Methods and techniques for fire detection : signal, image and video processing perspectives 1st edit

Page 1


Methodsandtechniquesforfiredetection: signal,imageandvideoprocessingperspectives 1stEditionÇetin

https://ebookmass.com/product/methods-and-techniques-forfire-detection-signal-image-and-video-processingperspectives-1st-edition-cetin/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Machine Learning Algorithms for Signal and Image Processing Suman Lata Tripathi

https://ebookmass.com/product/machine-learning-algorithms-for-signaland-image-processing-suman-lata-tripathi/

ebookmass.com

Change Detection and Image Time Series Analysis 1: Unsupervised Methods 1st Edition Abdourrahmane M. Atto

https://ebookmass.com/product/change-detection-and-image-time-seriesanalysis-1-unsupervised-methods-1st-edition-abdourrahmane-m-atto/

ebookmass.com

Signal processing for neuroscientists 2nd ed Edition Drongelen

https://ebookmass.com/product/signal-processing-forneuroscientists-2nd-ed-edition-drongelen/

ebookmass.com

Party Proliferation and Political Contestation in Africa: Senegal in Comparative Perspective 1st ed. Edition

Catherine Lena Kelly

https://ebookmass.com/product/party-proliferation-and-politicalcontestation-in-africa-senegal-in-comparative-perspective-1st-ededition-catherine-lena-kelly/ ebookmass.com

https://ebookmass.com/product/marketing-plan-handbook-ebook-pdfversion/

ebookmass.com

Why Do People Discriminate against Jews? Jonathan Fox

https://ebookmass.com/product/why-do-people-discriminate-against-jewsjonathan-fox/

ebookmass.com

Four Found Dead Natalie D. Richards

https://ebookmass.com/product/four-found-dead-natalie-d-richards/

ebookmass.com

Living and Dying in a Virtual World: Digital Kinships, Nostalgia, and Mourning in Second Life 1st ed. Edition

https://ebookmass.com/product/living-and-dying-in-a-virtual-worlddigital-kinships-nostalgia-and-mourning-in-second-life-1st-ed-editionmargaret-gibson/ ebookmass.com

Sportswomen’s Apparel in the United States: Uniformly Discussed 1st ed. Edition

https://ebookmass.com/product/sportswomens-apparel-in-the-unitedstates-uniformly-discussed-1st-ed-edition-linda-k-fuller/

ebookmass.com

Chronic Coronary Artery Disease 1st Edition Edition James Delemos And Torbjorn Omland (Auth.)

https://ebookmass.com/product/chronic-coronary-artery-disease-1stedition-edition-james-delemos-and-torbjorn-omland-auth/

ebookmass.com

METHODSAND TECHNIQUESFOR FIREDETECTION

METHODSAND TECHNIQUESFOR

A.ENISÇETIN

AcademicPressisanimprintofElsevier

125LondonWall,London,EC2Y5AS,UK

525BStreet,Suite1800,SanDiego,CA92101-4495,USA 50HampshireStreet,5thFloor,Cambridge,MA02139,USA TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK

Copyright © 2016ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Details onhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterand theCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-802399-0

ForinformationonallAcademicPresspublications visitourwebsiteat http://store.elsevier.com/

Publisher: JoeHayton

AcquisitionEditor: TimPitts

EditorialProjectManager: CharlotteKent

ProductionProjectManager: JasonMitchell

Designer: MariaIne ˆ sCruz

BIOGRAPHY

A.EnisC¸etin gothisPhDdegreefromtheUniversityofPennsylvaniain 1987.Between1987and1989,hewasanassistantprofessorofelectricalengineeringattheUniversityofToronto.HehasbeenwithBilkent University,Ankara,Turkey,since1989.C¸etinwasanassociateeditorof IEEETransactionsonImageProcessingbetween1999and2003.Currently, heisontheeditorialboardsofIEEESignalProcessingMagazine,IEEE TransactionsonCircuitsandSystemsforVideoTechnology,andMachine VisionandApplications(IAPR),Springer.Heistheeditor-in-chiefofSignal,Image,andVideoProcessing,Springer.HeisafellowofIEEE.His researchinterestsincludesignalandimageprocessing,human–computer interactionusingvisionandspeech,andaudiovisualmultimediadatabases.

BartMerci isfullprofessoratGhentUniversity(Belgium).Heisheadofthe researchunit“Combustion,FireandFireSafety.”HavingcompletedaPhD (GhentUniversity,2000)onturbulencemodelinginCFDsimulationsof non-premixedcombustion,heisanexpertinfluidmechanicsaspectsin reactingflows,moreparticularlyrelatedtofireandsmokedynamics.He hasalreadycoauthoredover100peerreviewpublicationsandover200conferencepublicationsandisaneditorialboardmemberofmultipleleading journalsinthefield.HeinitiatedandcoordinatestheInternationalMaster ofScienceinFireSafetyEngineering,acollaborationofGhentUniversity, LundUniversity,andtheUniversityofEdinburgh,withtheUniversityof Queensland,ETHZu ¨ richandUniversityofMarylandasAssociated Partners.

OsmanGu ¨ nay receivedhisBScandMSdegreesinElectricalandElectronicsEngineeringfromBilkentUniversity,Ankara,Turkey.In2015,he receivedhisPhDdegreefromthesamedepartment.Since2011,hehasbeen workinginthedefenseindustryasasystemengineer.Hisresearchinterests includecomputervision,videosegmentation,anddynamictexture recognition.

Behc¸etUg ˘ urT¨oreyin receivedhisBSdegreefromtheMiddleEastTechnicalUniversity,Ankara,Turkey,in2001andMSandPhDdegreesfrom BilkentUniversity,Ankara,in2003and2009,respectively,allinelectrical andelectronicsengineering.HeisnowanAssistantProfessorwiththeInformaticsInstituteatIstanbulTechnicalUniversity.Hisresearchinterestslie

broadlyinsignalprocessingandpatternrecognitionwithapplicationsto image/videoanalysis,andcommunicationsystems.Hisresearchisfocused ondevelopingnovelalgorithmstoanalyzeandcompresssignalsfromamultitudeofsensorssuchasvisible/infra-red/hyperspectralcameras,microphones,passiveinfra-redsensors,vibrationsensors,andspectrumsensors forwirelesscommunications.

StevenVerstockt receivedhismaster’sdegreeininformaticsfromGhent Universityin2003.Followinghisstudiesinappliedinformatics,hebegan teachingMultimediacoursesatHogeschoolGentandattheendof2007, hejoinedtheELITLaboftheUniversityCollegeWest-Flandersasa researcher.In2008,hestartedaPhDonvideofireanalysisattheMultimedia LaboftheDepartmentofElectronicsandInformationSystemsofGhent University—iMinds(Belgium).Since2012,hehasworkedasapostdoctoral researcherinthislabfocusingonmulti-sensorfireanalysis.InOctober2015, hewasappointedatenuretrackpositionasassistantprofessorinMultimedia atthesamelab.

ACKNOWLEDGMENTS

ResearchactivitiesinthisbookwerefundedbytheTurkishScientificand TechnicalResearchCouncil(TU ¨ BI ˙ TAK),theEuropeanCommission7th FrameworkProgramunderGrantFP7-ENV-2009-1244088FIRESENSE (FireDetectionandManagementthroughaMulti-SensorNetworkforthe ProtectionofCulturalHeritageAreasfromtheRiskofFireandExtreme WeatherConditions),GhentUniversity,iMinds,theInstituteforthePromotionofInnovationbyScienceandTechnologyinFlanders(IWT),the FundforScientificResearch-Flanders,andtheBelgianFederalSciencePolicyOffice.A.EnisC¸etin,Behc¸etUg ˘ urT€ oreyinandOsmanGünaywould liketoexpresstheirgratitudetoMr.NurettinDog ˘ anandMr. İlhamiAydin oftheTurkishGeneralDirectorateofForestry(OrmanGenelMüdürlüg ˘ ü OGM),andtoDr.M.BilgayAkhansuggestingthemtostudycomputer visionbasedfiredetection.

CHAPTER1

Introduction

Signal,image,andvideoprocessingarewidelyusedinmanysecurityapplications.Itispossibletousevisible-rangeandspecialpurposeinfraredsurveillancecamerasaswellaspyro-infrareddetectorsforfiredetection.This requiresintelligentsignalprocessingtechniquesfordetectionandanalysis ofuncontrolledfirebehavior.Asthenumberofrecentlyproposedsignal, image,andvideoprocessing-basedfiredetectionmethodsincreasedover thelast10years,aneedforabookpresentingbasicprinciplesofthese methodsemerged.

Thisbookdescribessignal,image,andvideoprocessingmethodsand techniquesforfiredetection.Theintendedaudienceofthebookisgraduate students,researchers,andpractitionersworkingonsignalprocessingand computervision-basedtechniquesforfiredetection.Thebookprovides themwithathoroughandpracticaloverviewofthestate-of-the-art methodsandtechniquesinthisdomain.

Sensorsenhancedwithintelligentsignalandimageprocessingcapabilitiesmayhelpreducethedetectiontimecomparedtothecurrentlyavailable sensorsforbothindoorsandoutdoors.Thisisduetothefactthatcameras andothernonconventionalfiresensorscanmonitor“volumes”anddonot havethetransportdelaythatthetraditional“point”sensorssufferfrom.For example,itispossibletocoveranareaof100km2 usingasinglepan-tiltzoomcameraplacedonahilltopforwildfiredetection.Anotherbenefit ofvolumetricsensorsystemsisthattheycanprovidecrucialinformation aboutthesizeandgrowthofthefireandthedirectionofsmokepropagation.

Duringthelastdecades,improvementsinthecomputationalpowerof computersandthedecreasingcostofimagingsensorsmadeitpossibleto employvideo-basedfiredetectiontechniquesforreal-timeapplications. Intheliterature,videofiredetectionalgorithmsdevelopedforvisiblerange camerasarehigherinnumberasvisiblerangecamerascostlesscomparedto infrared(thermal)andtime-of-flightcameras.In Chapter2,state-of-the-art camera-basedtechniquesforfiredetectionarepresented.

Chapter3 presentsasetofmethodsforflamedetectionusinganonconventionalsensor,apyro-electricinfrared(PIR)sensor,whichisalow-cost sensorwidelyusedformotiondetection.Themethodsarebasedonthe

MethodsandTechniquesforFireDetection

© 2016ElsevierLtd. http://dx.doi.org/10.1016/B978-0-12-802399-0.00001-6 Allrightsreserved.

analysisoftheflameflickerexistinginherentlyinuncontrolledfires.The PIRsensorsarecommonlyusedforoccupancydetectionpurposesinbuildings.Utilizingtechniquesandmethodspresentedin Chapter3,theymay turnintouncontrolledfiredetectorsaswell.

Currentmethodsandtechniquesusedformulti-sensorfireanalysisare describedin Chapter4.Methodsin Chapter4 areaimedatestimating theoriginandgrowthoffires,ratherthandetectingthem.Modelingfire behaviorhasimportantbenefitsinfirefightingandmitigation,andisessential inassessingtheriskofescalation.Techniquesin Chapter4 focusonmultimodal/multi-sensoranalysisoffirecharacteristics,suchasflameand smokespread.

SurveillancecamerasandPIR-basedmotionsensorsarewidelyusedin modernbuildings.Itisnowpossibletousethemforfireandsmokedetectionbyanalyzingthevideoandsignalsthattheygenerate.Itisourhopethat themethodsandtechniquesdiscussedinthisbookwillleadtosaferbuildings andlivingenvironmentsinthenearfuture.

CHAPTER2

Camera-BasedTechniques

2.8

Part1

Thefirststepinvideofiredetection(VFD)istoapplyabackgroundsubtractionalgorithmtoextractmovingregionsinthevideo.Thenthedetected regionsareanalyzedtemporallytobeclassifiedintermsofflickeringcharacteristics.Markovmodelsandfrequencydomaintechniquescanbeusedto identifyiftheflickeringcharacteristicsbelongtoflames.Inthenextstep, spatialanalysisisperformedtocheckfortheirregularitiesthatareusedto identifyflames.

Anothermethodistoextractfeaturesfromthemovingregionsand useclassifierswhoaretrainedofflinewithvideosoffireandfalsealarm sources.Itisalsopossibletouseac tivelearningalgorithmswhichare updatedonlinetoclassifyflameregions.Themostimportantproblem withvisiblerangefiredetectionsisthefalsealarms.Fire-coloredmoving regionscanbedifficulttodistinguishfromtheactualflames.Firedetectionalgorithmsaregenerallydevelopedforstationarycameras.When movingcamerasareused,itbecomesdifficulttodetecttheflickering characteristicsofflames.Detectionoffireusingamovingcameraisa futureresearchproblem.Anotherapp licationofvideo-basedfiredetectionissmokedetectionforearlywildfirewarningsystems.Forestsare usuallymonitoredusingPTZcamerasth atscanrecordedpresetpositions inaspecificorder.Thesecamerascan monitorlargerdistancesthanusual visiblerangecameras.Inwildfiredetectionapplications,smokebecomes visiblebeforetheflames;thereforeitmakessensetofocusonsmoke detectionforthesesystems.

Withthedecreasedcostofinfraredsensors,itbecamepossibletouselongandshort-waveinfraredcamerasforflamedetection.Sinceinfrared(thermal) camerasformimageswhoseintensitydependonthetemperatureofthe objects,theycouldbeusedtoreducemostofthefalsealarms.Inmostcases, thetemperatureofflamesishigherthanthesurroundingenvironmentandIR camerascansuccessfullydetecttheflickeringflames.Initially,infraredflame detectionalgorithmsprocessednearinfraredimages(NIR)toverifytheexistenceofflames.Morerecentmethodsstartedtouseshort-andlong-wave infrared(SWIR,LWIR)thermalcamerasforfireandflamedetection.

ThischapterisbasedontheVFDsurveypaperin[1].RecentlyproposedVFDtechniquesareviablealternativesorcomplementstoexisting firedetectiontechniquesandhaveshowntobeusefulinsolvingseveral problemsrelatedtothetraditionalsensors.Conventionalsensorsaregenerallylimitedtoindoorsandarenotapplicableinlargeopenspacessuchas shoppingcenters,airports,carparks,andforests.Theyrequireacloseproximitytothefireandmostofthemcannotprovideadditionalinformation aboutfirelocation,dimension,etc.Oneofthemainlimitationsofcommerciallyavailablefirealarmsystemsisthatitmaytakealongtimeforcarbonparticlesandsmoketoreachthe“point”detector.Thisiscalledthe “transportdelay.”Itisourbeliefthatvideoanalysiscanbeappliedinconditionsinwhichconventionalmethodsfail.VFDhasthepotentialtodetect thefirefromadistanceinlargeopenspacesbecausecamerascanmonitor

“volumes.”Asaresult,VFDdoesnothavethetransportandthreshold delayfromwhichthetraditional“point”sensorssuffer.Assoonassmoke orflamesoccurinoneofthecameraviews,itispossibletodetectfire immediately.Weallknowthathumanbeingscandetectanuncontrolled fireusingtheireyesandvisionsystems,butaspointedoutabove,itisnot easytoreplicatehumanintelligence.

Theresearchinthisdomainwasstartedinthelatenineties.Mostofthe VFDarticlesavailableintheliteratureareinfluencedbythenotionof “weak”ArtificialIntelligence(AI)frameworkwhichwasfirstintroduced byHubertL.Dreyfusinhiscritiqueofthe“generalized”AI[3,4].Dreyfus presentssolidphilosophicalandscientificargumentsonwhythesearchfor “generalized”AIisfutile[5].Therefore,eachspecificproblemincluding VFDfireshouldbeaddressedasanindividualengineeringproblemwhich hasitsowncharacteristics[6].Itispossibletoapproximatelymodelthefire behaviorinvideousingvarioussignalandimageprocessingmethodsand automaticallydetectfirebasedontheinformationextractedfromvideo. However,thecurrentsystemssufferfromfalsealarmsbecauseofmodeling andtraininginaccuracies.

CurrentlyavailableVFDalgorithmsmainlyfocusonthedetectionand analysisofsmokeandflamesinconsecutivevideoimages.Inearlyarticles, mainlyflamedetectionwasinvestigated.Recently,thesmokedetection problemisalsoconsidered.Thereasonforthiscanbefoundinthefact thatsmokespreadsfasterandinmostcaseswilloccurmuchfasterinthe fieldofviewofthecameras.Inwildfireapplications,itmaynotevenbe possibletoobserveflamesforalongtime.Themajorityofthestate-ofthe-artdetectiontechniquesfocusesonthecolorandshapecharacteristics, togetherwiththetemporalbehaviorofsmokeandflames.However,due tothevariabilityofshape,motion,transparency,colors,andpatternsof smokeandflames,manyoftheexistingVFDapproachesarestillvulnerable tofalsealarms.Duetonoise,shadows,illuminationchanges,andother visualartifactsinrecordedvideosequences,developingareliabledetection systemisachallengetotheimageprocessingandcomputervision community.

Withtoday’stechnology,itisnotpossibletohaveafullyreliableVFD systemwithoutahumanoperator.However,currentsystemsareinvaluable toolsforsurveillanceoperators.Itisalsoourstrongbeliefthatcombining multi-modalvideoinformationusingbothvisibleandinfrared(IR)technologywillleadtohigherdetectionaccuracy.Eachsensortypehasitsown

specificlimitations,whichcanbecompensatedbyothertypesofsensors. Although,itwouldbedesirabletodevelopafiredetectionsystemwhich couldoperateontheexistingclosedcircuittelevision(CCTV)equipment withoutintroducinganyadditionalcost.However,thecostofusingmultiplevideosensorsdoesnotoutweighthebenefitofmulti-modalfireanalysis.ThefactthatIRmanufacturersalsoensureadecreaseinthesensorcost inthenearfuturefullyopensthedoortomulti-modalvideoanalysis.VFD camerascanalsobeusedtoextractusefulrelatedinformation,suchasthe presenceofpeoplecaughtinthefire,firesize,firegrowth,smoke direction,etc.

VFDsystemscanbeclassifiedintovarioussubcategoriesaccordingto (i)thespectralrangeofthecameraused, (ii)thepurpose(flameorsmokedetection), (iii)therangeofthesystem. Thereareoverlapsbetweenthecategoriesabove.

2.1VFDINVISIBLE/VISUALSPECTRALRANGE

Overthelastyears,thenumberofpapersaboutvisualfiredetectioninthe computervisionliteraturehasgrownexponentially[2].Asis,thisrelatively newsubjectinvisionresearchisinfullprogressandhasalreadyproduced promisingresults.However,thisisnotacompletelysolvedproblem,aswith mostcomputervisionproblems.Behaviorofsmokeandflamesofanuncontrolledfiredifferswithdistanceandillumination.Furthermore,camerasare notcolorand/orspectralmeasurementdevices.Theyhavedifferentsensors andcolorandilluminationbalancingalgorithms.Theymayproducedifferentimagesandvideoforthesamescenebecauseoftheirinternalsettingsand algorithms.

Inthissection,achronologicaloverviewofthestate-of-the-art(ie,acollectionoffrequentlyreferencedpapersonshortrange[<100m])firedetectionmethodsispresentedinthetablesbelow.Foreachofthesepapers,we investigatedtheunderlyingalgorithmsandcheckedtheappropriatetechniques.Inthefollowing,wediscusseachofthesedetectiontechniques andanalyzetheiruseinthelistedpapers.

State-of-the-art:underlyingtechniques(PART1:2002-2007).

Xiong [18]

State-of-the-art:underlyingtechniques(PART2:2007-2009).

[20]

[21]

[23]

[25]

[26]

State-of-the-art:underlyingtechniques(PART3:2010-2011).

2.1.1ColorDetection

ColordetectionwasoneofthefirstdetectiontechniquesusedinVFDandis stillusedinalmostalldetectionmethods.Themajorityofthecolor-based approachesinVFDmakeuseofRGBcolorspace,sometimesincombinationwithHSI/HSVsaturation[10,24,27,28].Themainreasonforusing RGBisthatalmostallvisiblerangecamerashavesensorsdetectingvideo inRGBformatandthereistheobviousspectralcontentassociatedwiththis colorspace.ItisreportedthatRGBvaluesofflamepixelsareintheredyellowcolorrangeindicatedbytherule(R > G > B)asshownin Fig.2.1. Similarly,insmokepixels,R,G,andBvaluesareveryclosetoeachother. Morecomplexsystemsuserule-basedtechniquessuchasGaussiansmoothed colorhistograms[7],statisticallygeneratedcolormodels[15],andblending functions[20].Itisobviousthatcolorcannotbeusedbyitselftodetectfire becauseofthevariabilityincolor,density,lighting,andbackground. However,thecolorinformationcanbeusedasapartofamoresophisticated system.Forexample,chrominancedecreaseisusedinsmokedetection

Figure2.1 Colordetection:smokeregionpixelshavecolorvaluesthatareclosetoeach other.Pixelsofflameregionslieinthered-yellowrangeofRGBcolorspacewith R > G > B.

schemesofRefs.[14,2].Luminancevalueofsmokeregionsshouldbehigh formostsmokesources.Ontheotherhand,thechrominancevaluesshould beverylow.

TheconditionsinYUVcolorspaceareasfollows:

Condition1: Y > TY

Condition2: U 128 jj < TU & jV 128j < TV . where Y, U,and V aretheluminanceandchrominancevaluesofaparticular pixel,respectively.Theluminancecomponent Y takesvaluesintherange [0,255]inan8-bitquantizedimageandthemeanvaluesofchrominance channels U and V areincreasedto128sothattheyalsotakevaluesbetween 0and255.Thethresholds TY, TU,and TV areexperimentallydetermined[37].

2.1.2MovingObjectDetection

MovingobjectdetectionisalsowidelyusedinVFDbecauseflamesand smokearemovingobjects.Todetermineifthemotionisduetosmoke oranordinarymovingobject,furtheranalysisofmovingregionsinvideo isnecessary.

Well-knownmovingobjectdetectionalgorithmsarebackground(BG) subtractionmethods[16,21,18,14,13,17,20,22,27,28,30,34],temporal differencing[19],andopticalflowanalysis[9,8,29].Theycanallbeused aspartofaVFDsystem.

Inbackgroundsubtractionmethods,itisassumedthatthecameraisstationary.In Fig.2.2,abackgroundsubtraction-basedmotiondetection

exampleisshownusingthedynamicbackgroundmodelproposedbyCollinsetal.[38].ThisGaussianMixtureModel-basedapproachmodelwas usedinmanyofthearticleslistedintablesabove.

SomeoftheearlyVFDarticlessimplyclassifiedfire-coloredmoving objectsasfirebutthisapproachleadstomanyfalsealarms,becausefalling leavesinautumnorfire-coloredordinaryobjects,etc.,mayallbeincorrectly classifiedasfire.Furtheranalysisofmotioninvideoisneededtoachieve moreaccuratesystems.

2.1.3MotionandFlickerAnalysisUsingFourierandWavelet Transforms

Asitiswellknown,flamesflickerinuncontrolledfires,thereforeflicker detection[24,18,12,13,27,28,30]invideoandwavelet-domainsignal energyanalysis[21,14,20,26,31,39]canbeusedtodistinguishordinary objectsfromfire.Thesemethodsfocusonthetemporalbehaviorofflames andsmoke.Asaresult,flamecoloredpixelsappearanddisappearattheedges ofturbulentflames.Theresearchin[16,18]showsexperimentallythatthe flickerfrequencyofturbulentflamesisaround10Hzandthatitisnotgreatly affectedbytheburningmaterialandtheburner.Asaresult,usingfrequency analysistodifferentiateflamesfromothermovingobjectsisproposed.However,anuncontrolledfireinitsearlystageexhibitsatransitiontochaosdue tothefactthatthecombustionprocessconsistsofnonlinearinstabilities whichresultintransitiontochaoticbehaviorviaintermittency[40–43]. Consequently,turbulentflamescanbecharacterizedasachaoticwide-band frequencyactivity.Therefore,itisnotpossibletoobserveasingleflickering frequencyinthelightspectrumduetoanuncontrolledfire.ThisphenomenonwasobservedbyindependentresearchersworkingonVFDand methodswereproposedaccordingly[14,44,27].Similarly,itisnotpossible totalkaboutaspecificflickerfrequencyforsmoke,butweclearlyobservea time-varyingmeanderingbehaviorinuncontrolledfires.Therefore,smoke flickerdetectiondoesnotseemtobeaveryreliabletechnique,butitcanbe usedaspartofamulti-featurealgorithmfusingvariousvisioncluesforsmoke detection.TemporalFourieranalysiscanstillbeusedtodetectflickering flames,butwebelievethatthereisnoneedtodetectspecifically10Hz. AnincreaseinFourierdomainenergyin510Hzisanindicatorofflames. Thetemporalbehaviorofsmokecanbeexploitedbywaveletdomain energyanalysis.Assmokegraduallysoftenstheedgesinanimage,Toreyin etal.[14]foundtheenergyvariationbetweenbackgroundandcurrent imageasacluetodetectthepresenceofsmoke.Inordertodetecttheenergy

decreaseinedgesoftheimage,theyusetheDiscreteWaveletTransform (DWT).TheDWTisamulti-resolutionsignaldecompositionmethod obtainedbyconvolvingtheintensityimagewithfilterbanks.Astandard halfbandfilterbankproducesfourwaveletsubimages:theso-calledlowlowversionoftheoriginalimage Ct,andthehorizontal,vertical,anddiagonalhighfrequencybandimages Ht, Vt,and Dt.Thehigh-bandenergyfrom subimages Ht, Vt,and Dt isevaluatedbydividingtheimage It inblocks bk of arbitrarysizeasfollows:

Sincecontributionofedgesaremoresignificantinhighbandwavelet imagescomparedtoflatareasoftheimage,itispossibletodetectsmoke usingthedecreasein E(I t, b k).Astheenergyvalueofaspecificblock variessignificantlyovertimeinthe presenceofsmoke,temporalanalysis oftheratiobetweenthecurrentinputframewaveletenergyandthe backgroundimagewaveletenergyisusedtodetectthesmokeasshown in Fig.2.3

Figure2.3 DWT-basedvideosmokedetection:Whenthereissmoke,theratiobetween theinputframewaveletenergyandtheBGwaveletenergydecreasesandshowsahigh degreeofdisorder.

2.1.4SpatialWaveletColorVariationandAnalysis

Flamesofanuncontrolledfirehavevaryingcolorsevenwithinasmallarea. Spatialcolordifferenceanalysis[24,13,28,32]focusesonthischaracteristic. Usingrangefilters[24],variance/histogramanalysis[32],orspatialwavelet analysis[13,28],thespatialcolorvariationsinpixelvaluesareanalyzedto distinguishordinaryfire-coloredobjectsfromuncontrolledfires.In Fig.2.4, theconceptofspatialdifferenceanalysisisfurtherexplainedbymeansofa histogram-basedapproach,whichfocusesonthestandarddeviationofthe greencolorband.ItwasobservedbyQiandEbert[24]thatthiscolorband isthemostdiscriminativebandforrecognizingthespatialcolorvariationof flames.Thiscanalsobeseenbyanalyzingthehistograms.Greenpixelvalues varymorethanredandbluevalues.Ifthestandarddeviationofthegreen colorbandexceeds tσ ¼ 50(:Borges[32])inatypicalcolorvideotheregion islabeledasacandidateregionforaflame.Forsmokedetection,ontheother hand,experimentsrevealedthatthesetechniquesarenotalwaysapplicable becausesmokeregionsoftendonotshowashighspatialcolorvariationas flameregions.Furthermore,texturedsmoke-coloredmovingobjectsare difficulttodistinguishfromsmokeandcancausefalsedetections.Ingeneral, smokeinanuncontrolledfireisgrayanditreducesthecolorvariationinthe background.Therefore,inYUVcolorspaceweexpecttohavereductionin thedynamicrangeofchrominancecolorcomponentsUandVafterthe appearanceofsmokeintheviewingrangeofcamera.

Figure2.4 Spatialdifferenceanalysis:incaseofflames,thestandarddeviation σ G ofthe greencolorbandoftheflameregionexceeds tσ ¼ 50(:Borges[32]).

2.1.5DynamicTextureandPatternAnalysis

Adynamictextureorpatterninvideo,suchassmoke,flames,water,and leavesinthewind,canbesimplydefinedasatexturewithmotion [45,46](ie,aspatiallyandtime-varyingvisualpatternthatformsanimage sequenceorpartofanimagesequencewithacertaintemporalstationarity) [47].Althoughdynamictexturesareeasilyobservedbyhumaneyes,theyare difficulttodiscernusingcomputervisionmethodsasthespatiallocationand extentofdynamictexturescanvarywithtimeandtheycanbepartiallytransparent.Somedynamictextureandpatternanalysismethodsinvideo [29,33,35]arecloselyrelatedtospatialdifferenceanalysis.Recently,these techniqueshavealsobeenappliedtotheflameandsmokedetectionproblem [46].Currently,awidevarietyofmethodsincludinggeometric,modelbased,statistical,andmotion-basedtechniquesareusedfordynamictexture detection[48–50].

In Fig2.5,dynamictexturedetectionandsegmentationexamplesare shown,usingvideoclipsfromtheDynTexdynamictextureandBilkentdatabases[51,52,50,47].Contoursofdynamictextureregions(eg,fire,water,and steam)areshowninthisfigure.Dynamicregionsinvideoseemtobesegmentedverywell.However,duetothehighcomputationalcost,thesegeneraltechniquesarenotusedinpracticalfiredetectionalgorithmswhichshould runonlow-costcomputers,FPGAs,ordigitalsignalprocessors.Iffuture developmentsincomputersandgraphicsacceleratorscouldlowerthecomputationalcost,dynamictexturedetectionmethodsmaybeincorporatedinto thecurrentlyavailableVFDsystemstoachievemorereliablesystems.

Ordinarymovingobjectsinvideo,suchaswalkingpeople,haveapretty stableoralmostperiodicboundaryovertime.Ontheotherhand,uncontrolledflameandsmokeregionsexhibitchaoticboundarycontours.Therefore,disorderanalysisofboundarycontoursofamovingobjectisusefulfor firedetection.Someexamplesoffrequentlyusedmetricsarerandomnessof areasize[23,32],boundaryroughness[14,11,28,32],andboundaryarea

Figure2.5 Dynamictexturedetection:contoursofdetecteddynamictextureregions areshowninthefigure(ResultsfromDYNTEXandBilkentdatabases [51,53]).

disorder[18].Althoughthosemetricsdifferindefinition,theoutcomeof eachofthemisalmostidentical.Inthesmokedetectordevelopedby Verstocketal.[2],disorderanalysisoftheBoundaryAreaRoughness (BAR)isused,whichisdeterminedbyrelatingtheperimeteroftheregion tothesquarerootofthearea(Fig.2.6).AnothertechniqueisthehistogrambasedorientationaccumulationbyYuan[22].Thistechniquealsoproduces gooddisorderdetectionresults,butitiscomputationallymorecomplex thantheformermethods.Relatedtothedisorderanalysisisthegrowing ofsmokeandflameregionsintheearlystageofafire.In[31,34],thegrowth rateoftheregion-of-interestisusedasafeatureparameterforfiredetection. Comparedtodisordermetrics,however,growthanalysisislesseffectivein detectingthesmoke,especiallyinwildfiredetection.Thisisbecausethe smokeregionappearstogrowveryslowlyinwildfireswhentheyareviewed fromlongdistances.Furthermore,anordinaryobjectmaybeapproaching thecamera.

2.2SPATIOTEMPORALNORMALIZEDCOVARIANCE DESCRIPTORS

Arecentapproachwhichcombinescolorandspatiotemporalinformationby regioncovariancedescriptorsisusedinEuropeanCommissionfundedFP-7 FIRESENSEproject[54–56].Themethodisbasedonanalyzingthespatiotemporalblocks.Theblocksareobtainedbydividingthefire-andsmokecoloredregionsinto3Dregionsthatoverlapintime.Classificationofthe featuresisperformedonlyatthetemporalboundariesofblocksinsteadof

Figure2.6 Boundaryarearoughnessofconsecutiveflameregions.

performingitateachframe.Thisreducesthecomputationalcomplexityof themethod.

CovariancedescriptorsareproposedbyTuzel,Porikli,andMeertobe usedinobjectdetectionandtextureclassificationproblems[54,55].In [57,75,76]temporallyextendednormalizedcovariancedescriptorstoextract featuresfromvideosequencesareproposed.

Temporallyextendednormalizedcovariancedescriptorsaredesignedto describespatiotemporalvideoblocks.Let I(i, j, n)betheintensityof(i, j)th pixelofthe nthimageframeofaspatiotemporalblockinvideo.Thepropertyparametersdefinedinequationsbelowareusedtoformacovariance matrixrepresentingspatialinformation.Inadditiontospatialparameters, temporalderivatives, It and Itt areintroducedwhicharethefirstandsecond derivativesofintensitywithrespecttotime,respectively.Byaddingthese twofeaturestothepreviouspropertyset,normalizedcovariancedescriptors canbeusedtodefinespatiotemporalblocksinvideo.

Forflamedetection:

Inordertoimprovethedetectionperformance,themajorityofthearticlesintheliteratureuseacombinationofthefirefeatureextractionmethods describedabove.Dependingonthefire/environmentalcharacteristics,one combinationoffeatureswilloutperformtheother,andviceversa.In Section2.4,wedescribeanadaptivefusionmethodcombiningtheresultsof variousfiredetectionmethodsinanonlinemanner.

Itshouldbepointedoutthatarticlesintheliteratureandthosewhichare referencedinthisstate-of-the-artreviewindicatethatordinaryvisiblerange camera-baseddetectionsystemspromisegoodfiredetectionresults.However, theystillsufferfromasignificantamountofmisseddetectionsandfalsealarms inpracticalsituations,asinothercomputervisionproblems[5,6].Themain causeoftheseproblemsisthefactthatvisualdetectionisoftensubjecttoconstraintsregardingthesceneunderinvestigation(eg,changingenvironmental conditions,differentcameraparameters,andcolorsettingsandillumination). Itisalsoimpossibletocomparethearticleswitheachotheranddeterminethe bestone.Thisisbecausetheyusedifferenttraininganddatasets.

Adatasetoffireandnon-firevideosisavailabletotheresearchcommunity inEuropeanCommissionfundedFIRESENSEprojectwebpage[56].These testvideoswereusedfortrainingandtestingpurposesofthesmokeandflame detectionalgorithmsdevelopedwithintheFIRESENSEproject.Thus,afair comparisonofthealgorithmsdevelopedbyindividualpartnerscouldbeconducted.Thetestdatabaseincludes27testand29trainingsequencesofvisible spectrumrecordingsofflamescenes,15testand27trainingsequencesofvisiblespectrumrecordingsofsmokescenes,and22testand27training sequencesofvisiblespectrumrecordingsofforestsmokescenes.Thisdatabase iscurrentlyavailabletoregisteredusersoftheFIRESENSEwebsite[Reference:FIRESENSEprojectFileRepository, http://www.firesense.eu,2012].

2.3CLASSIFICATIONTECHNIQUES

Apopularapproachfortheclassificationofthemulti-dimensionalfeature vectorsobtainedfromeachcandidateflameorsmokeblobisSVMclassification,typicallywithRadialBasisFunction(RBF)kernels.Alargenumber offramesoffireandnon-firevideosequencesneedtobeusedfortraining theseSVMclassifiers;otherwisethenumberoffalsealarms(falsepositivesor truenegatives)maybesignificantlyincreased.

OtherclassificationmethodsincludetheAdaBoostmethod[22],neural networks[29,35],Bayesianclassifiers[30,32],Markovmodels[28,33],and rule-basedclassification[58].

Asinanyvideoprocessingmethod,morphologicaloperations,subblocking,andclean-uppost-processing,suchasmedian-filtering,areused asanintegralpartofanyVFDsystem[21,22,25,20,26,33,36,59].

2.4EVALUATIONOFVISIBLERANGEVFDMETHODS

AnevaluationofdifferentvisiblerangeVFDmethodsispresentedin Table2.1. Table2.1 summarizescomparativedetectionresultsforthesmoke andflamedetectionalgorithmbyVerstockt[2](Method1),acombination oftheflamedetectionmethodbyCeliketal.[60]andthesmokedetection byToreyinetal.[14](Method2)andacombinationofthefeature-based flamedetectionmethodbyBorgesetal.[23]andthesmokedetection methodbyXiongetal.[18](Method3).Amongvariousalgorithms, Verstockt’smethodisarelativelyrecentone,whereasflamedetection methodsbyCelikandBorgesandthesmokedetectionmethodsbyToreyin andXiongarecommonlyreferencedmethodsintheliterature.

Table2.1 AnevaluationofdifferentvisiblerangeVFDmethods

(#frames) #Fireframes groundtruth

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.