Cognitive big data intelligence with a metaheuristic approach (cognitive data science in sustainable

Page 1


CognitiveBigDataIntelligencewitha MetaheuristicApproach(CognitiveDataSciencein SustainableComputing)SushrutaMishra

https://ebookmass.com/product/cognitive-big-dataintelligence-with-a-metaheuristic-approach-cognitive-datascience-in-sustainable-computing-sushruta-mishra/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Machine Learning for Biometrics: Concepts, Algorithms and Applications (Cognitive Data Science in Sustainable Computing) Partha Pratim Sarangi

https://ebookmass.com/product/machine-learning-for-biometricsconcepts-algorithms-and-applications-cognitive-data-science-insustainable-computing-partha-pratim-sarangi/ ebookmass.com

Data Science in Theory and Practice: Techniques for Big Data Analytics and Complex Data Sets Maria C. Mariani

https://ebookmass.com/product/data-science-in-theory-and-practicetechniques-for-big-data-analytics-and-complex-data-sets-maria-cmariani/

ebookmass.com

Distrust: Big Data, Data-Torturing, and the Assault on Science Gary Smith

https://ebookmass.com/product/distrust-big-data-data-torturing-andthe-assault-on-science-gary-smith/

ebookmass.com

Supervision: Managing for Results, 10th edition 10th Edition, (Ebook PDF)

https://ebookmass.com/product/supervision-managing-for-results-10thedition-10th-edition-ebook-pdf/

ebookmass.com

The Panoptic Sort: A Political Economy of Personal Information 2nd Edition Oscar H. Gandy Jr.

https://ebookmass.com/product/the-panoptic-sort-a-political-economyof-personal-information-2nd-edition-oscar-h-gandy-jr/

ebookmass.com

The Category of ‘Religion’ in Contemporary Japan 1st ed. Edition Mitsutoshi Horii

https://ebookmass.com/product/the-category-of-religion-incontemporary-japan-1st-ed-edition-mitsutoshi-horii/

ebookmass.com

Nelson Pediatrics Board Review: Certification and Recertification 1st Edition Terry Dean Jr. Md Phd (Editor)

https://ebookmass.com/product/nelson-pediatrics-board-reviewcertification-and-recertification-1st-edition-terry-dean-jr-md-phdeditor/

ebookmass.com

Daddy Demands At Little Rapids: An MM Age Play Romance (Gruff Guardian Daddies Book 3) Zack Wish

https://ebookmass.com/product/daddy-demands-at-little-rapids-an-mmage-play-romance-gruff-guardian-daddies-book-3-zack-wish/

ebookmass.com

Chemistry : for IB diploma course preparation Sergey Bylikin

https://ebookmass.com/product/chemistry-for-ib-diploma-coursepreparation-sergey-bylikin/

ebookmass.com

Thispageintentionallyleftblank

CognitiveBigData Intelligencewitha Metaheuristic Approach

SeriesEditor

ArunKumarSangaiah

VolumeEditors

SushrutaMishra

SchoolofComputerEngineering,KalingaInstituteofIndustrialtechnology (KIIT)University,Bhubaneswar,Odisha,India

HrudayaKumarTripathy

SchoolofComputerEngineering,KalingaInstituteofIndustrialtechnology (KIIT)University,Bhubaneswar,Odisha,India

PradeepKumarMallick

SchoolofComputerEngineering,KalingaInstituteofIndustrialtechnology (KIIT)University,Bhubaneswar,Odisha,India

ArunKumarSangaiah

SchoolofComputerScience,TheUniversityofAdelaide,Adelaide,SA, Australia

Gyoo-SooChae

DivisionofICT,BaekseokUniversity,Cheonan,SouthKorea

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-323-85117-6

ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: MaraConner

AcquisitionsEditor: SonniniR.Yura

EditorialProjectManager: MichelleFisher

ProductionProjectManager: SreejithViswanathan

CoverDesigner: ChristianJ.Bilbow

TypesetbyTNQTechnologies

Contributorsxiii

Prefacexv

1. Adiscourseonmetaheuristicstechniquesforsolving clusteringandsemisupervisedlearningmodels 1

1.Introduction 1

2.Overviewofclustering 2

2.1K-meansclustering2

2.2Hierarchicalclustering2

2.3FuzzyC-means2

2.4Model-basedclustering4

2.5Particleswarmoptimization4

2.6ClusteringusingPSO6

2.7Antcolonyoptimization7

2.8ClusteringusingACO9

2.9Geneticalgorithm10

2.10Differentialevolution13

2.11Clusteringusingdifferentialevolution14

2.12Semisupervisedlearningalgorithms15

2.13PSO-assistedsemisupervisedclustering15

2.14SemisupervisedclusteringusingGA17

3.Conclusion 18 References 18

2. Metaheuristicsinclassification,clustering,and frequentpatternmining 21

HirenKumarThakkar,HrushikeshShuklaand PrasanKumarSahoo

1.Introduction 21

1.1Introductiontometaheuristics21

1.2Classificationofmetaheuristictechniques22

1.3Workingofsomemetaheuristicalgorithms24

2.Metaheuristicsinclassification 29

2.1Useofantcolonyoptimizationinclassification30

2.2Useofgeneticalgorithmsinclassification33

2.3Useofparticleswarmoptimizationinclassification37

3.Metaheuristicsinclustering 40

3.1Useofantcolonyoptimizationinclustering41

3.2Useofgeneticalgorithmsinclustering45

3.3Useofparticleswarmoptimizationinclustering49

4.Metaheuristicsinfrequentpatternmining 54

4.1Useofantcolonyoptimizationinfrequentpatternmining54

4.2Useofgeneticalgorithmsinfrequentpatternmining58

4.3Useofparticleswarmoptimizationinfrequent patternmining61

5.Conclusion 67 References 67

3. Impactsofmetaheuristicandswarmintelligence approachinoptimization 71

AbhishekBanerjee,DharmpalSingh,SudiptaSahanaand IraNath

1.Introduction 71

1.1Introductionofmetaheuristic71

1.2Introductionofswarmintelligence73

2.ConceptsofMetaheuristic 73

2.1Optimizationproblems73

2.2Classificationofmetaheuristictechniques74

2.3Agenericmetaheuristicframework76

3.Metaheuristictechniques 76

3.1Simulatedannealing77

3.2Geneticalgorithms77

3.3Antcolonyoptimization78

3.4BeeAlgorithms78

3.5Particleswarmoptimization78

3.6Harmonysearch79

3.7Tabusearch79

4.Swarmintelligencetechniques 80

4.1BatAlgorithm80

4.2Fireflyalgorithm82

4.3LionOptimizationAlgorithm85

4.4Chickenswarmoptimizationalgorithm85

4.5SocialSpiderAlgorithm86

4.6Spidermonkeyoptimizationalgorithm88

4.7Africanbuffalooptimizationalgorithm90

4.8Flowerpollinationalgorithm91

6. Inertiaweightstrategiesfortaskallocationusing metaheuristicalgorithm

ArabindaPradhanandSukantKishoroBisoy

7. BigdataclassificationwithIoT-basedapplication fore-healthcare

SaumendraKumarMohapatraandMihirNarayanMohanty

6.Multiagentsystemforbiomedicaldataprocessing

8. Studyofbio-inspiredneuralnetworksforthe predictionofliquidflowinaprocesscontrolsystem

PijushDutta,KorhanCengizandAsokKumar

4.1Preliminarydetailsoftheneuralnetwork(NN)177

4.2Preliminariesofthefireflyalgorithm179

4.3Preliminariesofparticleswarmoptimization(PSO)180

5.Proposedmodel 180

5.1Modelingoftheflowrateusinganeuralnetwork180

Contents

11. CognitivebigdataanalysisforE-healthand telemedicineusingmetaheuristicalgorithms

DeepakRaiandHirenKumarThakkar 1.Introduction

1.1WhyE-healthcare?240 1.2AdvantagesofE-healthcare242

2.CognitivecomputingtechnologiesforE-healthcare

3.CognitivebigdataanalyticsforE-healthcare

3.1RoleofHadoopandApacheSparkinE-health careanalytics245

4.NeedforcognitivebigdataanalyticsinE-healthcare

5.AdvantagesofcognitivebigdataanalyticsinE-healthcare

6.ChallengesofcognitivebigdataanalyticsinE-healthcare

7.Metaheuristicapproachforoptimizationofcognitivebig datahealthcare

7.1Benefitsofmetaheuristicapproachoverclassical optimizationmethods250

7.2Applicationsofmetaheuristicsincognitivebig data basedhealthcare251

8.CognitivebigdataanalyticsusecasesinE-healthcare

12. Multicriteriarecommendersystemusingdifferent approaches

ChandramouliDas,AbhayaKumarSahooand ChittaranjanPradhan 1.Introduction

3.1Modelingphase264

3.2Predictionphase264

3.3Recommendationphase264

3.4Content-basedapproach264

3.5Collaborativefilteringapproach265

3.6Knowledge-basedfilteringapproach266

Contributors

AngeliaMelaniAdrian,InformaticsEngineeringDepartment,DeLaSalleCatholic University,ManadoCity,Indonesia

AbhishekBanerjee,PailanCollegeofManagementandTechnology,Pailan,Joka, Kolkata,WestBengal,India

AradhanaBehura,DepartmentofComputerScience&Engineering,VeerSurendra SaiUniversityofTechnology,Burla,Odisha,India

SukantKishoroBisoy,DepartmentofComputerScienceandEngineering,C.V. RamanGlobalUniversity,Bhubaneswar,Odisha,India

KorhanCengiz,DepartmentofTelecommunication,TrakyaUniversity,Edirne,Turkey

ChandramouliDas,SchoolofComputerEngineering,KIITDeemedtobeUniversity, Bhubaneswar,Odisha,India

AnkitDesai,Embibe,Bengaluru,Karnataka,India

PijushDutta,DepartmentofElectronicsandCommunicationEngineering,Global InstituteofManagementandTechnology,Krishnagar,WestBengal,India

PriyomDutta,SchoolofComputerEngineering,KIITUniversity,Bhubaneswar, Odisha,India

ManasRanjanKabat,DepartmentofComputerScience&Engineering,Veer SurendraSaiUniversityofTechnology,Burla,Odisha,India

NishantKashyap,C.V.RamanGlobalUniversity,Bhubaneswar,Odisha,India

AsokKumar,DeanofStudentWelfareDepartment,VidyasagarUniversity,Medinipur, WestBengal,India

B.S.Mahanand,DepartmentofInformationScienceandEngineering,SriJayachamarajendraCollegeofEngineering,JSSScienceandTechnologyUniversity, Mysuru,Karnataka,India

AnjanaMishra,C.V.RamanGlobalUniversity,Bhubaneswar,Odisha,India

SushrutaMishra,KalingaInstituteofIndustrialTechnologyDeemedtobeUniversity, Bhubaneswar,Odisha,India

RickyMohanty,DepartmentofElectronics&Telecommunication,OrissaEngineering College,Bhubaneswar,Odisha,India

MihirNarayanMohanty,ITER,Siksha‘O’Anusandhan(DeemedtobeUniversity), Bhubaneswar,Odisha,India

SaumendraKumarMohapatra,ITER,Siksha‘O’Anusandhan(Deemedtobe University),Bhubaneswar,Odisha,India

IraNath,JISCollegeofEngineering,Kalyani,WestBengal,India

SubhenduKumarPani,KrupajalComputerAcademy,Bhubaneswar,Odisha,India

MoushitaPatnaik,SchoolofComputerEngineering,KIITUniversity,Bhubaneswar, Odisha,India

ArabindaPradhan,DepartmentofComputerScienceandEngineering,C.V.Raman GlobalUniversity,Bhubaneswar,Odisha,India

ChittaranjanPradhan,SchoolofComputerEngineering,KIITDeemedtobe University,Bhubaneswar,Odisha,India

RojanlinaPriyadarshini,DepartmentofComputerScienceandInformationTechnology,C.V.RamanGlobalUniversity,Bhubaneswar,Odisha,India

DeepakRai,DepartmentofComputerScienceandEngineering,NationalInstituteof Technology,Patna,Bihar,India

PriyankaRay,KalingaInstituteofIndustrialTechnologyDeemedtobeUniversity, Bhubaneswar,Odisha,India

VaisnavRoy,SchoolofComputerEngineering,KIITUniversity,Bhubaneswar, Odisha,India

SudiptaSahana,JISCollegeofEngineering,Kalyani,WestBengal,India

AbhayaKumarSahoo,SchoolofComputerEngineering,KIITDeemedtobe University,Bhubaneswar,Odisha,India

PrasanKumarSahoo,DepartmentofComputerScienceandInformationEngineering,ChangGungUniversity,TaoyuanCity,Taiwan

QusaySellat,DepartmentofComputerScienceandEngineering,C.V.RamanGlobal University,Bhubaneswar,Odisha,India

HrushikeshShukla,SchoolofComputerScienceandEngineering,Dr.Vishwanath KaradMITWorldPeaceUniversity,Pune,Maharashtra,India

DharmpalSingh,JISCollegeofEngineering,Kalyani,WestBengal,India

HirenKumarThakkar,DepartmentofComputerScienceandEngineering, Schoolof EngineeringandSciences, SRMUniversity,Mangalagiri,AndhraPradesh,India

Preface

Inrecenttimes,informationindustryhasexperiencedrapidchangesinboth theplatformscaleandscopeofapplications.Computers,smartphones,clouds, socialnetworks,andsupercomputersdemandnotonlyhighperformancebutalso ahighdegreeofmachineintelligence.Atpresent,Bigdataisplayingasignificantroleinthefieldofinformationtechnologyand,morespecifically,inthe DataSciencedomain.Manysolutionsarebeingofferedinaddressingbigdata analytics.Analysisofdatabyhumanscanbeatime-consumingactivity,and thus,theuseofsophisticatedcognitivesystemscanbeutilizedtocrunchthis enormousamountofdata.Cognitivecomputingcanbeutilizedtoreducethe shortcomingsoftheconcernsfacedduringbigdataanalytics.Thus,weare enteringaneraofbigdataandcognitivecomputing.Tomeetthesenew computingandcommunicationchanges,wemustupgradethecloudsandthe computingecosystemwithnewcapabilities,suchasmachinelearning,IoT sensing,dataanalytics,andcognitivemachinesmimickinghumanintelligence. Metaheuristicalgorithmshaveproventobeeffective,robust,andefficientin solvingreal-worldoptimization,clustering,forecasting,classification,andother engineeringproblems.Theabilityofmetaheuristicsalgorithmsincludesmanagingasetofsolutions,attendingmultipleobjectives,aswellastheirability tooptimizevariousvalues,whichallowsthemtofitindealingwithbigdata analytics.Metaheuristicalgorithmshavebecomepowerfulandfamousin computationalintelligenceandmanyapplications.Thisvolumeintendsto projectdifferentframeworksandapplicationsofcognitivebigdataanalytics usingthemetaheuristicsapproach.

Thisbookisdesignedasaself-containededitionsothatreaderscanunderstanddifferentaspectsofrecentinnovationsofmetaheuristicstoknowledge discoveryproblemsinthecontextofBigDataandCognitivecomputing.As manyas15chaptersaremadeaspartofthisbook.Differentapplicationdomains relatedtothescopeofthisbookarediscussedwhichincludemetaheuristicsin clusteringandclassification,swarmintelligence,heuristicsinvirtualreality, deeplearning,andbigdatawithIoTandrecommendationsystemamongothers.

Chapter1

Adiscourseonmetaheuristics techniquesforsolving clusteringandsemisupervised learningmodels

1.Introduction

Arapidsurgeofmachinelearningalgorithmshavebeenseeninthelastdecade whichhasalsopointedouttheneedforstate-of-theartoptimizationtechniques todealwiththelargeamountofdatainvolved.Metaheuristicsinvolvingdatadrivenmethodshaveshowntheireffectivenessinbetterqualityofsolutions andbetterconvergencerate.

Metaheuristicsmethodsexplorethesolutionspacetofindgloballyoptimumsolutionandimproveuponthegeneralsearchingprocedureprovidedby theheuristicmethods.Theyguideabasicandsimpleheuristicmethodby inculcatingvariousconceptstoexploitthesearchspaceofthegivenproblem [1].Metaheuristicstechniquesaregenerallynondeterministicandapproximate butgivegoodenoughsolutioninreasonabletime.Besides,thesemethodsare particularlywellsuitedtosolvingnonconvexoptimizationproblemsincluding thelikesofthoseencounteredduringclustering.Awiderangeofmetaheuristicshavebeendiscoveredrangingfromsearch-basedmethodslike simulatedannealingandtabusearchtothepopularnatureinspiredandthe evolutionaryalgorithms.Abriefdiscussiononthewidelyusedmetaheuristics isdiscussedinourstudy.

Clusteringandsemisupervisedmethodsareahottopictoday,findingits usesinmultipleimportantfieldsrangingfrombigdata,wirelesssensornetworkstobioinformaticstonameafew[2].Assuch,ithasbecomeoneofthe mostsoughtafterareasinresearchtoimprovetheperformanceoftheexisting methodsinvolved.Mostofthealgorithmsusedforclusteringandclassification sufferfromdrawbacksrelatedtobeingtrappedinthelocalmaximaorminima.

2 CognitiveBigDataIntelligencewithaMetaheuristicApproach

Duetothis,weusevariousnature-inspiredmetaheuristictechniquestofind globallyoptimalsolutionsinreasonableamountofcomputationtime. Beforestartingoutwiththemetaheuristics,westartoutwithanoverview ofthestandardmethodsforclustering.

2.Overviewofclustering

2.1K-meansclustering

Clusteringusingk-meansbasicallyculminatestoassigningthedatavectors, Zp accuratelytokclusters.Basically,theaimistominimizethesumofthe squarederrors,i.e., P k j¼1" P forallWp ε clusterki Wp ki 2 # byrepeatingthe followingstepsforsomenumberofiteration(ortillsometerminationconditionisreached):

1. Randomlyinitializetheclustercentroids.Then,foreachdatavectorZp, assignittheclusterwithcentroidski(i ¼ 1,2,3, .,k)suchthat||Zp ki||is minimum(here,||x||representstheEuclideannormofx)

2. Foreachcluster,findathenewclustercentroid,Ki suchthat Ki ¼ 1 jki j P forallWp ε clusterki Wp (where|ki|isthenumberofdatavectorsin clusterki)

2.2Hierarchicalclustering

Inhierarchicalclustering,therequirednumberofclustersisformedina hierarchicalmanner.Forsomennumberofdatapoints,initiallyweassign eachdatapointtonclusters,i.e.,eachpointinaclusterinitself.Thereafter,we mergetwopointswiththeleastdistancebetweenthemintoasinglecluster. Thedistanceoftheotherpointsfromthisclustermadeoftwopointsisthe leastdistancefromeitherofthetwopointsfromtheotherpoints.Thisprocess iscontinueduntilwegettherequirednumberofclusters(Fig.1.1).

2.3FuzzyC-means

Thisisusedwhenthedatapointsarefuzzy,i.e.,theycanbelongtotwoor moreclustersatthesametime.Eachdatapoint(therebeingndatapoints) belongstosomeclusterwithsomeweight(Fig.1.2).

Gij whereGij denotesbelongingness(weight)theithdatapointtothejth clustercj (withcentroidskj).Itisimportanttonotethatallweightsofadata pointaddupto1asshowninRef.[3].Infuzzyc-means,thesquarederror functionthatwewanttominimizeis Eq.(1.1)

Hierarchicalclustering,closestpointsclusteredfirst.

Here,dissomevaluefrom1toinfinitywhichisusedtocontroltheweights. Atfirstallthevaluesoftheweightsareinitialized.Thereafter,the followingstepsarerepeatedtillsometerminationcondition:

I. Calculatetheclustercentroids.

II. Updatetheweights.

Theclustercentroidsareupdatedasfollows:

Andtheweightsareupdatedasfollows:

FIGURE1.1
FIGURE1.2 Clusteringonfuzzysets.

2.4Model-basedclustering

Thisformofclusteringisbasedonprobabilisticdistribution.Somemodelsare usedtoclusterthedataandthentherelationbetweenthedatapointsandthe modelisoptimized.Generally,Gaussiandistributionisusedforcontinuous pointsandPoissonfordiscreetpoints.Inthisregard,theEMalgorithmis widelyusedtofindthemixtureofGaussians[4].Forothermodels,referto Ref.[5].

2.5Particleswarmoptimization

Theparticleswarmoptimization(PSO)isaswarm-basedoptimizationtechniquewhichdrawsinspirationfromtheforagingbehaviorofswarmsofbirds orthatoffishschooling.Thisoptimizationtechniqueisquiteusefulwhen continuousnonlinearfunctionsareinvolved[6].

Letusindulgeourselvesinascenariowhichdepictstheintuitionbehind techniqueinregardtothebehaviorofforagingswarms.Supposethereisa swarmofbirdforagingforfoodwhichislimitedandisconcentratedina particularlocation.Anaı¨vestrategytoreachthelocationisthat(Fig.1.3)each andeverybirdsearchestheentirearea(searchspace);however,thismightlead tosomebirdsneverreachingthelocationduetorandomnatureofthesearchor somereachingsolatethattheresourceisalreadydepleted.Instead,whatthe birdsdoisthateachofthemconsidersthebestposition(positionofthebird whichisclosesttothefoodsource)amongallthebirdsandkeepsamemoryof theirpreviousbestposition(theirclosestindividualpositionfromthefood source)toupdatetheirpositionandvelocity.Thisconnectionamongstthe birdsandthefactthatthebestwaytosearchistofollowthebirdwhoisclosest tothesourceformthebasisofthetechnique[7].

WhiledealingwithanumericoptimizationproblemusingPSO,initially therecanbelotofsolutions.Eachsolutionisdenotedasaparticleandeachis particleisassociatedwithapositionandvelocityateachturnofupdation[8]. Besides,eachparticlekeepstrackofitsbestpositionPbest (whereitwasclosest totheglobaloptimum)andthatoftheglobalbest[9],Gbest (positionofthe particleclosesttotheglobaloptimum).Thevelocityandpositionequationare givenasfollows:

{positionshouldbevelocity*time,butsinceupdationisdoneoverasingle turntimecanbethoughtas1}

Here,V(t)isthevelocityassociatedwiththeparticleattimet. X(t)isthepositionoftheparticleattimet r1, r2 arerandomvaluesrangingfrom0to1 c1 isaconstantcalledthecognitive(localorpersonal)weight c2 isaconstantcalledthesocial(orglobal)weight. Wisaconstantfactorcalledtheinertiaweight. Letusconsiderafunctiontounderstandtheworkingsbetter.Supposewe havetofindtheglobalminimaof

Now,althoughitisapparentthattheplotwillhaveaminimaat(x,y) ¼ (0,0) withavalueof0,nonetheless,wecanseetheconvergenceofthePSOquite wellhere.Letusstartatapoint(x,y) ¼ (37.5,18.75).Here,F(x)willbe1832.81. LetV(t)be( 1, 2),Wbe0.6,c1 andc2 be1.4,andr1, r2 be0.4and0.5, respectively.LetthePbest be(31.25,12.5)yieldingavalue1195.31andtheGbest be(12.5,18.75)yieldingavalue532.81(Fig.1.4).

FIGURE1.4 Plotofthefunction.

FðXÞ¼ X2 þ Y2 þ 2X

Nowputtingtheabovevalues,weget

Vðt þ 1Þ¼ f0 6 ð 1; 2Þgþ f1.4 0 4 ð31.25; 12.5Þ ð37.5; 18.750Þg þ f1.4 0:5 ð12.5; 18.75Þ ð37.5; 18.75Þg

¼ð 0.6; 1.2Þþð 3.5; 3.5Þþð 17.5; 0Þ

¼ð 21.6; 4.7Þ

Xðt þ 1Þ¼ð37.5; 18.75Þþð 21.6; 4.7Þ

¼ð15.9; 14.05Þ whichisclosertotheoptimalpoint(0,0).

2.6ClusteringusingPSO

Inaclusteringproblem,letWp representadatavector,kbethenumberof clusters,andki bethenumberofparticlesinclusteri.

Eachparticlecanbethoughtofasasetofkclustercentroids,i.e.,theith particleisdeterminedasfollows:

Xi ¼ fmi1 ; mi2 ; ; mik g

wheremij isthejthclustercentroidoftheithparticle.Unlessstatedotherwise, wewillbeusingtheaforementionedsymbolsthroughoutthechapter.

ThePSOequationfortheithparticlecanbethenwrittenasfollows:

Ingeneral,lowertheintraclusterdistance(thedistancebetweenallthedata vectorsandthecentroidinaparticularcluster),bettertheresultsare. Henceforth,wecandefinethequantizationerrorforaparticleiastheaverage intraclustererroras

ClusteringusingPSOrunsonthefollowingalgorithm:

❖ Initially,eachandeveryparticleisrandomlyinitialized,i.e.,allthekcluster centroidsoftheparticlearerandomlyinitializedandsomevelocityassociatedwiththem.

❖ Forsomenumberofiterationt,wedothefollowing: n Foreachparticlei:

➢ FordatavectorWp, wefirstcalculate||Wp Cij||(Euclideannorm)toall theclustercentroidsofparticleiandthenassigneachdatavectortothe

clustercentroidswithwhichithastheleastEuclideannormamongall theclustercentroids.

➢ Then,thefitnessfortheparticleiscalculatedusingthefitnessequation. n TheGbesst andPbest arethenchangedaccordinglyafterwhichthecluster centroidsareupdatedusingtheaforementioned Eqs.(1.6)and(1.7).

Whilek-meansforclusteringsuffersfromtheproblemofbeingtrappedin thelocaloptimalpositions(resultinginlessaccurateclusters)duetoinitial assumptions,clusteringusingPSOcangivetheglobalbestresultinginmore accurateclusters.However,ithastheproblemofveryslowconvergencerate towardtheend.Todoawaywiththisproblem,thehybridPSOandk-means clusteringalgorithmcanbeusedwhereintheperformanceofPSOis improvedbyseedingtheinitialparticleswarmwiththeresultsofk-mean.In thismethod,everyparticleisinitializedrandomlyexceptonewhichis initializedwiththeresultofk-mean.Afterthat,thePSOclusteringalgorithm isrun.

2.7Antcolonyoptimization

Theantcolonyoptimization(ACO)isanotherswarmalgorithmwhichis inspiredbytheforagingbehaviorofants.Itisastochasticmetaheuristics techniqueforsolvingabunchofnonlinearoptimizationproblems.Themain ideaofthealgorithmliesinitspheromonemodelwhichdependsonprobabilisticsampling.

Sincemostofthespeciesofantsaredevoidofeyesightorhaveblurry eyesight,theyscatteralongrandomroutesfromtheirnesttothefoodsource whentheyinitiallystartwitheachroutehavinganequalprobability.Eachant depositsacertainamountofpheromoneonthepaththatittraverses.Eventually,theyperceivetheshortestpathbyfollowingthepathwiththelargest amountofpheromoneentrailsleftoveraperiodoftimebyalltheants.

Thesituationcanbebetterunderstoodbythefollowingsituation: Initially,antstravelwithequalprobabilityalongthepathsaandb.Letus startfromthesituationwhenonlytwoantshavestartedout(sincebothpaths haveequalprobability).Onemovesalongpathaandtheotheralongpathb. Sincepathbisshorter,theantonthatpathtraversestoandfrofromnestto foodsourcebacktonestquickerthantheantontheotherpathallwhile leavingpheromones.Whenanotherantstarts,itwillmoveonthepathwith morepheromonesthatisb.Likewise,overtime,theprobabilityofchoosing pathbincreasesduetomorepheromoneconcentrationonthatpathcompared totheotheraspathbhasashortertraversetime(Fig.1.5).

Theamountofpheromoneonapathalsodependsonalotofotherfactors likeevaporationfactorandotherenvironmentalfactor.However,while consideringACO,onlythefactoristakenintoconsideration.

TheACOgenerallyconsistoftwoparts:

FIGURE1.5 Antmovementinitiallyandfinally.

2.7.1Constructingtheantprobabilitysolution

Theantprobabilitysolutionreferstotheprobability,Pij, thatanantmoves fromnodeitojwhereiandjaresomenodesalongthepathwhentheproblem isrepresentedasagraphproblem.TheprobabilityPij isgivenbythe following:

Here, sij indicateshowmuchpheromoneisdepositedonthepathfromitoj. a indicatestheparameterthatisusedtocontrol hij indicatestheant’sdesirabilitytogothroughpathfromitoj b indicatesthecontrolparameterof hij

2.7.2Updatingthepheromoneamount

Here, r isthepheromoneevaporationrateandthelasttermrepresentsthe amountofpheromonedepositedwhichisgivenforsomeby1/len,wherelenis thelengthofthepathfromitoj.Iftheantdoesnottravelviathatroute,the lasttermistakenas0.Thisupdatewhenappliedtoalltheantsincludesa summationwiththelastterm.

2.8ClusteringusingACO

Initially,allthedatavectorsarerandomlyprojectedona2dgrid.Thealgorithmisbasedonthepickingsanddroppingsofthedatapointsonthe2dgrid. Theants(agents)movearoundthe2dgridinarandommannerpickingand droppingthedatapoints.Thepickupanddropoffprobabilityofthedata points,thoughrandom,aredeterminedbyneighborhoodfactors.Thepickup probabilityincreasesinthecasewhentheneighborhooddataitemshave differentlabels,i.e.,theyaredissimilar[10].Ontheotherhand,ifthe neighborhooddataitemsaresimilar,thedropoffprobabilityincreases.The pickoffprobabilityisgivenby

andthedropoffprobabilityisgivenby

Here,fisthefractionofitemsintheneighborhoodoftheagent.

I1 andI2 arethresholdconstants.

Inthealgorithm,wetakethenumberofagentssimilartothenumberof clustersthatwewant.

Thealgorithmconsistsofthefollowingsteps:

1. Thefollowingarerunforsomeiteration,t:

❖ ThekclustercentroidsareinitializedbytheACO.ThePij oftheantsas discusseddeterminesthedatapointsthatareassimilatedintoclusters. Thepickupandthedropoffprobabilitiesareconsideredalongside.

❖ Whileensuringthateveryantvisitsthecorrespondingoccurrences,the datapointsareassignedtotheneighboringclustercentroidsandthe valueoftheobjectivefunctioniscalculatedforeveryagent.

❖ Thebestsolutionisfoundamongalloftheothersbygradingtheagents bythenormandeliminatingthoseagentswithclusterlessthangiven, i.e.,k.Thepheromonevaluesareupdatedaccordingtothesebest solutions.

2. Thebestagentgloballyiscalculatedusinglocalbest[11]whiletheagents areequalinnumbertotheglobalbestsolutions.Thereafter,themeanis usedtocalculatetheclustercentroidsafterevaluatinginitialandfinalfmeasureandcalculatingentropyandmovingdatapointstodifferent clusteriftheFij-initial < Fij-final whereFij isthef-measure.

3. Theabovestepisrepeatedtillthereisnocaseofreassigningthepoints.

Here,thef-measureforsomedatapointpandclusteriiscalculatedas follows:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.