Pretreatment for reverse osmosis desalination 1st edition voutchkov - The full ebook set is availabl

Page 1


Cashed Up with Commercial Property: A Step-by-Step Guide to Building a Cash Flow Positive Portfolio Helen Tarrant

https://ebookmass.com/product/cashed-up-with-commercial-property-astep-by-step-guide-to-building-a-cash-flow-positive-portfolio-helentarrant/

ebookmass.com

Strategic Management: Concepts 3rd Edition Frank Rothaermel

https://ebookmass.com/product/strategic-management-concepts-3rdedition-frank-rothaermel/

ebookmass.com

The Last Lie Patricia Forde

https://ebookmass.com/product/the-last-lie-patricia-forde/

ebookmass.com

Sejarah Jamaah Tabligh di Parongpong (1999-2023) Dr. Ajid Hakim

https://ebookmass.com/product/sejarah-jamaah-tabligh-diparongpong-1999-2023-dr-ajid-hakim/

ebookmass.com

Lost To Us (The President’s Daughters Book 5) Kathryn Shay

https://ebookmass.com/product/lost-to-us-the-presidents-daughtersbook-5-kathryn-shay/

ebookmass.com

PRETREATMENTFORREVERSE OSMOSISDESALINATION

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2017ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ortreatmentmay becomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-809953-7

ForinformationonallElsevierpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: JohnFedor

AcquisitionEditor: AnitaKoch

EditorialProjectManager: AmyM.Clark

ProductionProjectManager: MohanapriyanRajendran

Designer: ChristianBilbow

TypesetbyTNQBooksandJournals

8. GranularMediaFiltration

8.1Introduction154

8.2TheFilterOperationCycle155

8.3KeyFiltrationSystemComponents158

8.4FilterTypesandConfigurations161

8.5FilterPerformance168

8.6SourceWaterPretreatmentPriortoGranular MediaFiltration176

8.7PlanningandDesignConsiderations176

8.8ConstructionCostsofGranularMedia FiltrationSystems183 References186

9. MembraneFiltration

9.1Introduction188

9.2TheMembraneFiltrationProcess190

9.3KeyFiltrationSystemComponents194

9.4FilterTypesandConfigurations197

9.5FilterPerformance203

9.6PlanningandDesignConsiderations204

9.7OverviewofMembraneProductsUsedfor SalineWaterPretreatment207

9.8DesignExamples216

9.9ConstructionCostsofMembrane PretreatmentSystem218 References219

10. ComparisonofGranularMedia andMembranePretreatment

10.1Introduction221

10.2EffectofSourceWaterQuality onPerformance222

10.3SurfaceAreaRequirements224

10.4QuantityandQualityofGenerated Residuals224

10.5ChemicalUse227

10.6PowerUse228

10.7EconomyofScale228

10.8FiltrationMediaReplacementCosts229

10.9Commoditization230

10.10WaterProductionCosts233

10.11ConcludingRemarks237 References238

11. GuidelinesforPretreatment SystemSelection

11.1Introduction239

11.2PretreatmentSelectionGuidelines240

11.3AdditionalConsiderationsforSelection ofPretreatment247 References248

12. ReverseOsmosisSystemDesign andPretreatment

12.1OverviewofTypicalSWRODesalination System250

12.2SWROMembraneElements KeyTypesand PretreatmentConsiderations250

12.3InternallyStagedMembrane Configuration FoulingImplications256

12.4AlternativeSWRO-MembraneSystemsand Pretreatment257

12.5AlternativesforControlofMicrobial Fouling272 References276

Glossary277 Index281

Preface

Atpresent,reverseosmosis(RO)membranedesalinationisthepredominanttechnologyforproductionoffreshwaterfrom salinewatersources(seawater,brackishwater, wastewater,etc.).Theengineeredsemipermeablemembranesemployedbythistechnology havetheabilitytoallowtransportofpure watermoleculesatan order-of-magnitude higherratethantheyallowtransportofsalts.

However,the finemicrostructureofthe semipermeablemembranespresentlyused fordesalinationbyROdoesnotpermitpassageofparticulatescontainedinthesaline sourcewaterorformedduringthedesalinationprocess.Therefore,ifpresentinthefeed watertotheROmembranesinsignificant amount,theseparticulatesmaycausemembranefouling,which,inturn,mayrapidly decreasemembraneproductivityandresult indesalinationplant-performancefailure. Membranefoulantsaretypicallyorganicand inorganiccolloidsandparticulates,naturally occurringinthesalinesourcewaterorgeneratedonthesurfaceofthemembranesby aquaticmicroorganismsorphysicalchemical processesthatoccurduringRO-saltseparation andconcentration.

Thepurposeofthepretreatmentsystemis toadequatelyandeffectivelyremovefoulantsfromthesalinesourcewaterandto secureconsistentandef ficientperformance oftheROmembranesthatprocessthepretreatedwaterandproducedesalinatedwater.Thepretreatmentsystemistypically locateddownstreamofthedesalination plant’sintakefacilitiesandupstreamofthe seawaterRO-membranesystem.

Dependingonthesource-waterquality, desalinationplant’spretreatmentsystemmay consistofoneormoretreatmentprocesses including:screening,chemicalconditioning, clarificationbydissolvedair flotationor gravitysettling,granularmedia filtration, membranemicrofiltration(MF)orultrafiltration(UF),andcartridge filtration.Priorto processingthroughsedimentationand/or filtration,thesalinesourcewaterusedfor membranedesalinationisconditionedbythe additionofanumberofchemicals(biocide, coagulant, flocculant,antiscalant,etc.)inordertoimproveperformanceofdownstream treatmentprocesses.

Thisbookprovidesadetailedoverviewof keyprocesses,technologies,andequipment usedforpretreatmentofsalinewaterused formembranedesalination,anddiscusses theirareasofapplication,pasttrackrecord, advantages,anddisadvantages.Thework describestypicalcausesandmechanismsof RO-membranefoulingandpresentsmost recentdevelopmentsinpretreatmenttechnologyandscience.Whilethebookmakes reference,whenapplicable,topretreatment ofbrackishwaters,itscontentismainly focusedofpretreatmentofseawaterforRO desalination.Itshouldbepointedout,however,thatpracticallyalltechnologiesand source-waterconditioningmethods describedinthisbookareequallyapplicable topretreatmentofseawaterandbrackish water.

Thebook’schaptersaddresspracticallyall aspectsofpretreatmentofsalinesourcewater usedforproductionoffreshwaterby

membranedesalination,suchasthenature, origin,andcharacterizationofkeymembrane foulants,thediagnosticsofROmembrane fouling,theimpactofthetypeofthedesalinationplantintakeonthesourcewaterfouling potentialandtheconfigurationofthepretreatmentsystem,themostcommonlyused source-waterscreeningtechnologiesand equipment,source-waterconditioningfor pretreatment,sandremoval,clarificationby gravitysettlinganddissolvedair flotation,and salinesourcewatergranularmediaand membrane filtration.Inaddition,thebook providesacomparativeanalysisofmembrane pretreatmentandincludesguidelinesforpretreatmentsystemselection.

Thebookalsoincludesguidanceandexamplesforsizingandcostestimationofkey desalination-plantpretreatmentfacilities.It isimportanttounderlinethatthefacilityand equipmentprocedurespresentedinthis bookarenotintendedtoserveasstandard, all-inclusivedesignprocedures,buttheir mainpurposeistoillustratetypicalmethodologiesandapproachesusedbydesalinationprofessionals.Referencestoparticular technologies,equipmentandmembrane manufacturersshouldnotbeconstruedasan endorsementbytheauthororarecommendationforapreferentialuseorconsideration.

Costgraphsincorporatedinthisbookare recommendedtobeusedonlyforthepreparationofinitialorder-of-magnitudeestimatesoftheconstructioncostsofthe respectivepretreatmentsystemsandare presentedin2017USdollars.Site-specific projectconditions,currencydifferences,and otherfactorsmayresultinsignificantdifferencesbetweentheactualfacilityconstructioncostsandthevalueofthesecosts determinedusingthecostgraphsofthis book.Thereaderisrecommendedtocontact thesuppliersofthespecificpretreatment

technologies,whichareplannedtobeused fortheirdesalinationprojectinorderto receiveupdatedcostscommensuratewith localandinternationalmarketconditionsat thetimeofprojectimplementation.

Thebookincludesatotalof12chapters, whichfollowthetypicalsequenceofsaline source-waterpretreatmentpriortomembranedesalinationandguidethereadertowardtheselectionofthemostsuitable pretreatmenttechnologyorcombinationof technologiesforthesite-speci ficconditions ofagivenproject.Asindicatedpreviously, themainemphasisofthisbookisthepretreatmentofseawaterforROdesalination.

Chapter1providesabriefoverviewofthe keyreasonsofwhyseawaterpretreatmentis neededpriortomembranedesalination.The chaptermainlyemphasizestheroleof pretreatmentintheproductionofdesalinatedwaterandtheinterrelationofpretreatmentsystemandotherdesalination plantcomponents.

Chapter2describesthetypeoffoulants typicallycontainedinsourceseawateror brackishwaterandexplainshowthesefoulantsimpactRO-membraneperformance.In addition,thischapterdiscussesthemost commonmethodspresentlyemployed worldwidetocharacterizetheRO-membrane foulingpotentialofsalinewatersandidentifiesthresholdlevelsforkeysource-water qualityparametersthattriggeraccelerated membranefouling.

Chapter3featuresanoverviewofthe typicalRO-membranefoulingphenomena observedinfull-scaledesalinationsystemsand themethodsusedfordiagnosticsofthetype andseverityofmembranefouling.Thechapter alsoillustratestheuseofRO-membraneautopsyformembranefoulingdiagnostics.

Chapter4discussestheimpactofthetype andconfigurationofthedesalinationplant

intakeontheselectionanddesignofthe pretreatmentsystem.Thechapterencompassespracticalpretreatmentexperience withdesalinationplantsusingbothopen intakesandsubsurfaceintakesandcontains guidanceofhowtoselectintakeconfigurationthatminimizesdownstreampretreatmentrequirementsforthesite-specific conditionsofagivendesalinationproject. Thechapteranalyzesthekeyadvantages andchallengesassociatedwiththeuseopen andsubsurfaceintakesandthetrade-offbetweentheuseofcostlierintakesandless complexpretreatmentsystemsandvice versa.

Chapter5focusesonthetypeand configurationofthemostcommonlyused screeningequipmentappliedforremovalof courseparticulatematerials(largedebris, algae,jelly fish,etc.)fromthesalinesource water.Thechapteraddressesthecriteriafor selectionofbar,band,anddrumscreensas wellasmicroscreens,andcartridge filters.

Chapter6isdedicatedtosystemsfor additionofchemicalstothesalinesource water,whichallowtoconditionthiswater priortoitsfurtherpretreatmentordirect applicationforRO-systemprocessing.Sourcewaterconditioningisofcriticalimportance fortheefficientandcost-effectivesedimentation,and filtrationoftheparticulateand organiccompoundscontainedinthewateras wellasforpreventionofformationofscaleon theRO-membranesurface.Thischapterdescribesthepurposeanddosingofcommonly appliedsource-waterconditioningchemicals suchascoagulants, flocculants,scaleinhibitors,biocides,acids,andbases.

Chapter7presentsalternativepretreatmenttechnologiesthatarecommonly appliedforremovalofrelativelylargesuspendedsolidscontainedinthesourcewater. Thechaptercontainskeydesigncriteriaused forsizingoflamellasettlersanddissolvedair

otation(DAF)clarifiersandprovidesconstructioncostcurvesforthesefacilities.

Chapter8isdedicatedtothemost commonlyusedtypeoftechnologyfor removalof fi ndsolidsfromthesource water granularmedia filtration.Itdiscusses alternativetypesof filtersusedindesalinationplantsandtheirareaofapplicationand performance.Thechapterincorporatesconstructioncostcurvesforgravityand pressure-drivengranularmedia filtration systems.

Chapter9discussestheuseofMFandUF membranesforpretreatmentofsalinesource water.Thechapterpresentskeyconsiderationsassociatedwiththeselection,planning,andcostestimatingofmembrane pretreatmentsystemsforseawaterdesalinationplants.Thischapterincorporatesdesign examplesforsubmergedandpressuredrivenmembranepretreatmentfacilities.

Chapter10providesacomparativeanalysisofthekeyadvantagesanddisadvantagesofgranularmediaandmembrane pretreatment filtersintermsof:theeffectof sourcewaterqualityandtemperatureon theirperformance;surfacearearequirements;quantityandqualityofthe generatedresiduals;chemicalandpower uses;andoverallwaterproductioncosts.

Chapter11featuresamethodologyfor identifyingthetypeandconfigurationofthe mostsuitableseawaterpretreatmentsystem forthesite-speci ficconditionsofagiven desalinationproject.Theselectionmethodologyisbasedontheanalysisofthesource waterqualitycollectedbythedesalination plantintakeandisbuiltupontheindustrywidepracticalexperiencewiththeimplementationofalternativetechnologiesand configurationsoverthepast20years.

Chapter12delineateshowtoaccessthe impactofthepretreatmentsystemonthe selectionofthemost-suitableconfiguration

andkeydesigncriteria(flux,recovery,feed pressure,etc.)ofthedownstreamseawater RO-desalinationsystem.

Thisbookisintendedforwatertreatment professionalsinvolvedintheplanning designandoperationofdesalinationplants forproductionoffreshwaterfromsaline

watersources(seawater,brackishwater, high-salinitywastewater).Thebookissuitableforwaterutilitymanagersandplanners, consultingengineers,operatorsofdesalinationplants,andstudentsandteachersinthe desalination field.

mg/L Microgramsperliter

mm Micrometer

mS/cm Microsiemenspercentimeter

N Nitrogen

Na Sodium

Na2S2O4

Na2S2O5

Sodiumhydrosulfite

Sodiummetabisulfite

NaHSO3 Sodiumbisulfite

NaOH Sodiumhydroxide

NDMA N-nitrosodimethylamine

NDP Netdrivingpressure

Nepv NumberofelementsperROvessel

NF Nano filtration

Ni Nickel

NL Noleaks(formembraneintegrity)

NOM Naturalorganicmatter

NPDES Nationalpollutantdischargeeliminationsystem

Nt NumberofROtrains

NTU Nephelometricturbidityunit

Nvpt NumberofvesselsperROtrain

O&M Operationandmaintenance

Op Averageosmoticpressure

ORP Ooxidation-reductionpotential

P Phosphorus

PA Polyamide

PACL Polyaluminumchloride

Pd Pressuredrop

PE Polyethylene

PES Polyethersulfone

pH Indicationofacidityorbasicityofsolution

Pp Permeatepressure

ppt Partperthousand(1ppt ¼ 1000mg/L)

Pr Permeaterecoveryrate

psi Poundspersquareinch(unitofpressure)

PTFE Polytetra fluoroethylene

PVC Polyvinylchloride

PVDF Polyvinylidenedifluoride

PVP Polyvinilpyrrolidone

PX Pressureexchanger

Qbw Dailyvolumeofbackwashwater

Qc Dailyvolumeofdesalinationplantconcentrate

Qf Salinesourcewaterdaily flow

Qp Volumeoftheplantfresh-waterproduction(dailypermeate flow)

Qs Volumeofthesalinesourcewater(daily flow)

R Plantrecovery

Rnew Resistanceofnewmembranes

RO Reverseosmosis

Rt Membraneresistanceaftergiventimeofoperation

s Second

S Membraneareaofanelement

SBS Sodiumbisulfite

SCADA Supervisorycontrolanddataacquisition

SDI Siltdensityindex

SDSI Stiff Davissaturationindex

SEM Scanningelectronmicroscopy

Si Silicium

SMP Speci ficmembranepermeability

SO4 Sulfates

SP Saltpassage

Sr Saltrejection

Sr Strontium

SWRO Seawaterreverseosmosis

SUVA Speci ficUVabsorbance

TCF Temperaturecorrectionfactor

TDS Totaldissolvedsolids(salinity)

TDSc Concentratesalinity

TDSf Feedwatersalinity

TDSp Permeatesalinity

THM Trihalomethanes

Ti Titanium

TN Totalnitrogen

TOC Totalorganiccarbon

TMP Transmembranepressure

TP Totalphosphorus

TSS Totalsuspendedsolids

UAE UnitedArabEmirates

UC Uniformitycoef ficient

UF Ultra filtration

US UnitedStates(ofAmerica)

USBR USbureauofreclamation

USEPA Unitedstatesenvironmentalprotectionagency

UV Ultravioletirradiation

UV254 UVabsorbanceat254nm

VFD Variablefrequencydrives

VROsystem VolumeoftheROsystem

WET Wholeeffluenttoxicity

WHO WorldHealthOrganization

WWTP Wastewatertreatmentplant

Y Desalinationplantrecovery

yr Year

IntroductiontoSalineWater Pretreatment

OUTLINE

1.1PurposeofPretreatment1

1.2Membrane-FoulingMechanisms3

1.2.1ExternalandInternalFouling3

1.2.2ConcentrationPolarization4

1.2.3MembraneFoulingandFlux Redistribution8

References10

1.1PURPOSEOFPRETREATMENT

Asanyothernaturalwatersource,salinewater(e.g.,seawater,brackishwater)contains solidsintwoforms:suspendedanddissolved.Suspendedsolidsoccurinaformofinsoluble particles(particulates,debris,marineorganisms,silt,colloids,etc.).Dissolvedsolidsarepresentinsolubleform(ionsofmineralssuchaschloride,sodium,calcium,magnesium,etc.).At present,practicallyalldesalinationplantsincorporatetwokeytreatmentstepsdesignedto sequentiallyremovesuspendedanddissolvedsolidsfromthesourcewater.

Thepurposeofthe firststep pretreatment istoremovethesuspendedsolidsfromthe salinesourcewaterandtopreventsomeofthenaturallyoccurringsolublesolidsfrom turningintosolidform,andprecipitatingonthereverseosmosis(RO)membranesduring thesaltseparationprocess(see Fig.1.1).Thesecondstep thereverseROsystem separates thedissolvedsolidsfromthepretreatedsalinesourcewater,therebyproducingfreshlowsalinitywatersuitableforhumanconsumption,agriculturaluses,andindustrialapplications. Ideally,afterpretreatmenttheonlysolidsleftinthesourcewaterwouldbethedissolved minerals,andaslongasthedesalinationsystemisoperatedinamannerthatpreventsthese

Externalfoulinginvolvesaccumulationofdepositsonthesurfaceofthemembranesby threedistinctmechanisms:

• formationofmineraldeposits(scale);

• formationofcakeofrejectedsolids,particulates,colloidsandotherorganicand/orinorganicmatter;

• biofilmformation i.e.,growthandaccumulationofcoloniesofmicroorganismsonthe surfaceofthemembranes,whichattachthemselvesbyexcretionofextracellular materials.

Althoughthethreemembrane-foulingmechanismscanoccurinanycombinationatany giventime,typicallyexternalmembranefoulingofROmembranesismostfrequentlycaused bybiofilmformation(biofouling).

Internalfoulingisagradualdeclineofmembraneperformancecausedbychangesinthe chemicalstructureofthemembranepolymerstriggeredbyphysicalcompactionorbychemicaldegradation.Physicalcompactionofthemembranestructuremayresultfromlong-term applicationoffeedwateratpressuresabovethesetheROmembranesaredesignedtohandle (usually83barsforSWROmembranes)and/orbytheirprolongedoperationatsourcewater temperaturesabovethelimitofsafemembraneoperation(typically45 C).

Chemicaldegradationisamembrane-performancedeclineresultingfromcontinuous exposureofmembranestochemicalsthataltertheirstructuresuchasstrongoxidants(chlorine,bromamine,ozone,permanganate,peroxide,etc.)andverystrongacidsandalkali(typicallypHbelow3orabove12).

Whileexternalfoulingcanbealmostcompletelyreversedbychemicalcleaningofthe membranes,internalfoulingusuallycausespermanentdamageofthemicrovoidsandpolymericstructureofthemembranes,andtherefore,islargelyirreversible.

1.2.2ConcentrationPolarization

Averyimportantfactorthatmayhavesignificantimpactontheextentandtypeofmembranefoulingisconcentrationpolarization.Thisphenomenonentailsformationofaboundarylayeralongthemembranefeedsurface,whichhassaltconcentrationsignificantlyhigher thanthatofthefeedwaterintroducedtothefeed/concentratespacersoftheROmembranes (Fig.1.2).

Theboundarylayerisalayeroflaminarfeedwater flowandelevatedsalinitythatforms asaresultofthetangentialsourcewaterfeed flowintheRO-membranefeed/concentrate spacersandofpermeate flowinperpendiculardirectionthroughthemembranesonthe twosidesofthespacer(Fig.1.3).

In Fig.1.3,Cb isthesaltconcentrationattheboundarylayer(e.g.,feedsalinewaterconcentration);Cs isthesaltconcentrationattheinnermembranesurface,whichtypicallyis higherthanthatinthefeed flow;andCp isthesaltconcentrationofthefreshwateronthe lowsalinity(permeate)sideofthemembrane.

Twodifferenttypesof fl owoccurintheboundarylayersofthefeed/concentrate spacers( Fig.1.3 ):aconvective fl owoffreshwaterfromthebulkofthefeedwaterthough themembranesanddiffusion fl owofrejectedsolutes(salts)fromthemembranesurface backintothefeed fl ow.SincethesemipermeableROmembranesaredesignedsuch

Reverseosmosismembrane. SWRO,seawaterreverseosmosis.

FIGURE1.2
FIGURE1.3 Boundarylayersinamembranefeedspacer. RO,reverseosmosis.

ratiobetweenpermeateandfeed flowsoftheentireROsystemistermedanROsystemrecoveryrate.

Astherecoveryrateincreases,themagnitudeofconcentratepolarizationincreasesaswell. Forexample,forSWROsystemsusingstandardmembraneelements,operationatrecovery rateof50%wouldtypicallyresultofapproximately1.2 1.5timeshighersalinityconcentrationatthemembranesurfacethanthatinthesourceseawater.Beyond75%recovery,theconcentrationpolarizationfactorwouldexceed2,whichwouldhaveasignificantimpactonthe efficiencyofthemembraneseparationprocess.

Inaddition,atrecoveryrateabove75%andambientsalinitypH,manyofthesaltsin seawaterwouldbeginprecipitatingonthemembranesurface,whichwouldrequiretheadditionoflargeamountsofantiscalant(scale-inhibitor)andwouldmakeSWROdesalination impractical.SincescalingispH-dependent,anincreaseinpHto8.8ormore,whichoften ispracticedforenhancedboronremoval,mayresultinscaleformationatsignificantlylower SWROsystemrecovery(50% 55%).

Tolimitconcentrationpolarizationwithinreasonablelimits,RO-membranemanufacturers recommendmaintainingthemaximumrecoveryratepermembraneelementinavessel within10% 20%.Asaresult,withatypicalconfigurationofsixtoeightelementspervessel, andtakingunderconsiderationtheactual fluxoftheindividualelementsinthevessel,asingleROsystemispracticallylimitedtoamaximumof50% 65%recovery.Forbrackishwater desalinationsystemsthetypicalmaximumrecoveryrateis85% 95%.

Theconcentrationpolarizationphenomenondescribedaboveanditseffectonmembrane productivity(flux)declineisinherentnotonlytoROmembranesbutalsooccursonthesurfaceofultrafiltration(UF)andmicro filtration(MF)membranesusedforsalinewaterpretreatment.Inthiscase,concentrationpolarizationisaccumulationofrejectedparticles(ratherthan salts)nearthemembranesurfacecausingparticleconcentrationintheboundarylayerthatis greaterthanthatintherawseawaterfedtothepretreatmentsystem(whichinturnresultsin UF/MF fluxdecline).

1.2.3MembraneFoulingandFluxRedistribution

MembraneROelementsofatypicalSWROsystemareinstalledinvesselsoftenreferredto asmembranepressurevessels.Usually,sixtoeightSWRO-membraneelementsarehousedin asinglemembranevessel(see Fig.1.4).

UndertypicalRO-systemmembranecon figuration,allofthefeedwaterisintroducedat thefrontofthemembranevesselandallpermeateandconcentrateiscollectedattheback end.Asaresult,the first(front)membraneelementisexposedtotheentirevesselfeed flowandoperatesat fluxsignificantlyhigherthanthatofthesubsequentmembraneelements.Withthemostcommonlyusedconfigurationofsevenelementspervesselandideal uniform flowdistributiontoallROelements,eachmembraneelementwouldproduceoneseventh(14.3%)ofthetotalpermeate flowofthevessel.

However,inactualSWROsystems,the flowdistributioninavesselisunevenandthe first membraneelementusuallyproducesover25%ofthetotalvesselpermeate flow,whilethe lastelementonlyyields6% 8%ofthetotalvesselpermeate(see Fig.1.4).Thedeclineof permeateproductionalongthelengthofthemembranevesselismainlyduetotheincrease infeedsalinityandassociatedosmoticpressureasthepermeateisremovedfromthevessel

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Pretreatment for reverse osmosis desalination 1st edition voutchkov - The full ebook set is availabl by Education Libraries - Issuu