Electron correlation in molecules -- ab initio beyond gaussian quantum chemistry 1st edition hoggan

Page 1


Electroncorrelationinmolecules--abinitio beyondGaussianquantumchemistry1stEdition Hoggan

https://ebookmass.com/product/electron-correlation-inmolecules-ab-initio-beyond-gaussian-quantum-chemistry-1stedition-hoggan/

Stop People Pleasing: How to Start Saying No, Set Healthy Boundaries, and Express Yourself Chase Hill

https://ebookmass.com/product/stop-people-pleasing-how-to-startsaying-no-set-healthy-boundaries-and-express-yourself-chase-hill-2/

ebookmass.com

EDITORIALBOARD

FrankJensen(Aarhus,Denmark)

MelLevy(Greensboro,NC,USA)

JanLinderberg(Aarhus,Denmark)

WilliamH.Miller(Berkeley,CA,USA)

JohnW.Mintmire(Stillwater,OK,USA)

ManojMishra(Mumbai,India)

JensOddershede(Odense,Denmark)

JosefPaldus(Waterloo,Canada)

PekkaPyykko(Helsinki,Finland)

MarkRatner(Evanston,IL,USA)

DennisR.Salahub(Calgary,Canada)

HenryF.SchaeferIII(Athens,GA,USA)

JohnStanton(Austin,TX,USA)

HarelWeinstein(NewYork,NY,USA)

isillustratedbyGrabowski etal. inrecentworkonthenoblegasdimers, evaluatingcorrelationeffectsindensityfunctionaltheoryalongthedissociationpath.Early2014alsosawthefirstvalidated abinitio benchmarkforthe H2 dissociationenergybarrieronCu(111),givenusingQMCbyHoggan: 14.79kcal/mol,wellwithinstandarderror(0.5)oftheexperimentalvalue 14.48kcal/mol.(seeArXiv).

Acoupleofnovelresearch-reviewsclosethisvolume,wheretheoryis usedasaverydirectcomplementaryapproachtoexperiment,oneon X-RayConstrainedWaveFunctions:FundamentalsandEffectsofthe MolecularOrbitalsLocalizationbyGenoniandtheotherregardingElectron ImpactIonizationbySaha etal.

Hopedfullyreadersenjoythisvolumeasmuchaswehaveenjoyed editingit!

CONTRIBUTORS

SeldaAkdemir

DepartmentofScienceEducation,FacultyofEducation,SinopUniversity,Sinop,Turkey

LorenzoUgoAncarani

EquipeTMS,UMRCNRS7565,ICPM,Universite ´ deLorraine,57078Metz,France

RolandAssaraf

SorbonneUniversite ´ s,UPMCUnivParis06,andCNRS,UMR7616,Laboratoire deChimieThe ´ orique,Paris,France

ArunK.Basak

DepartmentofPhysics,UniversityofRajshahi,Rajshahi,Bangladesh

AhmedBouferguene

Faculte ´ Saint-Jean,UniversityofAlberta,Alberta,Canada

AdamBuksztel

InstituteofPhysics,FacultyofPhysics,AstronomyandInformatics,NicolausCopernicus University,Torun,Poland

MelekEraslan

DepartmentofPhysics,FacultyofArtsandSciences,AmasyaUniversity,Amasya,Turkey

MuratErturk

DepartmentofPhysics,Facultyofartsandsciences,OnsekizMartUniversity,C¸anakkale, Turkey,andInstituteofPhysics,NicholasCopernicusUniversity,Torun,Poland

AlexeiM.Frolov

DepartmentofAppliedMathematics,UniversityofWesternOntario,London,Ontario, Canada

GustavoGasaneo

DepartamentodeFı´sica,UniversidadNacionaldelSur,8000Bahı´aBlanca,BuenosAires, andConsejoNacionaldeInvestigacionesCientı´ficasyTe ´ cnicasCONICET,Argentina

DanielH.Gebremedhin

DepartmentofPhysics,FloridaA&MUniversity,Florida,USA

AlessandroGenoni

CNRS,andUniversite ´ deLorraine,LaboratoireSRSMC,UMR7565, Vandoeuvre-les-Nancy,France

NikitasI.Gidopoulos

DepartmentofPhysics,DurhamUniversity,Durham,UnitedKingdom

IreneuszGrabowski

InstituteofPhysics,FacultyofPhysics,AstronomyandInformatics,NicolausCopernicus University,Torun,Poland

CharlesA.Weatherford DepartmentofPhysics,FloridaA&MUniversity,Florida,USA

JunYasui

RIKENInnovationCenter,Hirosawa,Wako,Saitama,andFrontierResearchCenter, CanonInc.,Ohta-ku,Tokyo,Japan

NiyaziYu ¨ kc ¸ u ¨ DepartmentofEnergySystemsEngineering,FacultyofTechnology,AdıyamanUniversity, Adıyaman,Turkey

MagdalenaZientkiewicz FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

ASturmianApproachto PhotoionizationofMolecules

CarlosMarioGranados-Castro*,†,1,LorenzoUgoAncarani*,1 , GustavoGasaneo†,{,DarioM.Mitnik{,}

*EquipeTMS,UMRCNRS7565,ICPM,Universite ´ deLorraine,57078Metz,France

†DepartamentodeFı´sica,UniversidadNacionaldelSur,8000Bahı´aBlanca,BuenosAires,Argentina {ConsejoNacionaldeInvestigacionesCientı´ficasyTe ´ cnicasCONICET,Argentina

}InstitutodeAstronomıayFısicadelEspacio(IAFE)andDepartamentodeFısica,UniversidaddeBuenosAires, C1428EGABuenosAires,Argentina

1Correspondingauthors:e-mailaddress:carlos.mario-granados.castro@univ-lorraine.fr; ugo.ancarani@univ-lorraine.fr

structureofthemoleculecanbeignored,especiallyinhigh-energycollisions,justifyingtheuseoftheBorn–Oppenheimer(BO)approximation. Also,inordertosimplifythecalculations,thefrozencore(FC)approximationandthestaticexchangeapproximation(SEA)areconsidered.Itis withinthisframe,togetherwithamodelmolecularpotential,thatweimplementthegeneralizedSturmianapproach.Intheliterature,severalSturmian functionimplementationsexist,asreviewed,e.g.,intheintroductionsof Refs. 22 and 23.Similarlytopreviouspublicationsonscatteringstudies (see the recentreview 22 andreferencestherein),inthiscontributionwe shallname Generalized SturmianFunctions (GSF)thosedefinedin Section5.1;notethatotherauthorsusethesameterminologytodefinea different class ofSturmianfunctions.Oneoftheadvantagesofsuchamethod isthatitensuresthatthecontinuumwavefunctionhasthecorrectasymptotic behavior.22 Toassessthevalidityofourapproach,wewillcomparethecalculatedPIcrosssectionsforanumberofsmallmoleculeswiththeoretical andexperimentaldatafoundintheliterature.

Therestofthispaperisorganizedasfollows.WestartwithsomegeneralitiesonPIin Section2;wecontinuein Section3 withabriefpanorama of what sortofagreementoneobservesintheliteraturebetweentheoretical andexperimentalcrosssections.In Section4,wepresentasurveyofexisting theoretical methods usedtoinvestigatemolecularPI.In Section5,weintroducethe Sturmianapproach,andcompareourresultsforPIofH2O,NH3, andCH4 toseveraltheoreticalandexperimentaldata.

Atomicunits(ℏ ¼ e ¼ me ¼ 1)areassumedthroughout,unlessstated otherwise.

2.GENERALITIES

Inthestudyoftheinteractionofaradiationfield(aphoton)witha moleculartargetseveralprocessesmayoccur.Consideraphotonofenergy Eγ ¼ ℏω,suchthat Eγ > I0,where I0 istheionizationpotentialofthemolecule.OnceitstrikesapolyatomicmoleculeRAinaninitialvibrationalstate ν0 (RisthepolyatomicradicalandAisanindividualatom),thedifferent outcomesmaybe

Ifwehaveadissociationprocess,thefinalproductscanbeinanexcitedstate. Ifwehaveanejectedelectron,calledphotoelectron,ithasadefinedangular momentum ‘.Inthiscontribution,wewillconcentrateonlyonsinglePI whichcanbeconsideredasa“half-scattering”processes.Itinvolvesa bound-freetransitionforwhichoneneedstoknowonlytheinitialstate Ψ0 (energy E0)ofthemolecule,usuallyitsgroundstate,andthefinalstate oftheionizedelectron.Thetransitionoperator,thatconnectsbothinitial andfinalstates,isdescribedsemi-classicallyviathedipolarapproximation; thedipolaroperatorinbothlength(L)andvelocity(V)gaugesreads

where ^ ε givesthepolarizationofthefield.Inthiswork,weconsiderlinear polarizationalongthe z direction.

Themajortaskistocalculateaccuratelythewavefunction Ψ ofthephotoelectron,thatisanelectroninacontinuumstateoftheionizedmolecular target,withanenergy E ¼ k2/2definedbytheenergyoftheincidentphoton E ¼ Eγ I0.Suchcontinuumwavefunctionsaremoredifficulttocalculate thanthelow-lyingbound-statesastheyoscillateuptoinfinity.Theyare solutionsofthetime-dependentSchr € odingerequation(TDSE)orthe time-independentSchrodingerequation(TISE),withwelldefinedproperties.Theymustberegularattheoriginofthecoordinatesystem,andthe asymptoticboundaryconditionsaregivenbythesuperpositionofan incoming-waveCoulombfunctionplusanincomingsphericalwave, generatedbythenon-Coulombpartofthemolecularpotential26

where f ^ k , ^ r isthetransitionamplitudeand Z ¼ 1foraninitialneutral target.

OnequantitythatismeasurableexperimentallyisthePIcrosssection, definedtheoreticallyas

σ dE ¼ π e 2 m2 ℏ2 c ω g ðÞ Ψ0 b D g ðÞ Ψ DE 2 , (4) where ω L ðÞ ¼ E E0 or ω V ðÞ ¼ E E0 ðÞ 1 and c isthespeedoflight.

see Section4.2.1),configurationinteraction(CI,see Section4.1),ground stateinversionmethod(GIPM/D,see Section4.7.2),random-phase approximation(RPA,see Section4.9)andlogarithmicderivativeKohn method(LDKM,see Section4.11.1).Theyarefurthercomparedwith theexperimentaldataofChungetal.32 Forthisexample,SCFandCI calculationsusedOCE,andLDKMtheFCapproximation.Exceptfor theSCFresults,weseeanexcellentagreementbetweenalltheorieswith experimentaldata.Indeed,themoleculeH2 issufficientlysimpletoallow foraPIstudytakingintoaccountallinteractions.Oneaspect,though,that remainschallengingistocalculatepreciselythepositionsandwidthsofthe doublyexcitedstatesthatdependonthenuclearmotion.

3.2N2

Weshowin Fig.2 thePIcrosssectionsfortheoutervalenceorbital3σ g of N2.ForsuchMO,weshowcalculationsperformedwithCI(Section4.1), time-dependentdensityfunctionaltheory(TD-DFT,see Section4.3.2), multiple-scatteringXα (MSXα,see Section4.6),Stieltjes–Tchebycheff technique(STT,see Section4.10)anditerative-Schwingermethod (ISM,see Section4.12.1).NotethattheresultsforCIandTD-DFTwere obtainedusingOCE,andforISMusingtheFCapproximation.Thetheoretical crosssectionsarecomparedwiththeexperimentalresultsofPlummeretal.38

Figure2 PartialPIcrosssectioninMbversusphotonenergyineVfromtheMO3σ g of N2.ResultsforCI39 (red(darkgrayintheprintversion),dash);TD-DFT40 (green(grayin theprintversion),dash-dot);MSXα 41 (blue(darkgrayintheprintversion),dots);STT42 (gray,dash-dot-dot),andISM43 (orange(lightgrayintheprintversion),dash-dash-dot) arecomparedwithexperimentaldata38 (blackdots).

ThesituationchangesdrasticallywhenmovingfromH2 toamorecomplexmoleculesuchasN2.Thefiguresshowthattheagreementbetween differenttheoriesandexperimentaldataisbasicallylost,especiallyforenergiesclosetothethreshold.Moreover,onlyapartialagreementforhigher energiesisobserved.ExceptfortheCIresults,noneoftheothercalculations reproducesthedifferentseriesofresonanceslocatedbetween20and25eV.

3.3CO2

ThePIcrosssectionsforCO2 areshownin Fig.3 fortheMO1π g.WecomparetheresultsobtainedwithGIPM/D(Section4.7.2),STT(Section4.10), ISM (Section 4.12.1)and R-matrixmethod (RMM,see Section4.8).The experimentaldata aretakenfromBrionandTan.44

Here,resultsforISMandRMMusedboththeFCandtheFNapproximations.Dependingontheenergyrange,thedifferenttheoreticalcalculationspresentagainonlyapartialagreement,andeveniftheycannot reproducecompletelytheexperimentaldata,theyperformratherwell beyond25eV.AlthoughthecenterofmassofCO2 isclosetothe Catombecauseofitslineargeometry,thismoleculeisparticularlydifficult todescribe:thedensityofchargeiscompletelydelocalizedaroundthemoleculeandonlytheuseofmulticenterwavefunctionsyieldsacceptablePI results,asintheGIPM/Dcase.

GIPM/D STT ISM RMM Experimental

Figure3 PartialPIcrosssectioninMbversusphotonenergyineVfromtheMO1π g of CO2.ResultsforGIPM/D45 (brown(darkgrayintheprintversion),dots);STT42 (gray, dash-dot-dot);ISM46 (orange(lightgrayintheprintversion),dash-dash-dot),and RMM47 (blue(darkgrayintheprintversion),solid)arecomparedwithexperimental data44 (blackdots).

TheMCTDHFhasbeenusedbyKatoandKono76 andbyHaxton etal.77 tostudyPIofH2 byintenselaserfields,andalsobyHaxtonetal.78 forHF.

4.3DensityFunctionalTheory

Densityfunctionaltheory(DFT)iswi delyusedinquantumchemistry.It allowsforeasydeterminationoftheelectronicstructureforgivensystems (anatom,amolecule,acrystal,etc.),regardlessofitsextensionorthe numberofparticlesthatconstituteit.While“standard”quantum mechanicsworksdirectlywiththemany-bodywavefunctionsofthedifferentparticlesinagivensystem,DFTusestheone-electronelectronic density n r ðÞ andisbasedontwotheorems,calledtheHohenberg–Kohn theorems. 79.IndifferentimplementationsoftheDFTtostudyPIof molecules, n r ðÞ iscalculatedusingaconventionallinearcombination ofAOs(LCAO).49

4.3.1Kohn–ShamDFT

IntheKohn–ShamDFT(KSDFT),80 theHamiltonianofthemolecularsystemisdeterminedbythedensityoftheoccupiedorbitalsinthegroundstate andintermsoftheHartreepotential,theelectron–nucleiinteraction,and theso-calledexchange-correlationpotentialwhichcontainsallthe “unknowns”ofthesystem.Differentpotentialsareavailableintheliterature fordifferentatomicandmolecularsystems(see,forinstanceRefs. 81 and 82),based,forexample,onthelocaldensityapproximationoronthegeneralized gradient approximation.

TheKSDFThasbeenusedbyVenutietal.49 tostudyPIinC6H6;by StenerandDecleva,usingtheOCEapproximation,tostudyHF,HCl, H2O,H2S,NH3,andPH3 (Ref. 83),andCH4,SiH4,BH3,andAlH3 (Ref. 84).Toffolietal.,85 usingthemulticenterexpansion,calculatedcross sectionsforCl2,(CO)2,andCr(CO)6.WoonandPark86 alsostudiedC6H6 (benzene),C10H8 (naphthalene),C14H10 (anthracene)andC16H10 (pyrene).Strangesetal.87 studiedthedynamicsincirculardichroismof theC3H6O(methyl-oxirane).Toffolietal.88 studiedthePIdynamicsin C4H4N2O2 (uracil).

4.3.2Time-DependentDFT

Time-dependentDFT(TD-DFT)89 constitutesanotherlineofdevelopmentoftheDFTmethods.Inthefirstordertime-dependentperturbative scheme,wherethezerothorderisequivalenttotheKSDFT,90 thelinear

responseoftheelectronicdensity n r ðÞ toanexternalweaktime-dependent electromagneticfieldcanbedescribedbyaSCFpotential,givenbyZangwill andSoven.91

TheTD-DFThasbeenusedbyLevineandSoven40 tocalculatephotoemissioncrosssectionsandasymmetryparametersofN2 andC2H2.Stener, Declevaandcoworkers,usingB-splines57 andtheOCE,studiedPIfordifferentmolecules:StenerandDecleva90 calculatedthecrosssectionsforN2 andPH3;Steneretal.92 forCH4,NH3,H2O,andHF;Steneretal.93 forCO andalsofromthe K-shell94;Fronzonietal.95 forC2H2;Steneretal.50 for CS2 andC6H6;Toffolietal.96 andPatanenetal.97 forCF4,andHolland etal.98 forpyrimidineandpyrazine.WealsofindtheworkofRussakoff etal.99 forC2H2 andC2H4,andbyMadjetetal.100 forC60.Differentresults formolecularPIhavebeenreviewedbySteneretal.101

Forthesakeofcompleteness,wealsomentionsomestudiesofmolecular PIthatuseaslightlydifferentapproach,thestatic-exchangeDFT:Ple ´ siat etal.102 investigatedPIofN2 andCO,andKukketal.103 fromthe inner-shellsofCO.

4.4ComplexMethods

4.4.1ComplexScaling

Thecomplexscaling(CS)method104–105 hasbeenusedextensivelytostudy ionizationand,mainly,resonancephenomenainatomsandmolecules. Theideabehindthismethodistoscalethecoordinatesofallparticlesin theHamiltonianbyacomplex-valuedscalefactor: r ! re iθ .Onevariant oftheCSistheso-calledexteriorcomplexscaling(ECS),106–108 whereby thecoordinatesscaleonlyoutsideafixedradius R0

TheECSmethodhasbeenappliedtostudygeneralscatteringproblemsusing L2 basissetrepresentations.Itisespeciallywellsuitedtostudyionization processesinmolecules,sincethedefinitionoftheexteriorscaling (7) avoids complicatedscaling expressionsinthenuclearattractiontermsofthe Hamiltonian107 when R0 islargeenoughtoencloseallthemolecularnuclei.

TheECShasbeenusedmainlybyMcCurdy,Rescigno,Martı´nand coworkerstostudydifferentionizationprocessesinatomsandmolecules: McCurdyandRescigno109–110 usedCartesianGaussian-typeorbitals (CGTOs)tocalculatePIcrosssectionsofH + 2 ;Vanrooseetal.,111–112 using

SiF4,andSiCl4;PowisstudiedPIinPF3136,CH3I137,andCF3Cl.138 Finally, JurgensenandCavell139 compareddirectlyexperimentalresultswiththeMS Xα forNF3 andPF3.

4.7Plane-Wave-BasedMethods

4.7.1Plane-WaveandOrthogonalizedPlane-WaveApproximations

Thesimplestdescriptionofanionizedelectronistheplane-waveapproximation(PWA),butitisnotexpectedtogiveaccurateresultsnear threshold.140 Toourknowledge,thefirstimplementationsofthePWA areduetoKaplanandMarkin,141–142 LohrandRobin,143 andtoThiel andSchweig.144–145

Thefinalstateofthemoleculedescribesoneelectronthathasbeen excitedfromagiveninitialMOtoacontinuumnormalizedplane-wave orbital.140 Thisplane-waveisnotnecessarilyorthogonaltoanyoftheoccupiedMOs;iforthonormalityisimposed,wehavetheorthogonalizedPWA. ThePWAandtheorthogonalizedPWA,togetherwithSlater-type orbitals(STOs)todescribeAO,havebeenusedbyRabalaisetal.146 and byDewaretal.147 tocalculatePIcrosssectionsforH2,CH4,N2,CO, H2O,H2S,andH2CCH2.Huangetal.148 usedtheorthogonalizedPWA tocalculateangularasymmetryparametersforH2,N2,andCH4.Beerlage andFeil149 calculatedcrosssectionsforHF,(CN)2,CaHCN,C2(CN)2,N2, CO,H2O,furan,pyroleandtetrafluoro-pyrimidine.SchweigandThiel150 calculatedtherelativebandintensityofN2,CO,H2O,H2S,NH3,PH3, CH4,(CH3)2S,C6F6,amongothers.Hiltonetal.151 haveusedthe so-calledeffectivePWAtocalculatecrosssectionsforH2,CO,H2O,and C2H4.Finally,Deleuzeetal.152 usedtheorthogonalizedPWA,together withamany-bodyGreen’sfunctionframework,tocalculatePIcrosssections forCH4,H2O,C2H2,N2,andCO.

4.7.2GroundInversionPotentialMethod

Theso-calledgroundstateinversionpotentialmethod(GIPM)hasbeen developedbyHilton,Hush,Nordholmandcoworkers151,153 withtheaim ofobtainingachemicaltheoryofPIintensities.154 Thismethodusesthestandardone-electronPWA,theorthogonalizedPWAortheenergyshifted PWA151 inordertocalculatetheelectroniccontinuumfinalwavefunction. Thecrosssectionisobtainedfromanatomicsummationtheorytogether withaplanewaveanalysisofdiffractioneffectsfromphotoelectronamplitudesfromdifferentatomsthatinterferewitheachother.35,154 ThemaindifferenceofGIPMwithastandardPWAisthatthepotentialfeltbyanelectron

whenleavinganatomiccenterinamoleculeiscalculateddirectlybyinversionofthegroundstateHForbital.153–154 TheGIPMtheorycaninclude threeimportanteffects:changeintheatomicorbitalsnatureuponformation ofthemolecule,diffractioneffects154 andexchangeinanexactsense.

TheGIPMhasbeenusedbyHiltonetal.tocalculatePIcrosssections forH2O155 andforH2,N2,andCO.35 AlsoKilcoyneetal.calculatedcross sectionsforH2,HF,andN2154;H2O,NH3,andCH4156;CO,CO2,and N2O,45 andforC2H4 andC6H6 51

4.8 R-MatrixMethod

Originallyintroducedinnuclearphysics,the R-matrixmethod(RMM)has beenadaptedtoatomicandmolecularphysicsbyBurkeandcoworkers(see Ref. 157 andreferencestherein).Applicationsofthismethod,inparticular for electron collisions,havebeenreviewedelsewhere.158–160 Theidea behindtheRMMistoenclosethescatteringparticlesandthetargetwithin asphereofradius a,sothatitshouldbepossibletocharacterizethesystem usingtheeigenenergiesandtheeigenstatescomputedwithinthesphere. Thenbymatchingthemtotheknownasymptoticsolutions,onecanextract allthescatteringparameters.The R-matrixisdefinedasthematrixthatconnectsthetworegionsinwhichthespaceisdividedinto.Theyare:(1)an internalregion,wherealltheparticlesareclosetooneanother,sothat theshort-rangeinteractionsandexchangeareimportant;(2)anexternal region,whereallparticlesarestillinteracting,buttheforcesaredirect andcouldhaveamultipolarcharacter.Inthemostconventionaluseof theRMM,theHamiltonianoftheinternalregionisdiagonalizedinorder toobtainthe R-matrixeigenenergiesandeigenfunctions,generallyusingthe nonadiabaticformalism.161 Theinitialandfinalstatesareexpandedinterms oftheseeigenstates.Thecorrespondingcoefficientsfortheinitialstateare usuallyobtainedbyperforminganall-channels-closedscatteringcalculation, andinthiscasetheproblemisreducedtofindthezerosofadeterminant.162–163 Toobtainthecoefficientsforthefinalstate,calculationsofelectronscatteringbythecorrespondingmoleculecanbemadeandtheresulting R matricesrepresenttheresultofafullnonadiabatictreatmentoftheinternal regionofthescatteringproblem,160 andprovidesthesolutionintheexternal region.164 Finally,withbothsetsofcoefficients,itispossibletocalculatethe requiredtransitiondipolemoments,andthusthePIcrosssection (4)

Since the correspondingformalismisrelativelynew,theRMMhasnot beenusedformoleculesasmuchasforatoms.However,wehavetheworks

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.