalizedcanopyheightreduction, sh isthenormalizedstandarddeviationofpre-hurricanecanopyheightwithinthe20mgrid,and s isthedistanceto rivers/canals.

Thecanopyheightreductionofallsitesincreasedlinearlyorquadraticallywiththe pre-hurricanecanopyheight(Table 4).ThereductionatallsitesexceptPalmadelMar decreasedquadraticallywiththeelevation.ForPalmadelMar,thecanopyheightreduction increasedwithelevationwherethe Pterocarpus forestoccupiedahigherelevationcompared toothersites.ThecanopyheightreductioninPalmadelMarandFajardowassignificantly cutbackbythehightreedensity,whilethatinToaBajawassignificantlypromotedbythe unevennessofthepre-hurricanecanopyheight(sh).ThecanopyheightreductionatToa BajaandCañoMartínPeñawasloweredbythedistancetotherivers/canalssuchthata fartherdistancefromrivers/canalsledtolesscanopyheightreduction.Thecanopyheight reductionatCañoMartínPeñawasalsocutbackbythedistancetothecoastwater.

Table4. Spatialregressionofnormalizedcanopyheightreduction(∆h)onnormalizedcovariates: h,pre-hurricanecanopyheight; z,elevation; d,algorithm-derivedtreedensity; sh,standarddeviationofpre-hurricanecanopyheight; s,distancetorivers/canals; sc,distancetocoast; λ,spatial autocorrelationcoefficient; r2,coefficientofdetermination.Allcoefficientsweresignificantat α =0.05.

Poolingthedataofallsites,wefoundthatthepooledpre-hurricanecanopyheight hadthefollowingequation:

Hence,thepooledcanopyheightdecreasedquadraticallywiththeelevationand linearlywiththealgorithm-derivedtreedensityandthedistancetorivers/canals.The regressionhada λ of0.48and r2 of0.54.ThemodelfittothedataisshowninFigure 6a.

Figure6. (a)Model-predictedversusLiDAR-derivedpre-hurricanecanopyheight,and(b)modelpredictedversusLiDAR-derivedcanopyheightreduction.Codesforthefivesites:CM—CañoMartín Peña,FJ—Fajardo,PG—LaParguera,PM—PalmadelMar,TB—ToaBaja.

Theregressionofthepooledcanopyheightreductionresultedin

where p isthenormalizedrainfall,and w isthenormalizedgustwindspeed.Theregression hada λ as0.51and r2 as0.85.Hence,theprevailingpatternacrossthefivesitesisthatthe canopyheightreductionincreasedwiththepre-hurricanecanopyheightbutdecreased withelevation.Largerainfallandgustspeedincurredmorecanopyheightreduction; however,theimpactofthewindspeedwasgreaterthanthatofrainfallasindicatedbythe biggercoefficientbeforewindspeed.ThemodelpredictionversusLiDAR-derivedcanopy heightreductionisdepictedinFigure 6b.

4.Discussion

4.1.CanopyHeightbeforeHurricanes

Ouranalysessupportedourhypothesisthatthecanopyheightreductionsignificantly dependsonthepre-hurricanecanopyheight,asahighercanopybeforehurricanesmeans moreinterceptionofthewindforcetodamagethecanopy[42,43].Theeffectofprehurricanecanopyheighthasbeenidentifiedastheprimaryparameterinseveralmodels thatsimulatetheriskofwinddamagetoforeststands.

Thedependenceofthecanopyheightreductiononthepre-hurricanecanopyheight wasquadratic,ratherthanlinear,whichimpliesthattheslopedecreasedastheprehurricanecanopyheightincreased.Moreover,thepre-hurricanecanopyheightwasthe mostimportantfactordeterminingthehurricanedamagetomangroveforestasthecoefficientsofthenormalizedcanopyheightintheequations(Table 4,Equation(5))werelargest comparedtootherfactors.

4.2.Elevation

Ouranalysesbothatasitelevelandacrosssitesusingpooleddatasupportedourhypothesisthatboththepre-hurricanemangrovecanopyheightandthecanopyheightreductionbythehurricanesdependonelevation,butonlypartlyonthedistancetorivers/canals andthedistancetocoast.Theresponsesofcanopyheightandthecanopyheightreduction toelevationanddistancetorivers/canalsandcoastwaterdependedheavilyontheregimes ofthesevariables.

Theresponsesofthepre-hurricanecanopyheightofToaBajaandCañoMartínPeña toelevationweresimilar(Table 3)asthesetwositeshadthesameelevationregimewitha meanelevationintherangeof0.36~0.39m(Table 2).Thequadraticfeatureimpliesthatthe pre-hurricanecanopyheightincreasedwithelevationwhenelevationwaslowerandthen decreasedwithelevationatahigherelevationrange.Themaximumpre-hurricanecanopy heightoccurredatamoderateelevationaround1maccordingtoourmodelanddata.The placeswithlowestelevationwereclosertothecoastwithredmangrove.Aselevation wentfromlowtomoderate,thespeciesshiftedtoblackorwhitemangroves.Aselevation continuedtoincreasebeyondthemoderaterange,thefreshwatersupplydecreasedand salinityincreased[44,45],therebydecreasingthepre-hurricanecanopyheight.Itseemsthat thispatterncanbeextrapolatedacrosssiteswithdifferentelevationregimes.LaParguera hadthelowestelevationrangewithameanof0.16mandmaximumof0.2m,suchthatthe pre-hurricanecanopyheightincreasedwithelevation.The Pterocarpus growinginbrackish wateratPalmadelMarhadameanelevationgreaterthan1msuchthatthepre-hurricane canopyheightdecreasedwiththeelevation.

ThecanopyheightreductionofallsitesexceptPalmadelMardecreasedwithelevationmostlybecausetheareaswithlowerelevationweremuddierandthestemsofthe mangroveswereeasiertofalldownorbeslantedbythewind[11].Inaddition,thelower elevationwasmorelikelytobeinundatedtocauseadditionaldamage[13].Whenelevation increased,thelowerpre-hurricanecanopyheightandthestrongerroot-soilanchorage allowedthesystemtoresistandreducethewinddamagetothecanopy.TheforestatPalma

delMarhadgreaterthan1mmeanelevationandwasclosesttotherivers/canals(Table 2), whichbothhelpedtodrainthehurricanewaterand,thus,reducedtheriskofprolonged inundation.However,thissitewasclosesttothehurricanelandingpointandexperienced thestrongestgustwind.Withtheincreaseinelevation,thedominant Pterocarpus withhigh canopywasexposedtostrongerwindand,thus,sufferedmoredamage.

4.3.DistancetoRivers/CanalsandtoCoast

Riversandcanalssupplyfreshwater,andcanalsofsewagepurposesdelivernutrients andfreshwatertothemangroveecosystemstoalleviatethesalinityandnutrientstresses, especiallyforplaceswithlowelevation.Ouranalysissupportedthehypothesisthatthe pre-hurricanecanopyheightandthecanopyheightreductiondecreasewiththedistance torivers/canals.However,thishypothesiswasonlyapplicabletopre-hurricanecanopy heightwithpooleddataandtothecanopyheightreductionatsiteswithmoderateelevation. LaParguerahadthelowestelevation,butnoriversorcanalspassingthrough,andthe nearestcanalswereabout1kmaway.ForFajardoandPalmadelMar,theelevationregimes weretoohightoretainthefreshwaterandnutrientsderivedbytherivers/canals.Hence, thedistancetorivers/canalsdidnotappearsignificantintheequationsforthesethreesites. Thedistancetorivers/canalsonlyappearedintheequationsforToaBajaandCañoMartín Peña,wheretheelevationrangewaslowtomoderate.Furthermore,themeandistances torivers/canalsareinthemoderaterange,andwithin-sitevariationsofthedistanceto rivers/canalswerethegreatestatthesetwosites(Table 2).Itseemsthattheconditions forthedistancetorivers/canalstocomeintoplayareatleastlowormoderateelevation andlargewithin-sitevariationofthedistancetorivers/canals.Theseconditionsdidnot concurrentlyexistforothersites.

Ourequationsshowthatareaswithashorterdistancetorivers/canalswereassociatedwithhigherpre-hurricanecanopy(Equation(4))andmorecanopyheightreduction (Table 4).Soilsnearrivers/canalsmaybeassociatedwithlowersalinityorbetternutrient status,whichnotonlysupportbettermangrovegrowth,butalsochangetheallocation pattern [4,46–48].Thechangedallocationpatternwouldincreasetheshoot/rootratioso thatthemangroveswouldinterceptmorewindforceduringhurricanesbuthaveless soil-rootanchorage.Theconsequenceisthatthetreeswouldbeeasiertofallortoslant. Thebetternutrientsupplymayalsochangetheleaftraitsofplantssuchthattheleaves maygrowthinner.Thinnerleavesareeasiertobetornbyhurricanewinds,thusincurring moredefoliation[49].Thefloodingmapdetectedfromradarimagesshowedgreaterinundationalongtherivers/canals(unpublisheddata).Thesefactsexplainwhytheareaswith closerdistancetorivers/canalssufferedmorecanopyheightreduction,whereasthosewith fartherdistancewereassociatedwithlesscanopyheightreduction.

Thedistancetocoastmaybeassociatedwiththeelevationandsalinitygradients.For coastalwetlandswithriverinemangroves,thesalinitygenerallyincreaseswiththedistance tothecoast[44,50].Thehighersalinityatfartherdistancesallowsmorerootgrowththan shootgrowthtoresistwinddamage.Thefartherdistancetothecoastwasalsoassociated withlowerpre-hurricanecanopyheightinCañoMartínPeña,ToaBaja,andLaParguera, aswellaslowercanopyheightreductioninCañoMartínPeña.Inaddition,placeswith fartherdistancetothecoastmaybelesspronetoinundationfromstormsurges.

4.4.TreeDensityandUnevennessofCanopy

Thealgorithm-derivedtreedensityappearedintheequationsforPalmadelMarand Fajardotoalleviatethecanopyheightreduction.However,therelationshipbetweenthe pre-canopyheightandthetreedensitywasnotconsistentacrossallsites.Largerandtaller treesmaybeassociatedwithlowertreedensityduetoself-thinning.However,highertree densitymayalsomakethetreesgrowtallertocompeteforlightsothathighercanopy heightmaybeassociatedhighertreedensityormaynotbesignificantlyrelatedtothetree density[11].

Treedensityhasbeenidentifiedasafactorthatmodulatesthewinddamagetoforests inseveralstudies:Treesgrowingtogethercansupporteachothermechanically[8]by increasingtheinteractionamongneighboringtreesthroughfrictionofleavesandbranches indissipatingthewindenergy.Hightreedensityisespeciallyimportantformangroves withlowstemdiameters.Theoreticalandpracticalstudiesofwindbreaksystemshave indicatedthatdensityisoneofthemajorparametersforeffectivewindreduction[51].On theotherhand,forestswithlowertreedensityoftenexperiencemoredeadtreesandbent trunksaftermajorhurricanes[52].AhybridmodelofForestGalesdevelopedforsimulation ofwinddamageriskofforestsusedaseriesofimportantparametersincludingspacing amongtrees,whichistheinverseofthetreedensity.Thesensitivityanalysisfoundthat thecriticalwindspeedofstemruptureisinverselyproportionaltotheaveragespacing amongtreessothathigherwindspeedisneededtorupturecloselyspaced(highdensity) trees[10,53].

Acloselyrelatedconceptistheunevennessofthecanopy,whichappearedinour equationforToaBajatoenlargethecanopyheightreduction(Table 4).Boundary-layer theoryindicatesthatroughsurfacesassociatedwithunevennessofcanopiescanmakethe boundarythinnertofacilitateverticalconvections[54]suchthatthewindcanmoreeasily traversetheforestcanopyandcausemoredamage.Unevennessofcanopyheightisalso relatedtothetreedensity.Inadditiontotheheterogeneoussalinity/nutrientconditionsand thecompetitionamongtreesthatgivesdifferentcanopygrowth,thespatialheterogeneity oftreedensityislikelytocreatetheunevennessofthecanopyaslowtreedensitiesare likelyassociatedwithgapsinthecanopytoincreasetheunevennessofthecanopyheight.

4.5.HurricaneWindsandRainfall

Hurricanewindisthemostimportantforcedamagingthecanopy.TheforestatPalmar delMarexperiencedthestrongestgustwindandconsequentlyencounteredthemostsevere canopydamage,i.e.,55%relativecanopyheightreduction(Table 2).Inaddition,forthe coastalmangrovesdistributedinalowelevationprofileand,thus,susceptibletovarious floodingdrivers(coastalsurge,fluvial,orpluvial),rainfallduringthehurricanesappeared tobeanimportantdriverofcanopyheightreduction(Equation(5)).Thedrainagecapacity ofmangroveecosystemscan,thus,playanimportantroleinrainfall-driveninundation. Ourongoingworkonradar-detectedinundationshowedinundationsalongthecoast, alongtherivers/canals,andinlow-lyingareasafterthehurricanewhichlastedaround 10days.TheforestsatCañoMartínPeñaandToaBajaexperiencedstronggustwindsand theheaviesthurricanerainfall(Table 2).Thesetwositeshadlowtomoderateelevation withclosedistancetothecoastortherivers/canals,thusbeingpronetocoastalsurgeand fluvialorpluvialflooding.Theinundationcausedbythedownpour,stormsurge,andriver overflowisanimportantfactorresultinginadditionaldamage.

Wetlandrecoveryfromhurricanedamagewillbeafuturesubject.AirborneLiDAR datafromcampaignsafter2018shouldbeincorporatedwithmultispectralandhyperspectralimagestofulfilthistask.InadditiontoairborneLiDAR,spaceborneLiDAR dataarebecomingavailablerecently.Forexample,GEDI(GlobalEcosystemDynamics Investigation)onboardtheInternationalSpaceStationprovidesanalternativedatasource withlonger-termdataatalargerscale[55].Verticalcanopystructureandcomplexity playanimportantroleinprovidingmicrohabitatsforotherspeciessuchasinsectsand birds[56,57].Therefore,theassessmentofcanopyheightusingLiDARmighthaveimplicationsinbiodiversitystudies,especiallyforthosespeciesrelyingonforestsaspartof theirhabitats.

5.Conclusions

UsingLiDARpoint-clouddatabeforeandafterthehurricanesinSeptember2017, weanalyzedthepre-hurricanecanopyheight,aswellasthecanopyheightreduction, duringthehurricanesforfivecoastalmangrovesites.Therewerethreegroupsofvariables thatmighthaveinterplayedtoaffectthevulnerabilityofmangroveforestsundertropical

stormdisturbance:(1)pre-hurricanecanopystructureincludingcanopyheightandits unevenness,treedensity,andallometrypattern,(2)thephysicalenvironmentincluding elevation,rivers/canalswithinorpassingthroughtheforests,anddistancetocoast,and (3)theexternalforcessuchaswindspeedandrainfallduringthehurricanes.Mangrove forestswithhigher,unevenercanopyandlowertreedensitytendtoexperiencemorecanopy damagethanthosewithlower,evenercanopyandhighertreedensity.Thisbiologicalgroup isshapedbythesecondfactor,i.e.,thephysicalenvironment.Spatialvariationofelevation, climate,anddistancetorivers/canalsandtocoasttendtomodifythecanopystructure,the allometry,andtheleaftraitsasthesephysicalenvironmentalvariablescontrolthespatial distributionofthesoilsalinity.Amongthesephysicalenvironments,elevationisthemost determinativeasitsregimegovernsthesignificanceofthedistancetorivers/canalsand tothecoast.Inadditiontowindspeed,wefoundrainfalltoalsobeanimportantfactor affectingthemangrovecanopydamagebythehurricanes,especiallyinlowlandprone toinundation.

TheestimateofcanopyheightbyLiDARpointcloudsisbasedonthereturnedsignals bythesource.Thus,thecanopyheightreductionmostlyreflectsthedefoliationandraptures ofbranches,but,toalesserextent,thefallandraptureofthetrunks.Thesignificanceofthe covariatesintheequationsseemedalsodependentonthescales.Forexample,thedistance torivers/canalswasnotsignificantintheequationofpre-hurricanecanopyheightforany site.However,itwassignificantintheequationforthepooledequation(Equation(4)). Correlationamongcovariatesmayalsocausedifferencesinresponseequationsamong sites.Futureeffortsshouldbemadeongroundfieldmeasurementsandscalingfromplotto landscapesothatLiDAR-basedanalysiscanofferamorecertainandcompletemechanistic understandingofmangrovevulnerabilitytohurricanedisturbance.

AuthorContributions: Conceptualization,Q.G.andM.Y.;methodology,Q.G.andM.Y.;formal analysis,Q.G.andM.Y.;writing—originaldraftpreparation,Q.G.;writing—reviewandediting,Q.G. andM.Y.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.

Funding: ThisresearchwasfundedbytheNOAAPuertoRicoSeaGrantNA18OAR4170089.

DataAvailabilityStatement: AllthedatasetsarepubliclyavailableattheUSGS3DElevation Program(3DEP)dataportal(https://nationalmap.gov/3DEP/,accessedon15March2022)andthe NASAG-LiHTdataportal(https://glihtdata.gsfc.nasa.gov/,accessedon15March2022).

Acknowledgments: WeacknowledgeUSGSforprovidingtheLiDARafterthehurricanes,publicly availableattheUSGS3DElevationProgram(3DEP)dataportal(https://nationalmap.gov/3DEP/, accessedon15March2022),andNASAforprovidingtheLiDARdatabeforethehurricanes,publicly accessibleatNASAG-LiHT(https://glihtdata.gsfc.nasa.gov/,accessedon15March2022).

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesign ofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript,or inthedecisiontopublishtheresults.

AppendixA

Theaerialphotosofriverinemangrovestakenbeforeandafterthehurricanes(https: //glihtdata.gsfc.nasa.gov/puertorico/index.html,accessedon15March2022).

References

1. Alongi,D.M.CarbonCyclingandStorageinMangroveForests. Annu.Rev.Mar.Sci. 2014, 6,195–219.[CrossRef][PubMed]

2. Atwood,T.B.;Connolly,R.M.;Almahasheer,H.;Carnell,P.E.;Duarte,C.M.;EwersLewis,C.J.;Irigoien,X.;Kelleway,J.J.;Lavery, P.S.;Macreadie,P.I.;etal.Globalpatternsinmangrovesoilcarbonstocksandlosses. Nat.Clim.Chang. 2017, 7,523.[CrossRef]

3. Cannicci,S.;Burrows,D.;Fratini,S.;Smith,T.J.;Offenberg,J.;Dahdouh-Guebas,F.Faunalimpactonvegetationstructureand ecosystemfunctioninmangroveforests:Areview. Aquat.Bot. 2008, 89,186–200.[CrossRef]

4. Krauss,K.W.;McKee,K.L.;Lovelock,C.E.;Cahoon,D.R.;Saintilan,N.;Reef,R.;Chen,L.Howmangroveforestsadjusttorising sealevel. NewPhytol. 2014, 202,19–34.[CrossRef]

5. Yu,M.;Rivera-Ocasio,E.;Heartsill-Scalley,T.;Davila-Casanova,D.;Rios-López,N.;Gao,Q.Landscape-LevelConsequences ofRisingSea-LevelonCoastalWetlands:SaltwaterIntrusionDrivesDisplacementandMortalityintheTwenty-FirstCentury. Wetlands 2019, 39,1343–1355.[CrossRef]

6. Badola,R.;Hussain,S.A.Valuingecosystemfunctions:AnempiricalstudyonthestormprotectionfunctionofBhitarkanika mangroveecosystem,India. Environ.Conserv. 2005, 32,85–92.[CrossRef]

7. Cartier,K.HurricanesHitPuertoRico’sMangrovesHarderThanFlorida’s. EOS 2019, 100.[CrossRef]

8. Duryea,M.L.;Kamp,E. WindandTrees:LessonsLearnedfromHurricanes;SchoolofForestResourcesandConservation,University ofFloridaFASExtension:Gainesville,FL,USA,2017.

9. Smith,T.J.;Anderson,G.H.;Balentine,K.;Tiling,G.;Ward,G.A.;Whelan,K.R.T.CumulativeimpactsofhurricanesonFlorida mangroveecosystems:Sedimentdeposition,stormsurgesandvegetation. Wetlands 2009, 29,24.[CrossRef]

10. Gardiner,B.;Byrne,K.;Hale,S.;Kamimura,K.;Mitchell,S.J.;Peltola,H.;Ruel,J.-C.Areviewofmechanisticmodellingofwind damagerisktoforests. For.Int.J.For.Res. 2008, 81,447–463.[CrossRef]

11. Mitchell,S.J.Windasanaturaldisturbanceagentinforests:Asynthesis. For.Int.J.For.Res. 2012, 86,147–157.[CrossRef]

12. Ye,F.;Huang,W.;Zhang,Y.J.;Moghimi,S.;Myers,E.;Pe'eri,S.;Yu,H.C.Across-scalestudyforcompoundfloodingprocesses duringHurricaneFlorence. Nat.HazardsEarthSyst.Sci. 2021, 21,1703–1719.[CrossRef]

13. Choy,S.C.;Booth,W.E.ProlongedinundationandecologicalchangesinanAvicenniamangrove:Implicationsforconservation andmanagement. Hydrobiologia 1994, 285,237–247.[CrossRef]

14. Krauss,K.W.;Osland,M.J.Tropicalcyclonesandtheorganizationofmangroveforests:Areview. Ann.Bot. 2019, 125,213–234. [CrossRef][PubMed]

15. Lovelock,C.E.;Krauss,K.W.;Osland,M.J.;Reef,R.;Ball,M.C.ThePhysiologyofMangroveTreeswithChangingClimate. In TropicalTreePhysiology:AdaptationsandResponsesinaChangingEnvironment;Goldstein,G.,Santiago,L.S.,Eds.;Springer InternationalPublishing:Cham,Switzerland,2016;pp.149–179.[CrossRef]

16. Peel,J.R.;Sanchez,M.C.M.;Lopez-Portillo,J.;Golubov,J.Stomataldensity,leafareaandplantsizevariationof Rhizophoramangle (Malpighiales:Rhizophoraceae)alongasalinitygradientintheMexicanCaribbean. Rev.Biol.Trop. 2017, 65,701–712.[CrossRef]

17. Kodikara,K.A.S.;Jayatissa,L.P.;Huxham,M.;Dahdouh-Guebas,F.;Koedam,N.Theeffectsofsalinityongrowthandsurvivalof mangroveseedlingschangeswithage. ActaBot.Bras. 2018, 32,37–46.[CrossRef]

18. Waisel,Y.;Eshel,A.;Agami,M.Saltbalanceofleavesofthemangrove Avicenniamarina Physiol.Plant. 2006, 67,67–72.[CrossRef]

19. Reef,R.;Lovelock,C.E.Regulationofwaterbalanceinmangroves. Ann.Bot. 2015, 115,385–395.[CrossRef]

20. Lugo,A.E.;Medina,E.MangroveForests.In EncyclopediaofNaturalResources–Land;Wang,Y.,Ed.;Taylor&FrancisGroup: NewYork,NY,USA,2014;Volume1.

21. Branoff,B. UrbanMangroveBiologyandEcology:EmergentPatternsandManagementImplications;UniversityofPuertoRico:SanJuan, PR,USA,2018.

22. Martinuzzi,S.;Gould,W.A.;Lugo,A.E.;Medina,E.ConversionandrecoveryofPuertoRicanmangroves:200yearsofchange. For.Ecol.Manag. 2009, 257,75–84.[CrossRef]

23. Lugo,A.E.;Medina,E.;Cuevas,E.;Cintrón,G.;Nieves,E.N.L.;Novelli,Y.S.EcophysiologyofaMangroveForestinJobosBay, PuertoRico. Caribb.J.Sci. 2007, 43,200–219.[CrossRef]

24. Quadros,A.F.;Zimmer,M.Datasetof“truemangroves”plantspeciestraits. Biodivers.DataJ. 2017, 5,e22089.[CrossRef]

25. Miller,G.L.;Lugo,A.E. GuidetotheEcologicalSystemsofPuertoRico;U.S.DepartmentofAgriculture,ForestService,International InstituteofTropicalForestry:SanJuan,PR,USA,2009;p.437.

26. Castañeda-Moya,E.;Rivera-Monroy,V.H.;Chambers,R.M.;Zhao,X.;Lamb-Wotton,L.;Gorsky,A.;Gaiser,E.E.;Troxler,T.G.; Kominoski,J.S.;Hiatt,M.HurricanesfertilizemangroveforestsintheGulfofMexico(FloridaEverglades,USA). Proc.Natl.Acad. Sci.USA 2020, 117,4831–4841.[CrossRef]

27. Taillie,P.J.;Roman-Cuesta,R.;Lagomasino,D.;Cifuentes-Jara,M.;Fatoyinbo,T.;Ott,L.E.;Poulter,B.Widespreadmangrove damageresultingfromthe2017Atlanticmegahurricaneseason. Environ.Res.Lett. 2020, 15,064010.[CrossRef]

28. Branoff,B.;Martinuzzi,S.MangroveforeststructureandcompositionalongurbangradientsinPuertoRico. bioRxiv 2018,504928. [CrossRef]

29. Field,C.;Osborn,J.;Hoffman,L.;Polsenberg,J.;Ackerly,D.;Berry,J.;BjÖRkman,O.;Held,A.;Matson,P.;Mooney,H.Mangrove biodiversityandecosystemfunction. Glob.Ecol.Biogeogr.Lett. 1998, 7,3–14.[CrossRef]

30. Giri,C.;Ochieng,E.;Tieszen,L.L.;Zhu,Z.;Singh,A.;Loveland,T.;Masek,J.;Duke,N.Statusanddistributionofmangrove forestsoftheworldusingearthobservationsatellitedata. Glob.Ecol.Biogeogr. 2011, 20,154–159.[CrossRef]

31. Yu,M.;Gao,Q.Topography,drainagecapability,andlegacyofdroughtdifferentiatetropicalecosystemresponsetoandrecovery frommajorhurricanes. Environ.Res.Lett. 2020, 15,104046.[CrossRef]

32. Huang,W.;Sun,G.;Dubayah,R.;Cook,B.;Montesano,P.;Ni,W.;Zhang,Z.Mappingbiomasschangeafterforestdisturbance: ApplyingLiDARfootprint-derivedmodelsatkeymapscales. RemoteSens.Environ. 2013, 134,319–332.[CrossRef]

33. Eisemann,E.;Dunkin,L.;Hartman,M.;Wozencraft,J.JALBTCX/NCMPemergency-responseairborneLidarcoastalmapping& quickresponsedataproductsfor2016/2017/2018hurricaneimpactassessments. ShoreBeach 2019, 87,31–40.[CrossRef]

34. Gao,Q.;Yu,M.ElevationandDistributionofFreshwaterandSewageCanalsRegulateCanopyStructureandDifferentiate HurricaneDamagestoaBasinMangroveForest. RemoteSens. 2021, 13,3387.[CrossRef]

35. Kennaway,T.;Helmer,E.H.TheforesttypesandagesclearedforlanddevelopmentinPuertoRico. Gisci.RemoteSens. 2007, 44, 356–382.[CrossRef]

36. Gao,Q.;Yu,M.DiscerningFragmentationDynamicsofTropicalForestandWetlandduringReforestation,UrbanSprawl,and PolicyShifts. PlosONE 2014, 9,e113140.[CrossRef]

37. Cook,B.;Corp,L.;Nelson,R.;Middleton,E.;Morton,D.;McCorkel,J.;Masek,J.;Ranson,K.;Ly,V.;Montesano,P.NASA Goddard’sLiDAR,HyperspectralandThermal(G-LiHT)AirborneImager. RemoteSens. 2013, 5,4045–4066.[CrossRef]

38. OfficeforCoastalManagement.C-CAPLandCover,PuertoRico.2010.Availableonline: https://www.fisheries.noaa.gov/ inport/item/48301 (accessedon15March2022).

39. Roussel,J.-R.;Auty,D.;Boissieu,F.D.;Meador,A.S.lidR:AirborneLiDARDataManipulationandVisualizationforForestry Applications.2019.Availableonline: https://cran.r-project.org/package=lidR (accessedon24August2021).

40. Pasch,R.J.;Penny,A.B.;Berg,R. NationalHurricaneCenterTropicalCycloneReport–HurricaneMaria(AL152017)September16–30, 2017;NationalHurricaneCenter:Miami,FL,USA,2019;pp.1–48.

41. RCoreTeam. R:ALanguageandEnvironmentforStatisticalComputing;RFoundationforStatisticalComputing:Vienna,Austria, 2021;Availableonline: https://www.R-project.org/ (accessedon15March2022).

42. Angelou,N.;Dellwik,E.;Mann,J.Windloadestimationonanopen-grownEuropeanoaktree. For.Int.J.For.Res. 2019, 92, 381–392.[CrossRef]

43. Peterson,C.J.;Ribeiro,G.H.P.d.M.;Negrón-Juárez,R.;Marra,D.M.;Chambers,J.Q.;Higuchi,N.;Lima,A.;Cannon,J.B.Critical windspeedssuggestwindcouldbeanimportantdisturbanceagentinAmazonianforests. For.Int.J.For.Res. 2019, 92,444–459. [CrossRef]

44. Wang,H.;Hsieh,Y.P.;Harwell,M.A.;Huang,W.Modelingsoilsalinitydistributionalongtopographicgradientsintidalsalt marshesinAtlanticandGulfcoastalregions. Ecol.Model. 2007, 201,429–439.[CrossRef]

45. Jiang,J.;Gao,D.;DeAngelis,D.L.Towardsatheoryofecotoneresilience:Coastalvegetationonasalinitygradient. Theor.Popul. Biol. 2012, 82,29–37.[CrossRef]

46. Chen,Y.;Ye,Y.EffectsofSalinityandNutrientAdditiononMangroveExcoecariaagallocha. PLoSONE 2014, 9,e93337.[CrossRef]

47. Nguyen,H.T.;Stanton,D.E.;Schmitz,N.;Farquhar,G.D.;Ball,M.C.GrowthresponsesofthemangroveAvicenniamarinato salinity:Developmentandfunctionofshoothydraulicsystemsrequiresalineconditions. Ann.Bot. 2015, 115,397–407.[CrossRef] [PubMed]

48. Peters,R.;Vovides,A.G.;Luna,S.;Gruters,U.;Berger,U.Changesinallometricrelationsofmangrovetreesduetoresource availability—Anewmechanisticmodellingapproach. Ecol.Model. 2014, 283,53–61.[CrossRef]

49. Reich,P.B.;Walters,M.B.;Ellsworth,D.S.LeafLife-SpaninRelationtoLeaf,Plant,andStandCharacteristicsamongDiverse Ecosystems. Ecol.Monogr. 1992, 62,365–392.[CrossRef]

50. Yang,S.-C.;Shih,S.-S.;Hwang,G.-W.;Adams,J.B.;Lee,H.-Y.;Chen,C.-P.Thesalinitygradientinfluencesontheinundation tolerancethresholdsofmangroveforests. Ecol.Eng. 2013, 51,59–65.[CrossRef]

51. Talkkari,A.;Peltola,H.;Kellomäki,S.;Strandman,H.Integrationofcomponentmodelsfromthetree,standandregionallevelsto assesstheriskofwinddamageatforestmargins. For.Ecol.Manag. 2000, 135,303–313.[CrossRef]

52. Jimenez-Rodríguez,D.L.;Alvarez-Añorve,M.Y.;Pineda-Cortes,M.;Flores-Puerto,J.I.;Benítez-Malvido,J.;Oyama,K.;AvilaCabadilla,L.D.Structuralandfunctionaltraitspredictshorttermresponseoftropicaldryforeststoahighintensityhurricane. For.Ecol.Manag. 2018, 426,101–114.[CrossRef]

53. Hale,S.E.;Gardiner,B.;Peace,A.;Nicoll,B.;Taylor,P.;Pizzirani,S.Comparisonandvalidationofthreeversionsofaforestwind riskmodel. Environ.Model.Softw. 2015, 68,27–41.[CrossRef]

54. Krogstadt,P.Å.;Antonia,R.A.Surfaceroughnesseffectsinturbulentboundarylayers. Exp.Fluids 1999, 27,450–460.[CrossRef]

55. Patterson,P.L.;Healey,S.P.;Ståhl,G.;Saarela,S.;Holm,S.;Andersen,H.-E.;Dubayah,R.O.;Duncanson,L.;Hancock,S.;Armston, J.;etal.StatisticalpropertiesofhybridestimatorsproposedforGEDI—NASA’sglobalecosystemdynamicsinvestigation. Environ. Res.Lett. 2019, 14,065007.[CrossRef]

56. MonmanyGarzia,A.C.;Yu,M.;Zimmerman,J.K.Effectsofvegetationstructureandlandscapecomplexityoninsectparasitism acrossanagriculturalfrontierinArgentina. BasicAppl.Ecol. 2018, 29,69–78.[CrossRef]

57. Mccormack,J.J.;Cotoras,D.D.BeetleDiversityAcrossMicro-habitatsonLizardIslandGroup(GreatBarrierReef,Australia). Zool. Stud. 2021, 60,12.[CrossRef]

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Elevation Regimes Modulated the Responses of Canopy Structure of Coastal Mangrove Forests by Puerto Rico Sea Grant - Issuu