Special relativity, electrodynamics, and general relativity : from newton to einstein second edition

Page 1


Specialrelativity,electrodynamics,andgeneral relativity:fromNewtontoEinsteinSecond EditionKogut

https://ebookmass.com/product/special-relativityelectrodynamics-and-general-relativity-from-newton-toeinstein-second-edition-kogut/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Relativity Principles and Theories from Galileo to Einstein Olivier Darrigol

https://ebookmass.com/product/relativity-principles-and-theories-fromgalileo-to-einstein-olivier-darrigol/

ebookmass.com

Relativity Made Relatively Easy. Volume 2: General Relativity and Cosmology Andrew M. Steane

https://ebookmass.com/product/relativity-made-relatively-easyvolume-2-general-relativity-and-cosmology-andrew-m-steane/

ebookmass.com

General relativity : a concise introduction Carlip

https://ebookmass.com/product/general-relativity-a-conciseintroduction-carlip/

ebookmass.com

Contesting Anthropocentric Masculinities Through Veganism: Lived Experiences of Vegan Men Kadri Aavik

https://ebookmass.com/product/contesting-anthropocentricmasculinities-through-veganism-lived-experiences-of-vegan-men-kadriaavik/

ebookmass.com

Lady Clementine Marie Benedict

https://ebookmass.com/product/lady-clementine-marie-benedict/

ebookmass.com

Surgery PreTest Self-Assessment and Review, 14e (Jan 3, 2020)_(1260143619)_(McGraw Hill) Lillian Kao

https://ebookmass.com/product/surgery-pretest-self-assessment-andreview-14e-jan-3-2020_1260143619_mcgraw-hill-lillian-kao/

ebookmass.com

Criminal Investigation 12th edition Edition Charles R. Swanson

https://ebookmass.com/product/criminal-investigation-12th-editionedition-charles-r-swanson/

ebookmass.com

The Wrong Girl Donis Casey

https://ebookmass.com/product/the-wrong-girl-donis-casey/

ebookmass.com

Design of Control laws and State Observers for Fixed-wing UAVs. Simulation and Experimental Approaches Arturo Tadeo Espinoza-Fraire

https://ebookmass.com/product/design-of-control-laws-and-stateobservers-for-fixed-wing-uavs-simulation-and-experimental-approachesarturo-tadeo-espinoza-fraire/

ebookmass.com

Problems

advanced standard 12 XII Shashi Bhusan Tiwari Mc Graw Hill

Shashi Bhushan Tiwari

https://ebookmass.com/product/problems-in-physics-i-for-iit-jeevol-1-iitjee-main-advanced-standard-12-xii-shashi-bhusan-tiwari-mcgraw-hill-shashi-bhushan-tiwari/ ebookmass.com

FromNewtontoEinstein

SECONDEDITION

UniversityofMaryland,CollegePark,MD,USA

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2018ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-813720-8

ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: AnitaA.Koch

EditorialProjectManager: AmyM.Clark

ProductionProjectManager: BharatwajVaratharajan

Designer: ChristianJ.Bilbow

TypesetbyTNQBooksandJournals

ABOUTTHEBOOKCOVER

Thebookcoverpresentspicturesof fi veofthemostfamousphysicist mathematiciansofhistory.Ontheleft-handsidewe findCarlFriedrich Gauss(1777 1855)andabovehimBernhardRiemann(1826 66).On theright-handsidewehaveIsaacNewton(1642 1727)andabovehim JamesClerkMaxwell(1831 79).Andatthepinnacle,AlbertEinstein (1879 1955).The figuredepictstwoparalleldevelopments,mathematics ononesideandphysicsontheother,thatculminatedwiththefoundingof modernphysics:GaussandRiemanndevelopedthemathematicscritical fortheexpressionsofthephysicallawsdiscoveredbyNewtonandMaxwell, allofwhichledtothegrandsynthesis:Einstein’stheoriesofspecialand generalrelativity.Thisbookfocusesontheconceptsthesegreatscientists developed.Itshowswhichoneshavesurvivedthetestsoftime (locality interactionsoccuratspace timepoints,causality information travelsatthespeedoflight,andcovariance physicallawsshouldholdinall framesofreference)andwhichhavefallenovertime(actionatadistance, nonlocalconservationlaws).Withaminimumoftechnicaltrickerybuta largedoseoffundamentals,thebookdevelopsspecialrelativity,electromagnetism,andgeneralrelativityfromthesebasicprinciples.

PREFACE 1.SPECIALRELATIVITYWITHAMISSION

Thisbookisarevisionandextensionof “IntroductiontoRelativity.” That bookpresentsanapproachtorelativityinwhichthetheoryisdeveloped through “thoughtexperiments” thatillustratetheconceptsinsimple fashions.Forexample,toderivetimedilationandLorentzcontraction,a clockisconstructedoutofmirrorsandalightbeam,andwelearnhowit worksinitsrestframeandinaframeinwhichitmoveswithvelocity v Thisanalysisissimpleanddirectbecauselightbeamsandrodsare governedbythepostulatesofspecialrelativity:

1. Thelawsofphysicsarethesameinallinertialframesofreference.

2. Thereisacommon finitespeedlimitcinallinertialframes.

Throughoutthebooktherulesofnonrelativisticphysics(Newton’ s world)arecontrastedwithrelativisticphysics(Einstein’sworld).Itisthe secondpostulatethatdistinguishesNewtonianrulesfromEinstein’s.In Newton’sworld,velocitiesareunboundedbutinEinstein’sworld,the speedoflightcisanupperbound.Theexistenceofaspeedlimitcombined withPostulate1,thatallinertialframesareequivalent,producesrelativistic space time.

Thebookshowsthattimedilation,Lorentzcontraction,andthe relativityofsimultaneity,thatclockswhichareseparatedinspaceand synchronizedinoneframeare not synchronizedinaframeinrelative motion,areintimatelyrelated.

Thebookbuildsthesubjectfromthegroundup.ItusesMinkowski space timediagrams,whichshowthespatialandtemporalcoordinatesof twoframesinrelativemotion v.Timedilation,Lorenzcontraction,and therelativityofsimultaneitycanbeunderstoodthroughsimplepictures (cartoons,really),bothqualitativelyandquantitatively.Fromthisperspective, westudythetwinparadoxandseethatthereisnothingreallyparadoxical aboutit whenonetwinleavestheotherandtakesaroundtrip,shereturns youngerthanhersibling.Itisfuntoseehowitworksout!

Oncewehavemasteredkinematics themeasurementofspaceand timeintervals wemovetodynamics,thestudyofenergy,momentum, interactionsandequationsofmotion.InNewtonianmechanicsthereis momentumconservation,ontheonehand,andmassconservation,onthe

other.Inrelativity,however,oncewehave figuredouthowspatialand temporalmeasurementsarerelatedininertialframes,thepropertiesof momentum,energy,andmassaredetermined.Wepresentanotherof Einstein’sfamousthoughtexperimentsthatshowthatenergyandinertia (mass)aretwoaspectsofoneconcept,relativisticenergy,and find E ¼ mc 2 . Thepropertiesofrelativisticmomentumthenfollowfromthepropertiesof spatialandtemporalmeasurementsandwelearnthatmomentumand energyconservationmustgohandinhand.

SinceNewton’ssecondlaw,forceequalsmasstimeacceleration,isnot consistentwiththeexistenceofaspeedlimit,wemustmodifyitandinvent anewforcelawthatisrelativistic.Wedothisaided,again,bytheoriginal thoughtexperimentsofthemasters,EinsteinandMaxBorn.Inthiscase,a closelookataninelasticcollisioninseveralframesofreferenceleadsusto relativisticmomentaandenergy.Fromthereweobtaintherelativistic versionofNewton’ssecondlaw.Wethenconsiderhigh-energycollisions betweenparticlesandillustratehowenergycanbeconvertedintomassand howmasscanbeconvertedintoenergy.Theseillustrationsshowthat Newton’sconceptoftheintegrityofaparticleisviolatedinrelativity. Thereisnowayinrelativitytorestrictone’sattentiontothe “singleparticle sector.” Thefundamentalsofrelativitysimplydonotallowit.Thisfacthas consequencesbeyondthescopeofthisbookand findsitsfruitionin relativistic fieldtheoriesofparticlephysics.

Inthe firsteditionofthisbookweweresatisfiedwithintroductory workonrelativisticdynamics.Inthisextendedbookwehavegreater ambitions.Wewillstartwithelectrostatics,thatthereisastaticforcewhich fallsoffasthesquareofthedistancebetweencharges.Wewillusethisfact coupledwithspecialrelativitytodeduce:

1. Theexistenceofmagnetism,a fieldthatisgeneratedbyelectric currents,

2. TheLorentzforcelaw,whichstatesthatparticlesaredeflectedby electric fieldsandalsobymagnetic fieldsinwhichcasetheforceis proportionaltotheparticle’svelocity,

3. Maxwell’sequations:theAmpere Maxwellequationpredictinghow currentsproducemagnetic fieldsandFaraday’slaw,whichpredicts howchangingmagnetic fieldsproduceelectricforces(electromotive forces),

4. Thewaveequationforelectromagnetismandthedemonstrationthat lighttravelsatthespeedlimitcofspecialrelativityinallinertial referenceframes.

Thebookemphasizesthatmagnetismisaconsequenceofrelativity thatNewton’sworld,aworldwithoutaspeedlimit,hasnoplaceforthis phenomenon.Inaddition,magnetismproducesvelocity-dependentforces onchargedparticlesthatdonotsatisfyNewton’sthirdlaw,thataction equalsreaction.OnceweunderstandthatNewton’sthirdlawfails,wemust lookelsewhereforanunderstandingofmomentumconservationin dynamicalinteractions.

OncewehavederivedtheLorentzforcelaw,weareabletodeduce howelectricandmagnetic fieldstransformunderboosts.Welearnfrom carryingoutthisexercisethatelectricandmagnetic fieldsmixunder transformationsbetweenframesofreference.Theseeffectsareconsequencesofthefactthatspaceandtimemixundersuchtransformations. TheseresultsillustrateoneofEinstein’sfamousremarksthat “electricforces inoneframecanbeinterpretedasmagneticeffectsinanother.” The problemsetsinthispartofthebookconsidermoretraditionalwaysof obtainingthesameresults,consideringcapacitorsandsolenoidsinvarious referenceframes.

Theseargumentselucidatethenatureofmagnetism,buttheydonot quitegettotheheartofthematter.Electrostaticsstatesthatchargesarethe sourcesofelectric fields.ThisisstatedquantitativelythroughGauss’ law. Ontheotherhand,welearnthatelectriccurrentsarethesourcesof magnetic fields.Sinceelectriccurrentsareproducedfromchargedensities byLorentztransformations(“boosts”),itmustbethattheequationthat predictsthatmagnetic fieldsareproducedfromelectriccurrentscanbe obtainedbyboostingGauss’ law.Wecarryoutthisexerciseanddiscover Ampere Maxwell’sequation.ThisisAmpere’slawcorrectedfornonstationarycurrentsbyMaxwell’sdisplacementcurrent.Similarly,weobtain Faraday’slawfromthedivergence-freecharacterofmagnetic fields.

Thisbookshowsthestudentthatascientistcan build thetheoryof electromagnetismfromelectrostaticsandspecialrelativity.Unlikeconventionaltextbooks,welearntomanipulatedifferentialequationsand accomplishourgoalsingeneralfundamentaltermsratherthanworking throughmyriadillustrationsofdevices.OncewehaveMaxwell’sequations, itisaneasytasktoshowthatrelativityelevateselectromagnetic fieldsto independentdynamicaldegreesoffreedom,whichpropagateatthespeed limitc.

Inthisjourneywe finditnecessarytoforsakeNewtonianideasand replacethemwithmodernconcepts:forcesleadto fields,whichbecome dynamicalobjectsthatpropagatenonlocalconservationlawssuchas

Newton’slawofaction reactionarethrownoverandarereplacedbylocal conservationlaws,whicharecompatiblewiththerelativisticnotionofcausality andthe finitenessofthespeedofpropagationofinformation.Inaddition,the integrityofparticlenumber,socrucialinNewton’sworld,isreplacedby particlecreationanddestruction, whichisforceduponusbytheenergy mass relationship,causalityandlocalityofrelativisticinteractionsofrelativity,etc.

Thusourintroductiontoelectrodynamicsisanalternativetothe traditionalapproachpopularizedbythetextbooksofJ.D.Jackson [1] and hismanyfollowers.Ourbookstartswithpostulates1and2ofspecial relativityandtheprimitivenotionthatchargesarethelocalsourcesof electric fields,anddevelopsthefundamentalsofelectromagnetism:unified magneticandelectric fields,theLorentzforcelaw,Maxwell’sequations, andthewaveequation.Aftermasteringthesefundamentals,thestudentis inapositiontodomorecomplexapplicationsofrelativityandelectrodynamics.Theapproachinthisbookissimpleandstraightforward.The derivationofMaxwell’sequations,havingcomefromsuchhumble beginningsinChapter1,shouldbeanepiphanyforthestudent.

2.GENERALRELATIVITY

Ourlasttopicinthisbookisthegeneraltheoryofrelativity,wherewe consideracceleratedreferenceframesinEinstein’sworld.Thekeyinsight hereisEinstein’sversionoftheequivalenceprinciple:thereisnolocal, physicalmeanstodistinguishauniformgravitational fieldfromanacceleratedreferenceframe.

Thisprinciplehasmanyinterestingformsandapplications.Supposeyou areonthesurfaceofEarthandwanttounderstandtheinfluenceofthe gravitational fieldonyourmeasuringsticksandclockscomparedtothoseof yourassistantwhoisatagreaterheightintheEmpireStateBuilding. Einsteinsuggeststhattheassistantjumpoutthewindow,becauseinafreely fallingframealleffectsofgravityareeliminatedandwehaveaperfectly inertialenvironmentwherespecialrelativityholdstoarbitraryprecision! Duringhisdescent,yourassistantcanmakemeasurementsofclocksand metersticks fixedatvariousheightsalongthebuildingandmeasurehow theiroperationdependsontheirgravitationalpotential.Wepursueideas likethisoneinthebooktoderivethegravitationalredshift,thefactthat clocksclosetostarsrunmoreslowlythanthosefarawayfromstars;the resolutionofthetwinparadoxasaprobleminacceleratingreference frames;andthebendingoflightbygravitational fields.

Preface xv

Afascinatingaspectoftheequivalenceprincipleisitsuniversality,which becomesparticularlyclearwhenwecalculatethebendingoflightasaray glancesbytheSun.Whydoesthelightrayfeelthepresenceofthemassof theSun?Theequivalenceprinciplestatesthatanenvironmentwitha uniformgravitational fieldisequivalenttoanenvironmentinanacceleratingreferenceframe explicitaccelerationclearlyaffectsthetrajectoryof lightandanyotherphysicalphenomena.Sogravitybecomesaproblemin acceleratedreferenceframes,whichisjustaproblemincoordinatetransformations,whichisanaspectofgeometry!Weshowthatthisproblemin geometrymustbedoneinthecontextoffour-dimensionalspace time, ourworldofMinkowskidiagrams.Einstein’stheoryofgravitybrought moderngeometry,thestudyofcurvedspaces,intophysicsforever.

Aslongasweconcentrateonuniformgravitational fieldsofordinary strength,weareabletousetheequivalenceprincipletomakereliable,accurate predictions.Theequivalenceprinciplereducesgravitytoanapparentforce, muchlikethecentrifugalorCoriolisforcesthatwefeelwhenridingona carousel.Infact,weuserelativisticturntablesandrotatingreferenceframes asanaidetostudyingandderivingrelativisticgravitationaleffects.

However,wearealsointerestedinstrongnon-uniformgravity,situationswheretheequivalenceprincipleisnotsufficienttodescribethe physics.Wediscusstidalforces,whichareattheheartofthedynamicsof generalrelativity.ThisisdonebothwithinNewton’sworldandgeneral relativitywherewelearnthattidalforcesandthecurvatureofspace time aretwosidesofthesamecoin.Sincecurvatureistheessenceofthedynamicsofgeneralrelativity,wereviewclassicaldifferentialgeometryand learnaboutthecurvatureofcurvesandthecurvatureoftwo-dimensional surfaces.Gaussiancurvatureisintroducedandthefundamentaltheorems ofclassicaldifferentialgeometryarederivedanddiscussed.

Thesedevelopmentsleadtoadiscussionofmoderngeneralrelativity. ThecriticalsymmetriesofspecialrelativitywereLorentztransformations (boosts)andingeneralrelativitythesesymmetriesareelevatedtolocal symmetries,generalcoordinatetransformations.TheRiemanntensoris introducedasameasureofthelocal,intrinsiccurvatureofspace time. Theseideasleadtothecentralideaofgeneralrelativity,thatlocalenergy momentumproducelocalspace timecurvature.Thisideaisexpressed quantitativelythroughEinstein’ s fieldequation,whichisintroducedasa grandextensionofNewton’sequationforthegravitationalpotential.We solvetheseequationsinthecaseofastatic,symmetricmassdistribution, whichgivesrisetotheSchwarzschildmetric.Thismetriccontainsablack

hole,whichwestudyinconsiderabledetail.We findthatthereisan “event horizon,” theSchwarzschildradius,insideofwhichthereisnoescape.We alsoconsidertheproductionandpropagationofgravitationalwaves.We seethatgravitywavesaredescribedby fluctuationsofthespace time metricthattravelatthespeedlimitofspecialrelativityandaregeneratedby oscillatingquadrupolemomentsofmassdistributions.Wereviewthe “AdvancedLIGO” experimentthatdiscoveredgravitywavesgenerated fromtheviolentmergeroftwoblackholesoveronebillionlight-years awayfromearth.

Weendourdiscussionofgeneralrelativitybycomparingitsfundamentalswithmoderntheoriesofelementaryparticles,whicharealsobased onlocalsymmetrygroups,aswellasalookatcurrentpuzzlesandunsolved problems,suchasdarkenergy.

3.BACKGROUNDREADINGANDRECOMMENDATIONSFOR FUTUREREADING

Althoughtheperspectiveofthisbookisitsown,itowesmuchtoother presentations.Theinfl uenceofA.P.French’s1968book [2] Special Relativity isconsiderable,andreferencesthroughoutthetextindicate wheremydiscussionsfollowhis.Tomyknowledge,thisisthe fi nest textbookwrittenonthesubjectbecauseitbalancestheoryandexperiment perfectly.Thereaderwill fi nddiscussionsoftheMichelson Morley experimentandearlytestsofrelativitythere.French’sdiscussionsof energyandmomentumarere fl ectedinmylaterchapters,andhisproblem setsareasigni fi cantin fl uenceonthoseincludedhere.Thepresentbook goesbeyondFrench’swhenwederivetheLorentztransformationlawsfor theelectricandmagnetic fi eldandthendeduceallofMaxwell’sequations byboostingGauss’ law.WeincludeashortenedversionofFrench’ s demonstrationthatthemagneticattractionbetweenparallelcurrent carryingwiresisduetoaminusculeLorentzcontractioneffect.Weshow thattheforcebetweensuchwiresisstrongenoughtobendtypicalcopper wiresbecausethehugenumberofelectronsinthewiremultipliesthetiny Lorentzcontractiontheyexperienceduetotheirtinyvelocitiesrelativeto thewire’sstationaryCuþ ions.Thisobservationexplainswhymagnetic forcescanbesubstantialunderordinarylabconditionseventhough magnetismisapurerelativisticeffect.Thesenumbersunderliehowrelativitywasdiscoveredattheturnofthe20thcentury,longbeforethe

moderneraofparticleacceleratorswhereparticlevelocitiesclosetothe speedlimitwerepossible.

Anotherinfluentialbookis TheClassicalTheoryofFields byL.D.Landau andE.M.Lifshitz [3].Unlikemostbooksonelectromagnetism,which followthehistoricaldevelopmentofthe fieldandintroducerelativitytoward theend,LandauandLifshitzstartwithrelativityandbuildthetheoryof relativisticparticlesandlight.Theemphasisisonfundamentalprinciples ratherthanapplications.Unfortunately,thebookisaimedatadvanced studentsandmosteditionsare flushwithtypographicalerrors.Nonetheless, thebookisveryinspiringandhasuniqueinsightsintothesubject.Severalof themorechallengingproblemsinchapters7 10inthisvolumewere inspiredbyLandauandLifshitz.Thisbookalsointroducesgeneralrelativity andincludesderivationsoftheSchwarzschildmetric,gravitationalwaves,the bendingoflightraysinagravitational field,etc.Thediscussionsarebriefand powerful,theessenceofLandau’sbrilliantapproachtophysics.

TheexpositionbyN.D.Mermin [4] influencedseveraldiscussionsof theparadoxesofspecialrelativity.Thisbookisalsorecommendedtothe studentbecauseitshowsacondensedmatterphysicistlearningthesubject and findingacomfortlevelinitthroughthought-provokinganalysesthat avoidlengthyalgebraicdevelopments.ThehugebookbyJ.A.Wheeler andE.F.Taylor [5] titled SpacetimePhysics inspiredseveralofourdiscussions andproblemsets.Thisbook,aworkthatonlytheunique,creativesoulof JohnArchibaldWheelercouldproduce,isrecommendedforitsleisurely, interactive,thought-provokingcharacter.Finally,thebooksbyW.Rindler [6,7],apioneerinmoderngeneralrelativity,arealsorecommended.His book EssentialRelativity [7] isasolidintroductiontogeneralrelativity rootedintheeraofEinsteinandthepioneers.Afterthestudenthas masteredelectricityandmagnetismandLagrangianmechanics,heorshe couldtackle TheClassicalTheoryofFields byL.D.LandauandE.M.Lifshitz [3] and EssentialRelativity [7].

Thefutureofresearchinrelativityand fieldtheoryisbright.Hopefully thisbookwillsparksomeinterestinitsfuturepractitioners.

“Timetravelsindiversepaceswithdiversepersons,” Rosalind,fromAct3, Scene2, “AsYouLikeIt” byWilliamShakespeare.

“Mathematicsallowsyoutoexceedyourimagination,” LevLandau, Moscow,1952.

“Magic!”,student,anonymous,2018.

REFERENCES

[1]J.D.Jackson,ClassicalElectrodynamics,JohnWiley&Sons,NewYork,1962.

[2]A.P.French,SpecialRelativity,W.W.Norton,NewYork,1968.

[3]L.D.Landau,E.M.Lifshitz,TheClassicalTheoryofFields,PergamonPress,Oxford, 1962.

[4]N.D.Mermin,SpaceTimeinSpecialRelativity,WavelandPress,ProspectHeights,IL, 1968.

[5]E.F.Taylor,J.A.Wheeler,SpacetimePhysics,W.H.Freeman,NewYork,1992.

[6]W.Rindler,IntroductiontoSpecialRelativity,OxfordUniversityPress,Oxford,1991.

[7]W.Rindler,EssentialRelativity,Springer-Verlag,Berlin,1971.

Contents

1.1 Newton’sWorld:LawsandMeasurements1 1.2 Newton’sWorld:NoPlaceforMagnetism 8

1.1NEWTON’SWORLD:LAWSANDMEASUREMENTS

WhenyousetupaprobleminNewtonianmechanics,youchoosea referenceframe.Thismeansthatyousetupathree-dimensionalcoordinate system,forexample,soanypoint r canbelabeledwithan x measurement oflength,a y measurement,anda z measurement, r ¼ (x,y,z).Inaddition, youplaceclocksatconvenientpointsinthecoordinatesystemsoyoucan makemeasurementsandrecordwhenandwheretheyoccurred.

Newtonimaginedcarryingoutexperimentsonamasspoint m inthis coordinatesystem.Heimaginedthatthecoordinatesystemwasfarfrom anyexternalinfluences,andunderthoseconditionsheclaimed,onthebasis oftheexperimentsofGalileoandothers,thatthemasspointwouldmove inastraightlineataconstantvelocity.Newtonlabeledsuchaframeof reference “inertial.” ThisideaiscodifiedinNewton’ s firstlaw: Law1.Abodyinaninertialreferenceframeremainsatrestorinuniformmotionunlessactedonbyaforce.

Newtonandothersrealizedthattheremustbeawideclassofinertial frames.Ifwediscoveredoneframethatwasinertial,thenNewton arguedthatotherinertialreferenceframescouldbegeneratedby

1. Translation movethecoordinatesystemtoaneworiginandusethat system.

2. Rotation rotatethecoordinatesystemaboutsomeaxistoa fixed,new orientation.

3. Boosts consideraframemovingatvelocity v withrespecttothe first. Properties1and2arereferredtoastheuniformityandisotropyof space.Property3isreferredtoasGalileaninvariance:theGalileanboost

SpecialRelativity,Electrodynamics,andGeneralRelativity

ISBN978-0-12-813720-8

https://doi.org/10.1016/B978-0-12-813720-8.00001-5

isasymmetry itmapsthephysicalsystemtoanotherinertialreference frame,andthisprocesshasnophysicalimpactonthesystem.

Newton’sconceptofrelativitycannowbestated:Allinertialframesare physicallyequivalent.Thismeansthatthelawsofphysicsarethesameinall ofthem.

ThereadershouldbeawarethatNewtonandhiscolleaguesargued constantlyaboutthesepoints.Whatistheoriginofinertia?Whyareinertial framessospecial?Can’twegeneralizetheProperties1 3toawiderclassof referenceframes?Wewillnotdiscussthesehistoricalissueshere,butthe readermightwanttopursuethemforagreaterinterestingperspective.Our approachiscomplementarytothetraditionaloneandisforwardlooking ratherthanhistorical.

UnderlyingNewtonianmechanicsarehisera’sconceptsofspaceand time.Tomeasurethedistancebetweenpoints,weimagineameasuring rod.Startingfromanorigin(0,0,0),welaydownmarkersinthe x and y and z directionssowecanmeasureaparticle’sposition r ¼ (x, y, z)inthis inertialframe.Nextweneedaclock.Asimpledevicesuchasasimple harmonicoscillatorwilldo.Takeamasspoint m ontheendofaspring,and letitexecuteperiodicmotionbackandforth.Makeaconventionthatone unitoftimepasseswhenthemasspointgoesthroughonecycleofmotion. Inthiswayweconstructaclockandmeasurespeedsofothermassesby notinghowfartheymoveinseveralunitsoftime inotherwords,we comparethemotionofour “standard” simpleharmonicoscillatorwiththe motionofexperimentalparticles.Notethatthisisjustwhatwemeanby timeinday-to-daysituations.Tomakeanaccurateclock,weneedone withasufficientlyshortunitoftime,orperiod.Clocksbasedontheinner workingsoftheatomcanbeusedindemanding,moderncircumstances. Justasitwasconvenienttoplacedistancemarkersalongthethreespatial axes r ¼ (x, y, z),itisconvenienttoplaceclocksonthespatialgridwork. Thiswillmakeiteasytomeasurevelocitiesofmovingparticles wejust recordthepositionsandtimesofthemovingparticleonourgridof measuringrodsandclocks.Whenthemovingparticleisattheposition r andtheclocktherereadsatime t,werecordtheevent.Measuringtwosuch eventsallowsustocalculatetheparticle’svelocityinthisframeatandnear thatspatialposition.Insettingupthegridofclocks,wemustsynchronize themsowecanobtainmeaningfultimedifferences.Thisiseasytodo.Place aclockattheoriginandoneat r ¼ (1,0,0).Then,atthehalfwaypoint betweenthem,placeabeaconthatsendsoutasignalinalldirections. Becausespaceishomogeneousandisotropic,thesignaltravelsatthesame

speedtowardbothclocks.Settheclockstozero,say,whentheyboth receivethesignal.Thetwoclocksaresynchronized,andwedidnoteven needtoknowthespeedofthesignalemittedfromthebeacon.Clearly,we couldusethismethodtosynchronizealltheclocksonthegrid.

Nowwearereadytodoexperimentsinvolvingspace timemeasurementsinthisframeofreference.Callthisframe S.Itconsistsofthegridworkofmeasuringrodsandclocks,allatrest,withrespecttoeachother. Now,supposewewanttocompareourexperimentalresultswiththose obtainedbyafriendofoursatrestinanotherframethatmovesatconstant velocity v ¼ (vx,0,0)withrespecttous.Accordingtoourpostulates,hisor hermeasurementsareasgoodasoursandallourphysicallawscanbe writteninhisorherframeofreference S0 withoutanychange(Fig.1.1).

Themeasuringrodsin S0 areidenticaltothosein S;theclocksin S0 are alsoidenticaltothosein S.Supposethattheoriginof S and S0 coincide whentheclockattheoriginin S readstime t ¼ 0andtheclockatthe originin S0 reads t0 ¼ 0.Nowforthecrucialquestion:Dotheothergrid markingsandclocksatthosemarkingsalsoagreeinthetwoframes S and S0 ? Therearetwodistinctphysicsissuestoconsiderhere.The firstisthe operationoftheclocksandrodsineachframe.FollowingNewton’ s principleofrelativity,thatallinertialreferenceframesareequivalent,allthe clocksandrodsin S workexactlythesameasthoseatrestin S0 .Weneed onlyknowthatbothframesareinertial therelativevelocitybetweenthe framesisphysicallyirrelevanttothedynamicswithineach.Thesecondissue isthephysicalmechanismbywhichwecantransmittheinformationinone gridofrodsandclockstotheotheratrelativevelocity v.InNewton’ s world,objectscanmovewithunboundedrelativevelocitiesrelativetoone another,asweshalldiscussfurtherin Eq.(1.2).Accordingly,signalsand informationcanbetransmittedatunboundedvelocities,essentially

Figure1.1 Twoinertialframesofreferenceinrelativemotion.

instantaneously.Therefore,thespatialgridworkandthetimesoneachclock in S0 canbeinstantaneouslybroadcasttothecorrespondingrodsandclocks intheframe S.Therefore,thegridworkofcoordinatesandtimesinboth framesmustbeidentical,eventhoughtheyareinrelativemotion.So,the lengthsofmeasuringrodsandtheratesofclocksareindependentoftheir relativevelocities.Wethereforeneedonlyonemeasuringrodandone clockatonepointinoneinertialframe,andweknowthepositionsand timesofallmeasuringrodsandclocksinanyotherinertialframe.Forthe purposesofthisbook,thisservesasthemeaningof “absolutespace” and “absolutetime” inNewtonianmechanics.Weneednothypothesizeabout thesenotionsfromaphilosophicalbasis,aswasdonehistorically,butcan deducethemfromthefactthatinNewtonianmechanicsthereisnospeed limit informationcanbetransmittedinstantaneously.

Nowconsidertherulebywhichtimesandpositionmeasurementsare comparedbetweenthetwoframes, S and S0 ,inrelativemotionin Newton’sworld,

where x, y, z,and t aremeasurementsin S and x 0 , y 0 , z 0 ,and t0 arethecorrespondingmeasurementsin S0 .Forexample,ifwemeasurethepositionof aparticlein S0 tobe x 0 , y 0 ,and z 0 ,attime t0 ,thenthecoordinatesofthis event(measurement)inframe S aregivenby Eq.(1.1).Theserelations, whicharesofamiliarand “obvious,” arecalledGalileantransformations. Notethatthe firstofthem, x ¼ x 0 þ vt,statesthatthepositionoftheparticleattime t consistsoftwopieces:(1)thedistance vt betweentheorigins ofthetwoframesattime t and(2)thedistance x 0 fromtheorigintothe particleintheframe S0 .Thisrulecontainsthenotion “absolute” space it usesthefactthatinaNewtonianworldthedistance x 0 intheframe S0 isalso measuredas x 0 intheframe S.Thelastequationin Eq.(1.1) isthestatement of “absolute” time.Notealsothatiftheparticlehasavelocity v 0 p with respecttotheframe S0 inthe x 0 direction,then x 0 ¼ v 0 p t 0 ¼ v 0 p t ; andits positioninframe S is x ¼ v 0 p þ v t ; soitsvelocityrelativetotheorigin offrame S is vp,

whichisthefamiliarrulecalled “additionofvelocities.” Itrestson Newton’sideasofabsolutespaceandtime.Itwillbeinterestingindeed toseehowtheresultsfrom Eqs.(1.1)and(1.2) aredifferentinEinstein’ s world!

Wecangoslightlyfurtherthan Eq.(1.2) byconsideringasequenceof frames.Let S1 moveatvelocity v10 alongthex-axiswithrespectto S,let S2 moveatvelocity v21 alongthex-axiswithrespectto S1.Thenthevelocity ofaparticlein S, vp,0,isrelatedtoitsvelocitymeasuredinframe S2 by addinguptherelativevelocities,

Thereisnothingstoppingusfromgeneralizingthisprocessagainand againto Sn framesuntil vp,0 isavelocityaslargeasonewishes.Inother words,velocitiesinNewton’sworldareunboundedbecauseoftheaddition lawforvelocities.

Perhaps,ithasnotoccurredtothereaderbeforethatinformationcould betransmittedinstantaneouslyinaNewtonianworld.Actually,ifthereader recallssomeelementaryproblemsindynamics,theassumptionwaslurking justunderthesurface.

Supposeyouconsiderthecollisionofapointparticleandarod,as shownin Fig.1.2.

Figure1.2 Collisionbetweenaparticleandtheupperedgeofarod.

WhenyousolvethisproblemusingNewtonianmechanicsusingconservationoflinearandangularmomentum,youimplicitlyassumethatthe impactattheupperedgeoftherigidrodinstantaneouslyacceleratesthe centerofmassoftherodandbeginsrotatingthebottomendoftherodto theleft.Ifinformationwastransmittedata finitevelocity,callit c,thelower edgeoftherodcouldnotknowaboutthecollisionuntilalatertime, t ¼ [/c where [ isthelengthoftherod.Itisclearthattheverynotionofrigid bodiesrequiresatheoreticalbasiswhereinformationistransmittedinstantaneously.RigidbodiescannotexistinEinstein’sworld.Ofcourse,in practicalproblemswhere [ isafewmeters,say,and c isenormous, c z 3.0$108 m/s,thetimedelayencounteredhereisusuallyconsidered negligible.(Butitcertainlywouldbesignificantif [ werethediameterofa star.)Nonetheless,thematterofprincipleisourmajorconcerninthese discussions.

Anotherplacewhereinstantaneoustransmissionofinformationoccurs inNewtonianmechanicsproblemsisintheuseofpotentials.Whenwe havetwobodiesinteractingthroughamutualforcethatisdescribed throughapotentialthatdependsonthedistancebetweentheparticles,we areassumingthattheforceoneachparticleisdeterminedbytherelative positionoftheotherparticleatthatexactmoment.Noaccountisgivenof thetransmissionofthatinformationbetweentheseparateparticles.This Newtoniannotioniscalled “actionatadistance,” anditunderliessomeof thegreatestsuccessesofnonrelativisticmechanics.Wewillseethatitis absolutelyimpossibleinEinstein’sworld.

NowletusmoveontodiscussionsofNewton’ssecondandthirdlaws.

Thesecondlawintroducesdynamics:

Law2.Ifaparticleofmass m issubjecttoaforce f,thenitexperiences anacceleration a givenby,

Inslightlymoregenerality,

where p istheparticle’smomentum, p ¼ mv.Beforediscussingthe secondlawfurther,ithelpstointroduceNewton’sthirdlaw:

Law3.Whenoneparticleexertsaforceonasecondparticle,the secondoneexertsanequalandoppositeforceonthe first.

Thislawisthebasisofaconservationlaw:theconservationof momentum.Considertwointeractingparticles.Denotetheforceof particle1onparticle2 F12 andtheforce2on1 F21.Thethirdlawstates that,

Noticethatthisisavectorequation:theforcesareequalinmagnitudebut oppositeindirection.Wecanseethatthetotalmomentumofthesystem, p1 þ p2 isconstantintime,

Conservationlawsarefundamentaltoallsubfieldsofphysics.Newton’ s thirdlawisanessentialingredientinmechanics.Butitisimportanttonote somethingveryperplexingaboutthethirdlaw:itisa nonlocal conservation law.Theforcesofactionandreactioncancelasstatedin Eq.(1.7),butthe actionandreactionforcesacton different particles,whichcouldbeveryfar fromeachotheriftheforceactsoverlongdistancessuchaselectrostaticsor gravity. Eq.(1.7) makestheremarkablestatementthatateveryinstantof time t,particle1respondstothemotionofparticle2justsothesumoftheir momentaisaconstanteveniftheparticlesarethousandsofmetersapart. Thisispossibleinacausalworldonlyifinformationtravelsinstantaneously. ClearlythethirdlawwillnotsurviveinthisforminEinstein’sworldwhere informationcannottravelfasterthanc,thespeedoflight.Theimplications ofthefailureofthethirdlawwillbemoreprofoundthanwecanimagineat thispointinourstudies.

Themass m in Eq.(1.4) isclarifiedinpartbythethirdlaw,thelawof action reaction,whichimpliesinthecaseoftwointeractingparticlesthat

So,ifthe fi rstbodyischosentosetthescaleforinertia,inotherwords,if wede fi ne m 1 h 1,then m 2 isdeterminedfrom Eq.(1.8) .Thethirdlaw providesanoperationalmeaningtothe “ mass ” or “ inertia ” ofaparticle.

Arethelawsofdynamics,Newton’ssecondandthirdlaws,compatible withNewton’sprincipleofrelativity,thatallinertialreferenceframesare physicallyequivalent?Thekeyobservationisthataccelerationisa “Galilean invariant,” whichmeansthatanacceleration a isthesameinallinertial

referenceframes.Thisfollowsfrom Eq.(1.2).Differentiateitwithrespect totime,usethefactthat v isaconstantandlearnthat,

WelearnthatforcesareGalileaninvariants.Weareusingthefactthat massesareGalileaninvariantinNewton’sworldtomakethisobservation. ThispropertywasassumedinNewton’seraandwasverifiedexperimentally toreasonableprecisionatmodestvelocities.Weshallseethatmassesarenot invariantinEinstein’sworld,andtheimplicationsofthisfactwillproveto beverysignificant.

Wehavedealtwiththeseissuesveryexplicitlybecausetheywillhelpus appreciatespecialrelativity,wherethereisaspeedlimit,thespeedoflight. InalltherulesofNewtonianmechanics,therulesofhowthingswork,the secondandthirdlaws,donotdistinguishbetweeninertialframes.The dynamicsdosatisfyaprincipleofrelativity.Thedifferencebetweenthetwo theoriescomesfromthefactthatonehasaspeedlimitandtheotherdoes not.Thisaffectshowinformationissharedbetweenframes.Italsoaffects thedynamicswithineachframe Einstein’sformofNewton’ s “force equalsmasstimesacceleration” isdifferentbecauseitmustnotpermit velocitiesgreaterthanthespeedlimit.Buteachtheoryisconsistentwithin itsownrules.

1.2NEWTON’SWORLD:NOPLACEFORMAGNETISM

Itisinstructivetoreturntoourexampleofelectrostaticsandconsider Newtoniandynamicsinmoredetail.Thegoaltothisdiscussionisto demonstratethatifyouacceptNewton’slaws1 3andyouknow Coulomb’slaw,thenyoucanruleouttheveryexistenceofmagnetism!

Whatdowemeanbymagnetisminthiscontext?Weacceptthe experimentalfactthatelectricchargesproduceelectrostaticforces.Wewill writedownCoulomb’slawandwillmanipulateitandstudyit.Magnetic forcesare,bydefinition,thoseforcesproducedbyelectriccurrents.For example,ifathinwirecarriesacurrentI,thismeansthatelectronsare flowinginthewireatarateofICoulomb’spersecondpassinga fixedpoint alongthewire.Thewireisunchargedbutelectrons flowalongit.We knowfromourexperiencesinthelab,perhapsmakinganelectromagnet andbendingchargedparticletrajectorieswithit,thatthereisamagnetic fieldinthelabanditsstrengthisproportionaltothecurrentI.Inaddition,if

asinglechargesuchasafreeelectron,whosechargewelabel q andmeasure inunitsofcoulombs,hasa fixedposition r inareferenceframe S thenit producesaCoulomb fieldemanatingfrom r.Iftheelectronisviewedfrom theperspectiveofaframe S0 ,whichmoveswithvelocity v alongthexaxis, thentheelectronhasavelocity v inthisframesoitalsohasacurrent, qv, in S0 .Fromourexperiencesinthelab,weknowthattherewillbea magnetic fieldin S0 whosestrengthisproportionalto qv

LetusseewhereNewtongetsintotroublewiththesesimpleobservations.Letusreturntoourexampleofelectrostatics.Letparticle1beat restattheorigin r ¼ (0,0,0)inaframe S.Theelectric fieldgeneratedbythe charge q1 is,

where k isconstantdeterminedexperimentally.Theelectric fieldisintroducedsotheforceoncharge q2 atposition r ¼ r2 canbewrittenas,

Aswewillmotivateinlaterchapters,theseequationsmeanthatthecharge q1 attheorigingeneratesastaticelectric field E(r)arounditthatproducesa forceonotherchargedparticles.Nowsupposethatthecharge q2 hasa velocity v2(t)inframe S.Attime tq2 isatposition r2(t)andexperiencesthe electric fieldthere.So,theforceitexperiencesbecomestimedependent,

AccordingtoNewton’sthirdlaw,thecharge q1 experiencesaforce F(t). Wecanviewtheforceinthefollowingway:themovingcharge q2 generatesanelectric fieldofmagnitude kq2 =jr r 2 ðt Þj2 inthedirection r r2(t). Multiplyingthis fieldby q1 givestheforceonparticle1.

Welearnfromallthisthattheforcebetweenparticle1andparticle2is independentofthevelocitiesofeitherparticleanddependsonlyonthe instantaneouspositionsofeachparticle.

So,inNewton’sworld,theforcebetweencharge q1 and q2 dependsonly ontheparticles’ instantaneouspositionsandnotontheirvelocities.Thisisa veryperplexingresultbecause,aspromised,itrulesouttheexistenceof

magnetisminNewton’sworld.Thisvital flawwillbecuredbyspecial relativity.SpecialrelativityandCoulomb’slawwillbeshowntoimply magneticforcesofjustthesortobservedinthelabandwill,infact,produce allofMaxwell’sequations,andthewaveequationforelectromagnetic wavesthattravelatthespeedlimitofrelativity, c.

ToemphasizethefailureofNewton’slawstoaccommodatemagnetism, consideranevensimplerexamplethatdoesnotusethethirdlaw.Imagine twocharges q1 and q2 movingparalleltooneanotherwithacommon velocity v asshownin Fig.1.3.Wewanttocalculatetheforcebetween them.Todothis,weviewthechargesfromtheperspectiveoftheirrest frame.Inthisframe,weknowtheanswerimmediately:Coulomb’slaw appliesandtheparticlesexperienceaforcethatactsonthelinebetween themandthatfallsoffasthesquareofthedistancebetweenthem.This producesaformulaforeachparticle’sacceleration.ButinNewton’sworld, accelerationsareindependentoftheinertialframeinwhichtheyare calculated.Therefore,theparticlesexperiencethesameacceleration a in theframe S wheretheyaremovingandareproducingcurrents.This demonstratesthatthesecurrentsdonoteffecttheaccelerationofthe charges,andmagneticforcesareruledoutyetagain.

InChapter9,wewillseethattheoriginofmagneticforcesandthe magnetic field B isthespace timeofspecialrelativity.Wewillgofurther andderiveallofelectromagnetism(Maxwell’slaws,includingAmpere’slaw ofmagnetic fieldsandthedisplacementcurrentandFaraday’slawof electromagneticinduction)fromspecialrelativityandCoulomb’slawof electrostatics.Fromthereweshallseethatelectromagneticwavesexistand travelwithauniversalspeedlimit,c.Butbeforeweheadoffinthat directionletuslearnthebasicsofthephysicsofspace timemeasurements accordingtoEinstein.

Figure1.3 Twochargesmovingparalleltooneanotheratacommonvelocityin thelab.

CHAPTER2

SpaceeTimeMeasurements

AccordingtoEinstein

Contents

2.1 AWorldWithaSpeedLimit11

2.2 MakingaClockWithMirrorsandLight13

2.3 LorentzContraction17

2.4 TheRelativityofSimultaneity19

2.5 TimeDilationRevisited22

2.6 LorentzContractionRevisited24 Problems27 Reference29

2.1AWORLDWITHASPEEDLIMIT

AccordingtoNewtonianmechanics,youcouldplaceachargedparticle (charge q,mass m)intoaconstantelectric field E andaccelerateittoan arbitraryvelocity, v(t) ¼ (qE/m)t.Inaddition,youcouldconsiderinertial framesinrelativemotionandtherelativevelocitycouldbearbitrarilylarge. Unfortunately,naturedoesnotallowsuchfreedom.Modernaccelerator experimentsindicatethatparticlescannotbeacceleratedbeyondauniversal speedlimit,whichisthespeedoflight, c ¼ 2.9979. $108 m/s.Lightis nature’sfastestrunner.Althoughhistoricallythefactthatthespeedoflight isthespeedlimitwasextraordinarilyimportant,itisnotimportantforthe logicaldevelopmentofthesubject.Justtheexistenceofaspeedlimitisall thatreallymatters.WedonotneedtoknowanythingaboutelectromagnetismtoderivetimedilationandLorentzcontractionandtherebyoverthrowNewton’svisionofabsolutespaceandtime.Butitiscrucialto understandthattheexistenceofaspeedlimitmustbecompatiblewith Postulate1ofrelativity,thatthelawsofphysicsarethesameinallinertial frames.Thismeansthatallinertialframesmust findthesameuniversalvalue forthespeedlimitthroughtheirownexperiments.

Inparticular,supposethatanexperimenteratrestinframe S0 shownin Fig.2.1 turnsona flashlightandpointsittotheright.Thoselightrayscan

SpecialRelativity,Electrodynamics,andGeneralRelativity

ISBN978-0-12-813720-8

https://doi.org/10.1016/B978-0-12-813720-8.00002-7

bemeasuredastravelingatthespeedlimit c withrespecttoanyobserverat restinframe S0 .Butanexperimenterinframe S mustalsomeasurethe speedofthelightraytobethespeedlimit c,independentof v!Justforfun, takeanextremeexample.Choose v/c ¼ 0.99999999andpointthe flashlighttotheleft,inthedirectionopposingthevelocity v.Anobserveratrest inframe S0 measuresthevelocityofthelightraysemanatingfromthe flashlightand finds c z 3$108 m/stotheleft,asusual.Butanobserverat restinframe S measuresthevelocityoflightrays,too,and finds c z 3$108 m/stotheleftaswell,insteadofthevalue3m/stotheleftthat wewouldpredictinNewton’sworld!Thespeedofthesourceoflight,the flashlight,isutterlyirrelevant!Bothobserversmustmeasurethesamespeed limitbecausethelawsofphysicsareidenticalinbothoftheirframes.The Galileanresultof Eq.(1.3),knownasadditionofvelocities,whichwehave heldasobvious,isjustplainwrong.Itwilltakeussometimeandeffortto feelcomfortablewiththephysicsinEinstein’sworld!

Insummary,thetwopostulatesofEinstein’sspecialrelativityareas follows:

1. Thelawsofphysicsarethesameinallinertialframes.

2. Thereisaspeedlimit.

Therestofthisbookwillworkouttheimplicationsofthesetwo postulates.Webeginbystudyinghowmeasurementsofrodsandclocksare relatedbetweendifferentinertialframes.ThenweturnbacktoPostulate1 andseehowNewton’slawsmustbemodified,howmomentumandenergyshouldbedefinedandrelated,tobecompatiblewiththeexistenceofa universalspeedlimit.

Figure2.1 A flashlightatrestinamovingframebeamsitslightinitsdirectionof motion.

2.2MAKINGACLOCKWITHMIRRORSANDLIGHT

JustasinourdiscussionofNewtonianmeasurementsofthepositionsand timesofevents,wesetupagridworkofcoordinatesandclocksintwo frames, S and S0 ,whicharebothinertialandhavearelativevelocity v inthe x direction,asdepicted Fig.2.1.Wesynchronizeclocksinframes S and S0 justaswedescribedintheNewtonianworldofChapter1.Ournexttaskis tocomparethepositionsandtimesontheclocksin S withthosein S0 .

Weneedtoconstructaclocksothatwecanunderstanditsoperation usingjustPostulates1and2.Einsteinthoughtupasimpleclockwhosetwo ingredients,abasiclengthandabasicvelocity,areeasilyunderstoodin termsofPostulates1and2.Taketwomirrorsatrestin S0 andletthembe separatedbyadistance [o inthe y 0 direction.Bothmirrorsmoverelativeto S inthe x directionatvelocity v andmaintaintheirseparation [o as measuredineitherframe.Nowletabeamoflightbouncebetweenthe mirrors.Becauselighttravelsatthespeedlimit c,ittakesatime Dt 0 ¼ 2[o/c forlighttotravelfromonemirror,callitA,tothesecondmirror,callitB, andthenbacktomirrorA(see Fig.2.2).Becausetheclockisatrestinframe S0 ,itisconventionaltocalltheinterval Dt0 “propertime” anddenoteit Ds ¼ 2[o/c.Thesesimpleclockscouldbetheonesweplacealongthe gridworkintheframe S0 tomeasurethepositionandtimeofevents.

Figure2.2 AbeamoflighttravelsfrommirrorAtomirrorBatrestinframe S 0 .

Nowviewtheclock’soperationfromtheperspectiveofanobserverat restin S.Nowtheclockmovestotherightatvelocity v,andthelightray takesthepathinframe S asshownin Fig.2.3.Intheframe S,thelightray travelsalongthelinesegment ABandthenalong BAbacktomirrorA.The distancemirrorAin Fig.2.3 travelsbetweensendingandreceivingthelight rayis vDt.From Fig.2.3,thedistancethelightraytravelsis

Butthelightrayalsotravelsatthespeedlimit c inframe S accordingto Postulate2,so AB þ BA ¼ c Dt .(2.2)

Thisistheessentialpointinthisargument theuniversalspeedlimitenters here,andwehaveaclearqualitativedistinctionfromtherulesofNewtonian mechanics.Combining Eqs.(2.1)and(2.2),we find

whichallowsustosolvefor Dt,

Figure2.3 Fig.2.2 viewedfromframe S 0 .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Special relativity, electrodynamics, and general relativity : from newton to einstein second edition by Education Libraries - Issuu