Drug delivery trends: volume 3: expectations and realities of multifunctional drug delivery systems

Page 1


DrugDeliveryTrends:Volume3:Expectationsand RealitiesofMultifunctionalDrugDeliverySystems 1stEditionRanjitaShegokar(Editor)

https://ebookmass.com/product/drug-delivery-trendsvolume-3-expectations-and-realities-of-multifunctional-drugdelivery-systems-1st-edition-ranjita-shegokar-editor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Drug Delivery Aspects: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 4: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/drug-delivery-aspects-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-4-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar/ ebookmass.com

Delivery of Drugs: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 2: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/delivery-of-drugs-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-2-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-edit/ ebookmass.com

Nanopharmaceuticals: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/nanopharmaceuticals-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-1-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-ed/ ebookmass.com

Remaking Central Europe: The League of Nations and the Former Habsburg Lands Peter Becker

https://ebookmass.com/product/remaking-central-europe-the-league-ofnations-and-the-former-habsburg-lands-peter-becker/ ebookmass.com

Fatherhood and Love: The Social Construction of Masculine Emotions 1st Edition Alexandra Macht

https://ebookmass.com/product/fatherhood-and-love-the-socialconstruction-of-masculine-emotions-1st-edition-alexandra-macht/

ebookmass.com

The Earl’s Promised Bride (One Night in Blackhaven Book 2) Mary Lancaster

https://ebookmass.com/product/the-earls-promised-bride-one-night-inblackhaven-book-2-mary-lancaster/

ebookmass.com

Google Discover verstehen und nutzen: Ein Leitfaden für Publisher Steven Plöger

https://ebookmass.com/product/google-discover-verstehen-und-nutzenein-leitfaden-fur-publisher-steven-ploger/

ebookmass.com

Occupying Schools, Occupying Land: How the Landless Workers Movement Transformed Brazilian Education Rebecca Tarlau

https://ebookmass.com/product/occupying-schools-occupying-land-howthe-landless-workers-movement-transformed-brazilian-education-rebeccatarlau/

ebookmass.com

Fix Me: How to Manage Anxiety and Take Control of Your Life Belynder Walia

https://ebookmass.com/product/fix-me-how-to-manage-anxiety-and-takecontrol-of-your-life-belynder-walia/

ebookmass.com

Partners

of

the Imagination: The Lives, Art and Struggles of John Arden and Margaretta D’Arcy Robert Leach

https://ebookmass.com/product/partners-of-the-imagination-the-livesart-and-struggles-of-john-arden-and-margaretta-darcy-robert-leach/

ebookmass.com

DRUGDELIVERYTRENDS

EXPECTATIONSANDREALITIESOF MULTIFUNCTIONALDRUG DELIVERYSYSTEMS

VOLUME3

CapnomedGmbH,Zimmern,Germany

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.

Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817870-6

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: AndreGerhardWolff

AcquisitionsEditor: ErinHill-Parks

EditorialProjectManager: PatGonzalez

ProductionProjectManager: PunithavathyGovindaradjane

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Contributors

SalvanaCosta UniversidadeTiradentes(UNIT), Aracaju,Sergipe,Brazil

J.Dias-Ferreira DepartmentofPharmaceutical Technology,FacultyofPharmacy,Universityof Coimbra(FFUC),PolodasCiênciasdaSaude, AzinhagadeSantaComba,Coimbra,Portugal

A.R.Fernandes DepartmentofPharmaceutical Technology,FacultyofPharmacy,Universityof Coimbra(FFUC),PolodasCiênciasdaSaude, AzinhagadeSantaComba,Coimbra,Portugal

RohitC.Ghan AurobindoPharmaceuticalsUSA Inc.,Dayton,NJ,UnitedStates

RandeepKaur UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh, India

MatthiasM.Knopp DepartmentofPharmacy, UniversityofCopenhagen,Copenhagen,Denmark

A.K € onigsrainer NationalCenterforPleuraand Peritoneum,UniversityofTubingen,Tubingen, Germany

KorbinianL € obmann DepartmentofPharmacy, UniversityofCopenhagen,Copenhagen,Denmark

ConradoMarques UniversidadeFederaldeSergipe (UFS),CampusLagarto,DepartamentodeMedicina,Sergipe,Largarto,Brazil

MuhanedAl-Hindawi OnTargetPharmaConsultancyLimited,NewMalden,Surrey,United Kingdom

LucianaNalone UniversidadeTiradentes(UNIT), Aracaju,Sergipe,Brazil;InstitutodeTecnologiae Pesquisa(ITP),Aracaju,Sergipe,Brazil

AdamProcopio Merck & Co.,Inc.,Kenilworth,NJ, UnitedStates

SaeedA.Qureshi Pharmacomechanics,Ottawa, ON,Canada

VivekRanjanSinha UniversityInstituteofPharmaceuticalSciences,PanjabUniversity,Chandigarh, India

M.A.Reymond NationalCenterforPleuraandPeritoneum,UniversityofT € ubingen,T € ubingen,Germany

PatríciaSeverino UniversidadeTiradentes(UNIT), Aracaju,Sergipe,Brazil;InstitutodeTecnologiae Pesquisa(ITP),Aracaju,Sergipe,Brazil

RanjitaShegokar CapnomedGmbH,Zimmern, Germany

A.A.M.Shimojo DepartmentofMaterialsEngineeringandBioprocesses,SchoolofChemicalEngineering,StateUniversityofCampinas(UNICAMP), CidadeUniversitariaZeferinoVaz Barao Geraldo,Campinas,SaoPaulo,Brazil

A.M.Silva DepartmentofBiologyandEnvironment,SchoolofLifeandEnvironmentalSciences, UniversityofTras-os-MontesandAltoDouro, VilaReal,Portugal;CentrefortheResearchand TechnologyofAgro-EnvironmentalandBiological Sciences,UniversityofTras-os-MontesandAlto Douro,VilaReal,Portugal

ElianaB.Souto DepartmentofPharmaceutical Technology,FacultyofPharmacy,Universityof Coimbra(FFUC),PolodasCiênciasdaSaude,AzinhagadeSantaComba,Coimbra,Portugal;CEB CentreofBiologicalEngineering,Universityof Minho,CampusdeGualtar,Braga,Portugal

M.C.Teixeira DepartmentofPharmaceuticalTechnology,FacultyofPharmacy,UniversityofCoimbra(FFUC),PolodasCiênciasdaSaude, AzinhagadeSantaComba,Coimbra,Portugal

DivyaTewari NoramcoInc.,Wilmington,DE, UnitedStates

PramilTiwari DepartmentofPharmacyPractice, NationalInstituteofPharmaceuticalEducation & Research(NIPER),S.A.S.Nagar,Punjab,India

NazendeGundayTureli MJRPharmJetGmbH, Uberherrn,Saarland,Germany

AkifEmreTureli MJRPharmJetGmbH, Uberherrn, Saarland,Germany

DanilloF.M.C.Veloso DepartmentofPharmacy, UniversityofCopenhagen,Copenhagen,Denmark VenkatTumuluri NovartisHealthcarePvt.Ltd., Hyderbad,India

Preface

Thebookseriestitled Expectationsand RealitiesofMultifunctionalDrugDelivery Systems coversseveralimportanttopicson drug-deliverysystems,regulatoryrequirements, clinicalstudies,intellectualpropertiestrends, newadvances,manufacturingchallenges,etc. writtenbyleadingindustryandacademic experts.Overall,thechapterspublishedinthis seriesreflectthebroadnessofnanopharmaceuticals,microparticles,otherdrugcarriers,and theimportanceofrespectivequality,regulatory, clinical,GMPscale-up,andregulatory registrationaspects.

Thisseriesisdestinedto filltheknowledge gapthroughinformationsharingandwithorganizedresearchcompilationbetweendiverse areasofpharma,medicine,clinical,regulatory practices,andacademics.

ExpectationsandRealitiesofMultifunctional DrugDeliverySystems isdividedintofour volumes:

Volume1:Nanopharmaceuticals

Volume2:DeliveryofDrugs

Volume3:DrugDeliveryTrends

Volume4:DrugDeliveryAspects

Thespecificobjectivesofthisbookseries areto:

1.provideaplatformtodiscussopportunities andchallengesindevelopmentofnano medicineandotherdrug-deliverysystems; 2.discusscurrentandfuturemarkettrends; 3.facilitateinsightsharingwithinvariousareas ofexpertise;and

4.establishcollaborationsbetweenacademic scientists,andindustrialandclinical researchers.

Innovativecutting-edgedevelopmentsin micro-nanotechnologyoffernewwaysof preventingandtreatingdiseaseslikecancer, malaria,HIV/AIDS,tuberculosis,andmany more.Theapplicationsofmicro-nanoparticles indrugdelivery,diagnostics,andimagingare vast.Hence, Volume3:DrugDeliveryTrends inthebookseriesmainlyreviewsadvancesin drugdeliveryareasviatargetedtherapywith improveddrugefficiencyatalowerdose,transportationofthedrugacrossphysiological barriers,aswellasreduceddrug-relatedtoxicity.

ThecontributionbyFernandesetal. (Chapter1) discussesnewtrendsindrug deliveryareasviabioactivehybridnanowires. Nanowiresoffermultifunctionalityandtheprospectofbiofunctionalization,therebyreducing toxicityandsideeffects.Thissynergisticapproach overcomesthechallengesassociatedwithconventionalnanomedicinesandexhibitsbetterperformance.Theauthorsreviewthepotentialof nanowiresinthischapter.

ThechapterbyProcopioandTewari (Chapter 2) highlightsanotherindustrytrend i.e.,3D printing.Thisisafascinatingtopicrecently adoptedbyindustry.TheFoodandDrug Administrationhasalreadyapprovedthe first product:Spritam(levetiracetam),a3Dprinted tablet(ApreciaPharmaceuticals).Athorough overviewofmaterialrequirements,typesof

polymer,available3Dprintingtechniques,and regulatoryaspectsisprovided.Finally,theauthorspresentcasestudiesfromindustryon tunablereleasetechnologyandpastegel extrusionintableting.

ThecontributionbyAl-Hindawi (Chapter3) describesmarketingauthorizationandlicensing ofmedicinalproductsintheEuropeanUnion. Themainaimofthischapteristoprovide readerswithageneralizedoverviewofthesteps andcriteriawhileapplyinglicensesinthe EuropeanUnion.Theauthoralsohighlights variousdirectives,extensionrequests,protection periods,andlegalrequirementsguidanceto industryandresearchers.Ontheotherhand, preclinicalunderstandingiskeytoproposing productsforparticularindications.

ThechapterbyTiwarietal. (Chapter4) reviewspreclinicalconsiderationsonmicroandnanodrugdelivery,whichwillleadtothe properpositioningofproductsformarket authorization.

TheworkbyGhan (Chapter5) isaimedatdiscussingsynergisticdeliveryofnanoparticles usingtraditionalapproachesliketabletingor otherforms.Theauthorreviewsvariousnanoparticulatetreatmentsfororaldeliveryto improvebioavailability,targetspeci ficregions inthegastrointestinaltract,improvephysiologicalstabilityinthegutenvironment,and modulatereleasewhenneeded.Drugdelivery systemslikesolidlipidnanoparticles,polymeric nanoparticles,nanomicelles,andnanosuspensionarealsoreviewed.

ThechapterbyTumuluri (Chapter6) highlightsopportunitiesandchallengesin formulatingminitablets.Thisisanothertrend inoraldrugdeliverysystemsbesidesnano-oral and3Dprinteddosageforms.Theauthor describesindetailtechnologicalpotential,industrialadvantages,technologicalavailability,and thelimitationsofminitablets.

ThetopicpresentedbyNaloneetal. (Chapter7) describesthepotentialofliquidcrystallinesystemsindrugdelivery.Thischapter

discussesindetailthemechanismofformation ofliquidcrystallinesystems,typesofstructure formed,factorsaffectingformationofliquidcrystallinesystems,compositions,advantages,and limitationsoftheseformsofdrugdelivery systems.

ThechapterbyVelosoetal. (Chapter8) reviewsopportunitiesandchallengesinamorphousdrugstabilizationusingmesoporous materials.Theteamofauthorshighlightskey pointsliketheroleofmesoporousmaterials, structuralcharacterizationsofsuchsystems, physicalformsofdrugloading,andphysical performanceofmesoporousparticles.Mesoporousparticleshavehugepotentialinpharmaceuticalsasadrugdeliverysystem,incosmetics,in nutraceuticals,andinfast-movingconsumer goods(detergent,oralcare),andisahighly exploredtrendinthemarket.

Qualityisanimportantaspectinregulatory whichmakessurepatientsreceive “quality” products.Newertrendsinpharmaceuticalslike nanomedicines,drugdevicecombinations, nanoparticulate-basedtablets,etc.require specialtechniquesandanunderstandingof quality.ThechapterbyQureshi (Chapter9) asksquestionslike “whatisquality?” , “dowe evaluatequalityasperaregulatorydefinition?” , and “isthereaneedtochangethedefinitionof qualitywhenaproductisaltered?” Themain themeofthischapteristounderlinebasic conceptsof “quality” anddiscussthemwith regardtocurrentpractices.Theauthorprovides hisviewsonfurthermodificationsofcurrent testingmethodologiestoassure “realquality.”

TheworkbyReymondandKonigsrainer (Chapter10) isaimedatdiscussingthepotential ofpressurizedintraperitonealaerosolchemotherapy(PIPAC).Theauthorsreviewvarious chemotherapeuticsystemscurrentlyused invitro/exvivomodelsandthesuccessof clinicaltrialstodate.Thisgeneralizedoverview ofPIPACtechnologyprovidesreaderswith updatesfromanotherinnovativetrendin medicalpractice.

ThelastcontributionbyTureliandTureli (Chapter11) describesindustrialchallengesof upscalingandgoodmanufacturingpracticein theproductionofpharmaceuticaldrugdelivery systems.Theauthorshighlightthecurrentregulatorystatusofapprovednanomedicinesand manufacturinglimitationsandinitiatives.

Insummary,Iamsurethisbookvolumeand thecompletebookserieswillprovideyougreat

insightsinareasofmicro-nanomedicines,drug deliverysciences,newtrends,andregulatory aspects.

Alltheeffortsofexperts,scientists,andauthorsarehighlyacknowledgedforsharingtheir knowledge,ideas,andinsightsaboutthetopic.

Bioactivehybridnanowires:anewin trendforsite-speci ficdrugdeliveryand targeting

A.R.Fernandes1,J.Dias-Ferreira1,M.C.Teixeira1, A.A.M.Shimojo2,PatríciaSeverino3,4,A.M.Silva5,6, RanjitaShegokar7,ElianaB.Souto1,8

1DepartmentofPharmaceuticalTechnology,FacultyofPharmacy,UniversityofCoimbra(FFUC),Polo dasCi^ enciasdaSaude,AzinhagadeSantaComba,Coimbra,Portugal; 2DepartmentofMaterials EngineeringandBioprocesses,SchoolofChemicalEngineering,StateUniversityofCampinas (UNICAMP),CidadeUniversitariaZeferinoVaz BaraoGeraldo,Campinas,SaoPaulo,Brazil; 3UniversidadeTiradentes(UNIT),Aracaju,Sergipe,Brazil; 4InstitutodeTecnologiaePesquisa(ITP), Aracaju,Sergipe,Brazil; 5DepartmentofBiologyandEnvironment,SchoolofLifeandEnvironmental Sciences,UniversityofTras-os-MontesandAltoDouro,VilaReal,Portugal; 6CentrefortheResearch andTechnologyofAgro-EnvironmentalandBiologicalSciences,UniversityofTras-os-MontesandAlto Douro,VilaReal,Portugal; 7CapnomedGmbH,Zimmern,Germany; 8CEB CentreofBiological Engineering,UniversityofMinho,CampusdeGualtar,Braga,Portugal

1.Introduction

Hyperthermia(“hyper” and “therme ” ,meaning “rise” and “heat”)isatherapeuticapproach tocancertreatment.Someresearchershave relatedthatasarcomadisappearedafteravery highfever.This findingisduetothereaction ofimmunesystemswithbacterialinfection[1]. Cancercellsarerecognizedasbeingvulnerable tohightemperatures.Thegrowthofthesecells

canbeterminatedattemperaturesranging from41to46 Corbelow47 Cforatleast 20 60min[2,3].Hyperthermiaistherefore usedlocallytopreventdiseasebyexposingthe wholebodytohightemperaturestoovercome adversesideeffectsandtoincreasetreatmentefficiency[4].

Theintroductionofmagneticnanoparticles incancerhyperthermiahasbeendeveloped andgrownsignificantlyduringthelastdecade.

Thespecialfeaturesoftheseparticlesarerelated totheircapacitytoefficientlyaccumulateatthe tumorcellsthroughtheincreasedpermeability ofthetumorvesselsandbycancer-speci ficbindingagents,makingthetreatmentmoreselective andeffective[5].Theapplicationofanalternatingmagnetic field(AMF)withtheintroductionofmagneticnanoparticlesgenerateslocal heatinthetissuesthatcontainthesenanoparticlesduetomagneticrelaxationandhysteresis loss[6].Particlecharacteristicssuchassizedistribution,shape,crystalstructure,particlemagneticanisotropyanditstemperature dependenceonmagnetization, fluidviscosity, amplitudeandfrequencyoftheAMFdirectly affectthegenerationofheat,whichinturndependsontheabsorptionefficiencyofthemagneticparticles[1,7].

Asignificantnumberofmagneticnanoparticleshavebeenstudiedoverthelastfewdecades.Examplesofwell-knownhyperthermic agentsincludeironoxide-basednanomaterials suchasmagnetite(Fe3O4)andmaghemite(gFe2O),whichcontinueattractingattentiondue totheirlackoftoxicityandexcellentbiocompatibility[8].Ferritenanoparticles(XFe2O4,where X canbeCo,Mn,Ni,Li,ormixesofthese metals),metallicnanoparticles,suchasMn,Co, Ni,Zn,Gd,Mg,andtheiroxides,ormetalalloys (FeCo,CoPd,FePt,NiPd,NiPt,NiCu)havealso beenstudiedaspossiblecandidatesforhyperthermiatreatments[9 11].

Therearenewdesignsofmagneticnanomaterialsbasedonacore/shellapproachthathave startedtogainprominenceduetotheirversatility totailorpropertiesofbothcoreandshellandto offermultifunctionality,suchascoreprotection, biofunctionalizationplatform,toxicityreduction, andincreaseinbiocompatibility.Examplesof theseparticlesaregold-orsilica-coatedferromagneticparticles[12].Magneticnanoparticlesalso holdgreatpromisefordrugdeliverybyheating thetissues.Thedrugcanbereleasedusingtwo strategies.Inthe firstapproach,thedrugmoleculesareattachedtotheparticlesthrougha linker,whichbreakswiththeheatgeneratedby

10. Drugdelivery 1.Bioactivehybridnanowires:anewintrendforsite

thepresenceofAMF,withtheconsequentrelease ofthedrug.Inthesecondapproach,thereleaseof drugstakesplacefromapolymericmatrixwith magneticmaterial[5,13].Theheatcreatedby themagnetic fieldproducescrevicesorcracksinsidethepolymericmatrix,whichreleasesthe encapsulateddrugs[5].

Nanowires,nanowhiskers,nanofibers,nanotubes,andotherone-dimensionalnanostructures havedemonstratedhugeabilitiesforimproving theelectrical,optical,thermal,andmechanical propertiesofabroadrangeoffunctionalmaterialsandcomposites[14].Theseenhancements substantiallyexceedthoseofferedbymicro-or nanosizedparticles.Mostofthemethodsused fortheirsynthesisarerelativelyexpensiveand difficulttoscaleup[15].Theunderlyingprinciplesforthesynthesisofone-dimensionalmaterialsoffersignificantchallengesinthecontrolof diameter,structure,andcompositionintheaxial andradialcoordinates,whichareessentialfor thesynthesisofmaterialswithdesignedand tunablefunctionality[16].

Nanowires,besidestheirmagneticperformance,alsohaveasoaninterestindeveloping intrinsicmobilitytriggeredbyaphotochemical reaction.Examplesofapplicationsofmagnetic segmentednanowiresare:

1. Magneticalignmentandwirelessmanipulation(Au/polypyrrole/Ni)[17]

2. Magnetic fieldsensorsandspintronicnanodevices(Co/CuandFeCoNi/Cu)[18]

3. Photochemicalconversionandhydrogen generation(Ag/ZnO)[ 19 ]

4. DetectionofDNAmolecules(CdTe/Au/ CdTe)[ 20 ]

5. Magneticcontrolofbiomoleculedesorption (FeCo/Cu)[21]

6. Exchange-coupledpatternedmedia(Ni/ CoPt)[ 22 ]

7. Nanosensors(Au/Co)[23]

8. Catalyticactivities(Pt/Ni)[24]

9. Higheroxygenreductionreactionactivity (Co/Pt)[ 25 ,26 ]

Magneticnanoparticles(includingnanowires) arerecognizedasnanoparticleswithunique physicochemicalpropertiesandaremostly differentfromthoseofconventionalmaterials, speci ficallytheelectromagneticproperties.Magneticnanoparticlesshowgoodmagneticorientation,smallsize,biodegradability,andreactive functionalgroups[27].Thebiocompatibilityof magneticnanoparticlescanbeimprovedby combiningthemwithavarietyoffunctional moleculessuchasenzymes,antibodies,cells, DNA,orRNA.Thecoatingofothermaterials suchaspolyethyleneglycol(PEG),chitosan, lipids,andproteinswithgoodbiocompatibility canstabilizemagneticnanoparticlesinphysiological fluidsandprovidechemicalfunctionality foradditionalmodifications[28].

2.Typesofnanowires

Inthelastfewyears,magnetichybridnanowireshavebeenintensivelystudiedformany applications,suchasopticsandmedicine.There aretwotypesofmorphologiesinhybrid nanowires:

1. Radialstructures(core/shelltype);and 2. Axialstructures(segmentedorlayeredtype).

Thenanowiresthatpresentacore/shellstructureexplainmanyphysicalcharacteristicsinthe magnetismofthenanoparticles.Thehard/soft core/shellnanoparticleshavebeenstudiedand revealinterestingmagneticproperties,i.e., reversibletuningoftheblockingtemperature [29],improvedmicrowaveabsorption[30],optimizedhyperthermia[31],andenhancedcoercivity[32].Themagneticsegmentednanowires havemultifunctionalandstructuraladvantages comparedtotheircounterparts,singlecomponentnanowires.Theliteraturereports thatmagneticsegmentednanowiresare

composedofalternatingstructuresofferromagnetic/ferromagneticorferromagnetic/nonmagneticmaterials,suchasNi/Cu[33],Ni/Au[34], Co/Cu[35],NiFe/Cu[36],CoNi/Cu[37], FeCoNi/Cu[38],FeGa/Cu[39],Co/Pt[40], NiFe/Pt[41],andNiCoCu/Cu[42],among others.

3.Productionmethods

Thepropertiesofmanysystemsarebasically dependentofthematerialtypeusedinproduction;however,inthecaseofnanowiresthe materialgeometryisalsoimportant.Thusto produceandmaximizeallthepropertiesof nanowiresrequiresreliableandcontrolledsyntheses.Thesynthesismethodscanbegrouped intotwocategories:(1)top-downand(2) bottom-upsynthesis.

3.1Top-downmethod

Themostconventionaltop-downmethodin thefabricationofnanowiresislithography. Lithographyisbasedonthedepositionofaresistantmaterial,forexample,poly(methylmethacrylate),thathasthefunctiontoactasa photographic filmfortheproductionofapattern afterexposureanddevelopmentusinga patternedmask.Theresolutionofthistechnique isdependentonthewavelengthoflightusedin photolithographyandsometimesisnotsuitable forsmallnanowires[43].Toobtainpatterns withahigherresolution,normallyelectronbeamlithographyisthemethodused,which doesnotuseamaskandhasdirect-writeexposure[44].Thusnanowirescanbeobtainedby etchingtheextraneousmaterialfromthewafer. Resistancecanbeapplieddirectlybecausethe etchmaskcanserveasthetemplateforthedepositionofamuchmorestablemaskmaterial,for example,gold.Materialthatcanbeusedto

etchapatternis,forexample,potassiumhydroxide(awetchemicaletchant)oranotherelectrochemicaletchant.Withthesematerialsitis possibletoproducetaperedcylindricalwires oncetheetchingisunderneaththemask[45]. Onewaytoobtaincylindricalverticalwiresis tochangethewetchemicaletchwithahighly anisotropicdeepreactiveionetch[46].Nanospherelithographyisanotherapproachthat promiseshigherresolutionbycombiningthe self-assemblyofamonolayerofnanospheresof polystyrene,forexample,ontoasubstrateina close-packedlattice[47].Thenanospheresserve asamodelforthedepositionofametalor anothermaterialandareremovedafterdeposition.Nanoscalepatternscanbeproducedbymechanicaltransferusingnanoimprintlithography [48,49].

3.2Bottom-upmethod

Incontrasttotop-downtechniques,bottomupsynthesisofferstheopportunitytocontrol nanowirecompositionduringgrowth.

Inthistechniqueoftheproductionofnanowires,theanisotropicgrowthofnanowiresis normallydoneusingnanoparticlecatalystsand gas-phaseprecursors.Themostusedmethodof productionisvapor/liquid/solidgrowth.In thismethod,gaseousprecursorsareusedto obtainthedesirednanowiresandtheseprecursorsaredissolvedintoaliquid-metalcatalyst, forexample,inthecaseofsiliconnanowires theprecursorusedisSiCl4.Afterthecatalystis supersaturated,solidnanowirecrystallization fromtheliquidcatalystbegins[50,51].Inthis process,themetalshouldformadropletinthe liquidstatethatwillserveasthecatalyst.This droplet,insomecases,willmeltatalowertemperaturewhencomparedtopuremetal,dueto itseutecticcomposition.Inthecaseofthesynthesisofbinaryorternarycompounds,which aremetalswithlowmeltingpoints,thevapor/ liquid/solidsystemcanbeself-catalyzed[52]. Thesolution/liquid/solidmethodisanother techniqueofnanowireproductionsimilarto

thevapor/liquid/solidmethod;however,in thiscasenanowireprecursorsaredissolvedin ahigh-boilingliquidandthecatalystsaresuspendedinthisliquid[53].Substrates,suchas anodicaluminumoxide,canbeusedastemplate solutionfornanowiregrowth,usingelectrochemicaldepositionandafter fillingthechannels inthetemplate[54].Controlofgrowthalongthe axesofnanowiresisnecessaryfortheintroductionofsurfactantscapableofchangingthesurfaceenergyofcrystalfacets,forexample, hexadecyltrimethylammoniumbromide. Anisotropyofnanowiresiseasytoachieveby thecontrolofsurfacechemistry[55](Tables1.1 and1.2 and Fig.1.1).

4.Applicationsofnanowires

Nanowirebiosensorsconsistoftypical fieldeffecttransistor-baseddevices,madeupofthree electrodesthatareverysensitivetothevariation inthechargedensitythatpromoteschangesin theelectric fieldattheexternalsurfaceofthe nanowires[64].

Nanowireshaveahighsurface-to-volumeratioandwell-de finedgeometry;theyhavehigh sensitivityandshortresponsetime.Thesecharacteristicsofferapplicationsinbiologyand chemistry.Applicationsofnanowirescanbe categorizedintotwomethodologies:electrical detectionandopticaldetection[49].

4.1Nanowiresinbioanalyticalchemistry

Oneofthebioapplicationsofnanowiresis biomoleculeanalysis.Thisapplicationincludes thestudyofmechanicalcelllysis.Cellularlysis isafundamentalprocessinthestudyofintracellularcomponents.Thereareanumberofwellestablishedmethodsthatcananalyzethecell components,suchaschemical,electrical,and mechanicalmethods.Inthecaseofchemical celllysismanystepsarenecessaryanditisan expensiveprocess,consumingmanyreagents aimedatthepurificationofbiomoleculesamples.Anotherdisadvantageisthehighprobabilityoftheoccurrenceofharmfuleffectson

FIGURE1.1 ScanningelectronmicroscopyimagesofCuSnanowires:(A)array;(B)copperoxide(CuO)nanotubes; (C)array;(D)fabricationusinganodicaluminumoxidetemplate. ImagecopiedfromMuC,HeJ,ConfinedconversionofCuSnanowirestoCuOnanotubesbyannealing-induceddiffusioninnanochannels.vol.6.2011.p.150.Availablevialicense:CCBY2.0(https:// creativecommons.org/licenses/by/2.0/).

TABLE1.1 Advantagesanddisadvantagesoftop-downandbottom-upmethods[56 58].

MethodsAdvantagesDisadvantages

Top-downEasytoconstructorderarraysofnanowires.

Thisorderfacilitateselectricalcontactwiththe nanowiresandtheirintegrationintolarge-scale devices

Compatibilityofproductionmethodswith standardmicroelectronicsindustryprocesses. Easyscale-up

Bottom-upProvidestheopportunityforthecontrolofthe compositionofnanowiresduringgrowth,which permitstheproductionofcomplexsuperlattice structures

Theapplicabilityofthephotolithographymethoddecreasesas thedesiredlengthscalediminishes,whichrequirestheuseof moreadvancedmethods,forexample,extremeultraviolet lithography,electron-beamandscanningprobelithographies

Nanowiresformedbytop-downmethodsfrequentlylack complexelectroniccharacteristics.Allthecodificationsafter growthgreatlyincreasethematerialcostofnanowire

Themajorchallengeofthesemethodsistheirintegrationinto large-scaledevices

microorganisms[65,66].Thesolutiontothis problemsistheuseofelectricalcelllysis,which islessharmfulthantheaforementionedmethod; however,itstillanexpensivemethodandhasa lowthroughput[67].Theultimatediscovery wastheuseofnanowiresbecauseoftheirsmall size(smallerthanthecells)andthecriticaladvantageisthatthenanowiretipcanpenetrateand

1.Bioactivehybridnanowires:anewintrendforsite

TABLE1.2 Drugsincorporatedinnanowires.

Activepharmaceutical ingredient(API)TypeofsystemAim

Production methodsReferences

PaclitaxelCunanowiresTotargetthespleenBottomup[59]

DexamethasonePolypyrrole nanowires

Forulcerations,deepboneinjuries, ortumors;avoidsthesideeffectsof systemictreatmentwith steroidsorchemotherapy

Bottomup[60]

CurcuminSilvernanowiresCancertreatmentBottomup[61]

DoxorubicinSilvernanowiresCancertreatmentBottomup[62]

CerebrolysinHydrogentitanate nanowires

ReductionofbrainedemaTopdown[63]

disruptthefunctionofcellularmembranes[68]. Nanowireseliminatemicroorganismsincells muchfasterthanthepreviouslydescribed methods.

Inanalyticalandbiologicalprocesses,the developmentofbiomoleculeseparationand analysisisessential.Intheseparationoflong DNAmolecules,conventionalgelelectrophoresishasadisadvantage:itisnecessaryto analyzebiomoleculesforseveralhours.The combinationofnanostructuresproducedby top-downapproachesandmicro fluidicsystems isusuallyproposedtoovercometheproblem. However,difficultyintheirproductionusing anelectron-beamlithographyprocessmakesit averyexpensiveandsophisticatedsystem [69,70].Ontheotherhand,nanostructuresproducedbybottom-upapproachesoffereasyfabricationandseparationofbiomolecules;however, sizelimitationcausesdifficultyintheirdevelopment.Toovercomealltheseproblems,selfassemblednanowirestructuresofmetaloxides havebeeninvestigatedduetotheirrigidityand thepossibilityofreusability[49](Table1.3).

4.2Nanowiresasbiosensorsinmedical

diagnosis

Therearemanychallengesaheadthatmustbe addressedbeforenanowirescanbesuccessfully

usedforbiomedicalapplications.Majorchallengesinclude

1. advancedtechniquesandeasymethods (neededtoincreasethesensitivityofnanowirebasedelectrochemicalcytosensorsinsignal ampli fi cation),

2. furtherresearchintonanowirestopromote celladhesion,sensitivity,andselectivity,

3. morespecializedcoatingstodecreasenonspeci fi cbonding,

4. protocolsandfurtherexperimentstodeterminetheexactnatureofthenanotoxicityof nanowiresandtheirconstituents,

5. innovativesolutionstoreducefabricationand runningcostsofnanowire-basedmicro/nanofl uidicdevicestomakethemeconomically viable,

6. witheveryemergingtechnology,standardsto avoiddoubtsaboutthelackofreproducibility, repeatability,andcompatibilityacrossplatformsandlaboratories,and

7. anopportunityforfurtheradvancesanddevelopmentsofcytosensingdevicesbasedon electrochemicalmethods[73].

Circulatingtumorcellsplayanessentialrole incancermetastasis,andknowledgeoftheir presenceinbloodsamplesofcancerpatientsis neededtounderstandmoreaboutthetypeof cancer.Hosokawaetal.haveshownanarray

TABLE1.3 Nanowiresinbioanalyticalanalyses.

NanowiretypeProductionmethodResultsReferences

Mechanical celllysis

Biomolecule separation and filtration

ZnOnanowires (diameter:100nm) onthesurfaceofa pillararrayina microchannel

ZnOnanowireswere synthesizedontheSi membrane(average porediameter:75nm)

SnO2 nanowires producedinto fusedsilica microchannels

Methodoflowtemperature hydrothermal reaction

Methodoflowtemperature hydrothermalreaction

Photolithography processandvapor/ liquid/solidtechnique

Higherextractionefficiencyfornucleicacids andproteinsthanusingchemicalcelllysis methods [71]

Easyandrapidmechanicalcelllysis

Higherextractionefficiencyforproteinsand nucleicacidsthanthatobtainedfor commerciallyavailablekits [72]

Nanowirestructurecontrolledthepore size(20 400nm)byvaryingthenumberof nanowiregrowthtimes

Highlydensenanowires,usedasa molecular filter,couldprovidehigh-throughput filtrationofDNAmolecules [49]

Asiliconnanowire-basedelectricalcell impedancesensorhasbeendevelopedforthe detectionofcancerousculturedlivinglungcells bymonitoringtheirspreadingstateatwhich thecellsstretchedandbecameextendedon nanowires[80].Thediagnosiswascarriedout bypenetrationintotheextendedmembraneof malignantcellswithrespecttohealthycells.

Siliconnanowirebiosensorshaveadvantages inmoleculardetectionbecauseoftheirhigh sensitivityandfastresponse.Apolycrystalline siliconnanowire field-effecttransistordevice wasdevelopedtoachievespecificandultrasensitivedetectionofmicroRNAswithoutlabeling andamplification,showingthatthediagnostic andprognosticvalueofmicroRNAsinavariety ofdiseasesispromising.Thusthepolysilicon nanowirebiosensordeviceispromisingfor microRNAdetection[81].

Inshort,semiconductornanowiresare emergingaspromisingbiosensorsenabling

ofmicrocavitiestoperformsize-selectivecapture ofcirculatingtumorcells[74].Anotherstudyreportedthataherringbonechipcapturedandisolatedclustersofcirculatingtumorcellsfromthe patient’sblood,whichhadacaptureefficiencyof morethan80%[75].Tsengetal.developedsiliconnanowires,whichtheycalledaNanoVelcro chip,tocaptureandreleasecirculatingtumor cellsfrombloodsampleswithhighselectivity [76,77].Sinanowireswereproducedbasedon substratesbyastandardphotolithographyand chemicalwetetchingprocess,andtheywere thenbondedtoachaoticmixtureofmicrofluidic channelstofabricatetheNanoVelcrochip.This procedureofsurfacemodificationwithcellsurfacemarkersofanti-EpCAMincreasedthe capturingefficiencyofcirculatingtumorcells orofanti-CD45-depletedwhitebloodcellson thenanowires[78,79].TheNanoVelcrochip withnanowireshasbeendevelopedforsinglecirculatingtumorcellisolationbydepositing thermoresponsivepolymerbrushes,poly(N-isopropylacrylamide),onsiliconnanowires[78]. NanoVelcrochipsarepromisingtoolsin diagnosis,becausetheycaptureandpurifycirculatingtumorcellsrapidlypriortocirculatingtumorcellmolecularanalysis[49,76].

1.Bioactivehybridnanowires:anewintrendforsite

TABLE1.4 Listofbiosensorsintheliteraturebasedonnanowires.

TypeofbiosensorAimReferences

Siliconnanowire field-effecttransistorsDetectionofproteins,DNAsequences,smallmolecules, cancerbiomarkers,andviruses [83]

NanoVelcrochipwithnanowiresDevelopedforsingle-circulatingtumorcellisolation[78]

Siliconnanowire-basedelectricalcellimpedance sensor

Nanowire-based field-effectsensordevices(which canbemodifiedwithspecificsurfacereceptors)

Detectionofcancerousculturedlivinglungcells[80]

Usedasapowerfuldetectiondeviceforabroadrangeof biologicalandchemicalspeciesinsolution [84]

directelectricaldetectionofvariousbiomolecules.Acomparativeanalysisofbiofunctionalizationstrategiesneedstobe discussedtodesignanddevelopoptimummemristivebiosensorstobeimplementedinlabel-free sensingapplications.Thesurfaceofthedeviceis modifiedwithaspeci ficantigen antibodyvia: (1)directadsorptiononthedevicesurface,(2)a bioaf finityapproachusingtheappropriate combination,and(3)theoptimummemristive biosensor,whichisdefinedviathecalibration andcomparativestudyofbiosensors’ electrical responseundercontrolledenvironmentalconditions,suchashumidityandtemperature,aiming tomaximizetheperformanceofthebiosensor. Thismodifiedsystemshowspotentialforgeneralapplicationinmoleculardiagnostics,and, inparticular,fortheearlydetectionofcancer, namely,prostate[82](Table1.4).

SomeinvestigatorsoftheUniversityofSan Diegohavebeendevelopingnanowireswith thepurposeofrecordingtheelectricalactivity ofneuronsin finedetail.Theambitionofthe groupisthatonedaythisnewnanowiretechnologycouldserveasamethodtoscreendrugs usedspecificallyinneurologicaldiseases,which couldhelpresearcherstounderstandthemechanismofhowsinglecellscancommunicatein complexneuronalnetworks.Themainobjective istoallowthescientificcommunitytodelve deeperintohowthebrainworks.Inthefuture, thegoalofresearchersistoimplantthisnew nanowiretechnologyintothebrain[85].

4.3Nanowiresfordeliveryof chemotherapeutics

Sharmaetal.developednoncytotoxic,magnetic,Arg-Gly-Asp(RGD)-functionalizednickel nanowires(RGDnanowires)thatcouldtrigger specificcellularresponsesviaintegrintransmembranereceptors,resultinginthedispersal ofnanowires[86].Theirresultsshowedthat dispersalof3 mmlongnanowiresincreased considerablywithfunctionalizationbyRGD whencomparedtoPEG,throughintegrinspecificbinding,internalization,andproliferationinosteosarcomacells.Additionalresults showedthata35.5%increaseincelldensity wasobservedinthepresenceofRGDnanowires whencomparedtoanincreaseofonly15.6% withPEGnanowires.Theseresultsarevery promisingtoadvanceapplicationsofmagnetic nanoparticlesindrugdelivery,hyperthermia, andcellseparationwhereuniformityandhigh ef ficiencyincelltargetingaredesirable.

Contrerasetal.showedthatmagneticnanowireswithweakmagnetic fieldsandlow frequenciescouldinducecelldeathviaamechanismthatdoesnotinvolveheatproduction[87]. Thelow-power fieldexertedaforceonthemagneticnanowires,causingamechanicaldisturbancetothecells.Intheirresults,cellviability studiesshowedthatthemagnetic fieldandthe nanowireshadseparatelydecreaseddeleterious effectsonthecells.Ontheotherhand,when combined,themagnetic fieldandnanowires

causedcellviabilityvaluestodropbyupto39%, dependingonthestrengthofthemagnetic field andtheconcentrationofthenanowires.Cell membraneleakageexperimentsshowedmembraneleakageof20%,whichprovedthatcell deathmechanismsinducedbynanowiresand magnetic fieldsinvolvecellmembranerupture. Thustheseresultssuggestedthatmagneticnanowirescankillcancercells.Theadvantagesofthis processaretheuseofsimpleandlow-costequipmentwithexposuretoonlyveryweakmagnetic fieldsforbrieftimeperiods.

Anotheralternativeisultrasound-powered nanowiremotorsbasedonnanoporousgoldsegmentsthataredevelopedforincreasingdrug loadingcapacity.Thesenanowireporousmotors arecharacterizedbyatunableporesize,high surfacearea,andhighcapacityforthedrug payload.Thesehighlyporousnanomotorsare preparedbytemplatemembranedepositionof asilver/goldalloysegmentfollowedbydealloyingthesilvercomponent.Thechemotherapeutic drugdoxorubicinwasloadedwithinthenanoporesviaelectrostaticinteractionswithan anionicpolymericcoating.Thenanoporous goldstructurefacilitatesnear-infraredlightcontrolledreleaseofthedrugthroughphotothermaleffects,whichisagreatadvantage. Incorporationofthenanoporousgoldsegment leadstoanearly20-foldincreaseintheactive surfaceareacomparedtocommongoldnanowiremotors[88].

Thelatterworkoffersveryimportantinformationforthetreatmentofcancerpatientsata patient-speci ficlevelbasedonspeci ficdrugresponsesofcirculatingtumorcells.So,platforms forhighcaptureefficiencyofcirculatingtumor cellsareessentialforclinicalevaluationof patient-speci ficdrugresponsesofcirculatingtumorcells.Recently,nanostructure-basedplatformshavebeendeveloped.IntheKimetal. study,thebreastcarcinomacell-linewithanultralowabundancerangewascapturedby streptavidin-functionalizedsiliconnanowire platformsforevaluationofcaptureef ficiency

[89].Inthiscase,acaptureefficiencyofmore than90%wasachieved.Specificdrugresponses ofbreastcarcinomacell-linecellscapturedon theseplatformswereanalyzedusingtamoxifen ordocetaxelasafunctionofincubationtime anddose.Inaddition,circulatingtumorcells weresuccessfullycaptured,andthisstudysuggeststhatthisplatformisadaptableforclinical useintheevaluationofcirculatingtumorcells anddrugresponsetests.

Magneticsilicacore/shellnanovehiclespresentingatheroscleroticplaque-specificpeptide-1 asatargetingligandhavebeenprepared throughadouble-emulsionmethodandsurface modificationwithmagneticironoxide(Fe3O4) nanoparticles.Theresultsdemonstratedthatunderahigh-frequencymagnetic field,magnetic carriersincorporatingtheanticancerdrugdoxorubicincollapsed,releasingapproximately80% ofthedrugpayload,duetotheheatgenerated bytherapidlyrotatingFe3O4 nanoparticles, therebyrealizingrapidandaccuratecontrolled drugrelease.Atthesametime,themagnetic Fe3O4 couldalsokillthetumorcellsthrougha hyperthermiaeffect,i.e.,inductiveheating.The combinationofremotecontrol,targeteddosing, drug-loading flexibility,andthermotherapy andchemotherapysuggeststhatthesemagnetic nanovehicleshavegreatpotentialforapplication incancertherapy[90].

Anotherstudyshowedthatanelectroresponsivedrugreleasesystembasedonpolypyrrole nanowireswasdevelopedtoinducethelocaldeliveryoftheanticancerdrugdoxorubicin,accordingtotheappliedelectric field.These nanowireswereinitiallypreparedbyelectrochemicaldepositionofamixtureofpyrrole monomersandbiotinasdopantsintheanodic aluminaoxidemembraneasasacrificialtemplate.Additionally,theantitumoref ficacyof doxorubicinreleasedfromthesenanowiresin responsetotheexternalelectric fieldusingtwo kindsofcancercelllines,humanoralsquamous carcinomacellsandhumanbreastcancercells, wasinvestigated.Anadvantageofthese

particlesisthestrongphotothermaleffectasa resultofthenear-infraredabsorbingabilityof polypyrrolesynergisticallythat,asaconsequence,maximizeschemotherapeuticef ficacy, whichisverypromisingformanytherapeutic applications,includingcancer[91].

TodetectspecificmRNAsequences,essential inthetreatmentofcancer,molecularbeacons havebeenwidelyemployedassensingprobes. Kimetal.developedananowire-incorporated andpneumaticpressure-drivenmicrodevicefor rapid,high-throughput,anddirectmolecular beacondeliverytohumanbreastcancerMCF-7 cellstomonitorsurvivinmRNAexpression [92].Thismicrodeviceiscomposedofthree layers:(1)apump-associatedglassmanifold layer,(2)amonolithicpolydimethylsiloxane membrane,and(3)aZnOnanowire-patterned microchannellayer.Themolecularbeaconsare immobilizedusingtheZnOnanowiresbydisulfidebonding,andtheglassmanifoldandmonolithicpolydimethylsiloxanemembraneserveasa microvalve.Thecellularattachmentanddetachmentonthemolecularbeacon-coatednanowire arraycanbeeasilymanipulated.Alltheseproceduresenablethetransferofmolecularbeacons intothecellsinacontrollablewaywithhighcell viabilityandareusefultodetectsurvivinmRNA expressionquantitativelyafterdocetaxeltreatment[92].

Combinationtherapyisapromisingcancer treatmentstrategythatisusuallybasedonthe utilizationofcomplexnanostructureswithmultiplecomponents.Ultrathintungstenoxide nanowires(W18O49)weresynthesizedusinga solvothermalapproachandwereexaminedas amultifunctionaltheragnosticnanoplatform [93].Invitroandinvivoanalysesdemonstrated thatthesenanowirescouldinduceextensive heat-andsingletoxygen-mediateddamageto cancercellsunder980nmnear-infraredlaser excitation.Thecomparisonofnearinfraredinducedphotothermaltherapy/photodynamic therapyandradiationtherapyaloneshowed

thatW18O49-basedsynergistictrimodaltherapy eradicatedxenografttumors,andnorecurrence wasobserved.Inconclusion,thesenanowires haveshownsignificantpotentialforcancertherapywithinherentimageguidanceandsynergisticeffectsfromphototherapyandradiation therapy,whichwarrantsfurtherinvestigation [94].

5.Conclusions

Thischaptersummarizesthecriticalresultsobtainedusingnanowirestructuresasaplatform usefulinbioanalyticalchemistryandmedicaldiagnostics.Nowadays,therearevarioustechnical approachestodevelopnanowiresforbioapplicationsinmoleculartocellularlevels.Nanowireshavebeenintegratedwithmicrochannels, providinganovelpathwayfromthemacroscale tothenanoscalethatwillallowresearchersto observeandanalyzetargetmoleculessuchas DNA,RNA,proteins,andcirculatingtumorcells. Anotherbenefitofnanowiresistheirverysmall diametersizewithhighaspectratio;thiscan allowresearcherstousenanowiresasaprobe tiptostimulateandrecordchangesinelectrical signalsinlivingcells.Nanowireswerealsoused asbiologicalopticalsensors.Theseimprovements innanowirestructureswillallowthedevelopmentofnewbioanalyticalchemistryandmedical diagnosticstoolsthatwillopenanewageof nanotechnologywiththewidespreaduseof nanowiresforbioapplications.

Acknowledgments

Theauthorsacknowledgethe financialsupportreceivedfrom thePortugueseScienceandTechnologyFoundation(FCT/ MCT)andfromEuropeanFunds(PRODER/COMPETE)undertheprojectreferenceM-ERA-NET/0004/2015-PAIRED, cofinancedbyFEDER,underthePartnershipAgreement PT2020.

References

[1]HedayatnasabZ,AbnisaF,DaudWMAW.Reviewon magneticnanoparticlesformagneticnanofluidhyperthermiaapplication.MaterDes2017;123:174 96.

[2]ChiriacH,etal.InvitrocytotoxicityofFe Cr Nb B magneticnanoparticlesunderhighfrequencyelectromagnetic field.JMagnMagnMater2015;380:13 9.

[3]HervaultA,ThanhNTK.Magneticnanoparticle-based therapeuticagentsforthermo-chemotherapytreatment ofcancer.Nanoscale2014;6(20):11553 73.

[4]ThoratND,etal.Highlywater-dispersiblesurfacefunctionalizedLSMOnanoparticlesformagnetic fluid hyperthermiaapplication.NewJChem2013;37(9): 2733 42.

[5]MertzD,SandreO,Begin-ColinS.Drugreleasing nanoplatformsactivatedbyalternatingmagnetic fields.BiochimBiophysActaGenSubj2017;1861(6): 1617 41.

[6]CoissonM,etal.Hysteresislossesandspecificabsorptionratemeasurementsinmagneticnanoparticlesfor hyperthermiaapplications.BiochimBiophysActa GenSubj2017;1861(6):1545 58.

[7]LahiriB,etal.Magnetichyperthermiainmagnetic nanoemulsions:effectsofpolydispersity,particleconcentrationandmediumviscosity.JMagnMagnMater 2017;441(1):310 27.

[8]SaeediM,VahidiO,BonakdarS.Synthesisandcharacterizationofglycyrrhizicacidcoatedironoxidenanoparticlesforhyperthermiaapplications.MaterSciEng C2017;77:1060 7.

[9]DeyC,etal.Improvementofdrugdeliverybyhyperthermiatreatmentusingmagneticcubiccobaltferrite nanoparticles.JMagnMagnMater2017;427:168 74.

[10]DingQ,etal.Shape-controlledfabricationofmagnetite silverhybridnanoparticleswithhighperformance magnetichyperthermia.Biomaterials2017;124:35 46.

[11]YadavalliT,ShuklaD.Roleofmetalandmetaloxide nanoparticlesasdiagnosticandtherapeutictoolsfor highlyprevalentviralinfections.NanomedNanotechnolBiolMed2017;13(1):219 30.

[12]SohailA,etal.Areviewonhyperthermiavia nanoparticle-mediatedtherapy.BullCanc2017;104(5): 452 61.

[13]LingD,HyeonT.Magneticnanomaterialsfortherapy. In:HouYanglong,SellmyerDavidJ,editors.Magnetic Nanomaterials:Fundamentals,Synthesisand Applications.Wiley-VCH;2017.p.393 438.Chapter 13.

[14]DeVolderMF,etal.Carbonnanotubes:presentand futurecommercialapplications.Science2013; 339(6119):535 9.

[15]LeiD,etal.Transformationofbulkalloystooxide nanowires.Science2017;355(6322):267 71.

[16]ZhangA,ZhengG,LieberC.Nanowires:building blocksfornanoscienceandnanotechnology.Springer; 2016.

[17]BangarMA,etal.Magneticallyassembledmultisegmentednanowiresandtheirapplications.Electroanalysis2009;21(1):61 7.

[18]CoxB,DavisD,CrewsN.Creatingmagnetic fieldsensorsfromGMRnanowirenetworks.SensActuatorsA Phys2013;203:335 40.

[19]MaijenburgAW,etal.Hydrogengenerationfromphotocatalyticsilverj zincoxidenanowires:towardsmultifunctionalmultisegmentednanowiredevices.Small 2011;7(19):2709 13.

[20]WangX,OzkanCS.Multisegmentnanowiresensors forthedetectionofDNAmolecules.NanoLett2008; 8(2):398 404.

[21] OzkaleB,etal.MultisegmentedFeCo/Cunanowires: electrosynthesis,characterization,andmagneticcontrolofbiomoleculedesorption.ACSApplMaterInterfaces2015;7(13):7389 96.

[22]GapinAI,etal.Patternedmediabasedonsoft/hard compositenanowirearrayofNi/CoPt.IEEETrans Magn2007;43(6):2151 3.

[23]ValizadehS,etal.TemplatesynthesisofAu/Comultilayerednanowiresbyelectrochemicaldeposition.Adv FunctMater2002;12(11 12):766 72.

[24]LiuF,LeeJY,ZhouW.TemplatepreparationofmultisegmentPtNinanorodsasmethanolelectro-oxidation catalystswithadjustablebimetallicpairsites.JPhys ChemB2004;108(46):17959 63.

[25]WangD,etal.Structurallyorderedintermetallic platinum cobaltcore shellnanoparticleswith enhancedactivityandstabilityasoxygenreduction electrocatalysts.NatMater2013;12(1):81 7.

[26]KantarE.Composition,temperatureandgeometric dependenthysteresisbehavioursinIsing-type segmentednanowirewithmagneticanddilutedmagnetic,anditssoft/hardmagneticcharacteristics.Philos Mag2017;97(6):431 50.

[27]LiX,etal.Currentinvestigationsintomagneticnanoparticlesforbiomedicalapplications.JBiomedMater ResA2016;104(5):1285 96.

[28]MedeirosS,etal.Stimuli-responsivemagneticparticles forbiomedicalapplications.IntJPharm2011;403(1): 139 61.

[29]Salazar-AlvarezG,etal.Reversiblepost-synthesistuningofthesuperparamagneticblockingtemperatureof g-Fe2O3 nanoparticlesbyadsorptionanddesorption ofCo(ii)ions.JMaterChem2007;17(4):322 8.

[30]XiL,etal.TheenhancedmicrowaveabsorptionpropertyofCoFe2O4 nanoparticlescoatedwithaCo3Fe7 Conanoshellbythermalreduction.Nanotechnology 2010;22(4):045707.

[31]LeeJ,etal.Silicide-inducedmulti-wallcarbonnanotubegrowthonsiliconnanowires.Nanotechnology 2011;22(8):085603.

[32]ChaubeyGS,etal.Synthesisandcharacterizationof bimagneticbricklikenanoparticles.ChemMater2007; 20(2):475 8.

[33]ChenM,SearsonP,ChienC.Micromagneticbehavior ofelectrodepositedNi/Cumultilayernanowires. JApplPhys2003;93(10):8253 5.

[34]ClimeL,etal.Theinteraction fieldinarraysofferromagneticbarcodenanowires.Nanotechnology2007; 18(43):435709.

[35]SongZ,etal.Microstructureandmagneticproperties ofelectrodepositedCo/Cumultilayernanowire arrays.MaterLett2011;65(11):1562 4.

[36]KokK,etal.Synthesisandcharacterizationofelectrodepositedpermalloy(Ni80Fe20)/Cumultilayered nanowires.JMagnMagnMater2010;322(24):3876 81.

[37]TangX-T,WangG-C,ShimaM.LayerthicknessdependenceofCPPgiantmagnetoresistanceinindividualCo Ni∕ Cumultilayernanowiresgrownby electrodeposition.PhysRevB2007;75(13):134404.

[38]ShakyaP,CoxB,DavisD.Giantmagnetoresistanceand coercivityofelectrodepositedmultilayeredFeCoNi/Cu andCrFeCoNi/Cu.JMagnMagnMater2012;324(4): 453 9.

[39]ParkJJ,etal.Characterizationofthemagneticproperties ofmultilayermagnetostrictiveiron-galliumnanowires. JApplPhys2010;107(9):09A954.

[40]PengY,etal.NanoscalecharacterizationofCoPt/Pt multilayernanowires.Nanotechnology2007;18(48): 485704.

[41]ElawayebM,etal.Electricalpropertiesofindividual NiFe/Ptmultilayernanowiresmeasuredinsituina scanningelectronmicroscope.JApplPhys2012; 111(3):034306.

[42]NasirpouriF.Tunabledistributionofmagneticnanodiscsinanarrayofelectrodepositedmultilayered nanowires.IEEETransMagn2011;47(8):2015 21.

[43]PancieraF,etal.Synthesisofnanostructuresinnanowiresusingsequentialcatalystreactions.NatMater 2015;14:820.

[44]GangnaikAS,GeorgievYM,HolmesJD.Newgenerationelectronbeamresists:areview.ChemMater2017; 29(5):1898 917.

[45]WuB,KumarA,PamarthyS.Highaspectratiosilicon etch:areview.JApplPhys2010;108(5):051101.

[46]HuangZ,etal.Metal-assistedchemicaletchingofsilicon:areview.AdvMater2011;23(2):285 308.

[47]ColsonP,HenristC,ClootsR.Nanospherelithography: apowerfulmethodforthecontrolledmanufacturingof nanomaterials.JNanomater2013;2013:19.

[48]OlynickL,etal.Nanoscalepatterntransferfortemplates,NEMs,andNano-optics,vol.6462;2007.

[49]RahongS,etal.Recentdevelopmentsinnanowiresfor bio-applicationsfrommoleculartocellularlevels.Lab Chip2016;16(7):1126 38.

[50]WangY,McIntyrePC,CaiW.Phase fieldmodelfor morphologicaltransitioninnanowirevapor liquid solidgrowth.CrystGrowthDes2017;17(4):2211 7.

[51]DubrovskiiV.Vapor liquid solidgrowthofnanowires.In:Nucleationtheoryandgrowthof nanostructures.Berlin,Heidelberg:SpringerBerlin Heidelberg;2014.p.275 395.

[52]Sch € onherrP,etal.Vapour-liquid-solidgrowthof ternaryBi(2)Se(2)Tenanowires.NanoscaleResLett 2014;9(1).127-127.

[53]DresselhausMS,etal.Nanowires.In:BhushanB,editor.Springerhandbookofnanotechnology.Berlin,Heidelberg:SpringerBerlinHeidelberg;2017.p.249 301.

[54]NoyanAA,etal.Electrochemicalgrowthofnanowires inanodicaluminatemplates:theroleofpore branching.ElectrochimActa2017;226:60 8.

[55]GuoT,etal.Synthesisofultralong,monodispersed,and surfactant-freegoldnanowirecatalysts:growthmechanismandelectrocatalyticpropertiesformethanoloxidationreaction.JPhysChemC2017;121(5):3108 16.

[56]HobbsRG,PetkovN,HolmesJD.Semiconductornanowirefabricationbybottom-upandtop-down paradigms.ChemMater2012;24(11):1975 91.

[57]FanP,etal.Largescaleandcosteffectivegenerationof 3Dself-supportingoxidenanowirearchitecturesbya top-downandbottom-upcombinedapproach.RSC Adv2016;6(51):45923 30.

[58]ChristesenJD,etal.Syntheticallyencoding10nm morphologyinsiliconnanowires.NanoLett2013; 13(12):6281 6.

[59]DingQ,etal.Shape-controlledfabricationofmagnetite silverhybridnanoparticleswithhighperformance magnetichyperthermia,vol.124;2017.p.35 46.

[60]GaoW,BorgensRB.Remote-controllederadicationof astrogliosisinspinalcordinjuryviaelectromagneticallyinduceddexamethasonereleasefrom “smart” nanowires.JControlRelease2015;211:22 7.

[61]MandalB,etal.Insitusilvernanowiredepositedcrosslinkedcarboxymethylcellulose:apotentialtransdermalanticancerdrugcarrier.ACSApplMaterInterfaces2017;9(42):36583 95.

[62]PengF,etal.Doxorubicin-loadedsiliconnanowiresfor thetreatmentofdrug-resistantcancercells.Biomaterials2014;35(19):5188 95.

[63]SharmaHS,MuresanuDF,SharmaA.Drugandgene deliverytothecentralnervoussystemforneuroprotection:nanotechnologicaladvances.Springer;2017.

[64]NamdariP,DaraeeH,EatemadiA.Recentadvances insiliconnanowirebiosensors:synthesismethods, properties,andapplications.NanoscaleResLett2016; 11(1):406.

[65]SchillingEA,KamholzAE,YagerP.Celllysisandproteinextractioninamicrofluidicdevicewithdetection bya fluorogenicenzymeassay.AnalChem2002; 74(8):1798 804.

[66]BerezovskiMV,MakTW,KrylovSN.Celllysisinside thecapillaryfacilitatedbytransversediffusionof laminar flowprofiles(TDLFP).AnalBioanalChem 2007;387(1):91 6.

[67]GabrielB,TeissieJ.Timecoursesofmammaliancell electropermeabilizationobservedbymillisecondimagingofmembranepropertychangesduringthepulse. BiophysJ1999;76(4):2158 65.

[68]KimW,etal.Interfacingsiliconnanowireswith mammaliancells.JAmChemSoc2007;129(23):7228 9.

[69]YasuiT,etal.Arrangementofananostructurearrayto controlequilibriumandnonequilibriumtransportsof macromolecules.NanoLett2015;15(5):3445 51.

[70]ParkS-G,OlsonDW,DorfmanKD.DNAelectrophoresisinananofencearray.LabChip2012;12(8):1463 70.

[71]KimJ,etal.Amicrofluidicdeviceforhighthroughput bacterialbiofilmstudies.LabChip2012;12(6):1157 63.

[72]SoH,etal.All-in-Onenanowire-decoratedmultifunctionalmembraneforrapidcelllysisanddirectDNA isolation.ACSApplMaterInterfaces2014;6(23): 20693 9.

[73]HasanzadehM,ShadjouN,delaGuardiaM.Recent advancesinnanostructuresandnanocrystalsas signal-amplificationelementsinelectrochemical cytosensing.TracTrendsAnalChem2015;72:123 40.

[74]HosokawaM,etal.Size-selectivemicrocavityarrayfor rapidandefficientdetectionofcirculatingtumorcells. AnalChem2010;82(15):6629 35.

[75]StottSL,etal.Isolationofcirculatingtumorcellsusing amicrovortex-generatingherringbone-chip.ProcNatl AcadSci2010;107(43):18392 7.

[76]LinM,etal.Nanostructureembeddedmicrochipsfor detection,isolation,andcharacterizationofcirculating tumorcells.AccChemRes2014;47(10):2941 50.

[77]ShenQ,etal.Specificcaptureandreleaseofcirculating tumorcellsusingaptamer-modifiednanosubstrates. AdvMater2013;25(16):2368 73.

[78]KeZ,etal.Programmingthermoresponsivenessof NanoVelcrosubstratesenableseffectivepurification ofcirculatingtumorcellsinlungcancerpatients.ACS Nano2015;9(1):62 70.

[79]LuY-T,etal.NanoVelcroChipforCTCenumerationin prostatecancerpatients.Methods2013;64(2):144 52.

[80]AbiriH,etal.Monitoringthespreadingstageoflung cellsbysiliconnanowireelectricalcellimpedance sensorforcancerdetectionpurposes.BiosensBioelectron2015;68:577 85.

[81]HeJ,etal.Label-freedirectdetectionofMiRNAswith poly-siliconnanowirebiosensors.MicroRNADetect TargetIdentifMethodsProtoc2017:297 302.

[82]TzouvadakiI,etal.Studyonthebio-functionalization ofmemristivenanowiresforoptimummemristive biosensors.JMaterChemB2016;4(12):2153 62.

[83]ChenK-I,LiB-R,ChenY-T.Siliconnanowire fieldeffecttransistor-basedbiosensorsforbiomedicaldiagnosisandcellularrecordinginvestigation.NanoToday 2011;6(2):131 54.

[84]PatolskyF,ZhengG,LieberCM.Nanowire-based biosensors.ACSPublications;2006.

[85]LiuR,etal.Highdensityindividuallyaddressable nanowirearraysrecordintracellularactivityfromprimaryrodentandhumanstemcellderivedneurons. NanoLett2017;17(5):2757 64.

[86]SharmaA,etal.Inducingcellstodispersenickelnanowiresviaintegrin-mediatedresponses.Nanotechnology2015;26(13):135102.

[87]ContrerasMF,etal.Non-chemotoxicinductionofcancercelldeathusingmagneticnanowires.IntJ Nanomed2015;10:2141.

[88]Garcia-GradillaV,etal.Ultrasound-propellednanoporousgoldwireforefficientdrugloadingandrelease. Small2014;10(20):4154 9.

[89]KimD-J,etal.DrugresponseofcapturedBT20cells andevaluationofcirculatingtumorcellsonasilicon nanowireplatform.BiosensBioelectron2015;67:370 8.

[90]KuoC-Y,etal.Magneticallytriggerednanovehiclesfor controlleddrugreleaseasacolorectalcancertherapy. ColloidsSurfacesBBiointerfaces2016;140:567 73.

[91]LeeH,etal.Electroactivepolypyrrolenanowirearrays: synergisticeffectofcancertreatmentbyon-demand drugreleaseandphotothermaltherapy.Langmuir 2015;31(14):4264 9.

[92]KimKH,etal.Rapid,high-throughput,anddirectmolecularbeacondeliverytohumancancercellsusinga nanowire-incorporatedandpneumaticpressuredrivenmicrodevice.Small2015;11(46):6215 24.

[93]NayakAK,PradhanD.Microwave-Assistedgreener synthesisofdefect-richtungstenoxidenanowires withenhancedphotocatalyticandphotoelectrochemicalperformance.JPhysChemC2018;122(6):3183 93.

[94]QiuJ,etal.SingleW18O49nanowires:amultifunctional nanoplatformforcomputedtomographyimagingand photothermal/photodynamic/radiationsynergistic cancertherapy.NanoRes2015;11(8):3580 90.

[95]MuC,HeJ.ConfinedconversionofCuSnanowiresto CuOnanotubesbyannealing-induceddiffusionin nanochannels,vol.6;2011.p.150.

Opportunitiesandchallengesof 3D

-printedpharmaceuticaldosageforms

AdamProcopio1,DivyaTewari2

1Merck & Co.,Inc.,Kenilworth,NJ,UnitedStates; 2NoramcoInc.,Wilmington,DE,UnitedStates

1.Introduction

Drugproductdevelopmentcanbealongand complexprocess.Onaverage,itisestimated thatittakesabout10yearsandcosts US$2.5 5billionforanewdrugproductto gettothemarket [1,1a] .Giventhissigni fi cant investment,andtheknowledgethatanydelay ingettingthedrugproducttothemarketreducesexclusivity,thereisadesiretoreduce thisdevelopmenttimelineprovidinganoverall bene fi ttopatientsandtheindustry.3Dprinting (3DP)canallowforarobust, fl exible,andcosteffectiveapproachtodrugdevelopmentin whichdrugreleasepro fi lesmaybetailoredto aparticularoutcomeusingasingle manufacturingmethod.Moreover,3DPallows forcustomdesignsanddosingamountssuch thatthedosageformsmaybetailoredtoaspeci ficpatientpopulation.Duetolongerandcomplexformulationprocesses,developmentof delayedorextendedreleaseformulationsis typicallyevenmoreprolongedaswellas requiringexpensiveandproprietydrugrelease technology.Todatethereisonlyoneapproved

product(Spritam)thatusesa3DPtechnology basedonpowderlayeringlaunchedbyAprecia Pharmaceuticals.Thereareexistingexamplesof implementing3DPtechnologytorapidlyprototypereleaseratesusingdifferentstrategies, largelyfocusedonmain tainingasimilarmaterialfeedstockandusingcreativeprintingparameterstogeneratevariousreleases.With theseexamples,atleastonesolid fi lamentmaterialispreprocessedtocontainactivepharmaceuticalingredients(APIs).Modifi cationsto whatiscalledthe “ in fi ll ” parametersofthe printedtabletcanmanipulatereleaserates [ 1b 3].Duringafuseddepositionmodeling (FDM)printingprocess,theprintheadwill printanoutershellintheshapeofthepart, andtheinsideoftheshellislargelyhollow. Thematerialthatisprintedontheinsideof theshelliscalledthein fi llandcanbecontrolled throughsoftwarebytakingintoaccount whatpercentageoftheshellishollowandthe geometricdesignofthein fi ll(honeycomb, rectilinear,etc.).Otherpublishedworkinvolves thechangingoftheactivedosageform’ soverall shape,size,andsurfacearea,whichhas

showntomodifythereleaserate[ 4 7 ]. Manufacturingofdrugproductdosageforms thatcombineashell-basedapproachtobe describedindetailinalatersectionhave demonstratedauniqueabilitytogenerate distinctreleaserates.Suchcore/shelltablets havebeenmanufacturedbyusingasecond API-containingmaterial[ 8]oraplacebomaterialwiththeintenttomimicenteric-coatedtablets[9 , 10 ]andhavedemonstratedtheagilityof 3DPtochangetheonsetofthereleaseofthecore ofthedosageform.

Whiletheseapproacheshavedemonstrated anabilitytousesoftwarefortuningdrug releaseratewhilemainta iningaconstantmaterialfeedstock,theyarereliantonasuccessful hotmeltextrusion(HME)formulationofa printable fi lamentforeachAPI.Developing processconditionstoincorporateAPIintoan excipient-basedsolid fi lamentisnottrivial [11 14],andthese fi lamentprocessingdevelopmentsaddtotheproductdevelopmentburden, reducingtherapidprototypingadvantage3DP bringstothetableforearlydrugscreenings.A majorhurdlethepharmaceutical3DP fi eldhas yettoovercomeisprovidingawide,distinct rangeofdosageformsusingauniversalsetof startingprint-readymaterialstoaccommodate anyAPIwithout filamentformulationburden, andhasevenagreaterhurdleonaligning manufacturingpartnerstogenerategood manufacturing-proce ssedpharmaceuticalmaterialsthatareprinterready.

2.Materials

Pharmaceuticaldosageformdesignbegins withmaterialselection.Becausethematerials arealteredduringthe3DPprocess,itis imperativetounderstandthesource,purity andassociatedmaterialchemistrychangesof

thechosenmaterial.Materialpropertieshave wide-rangingimpact,fromin fl uencingthe preferredrouteofmanufacturingtothephysicalpropertiesofthedosageformtoitspharmacodynamicfateinthebody.Awiderangeof materialsareusedassubstratesin3DP;however,becauseoftheirorigininindustrialprototyping,most3DPtechniqueslackavailabilityof suitabledevelopedmaterials[ 15].

Thesuccessfuldesignandprintabilityofthe 3D-printeddosageformsisdictatedbythephysical,chemical,thermal,andmechanicalpropertiesofthechosenmaterial.Additional considerationsshouldbegiventoeaseofavailabilityandtheregulatorystatusofthematerials. Intheabsenceofthestandardtestmethodsa specificallydesignedmethodtocharacterize thematerialpropertiesoftheadditivescanbe used,andwehavecompiledcurrenttestproceduresemployedbyvariousresearchersandhighlightedsomeofthestandardutilizedASTM methods.

Therangeofpolymersusedin3DPinclude thermoplastics,thermosets,elastomers,hydrogels,functionalpolymers,polymerblends,composites,andbiomaterials[16 ].Polymeric materials polymers constitutethemajority ofmaterialsusedin3DPduetoseveral advantagessuchaslowcost,biocompatibility, availability,easeofprocessing,andphysicochemicalproperties.Materialselectionis dictatedbythechoiceo fthe3DPtechnology, e.g.,polymeric fi lamentsusedbyFDMmust haveaconstantdiameterof1.75mm,anideal meltviscositytofacilitateviscousmeltformationpreextrusionandsolidificationpostextrusion,andasufficientelasticmodulus-to-melt viscosityratiotoprevent filamentbucklingand shearthinningtendenciesinliquidform[17]. Commonlyusedpolymersincludealiphatic polyesters(poly(lactide)[PLA],poly(glycolide), poly(caprolactone)[PCL]),cellulosicderivatives

(hydroxypropylcellulose[HPC],hypromellose [HPMC],HPMCacetatesuccinate[HPMCAS], celluloseacetate,andcelluloseacetatephthalate), vinylpolymers(polyvinylpyrrolidone[PVP]and copovidone),polyethyleneoxide,polyethylene glycol(PEG),andacrylicpolymers(Eudragit).

Table2.1 providesanoverviewof3DPtechnologiesanddesiredmaterialproperties requiredforsuccessfuldevelopmentof3Dprinteddosageforms.

2.1Aliphaticpolyesters

Aliphaticpolyestersaresynthetichomopolymersorcopolymersoflacticacid,glycolicacid, lactide,glycolide,and6-hydroxycaproicacid. Typically,themolecularweightsofhomopolymersandcopolymersrangefrom2000to >100,000Da.Therepresentativechemicalstructuresareprovidedin Fig.2.1 andabriefsummaryoftheirphysical,chemical,and mechanicalpropertiesisoutlinedin Tables2.1 and2.2 .

TABLE2.1 Summaryofmaterialpropertiesandtestmethodscommonlyemployed.

MaterialpropertiesKeypropertiesTestingmethodscommonlyemployed

PowderphysicalpropertiesParticleshape,particlesizedistribution, bulkandtapdensities,crystallinity, moisturecontent

MechanicalpropertiesYieldstrength,elasticity,modulus, elongationatbreak

ThermalpropertiesMeltingpoint,glasstransitiontemperature, degradationtemperature

OpticalpropertiesUltravioletabsorption,laserpower

RheologicalpropertiesViscosityofthesolution,binder powder interaction,meltviscosity,meltindex, surfacetension

Laserlightdiffraction,densitometry, powderX-raydiffraction,differential scanning calorimetry,KarlFischer, flowindex

ASTMD638,D3039,D882,ISO527-2, three-pointbendtest

Thermogravimetricanalysis

AERS-G2rheometers,viscometers(USP 911),ASTMD1238

FIGURE2.1 Representativechemicalstructuresofthealiphaticpolyesters.

2.Opportunitiesandchallengesof3D

TABLE2.2 Typicalchemicalnamesandtradenamesoftherepresentativealiphaticpolyesters.

Composition

Genericname

TradenameManufacturer LactideGlycolideCaprolactone

Poly(L-lactide)10000LactelL-PLA 100L

ResomerL206S,207S, 209S,210and201S

Poly(DL-lactide)10000LactelDL-PLA

PurasorbPDL02A,02,04,05

ResomerR202S,202H,203S, 203H

Durect Lakeshore Boehringer Ingelheim

Durect Purac Boehringer Ingelheim

Poly(L-lactide-co-glycolide)85150ResomerLG855S,857SLakeshore Boehringer Ingelheim

Poly-ε-caprolactone00100LactelPCL 100PCL

Durect Lakeshore

Poly-(DL-lactide-coε-caprolactone) 850158515L/PCLLakeshore

AdaptedfromHandbookofPharmaceuticalExcipients.

AliphaticpolyestersareUnitedStatesFood andDrugAdministration(FDA)andEuropean MedicineAgencyapproved,versatilethermoplasticpolymersthatareusedinanumberof 3DPtechnologiessuchasFDM,selectivelaser sintering(SLS),pressure-assistedmicrosyringes (PAMs),etc.duetotheirbiocompatibility, biodegradability,highmechanicalstrength andmodulus,andprocessability[18].Easeof availabilityandcosteffectivenessmake aliphaticpolyestershighlydesirablepolymers for3DP,whereasthemaindisadvantagesare theappearanceofroughsurfacesandlow resolution.

PLAisbyfarthemostwidelyusedmaterial forFDMprinting.PLAanditsderivativesare poorlywatersolublebuthavegoodsolubility indioxane,acetonitrile ,chloroform,methylene chloride,1,1,2-trichloroethane,anddichloroaceticacid.Thethermalandmechanicalproperties ofPLAarein fl uencedbysmallamountsof enantiomericimpurities.Amorphousgrades werereportedtohavebetterprocessability

andawiderprocessabilitywindowbutlower mechanicalproperties[19](Table2.2).

PCLisahydrophobicpolymerwithexcellent blendcompatibilitywithmanyotherpolymers suchaspolyvinyl(acetate) ,poly(vinylchloride), poly(styrene-acrylonitrile),andpoly(acrylonitrilebutadienestyrene).Itsblendcompatibility, biodegradability,lowmeltingpoint,andsolubilitymakethispolymersuitableforprecise extrusiondepositionandFDMtechniques.The onlydisadvantageofPCLisitshydrophobicity, whichmightadverselyimpactdrugdissolution characteristics.

2.2Celluloseethersandesters

Celluloseisthemostabundantnaturally occurringpolysaccharide.Eachpolysaccharide unitislinkedby b-1,4-glycosidicbonds.Each glucoseunithasthreehydroxylgroupsthat canbederivatizedandtheaveragesubstitution gradecannotexceedthree.Alkalizationof

cellulose,followedbyetheri ficationreactionat elevatedtemperaturesandpressures,isusedto convertcellulosemoleculesintotheircorrespondingether,suchasHPC,HPMC,and manyothersemisyntheticcellulosics.Esteri ficationofthecelluloseetherscouldbeusedto derivemoleculessuchasHPMCAS.Atthebasic level,cellulosederivativesarecharacterizedby theiraveragemolecularweightdistribution andaveragecomposition.Compositionally, thesepolymersaredefinedbythepercent weightofthefunctionalgroupattachedtothe backbone,thedegreeofsubstitutionperanhydroglucose,orthetotalmolarsubstitutionper anhydroglucoseresidue[20].Therepresentative chemicalstructuresareprovidedin Fig.2.2 anda summaryoftheirphysical,chemical,and mechanicalpropertiesisprovidedin Table2.3.

Thermoplasticpolymersaretypicallymaterialsofchoicein3DPcoupledwithextrusion becausetheycanbeprocessedatsuitabletemperatureswithoutaffectingthestabilityofthe APIs[21].Celluloseestersandethershavebeen testedascarriersormatricesfordrugsinFDM technologywithHME[22].HPMCineithersolution,dispersion,orpasteformshasalsobeen usedinPAMsprintingtechnology[23].

2.3Acrylicpolymers

Polymethacrylatesaresyntheticcationicand anionicpolymersofdimethylaminoethylmethacrylates,methacrylicacid,andmethacrylic acidestersinvaryingratios[24].Eudragitpolymersarecopolymersderivedfromestersof acrylicandmethacrylicacidwhose

Representativechemicalstructuresofcelluloseethersandesters.

FIGURE2.2

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.