Climate change and extreme events 1st edition ali fares - The ebook in PDF/DOCX format is available

Page 1


https://ebookmass.com/product/climate-change-and-extremeevents-1st-edition-ali-fares/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Climate Change Adaptation for Transportation Systems: Adapting for Climate Change and Extreme Weather Impacts

1st Edition Michael A.P. Taylor

https://ebookmass.com/product/climate-change-adaptation-fortransportation-systems-adapting-for-climate-change-and-extremeweather-impacts-1st-edition-michael-a-p-taylor/ ebookmass.com

Extreme Wildfire Events and Disasters: Root Causes and New Management Strategies 1st Edition Fantina Tedim

https://ebookmass.com/product/extreme-wildfire-events-and-disastersroot-causes-and-new-management-strategies-1st-edition-fantina-tedim/

ebookmass.com

Mobilities Facing Hydrometeorological Extreme Events 2: Analysis of Adaptation Rhythms 1st Edition Celine Lutoff (Editor)

https://ebookmass.com/product/mobilities-facing-hydrometeorologicalextreme-events-2-analysis-of-adaptation-rhythms-1st-edition-celinelutoff-editor/

ebookmass.com

Excursions in Modern Mathematics 10th Edition Peter

https://ebookmass.com/product/excursions-in-modern-mathematics-10thedition-peter-tannenbaum/

ebookmass.com

Blind Spot (The Technicians, #10) Olivia Gaines

https://ebookmass.com/product/blind-spot-the-technicians-10-oliviagaines/

ebookmass.com

Contabilidad Financiera 7th Edition Gerardo Guajardo Cantú

https://ebookmass.com/product/contabilidad-financiera-7th-editiongerardo-guajardo-cantu/

ebookmass.com

Redesigning CapEx Strategy 1st Edition Fredrik Weissenrieder

https://ebookmass.com/product/redesigning-capex-strategy-1st-editionfredrik-weissenrieder/

ebookmass.com

The Soviet Infantryman on the Eastern Front 1st Edition Simon Forty

https://ebookmass.com/product/the-soviet-infantryman-on-the-easternfront-1st-edition-simon-forty/

ebookmass.com

Nantucket Penny Steven Axelrod

https://ebookmass.com/product/nantucket-penny-steven-axelrod-2/

ebookmass.com

The Indo-Pacific: Trump, China, and the New Struggle for Global Mastery 1st ed. 2020 Edition Richard Javad Heydarian

https://ebookmass.com/product/the-indo-pacific-trump-china-and-thenew-struggle-for-global-mastery-1st-ed-2020-edition-richard-javadheydarian/ ebookmass.com

ClimateChangeand ExtremeEvents

ClimateChangeand ExtremeEvents

CollegeofAgricultureandHumanSciences,PrairieViewA&M University,PrairieView,TX,UnitedStates

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-822700-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: LouisaMunro

EditorialProjectManager: AliceGrant

ProductionProjectManager: SujathaThirugnanaSambandam

CoverDesigner: VictoriaPearsonEsser

TypesetbySPiGlobal,India

Contributors

VidyaAnderson

ClimateLab,DepartmentofPhysical&EnvironmentalSciences,UniversityofToronto Scarborough,Toronto,ON,Canada

RipendraAwal

CollegeofAgricultureandHumanSciences,PrairieViewA&MUniversity,PrairieView,TX, UnitedStates

MarkAnthonyAyure-IngaAgana

UniversityofArkansas,Fayetteville,AR,UnitedStates

BilalM.Ayyub

DepartmentofCivilandEnvironmentalEngineering,DirectoroftheCenterforTechnologyand SystemsManagement,UniversityofMaryland,CollegePark,MD,UnitedStates

PhilipB.Bedient

DepartmentofCivilandEnvironmentalEngineering,RiceUniversity,Houston,TX,UnitedStates

NormandE.Bergeron

InstitutNationaldelaRechercheScientifique,CentreEauTerreEnvironnement;Centre InteruniversitairedeRecherchesurleSaumonAtlantique,QuebecCity,QC,Canada

UditBhatia

IndianInstituteofTechnologyGandhinagar,Gandhinagar,India

ClaudineBoyer

InstitutNationaldelaRechercheScientifique,CentreEauTerreEnvironnement,QuebecCity, QC,Canada

DanielCaissie FisheriesandOceansCanada,Moncton,NB,Canada

RomneyB.Duffey

Private,IdahoFalls,ID,UnitedStates

ZhengN.Fang

CivilEngineering,TheUniversityofTexasatArlington,Arlington,TX,UnitedStates

AliFares

CollegeofAgricultureandHumanSciences,PrairieViewA&MUniversity,PrairieView,TX, UnitedStates

AndrewJ.Felton

DepartmentofWildlandResourcesandTheEcologyCenter,UtahStateUniversity,Logan,UT, UnitedStates

Vittorio(Victor)A.Gensini

NorthernIllinoisUniversity,DeKalb,IL,UnitedStates

WilliamA.Gough

ClimateLab;DepartmentofPhysical&EnvironmentalSciences,UniversityofToronto Scarborough,Toronto,ON,Canada

HamidehHabibi

CollegeofAgricultureandHumanSciences,PrairieViewA&MUniversity,PrairieView,TX, UnitedStates

AsifIshtiaque

SchoolforEnvironmentandSustainability,UniversityofMichigan,AnnArbor,MI,UnitedStates

NishantKamboj

IndianInstituteofTechnologyGandhinagar,Gandhinagar,India

ShahzaibKhan

IndianInstituteofTechnologyGandhinagar,Gandhinagar,India

TuDamNgocLe

FacultyofArchitecture,MienTrungUniversityofCivilEngineering,TuyHoa,PhuYen,Vietnam

DongfengLi

CivilEngineering,TheUniversityofTexasatArlington,Arlington,TX,UnitedStates

TahaB.M.J.Ouarda

InstitutNationaldelaRechercheScientifique,CentreEauTerreEnvironnement,QuebecCity,QC, Canada

AndreSt-Hilaire

InstitutNationaldelaRechercheScientifique,CentreEauTerreEnvironnement;Centre InteruniversitairedeRecherchesurleSaumonAtlantique,QuebecCity,QC,Canada

YatingZhang

CenterforTechnologyandSystemsManagement,UniversityofMaryland,CollegePark,MD, UnitesStates

EnricoZio

EnergyDepartment,PolitecnicodiMilano,Milano,Italy;MINEParisTech,PSLResearch University,CRC,SophiaAntipolis,France;EminentScholar,DepartmentofNuclearEngineering, CollegeofEngineering,KyungHeeUniversity,Seoul,RepublicofKorea

Extremeeventsandclimatechange: Amultidisciplinaryapproach 1

AliFares,HamidehHabibi,andRipendraAwal CollegeofAgricultureandHumanSciences,PrairieViewA&MUniversity,PrairieView,TX,UnitedStates

Introduction

Aneventcanbeidentifiedasanextreme(weatherorclimate)whentheweatherorclimatevariable exceedsathreshold,closetotheupperorlowerendsoftheusualrangeoverapredefinedduration (Seneviratneetal.,2012).Manystudiesshowedthatfrequency,intensity,spatialextent,duration, andtimingofheavy-to-extremeeventshaveincreasedacrosstheworld,whichcouldbebecauseof globalwarming(Norouzietal.,2019; Stott,2016; Booetal.,2006).Globalwarming/climatechange effectshaveacceleratedinrecentdecades(SheffieldandWood,2011).AccordingtotheUS National ClimateAssessment,overthepast50years,thenumberandstrengthofweather-relatednatural catastrophes,suchasmajorhurricanes, heatwaves,floods,droughts,andtorrentialdownpours, have increasedintheUnitedStates(http://www.c2es.org/content/national-climate-assessment/).

Asaresultofincreasinggreenhousegasesfromanthropogenicsources(Solomonetal.,2007), significanttrendshavebeenobservedinmaximumandminimumtemperatureextremesinmanyareas acrosstheworld,whichcausefewercolddaysandnightsandmorewarmdaysandnights(HeimJr, 2015). Safeeqetal.(2013) analyzedtrendsinobservedtemperatureduring1969–2007ontheisland ofOahu,Hawaii,toevaluatethespatialandtemporalvariabilityaswellasquantifytherelationship betweenlocaltemperatureandregionalclimateindices.Theirresultsrevealedthatdespitethesubstantialspatialandtemporalvariabilityinthetemperaturetrendsontheisland,therewasa0.17 °C/decade islandwideminimumtemperatureincreaseduringthefourdecadesoftheirstudyperiod.Thecomplexityoftheissueofclimatechangeandextremeevents(Faresetal.,2014; HabibiandSeo,2018) requiresaninterdisciplinaryapproachtohelpunderstandthedifficultyoftheproblemandalsoto theinterconnectivitybetweenclimatechangeandextremeevents.Thisbookusesamultidisciplinary approachinaddressingextremeeventsunderachangingclimatebasedonanin-depthanalysisofpast andcurrentconditionsaswellasfutureoutlooks.Inaddition,itdiscussestherelationshipbetweenclimatechangeandextremeeventsandtheirimpactonseveralaspectsofhumandailyactivitiesand manifestations.

Overviewofthechapters

Thebookcomprises12chapters;afterthefirstchapter,therestaregroupedintothreecomplementing sections.Thefirstsectionaddressestemperaturesandsevereconvectivestorms;thesecondsectionof thebookcontainschaptersrelatedtohydrologicalresponsesthatgiveanoverviewofthecurrent knowledgeandfutureoutlookoftherespectivetopics.Thethirdsectionofthebookcoversmitigation, adaptationmeasures,andgovernance.Thissectiondiscussesthepotentialimpactsofclimatechange andextremeeventsonecosystemresponses,lifelineinfrastructures,greeninfrastructure,andsea-level rise.Italsoreportsonhowgovernanceandpoliciesaredealingwithclimatechangeandextreme events.

Weatherparameters

Thissectioncoversthreechapters. Chapter2,TemperatureExtremesinaChangingClimate,coversthe pastandprojectedhottemperatureextremesandtheirexpectedsocialandenvironmentalimpacts.Surfacetemperatureandtheoccurrencesofhotextremeshavebeenincreasingsincethepreindustrialtimes (almost140yearsago),whichcouldbetheconsequenceofglobalwarming(Seneviratneetal.,2012; IPCC(IntergovernmentalPanelonClimateChange),2013).Anin-depthoverviewofobserved changesintemperatureanditsimpactarediscussedinthefirstpartofthechapter.Theindicesand metricscommonlyusedforevaluatingandpredictingthechangesintemperatureextremesfollowed bytheobservationaldatacollectionandanalysisarepresented.Differentregionalandglobalclimate models,aswellasintegratedanddownscalingtechniques,areoneofthemaincomponentsofunderstandingthefuture/projectedtemperatureconditionoftheearth.Thesemodelsandtechniquesarediscussedindetailinthesecondpartofthechapter.Thelastpartof Chapter2 givesusanoverviewof mitigationandadaptationstrategies(e.g.,reducinggreenhousegasemissionsandincreasingtheresilienceofinfrastructureandcriticalbuildings)appliedacrosstheUnitedStates.Themethodsforevaluationandoptimizationofthesestrategiesareintroduced,whichhelpgovernmentsandstakeholders developandimplementthebestclimateadaptationsandresiliencymeasures.

Changesinglobalairtemperatureaffectdailytemperaturesofsurfacewaterbodiessuchaslakes, streams,andriversthroughouttheyear.Oneofthevitalclimateelementsofaquaticecosystems(e.g., rivers,oceans,andseas)isthewatertemperaturebecauseitinfluencesmostprocessesaffectingwater quality,biologicalactivities,andmarinelives,forexample,fish,insects,zooplankton,andphytoplankton(Dallas,2009).Thetemperatureofsurfacewaterbodiesdeterminestheorganismsthatcantolerate suchtemperatureandthriveinsuchfreshwatersystems. Chapter3 givesanin-depthoverviewofthe mainphysicalprocessesthatdefineextremetemperaturesinthecontextofpotentialchangesresulting fromclimatechangebecauseoftheirpotentialimpactondecreasingaquaticspecies’growthanddistributions.Detailedinformationabouttemperatureextremes,theirtrends,physicalprocesses,andhow climatechangemayimpacttheseprocessesarediscussedinthischapter.

Human-causedclimatechangeisincreasingthefrequencyandstrengthoftorrentialdownpours; thesetrendsarepredictedtocontinueastheearthgetswarmer(Brooks,2013);consequently,itisnecessarytounderstandtheimpactsofclimatechangeonseverethunderstormsandtornadoes,especially thosethatproducelargehailanddamagingstraightwinds. Chapter4,SevereConvectiveStormsina ChangingClimate,summarizesthecurrentknowledgeonthistopic,someofthecriticalquestionsthat stillneedanswers,andresearchopportunitiesinthisarea.Thefirstpartofthechaptercontainsa

concisesummaryofthepresentknowledgeonthetopicfollowedbyasectionexplainingtheconducive settingsthatinducesuchoccurrencesandtheirdocumentedchangeability.Thefollowingsection coversthesignificantlarge-scaledriversoftheseeventsandtheirrelationstoclimatevariability. Thechapteralsoincludesadiscussiononclimateteleconnections(e.g.,ElNinoSouthernOscillation), whicharerecognizedfortheirinfluenceontheglobalweatherpatternsandextremeweather.Inthelast partofthechapter,theauthordiscussesthelatestresearchexaminingsevereconvectivestormsand theirrelationstoclimatechange,withexplicitattentiontotheconvection-permittingdynamicaldownscalingmethodology.Furthermore,theauthorhighlightssomeofthecutting-edgeresearchnecessary toincreasetheabilitytopredictsuchevents,lessentheirenvironmentalimpacts,andminimizetheir harmfulandadverseeffectsonhumanlivesandresources.

Hydrologicalresponses

Chapter5 discussesthepatterns,mechanisms,anduncertaintiesintheresponseofterrestrialnetprimaryproductivitytoprecipitationextremes.Anin-depthoverviewofprojectedandobservedincreases inprecipitationextremesandtheirlinkstoanthropogenic-drivenatmosphericwarmingaregiveninthe introductionsectionofthechapter.Thegoalsofthechapterandtheoutlineofitsremainingcontent markthelastpartofthechapter’sintroductionsection.Thefollowingsectionenumeratessomekey examplesoftheimpactsthatprecipitationextremeshaveonecological,social,andeconomicsystems. Thehistoryofresearchandconceptualthoughtsonprecipitationextremeswithinecologyarethendiscussed.Thewovenwithinhistoryisthestandingdebateaboutwhatisan“extreme”event.Patternsand mechanismsofecosystemresponsestoprecipitationextremes,withemphasisontheirtemporalvariability,arepresentedinthemiddlesectionsofthechapter.Currentandfutureresearchneedsofforests, savannas,grasslands,deserts,andotherecosystems,includinghuman-managedecosystems,werediscussedinthelastsectionbeforethesummaryofthechapter.Thechaptersummaryhasanoverviewand keytakeaways,knowledgegaps,andpathwaysonhowtomoveforward.

FloodEarlyWarningSystems(FWS)underChangingClimateandExtremeEventsisthetitleofthe secondchapterofthehydrologicalresponsessectionofthebook.Itfocusesonsomeofthecurrentflood warningsystemsoperatingintheUnitedStatesandintroducesthebasicconceptsofaneffectiveflood warningsystem,includingrainfallmonitoringsystems.Thechapterdiscussesthemaincomponentsof atypicalFWS,including(1)raingaugenetworksandtheiroperationplatformand(2)aremotely sensedrainfallthatencompassesradarsystemssuchasNext-GenerationWeatherRadar(NEXRAD) andsatellitesystemssuchasTropicalRainfallMeasuringMission,theGlobalPrecipitationMeasurementmission,andtheGeostationaryOperationalEnvironmentalSatellitesmission.Hydrological modelingisthenextimportantcomponentoftheFWS;itusesdataofrainfallandotherparameters toinitiatefloodwarningsandestimationoftheirpotentialdamages.Itinvolveshydrologicandhydraulicsoftwarepackages.Oneofthemaintakeawaysisthatthereisaneedtoinvestinfloodwarning systemsimprovementasapartofsustainableurbandevelopmentpracticesandfloodadaptationprogramstominimizeflooddamages.

Theimpactofglobalwarming,suchasrisingsealevelsinresponsetochangingweatherpatterns,is alreadyaffectingecosystems,freshwatersupplies,andhumanhealth.Climatechangeishardtoavoid; however,reducingandpossiblystabilizingthesubstantialamountofheat-trappinggases(greenhouse gasconcentrations)releasedintotheatmospherecouldlessenitsmostdestructiveimpact (VijayaVenkataRamanetal.,2012; Kabischetal.,2016).Thiseffortisonlydealingwithclimate

changemitigation.Inrecentyears,theadaptationprocesseshavebeenconsideredasaviableoptionto reducethevulnerabilitytothepredictednegativeimpactsofclimatechange(Nyongetal.,2007).Itis morespecifictoadoptanintegratedapproachthatcombinesmitigationandadaptationstrategiesand practicestoaddressclimatechangeandassuremorereliableoutcomes(Kabischetal.,2016; Nyong etal.,2007).

Mitigation,adaptation,andgovernance

Thelastsectionofthebook,mitigation,adaptation,andgovernance,containssixchapters. Chapter7, LifelineInfrastructuresandHydroclimateExtremesClimate:AFutureOutlook,isthefirstchapterof thesection.Itintroducesthecriticalgapsinknowledgeandmethodologiesofclimateandweatherextremestressorsandstressedinfrastructurelifelinesaswellasascience-basedapproachforresilient transportationnetworksunderexacerbatedstressesfromprecipitationextremesinchangingclimate scenarios.Naturalorhuman-inducedhazardsarepredictable,andbestrecoverystrategiesareadopted toensureresiliencyandrobustlifelineofagiventransportnetworkduetoadvancesinnetworkscience. Thischapterhastwomainparts.PartIdiscussesthedifferentaspectsofcharacterizingandquantifying riskstotransportationinfrastructuresfromextremeeventsandtheirassociatedmethodologies;supportingexamplesarealsoillustrated.Inthesecondpartofthechapter,anetworkedperspectiveoncritical infrastructureispresentedinthecontextofposthazardrecoveryusingtheIndianRailwaysNetwork spanning,servingthedailycommuteofthelargermetropolitanareaofMumbai,asacasestudy.

Thesecondchapterofthemitigation,adaptation,andgovernancesectionofthisbookfocuseson greeninfrastructuresandtheirroleinmitigatingextremeeventsunderpast,current,andfutureclimate changeconditions.Thedesignandimplementationofgreeninfrastructures(e.g.,greenways,parks, gardens,greenroofs,woodlands,waterways,communityfarms,forests,andwildernessareas)could reducegreenhousegasemissionsandprovidenatural-basedsolutionstofillthegapbetweenclimate changemitigationandadaptationactions.Suchinfrastructuresarepartofamultifacetedecosystemsbasedapproachandaneffectivestrategythatsupports ecosystemresilience andhumanbenefits throughecosystemservices. Chapter8 containsfourparts.Asystematicreviewofdifferenttypes andapplicationsofgreeninfrastructuresispresentedinthefirstpartofthechapter.Airpollutionremoval,temperatureregulation,carbonsequestration,andimportantecosystemservicesareincludedin thissecondpartofthechapter,whichalsodealswiththecharacteristicsandcategoriesofgreeninfrastructures.Greeninfrastructurehasmultipleenvironmentalandhealthbenefitsforcommunities,and itsapplicationcanincreasethehealthandenvironmentalequityacrosscommunitiesinthefaceofclimatechange.Healthandenvironmentalequityisthetopicofthethirdpartofthischapter.Thelastpart concentratesonthekeycharacteristicsandclassificationsofgreeninfrastructurebyfunction,inadditiontoitscategorizingnomenclature.Ifgreeninfrastructurepracticesareadoptedglobally,theycould haveapparentmitigatingeffectsonclimatechangeimpacts.However,futurestudiesarerequiredto developguidanceforcommunitiesanddecision-makerstodetermineandapplythemostsite-specific suitedgreeninfrastructures.

Adaptationtoclimateextremesandsea-levelriseincoastalcitiesofdevelopingcountriesisthe topicofthenextchapterofthissection.Itgivesanin-depthoverviewoftheresponsesofthosecities tothechallengesofsea-levelriseunderachangingclimatefacingtheirvulnerarypopulationsandtheir combinedmitigationandadaptationmeasures.Althoughadaptationtoclimatechangeandsea-level riseoptionsarecontext-based,itisessentialtoshareindividualexperiencestohelpothercitiesfind

themostsuitableadaptationpathwaysspecifictotheirconditions. Chapter9 hastwomainparts.The firstpartdiscussesthestate-of-the-artofclimatechangeadaptationinsmallandmediumcoastalcities indevelopingcountriesthroughcharacterizingcoastalexposureandimpactsofclimatechangeand examiningadaptationstrategiestothoseexposuresandimpacts.Thesecondpartdiscusseshowtoconductasynthesisofadaptationstrategiesforcoastalcities,especiallysmallandmediumtownsthathave feweradaptationcapacities.

Thecontentoftheseabove-discussedchapterssupportstheconceptthattheimpactofclimate changeismultidimensionalandhasacascadingeffect.Thesuccessofmitigationandadaptationefforts needsthesupportofmultiplepolicyactors(e.g.,individual,community,andorganization)atdifferent levelsofgovernance(i.e.,global,national,regional,andlocallevels)toparticipateinclimateadaptationandmitigationprocesses(MoserandBoykoff,2013).

Chapter10,titledMultilevelGovernanceinClimateChangeAdaptation:ConceptualClarification andFutureOutlook,concentratesonthestrengthsandlimitationsofthemultilevelgovernanceconcept anditsroleinfutureclimateadaptationandmitigationmeasuresandpractices.Thischapterprovides insightsoninteractionsamongalltheinvolvedactorsandtheirrolesindecipheringthecomplexitiesof adaptationgovernance.Despitetheneed,itisessentialtoexamineandvalidatetheusabilityofthe conceptinrelevantcontextsbeforeapplyingittoadaptationstudiesthatarediscussedafterward.Fundamentalquestionsandissuesthathavebeenaddressedthroughoutthechapterareasfollows:How manylevelsofgovernancearerequiredinclimatechangeadaptation?Shouldwefocusonthearrangementofmultilevelnetworksortheprocesses?Woulditbeallrighttoconsideronlyhorizontalorverticallevels?

Despitethelargeneedforamultiactornetworkofadaptationgovernance,onlysomeclimate changeactions(discursivelyandmaterially)havebeenobservedatlocalscales,particularly,across theUnitedStates.AlthoughtheUnitedStateshasbeenapioneerinclimatechangeresearches,it hasnotbeenactiveinwritingandimplementingpoliciesinresponsetoscientificunderstanding. Chapter11 givesanoverviewofclimatechangegovernanceintheUnitedStates,evaluatesitsactual positioninrelationtolocalClimateActionPlans(CAPs),andidentifiestheextenttowhichcitiesare engaginginGHGmitigationactivitiesusingdescriptivestatisticscomingfromacontentanalysisof cities’CAPsaswellasinterviewsoflocalclimatemanagers.Thischapterhasfourmainparts.Part1 discussesthepoliticsandpoliciesofclimatechangeintheUnitedStatesatdifferentlevelstoidentify intergovernmentalrelationstomultilevelnetworksinthecontextofclimatechangeactions.Thissectionalsodiscussesspecificfederallevelactionsthathaveenabledorhinderedclimategovernancein general.Thesecondpartgivesanoverviewofthestudiesonclimatechangegovernanceatthelocal levelandthespatialdistributionsoflocalCAPswiththelocalpoliticallandscape.Thethirdpartadvocatesfortheimportanceofunderstandingtheprevailingconditionsandfactorsthatinfluencepioneeringlocalities’innovationinclimategovernancetoimprovetheadoptionofclimatechange governanceatthelocallevel.ThelastpartofthischapterassessesthepositionoflocalCAPsin GHGemissionsreductionactionsbyanalyzingpreplanandpostplanGHGemissionsdata.Oneof thekeyfindingsisthatthenumberoflocalitiesacrosstheUnitedStatesthathavesymbolicallyjoined climateactionnetworksorsignedtheclimatemitigationagreementsismuchmorethantheonesthat implementedit.

Naturalandhuman-madedisasterscausefailuresofelectricalinfrastructuresthatwouldeventually affectmillionsofpeopleandresultinintersystemscascadingfailures(PescaroliandAlexander,2016; Zio,2016).Thusoneofthesignificantchallengesinthedesignofresilientelectricalinfrastructuresis

tounderstandthefragilityinducedbysysteminterdependenciesbecauseitcould“paralyzeentireregions,withgraveimplicationsforthenation’seconomicandsocialwell-being”(NIAC,2018).Forsuch matters,thereisasubstantialneedtoadoptanationalapproachtopreparefor,respondto,andrecover fromcatastrophicpoweroutagesaswellastoimproveourunderstandingofhowcascadingfailures acrosscriticalinfrastructureaffectrestorationandsurvival.Thelastchapterexplorespastandcurrent riskstotheelectricalpowergridduetonaturalhazardsandrecoverychallenges.Thischapterconcentratesonthedesignofanationalapproachthatincludesclearplansofmitigationandadaptationfrom catastrophicpoweroutagesandanadvancedunderstandingoftheimpactofcascadingfailuresfrom criticalinfrastructuretopowerrestorationandhumansurvival.Experiencesfrompastdisasters,along withsystemsengineeringimplications,arealsodiscussedinthischapter.

Allthetopicscoveredinthisbookhelptounderstandthecomplexityofclimatechangeandextreme eventsandtheirconnectivityandimpactonhumanlives.Thismultidisciplinaryapproach,aswellas thein-depthanalysisofpastandcurrentconditionsandfutureoutlooks,isrequiredinaddressingthe extremeeventsunderachangingclimate.

References

Boo,K.O.,Kwon,W.T.,Baek,H.J.,2006.ChangeofextremeeventsoftemperatureandprecipitationoverKorea usingregionalprojectionoffutureclimatechange.Geophys.Res.Lett.33(1). Brooks,H.E.,2013.Severethunderstormsandclimatechange.Atmos.Res.123,129–138. Dallas,H.F.,2009.TheEffectofWaterTemperatureonAquaticOrganisms:AReviewofKnowledgeand MethodsforAssessingBioticResponsestoTemperature.WaterResearchCommissionReportKV,213(09). Fares,A.,Awal,R.,Michaud,J.,Chu,P.S.,Fares,S.,Kodama,K.,Rosener,M.,2014.Rainfall-runoffmodelingin aflashytropicalwatershedusingthedistributedHL-RDHMmodel.J.Hydrol.519,3436–3447.

Habibi,H.,Seo,D.J.,2018.Simpleandmodularintegratedmodelingofstormdrainnetworkwithgriddeddistributedhydrologicmodelviagrid-renderingofstormdrainsforlargeurbanareas.J.Hydrol.567,637–653. HeimJr.,R.R.,2015.Anoverviewofweatherandclimateextremes—productsandtrends.WeatherClim.Extrem. 10,1–9.

IPCC(IntergovernmentalPanelonClimateChange),2013.ClimateChange2013,ThePhysicalScienceBasis. WorkingGroupI,CambridgeUniversityPress,London.

Kabisch,N.,Frantzeskaki,N.,Pauleit,S.,Naumann,S.,Davis,M.,Artmann,M.,Haase,D.,Knapp,S.,Korn,H., Stadler,J.,Zaunberger,K.,2016.Nature-basedsolutionstoclimatechangemitigationandadaptationinurban areas:perspectivesonindicators,knowledgegaps,barriers,andopportunitiesforaction.Ecol.Soc.21(2). Moser,S.C.,Boykoff,M.T.(Eds.),2013.SuccessfulAdaptationtoClimateChange:LinkingScienceandPolicyin aRapidlyChangingWorld.Routledge.

NIAC,2018.SurvivingaCatastrophicPowerOutage.President’sNationalInfrastructureAdvisoryCouncil, Washington,DC.Accessedat: www.dhs.gov/national-infrastructure-advisory-council.

Norouzi,A.,Habibi,H.,Nazari,B.,Noh,S.J.,Seo,D.J.,Zhang,Y.,2019.Towardparsimoniousmodelingoffrequencyofarealrunofffromheavy-to-extremeprecipitationinlargeurbanareasunderchangingconditions:a derivedmomentapproach.Stoch.Env.Res.RiskA.33(7),1263–1281.

Nyong,A.,Adesina,F.,Elasha,B.O.,2007.Thevalueofindigenousknowledgeinclimatechangemitigationand adaptationstrategiesintheAfricanSahel.Mitig.Adapt.Strateg.Glob.Chang.12(5),787–797.

Pescaroli,G.,Alexander,D.,2016.Criticalinfrastructure,panarchiesandthevulnerabilitypathsofcascading disasters.Nat.Hazards82(1),175–192.

Safeeq,M.,Mair,A.,Fares,A.,2013.TemporalandspatialtrendsinairtemperatureontheIslandofOahu,Hawaii. Int.J.Climatol.33(13),2816–2835.

Seneviratne,S.,Nicholls,N.,Easterling,D.,Goodess,C.,Kanae,S.,Kossin,J.,Luo,Y.,Marengo,J.,McInnes,K., Rahimi,M.,Reichstein,M.,2012.ChangesinClimateExtremesandTheirImpactsontheNaturalPhysical Environment.IPCC.

Sheffield,J.,Wood,E.F.,2011.Drought:PastProblemsandFutureScenarios.Earthscan,London,p.210.

Solomon,S.,Manning,M.,Marquis,M.,Qin,D.,2007.ClimateChange2007—ThePhysicalScienceBasis. WorkinggroupIcontributiontothefourthassessmentreportoftheIPCC,vol.4CambridgeUniversityPress. Stott,P.,2016.Howclimatechangeaffectsextremeweatherevents.Science352(6293),1517–1518.

VijayaVenkataRaman,S.,Iniyan,S.,Goic,R.,2012.Areviewofclimatechange,mitigationandadaptation. Renew.Sust.Energ.Rev.16(1),878–897.

Zio,E.,2016.Challengesinthevulnerabilityandriskanalysisofcriticalinfrastructures.Reliab.Eng.Syst.Saf. 152,137–150.

Temperatureextremesinachanging climate 2

YatingZhanga andBilalM.Ayyubb

CenterforTechnologyandSystemsManagement,UniversityofMaryland,CollegePark,MD,UnitesStatesa DepartmentofCivilandEnvironmentalEngineering,DirectoroftheCenterforTechnologyandSystems Management,UniversityofMaryland,CollegePark,MD,UnitedStatesb

Background

Temperaturechange

Onaverage,theEarth’ssurfacetemperaturegrewby0.85°Coverthepast140years,whereastheland generallywarmedfastercomparedwiththeocean(IPCC(IntergovernmentalPanelonClimate Change),2013).Thecarbonemissionsfromthepreindustrialagetothepresentwillcontinuetocause changesintheclimatesystem,buttheseemissionsalonewillnotresultinglobalwarmingof1.5°Cin the21stcentury(IPCC(IntergovernmentalPanelonClimateChange),2019).However,iftheemission patternisnotaltered,cumulativegreenhousegasescanleadtoa2.6–4.8°Cincreaseofglobaltemperaturebytheendofthe21stcentury(IPCC(IntergovernmentalPanelonClimateChange),2013).

TheannualaveragetemperaturesacrossthecontiguousUnitedStateshaverisenby0.7–1.0°Csince thebeginningofthe20thcentury,andanadditionalincrementof2.8–4.8°Cisexpectedbytheendof the21stcenturyifnomitigationactionistaken.Extremelyhotandcoldtemperaturesarelikelyto increasemorethanaveragetemperatures,meaningwarmdayscanbehotterandcolddayscanbeless freezing.Moreover,warmdaysareprojectedtoincrease,andcolddaysareexpectedtodecreaseinthe restofthe21stcentury(Voseetal.,2017).

HeatwaveshavebecomemorefrequentinthecontiguousUnitedStatessincethemid-1960s(Vose etal.,2017).Astudyfoundthattheannualnumberofheatwavesincreasedby3,intensityroseby0.5°C, anddurationgrewby1dayfortheaverageUScityfromtheyear1961to2010.Meanwhile,heatwave seasonstarted17.5daysearlierandlasted11.5dayslonger(Habeebetal.,2015).Moreintenseheat wavesandlessintensecoldwavesareexpectedintherestofthe21stcentury(Voseetal.,2017).

Theincreaseofextremelyhottemperaturesandheatwavesisattributabletobothnaturalandanthropogenicfactors;however,thelatterhasledtoa1–3°Cincreaseofmaximumtemperaturesduring heatwavesovermostlandareas(Wehneretal.,2018).Naturalfactorreferstothechangeinsolarand volcanicactivities.Anthropogenicfactorsincludegreenhousegasemissionsresultingfromhuman activities,land-usechangeduetourbanization,andwasteheatdischarges.Carbondioxideconcentrationhasincreasedby40%sincethepreindustrialtimes,whichisprimarilyduetofossilfuelcombustion

andsecondarilyduetoland-usechange(IPCC(IntergovernmentalPanelonClimateChange),2013; EPA(EnvironmentalProtectionAgency),2016).Methaneconcentrationhasincreasedbymorethan 100%asaresultoffarmingandproduction,transmission,anddistributionofnaturalgasandpetroleum (IPCC(IntergovernmentalPanelonClimateChange),2013; EPA(EnvironmentalProtectionAgency), 2016).Nitrousoxideconcentrationhasincreasedby18%mainlyduetofoodproduction(IPCC (IntergovernmentalPanelonClimateChange),2013; EPA(EnvironmentalProtectionAgency), 2016).Theseincreasedgreenhousegasesabsorbandre-radiateextraSun’senergythatisoriginally releasedbacktospace,heatingtheatmosphereandtheEarth’ssurfaceandchangingtheEarth’soverall climate.Also,urbanizationreplaceslarge-scalevegetationwithasphaltandconcreteroads,buildings, andotherstructures,increasingheatabsorptionandstorageinurbansurfacesduringthedaytime.This heatwarmsthesurroundingenvironment,especiallyatnight,exacerbatingheatstressonpopulations duringheatwaves.Intensehumanactivitiesreleaseconsiderableheatfromfactories,vehicles,andair conditioners,furtherelevatingurbantemperaturesinsummers.

Impactsofextremelyhottemperatures

Overthelasttwodecades,extremelyhotweathercausedmorethan8000deathsintheUnitedStates (CDC(U.S.CentersforDiseaseControlandPrevention),2019).Astatisticfor43UScitiesfromthe year1987to2005suggestedthatmortalityriskmayincreaseby2.49%per1F(0.56°C)escalationof heatwaveintensityandriseby0.38%per1-dayincrementinheatwaveduration(AndersonandBell, 2011).Theelderly,children,andinfantsareparticularlysusceptibletoextremeheat,andpatientswho takemedicationsthataffectthebody’sheatregulatorysystemarealsovulnerable.

Extremelyhotweatherintensifiescoolingenergydemandsandincreaseselectricalloadson powersystems.Itwasfoundthat1°Coftemperatureincrementthatstartsfrom18°Ccanresultin 0.45%–4.6%riseofpeakelectricityloadand0.5%–8.5%growthoftotalelectricitydemand,dependent onbuildingcharacteristics,climatezones,urbanmorphologies,andthetypeofenergyservicesprovided,suchasfansorairconditioners(Santamourisetal.,2015).Moreover,thecapacityandefficiency ofpowersystemsingenerating,transmitting,anddistributingelectricitydecreaseunderhotweather conditions,andthustheriskofpoweroutagesmayincreaseindenseurbanareas.

Extremehotweathercancauseasphaltmelting,concretehogging,andmalfunctionofsignaling equipment.Modernrailinfrastructureisparticularlyvulnerablebecauserailroadtracksarewelded toformacontinuousrailthatistypicallyseveralkilometerslong.Whensuchtracksexpanddueto intenseheatstress,bucklingmayoccuratspotsofweakness.Moreover,inpassengertrains,airconditioningunitsaretypicallydesignedtooperateunder38°C,andtemperaturesabove38°Ccanresultin electronicfaultandseriousdamagestoelectronicunits.Thisisthemainreasonfortraincancellation duringextremelyhotdays.

Extremehotweathercandeteriorateoutdoorairqualitybecausehightemperaturesandabundant sunshinecanspeeduptherateofchemicalreactions,whichpropelstheformationofozoneandfine particulatematters.Ozoneintheupperatmosphereplaysakeyroleinblockingharmfulsolarradiation, whereasozoneinthegroundlevelimpairshumanhealth.Duringheatwaves,atmosphericpressureis relativelyhigh,whichcanconstrainairconvectionandhinderthedissipationofpollutants,resultingin adangerouslyhigh-levelconcentrationofozoneandfineparticulatematters.

Temperatureextremeanalysisandprojection Metricsandindices

TheExpertTeamonClimateChangeDetectionandIndiceshasdefinedasetofextremeindicesfor evaluatingandpredictingthechangeoftemperatureextremes,asshownin Table1.Theseindiceshave beenwidelyusedinclimatestudiessuchasthefifthIntergovernmentalPanelonClimateChange (IPCC)report.

Observationalanalysis

Collectingobservationdatafortheatmosphere,ocean,andland-basedsystemsisessentialforscientists tounderstandanddescribetheconditionsofourclimatesystem.Thereareover11,000weatherstations aroundtheworld,whichmeasureandmonitorlandandatmosphericconditions.Dailyweatherrecords fromobservingstationsintheUnitedStatesareaccessiblefromtheNationalCentersforEnvironmental Information(https://www.ncdc.noaa.gov/cdo-web/datatools/findstation).Satellites,ships,andaircraft areadditionalapproachesfordatacollection.TheUSNationalOceanandAtmosphericAdministration operatesaconstellationofgeostationaryandpolar-orbitingsatellitestocollectcontinuousglobalenvironmentalobservations,includingprecipitation,seasurfacetemperature,atmospherictemperatureand humidity,seaiceextent,andglobalvegetation.ThesedataarearchivedintheComprehensiveLarge Array-DataStewardshipSystem(https://www.avl.class.noaa.gov/saa/products/catSearch).

TheUKMetOfficeHadleyCenterhasproducedarangeofobservationdatasetsbasedondaily weatherdatacollectedfromthousandsofstationsoversixcontinents.TheHadEXdatasethasbeen updatedtwicetoincludeamoresignificantnumberofstationsandindicesandtocoveramoreextended

Table1Extremetemperatureindices.

IndicesDescription

Usage

TNThecoldestdayofayear,season,ormonth Extremeprojection

TXThehottestdayofayear,season,ormonth Extremeprojection

FDThenumberofdayswhenTNisbelow0°C Impactstudy

FRThenumberofdayswhenTNisabove20°C Impactstudy

TN10pTheexceedancerateofdayswhereTNisbelowthe10thpercentileColdnightprobability estimation

TX10pTheexceedancerateofdayswhereTXisbelowthe10thpercentileColddayprobability estimation

TN90pTheexceedancerateofdayswhereTNisabovethe90thpercentileWarmnightprobability estimation

TX90pTheexceedancerateofdayswhereTNisbelowthe10thpercentileWarmdayprobability estimation

WSDIThenumberofdaysinayearwhenTXisabovethe90thpercentilefor 6consecutivedaysorlonger Heatwaveprojection

CSDIThenumberofdaysinayearwhenTXisbelowthe10thpercentilefor 6consecutivedaysorlonger Coldwaveprojection

period.Thelatestversion,HadEX3,comprises17extremetemperatureand12extremeprecipitation indicesatagridresolutionof1.25° 1.875°,spanningfromtheyear1901to2018(Dunnetal., 2020).Theseextremeindicesarecalculatedataround7000locationsfortemperatureand17,000sites forprecipitation.Anotherrenowneddatasetisthegriddedtemperatureandprecipitationclimateextremesindices(GHCNDEX)developedbytheUSNationalCenterforAtmosphericResearch(NCAR). Thisdatasetcomprises26extremeindicesfromtheyear1951tothepresentwithagridresolutionof 2.5° 2.5°.Theabilitytocontinuouslyupdatethedata,eithermonthlyorannually,makesGHCNDEX anexcellenttoolforclimatemonitoring.Thesedatasetsarewidelyusedforclimatechangedetectionand attributionstudies,climatemodelevaluation,andextremeclimateeventsinvestigation.Thequalityof observationdatasetsisaffectedbyinstrumentsanddataprocessingtechniques,whicharetheprimary sourcesofuncertainty.Dataprocessingaddressesthedilemmathatweatherstationsaredistributedunevenlyontheglobeandsparselyinsomeregions.Thusstatisticalapproximation(e.g.,angulardistance weightingscheme)isemployedtoadjustthoseobservationstoaregulargrid.Moreover,dataprocessing isrequiredforvariablesthatarenotmeasureddirectlybutderivedfromotherobservations.

Dataassimilationisatechniquethatcombinesobservationsfromawidevarietyofsourcesand modelsimulationstoprovidethebestestimateofthestateofasystem.Variousassimilationmethods havebeendevelopedtosupportnumericalweatherprediction,numericaloceanprediction,landsurface processes,hydrologicalcycleprediction,carboncycleprediction,andsoforth(Carrassietal.,2018).In particular,climatereanalysisprojectsusetheassimilationtechniquetodeterminethemostlikelyclimateconditionintherecentpast.TheEuropeanCenterforMedium-RangeWeatherForecast (ECMWF)hasgeneratedalargenumberofreanalysisdatasetsforpublicuse.Thelatestproductis thefifthgenerationofECMWFatmosphericreanalysis(ERA5),whichincludeshundredsofatmospheric,land,andoceanicclimatevariablesfromtheyear1979towithin5daysofrealtime.Other renownedreanalysisdatasetsincludetheNationalCenterforEnvironmentalProtection(NCEP)reanalysis,Japanese55-yearreanalysis,NationalAeronauticsandSpaceAdministration’sModernEra ReanalysisforResearchandApplicationsversion2,andNCEP’sClimateForecastSystemReanalysis. Thequalityofreanalysisdatasetsisaffectedbytheperformanceoftheassimilationmodel,thequality anddistributionoftheunderlyingobservations,andthetechniqueusedincombiningheterogeneous observationsintoaregulargrid.Theuncertaintyofreanalysesisgenerallylargerthanobservations butsmallerthanmodelsimulations.Still,itisnotalwaysthecasebecausetheaccuracyofmodelsimulationshasbeenimprovedmarkedlyinrecentdecades(ReichlerandKim,2008).

Temperatureprojection

Globalclimatemodels

Energybalancemodels(the1950s)

Energybalancemodelsaretheearliestandmostbasicnumericalclimatemodels,whichsimulatethe balancebetweentheenergyenteringtheEarth’satmospherefromthesunandtheenergyreleasedback tospace.ThesurfacetemperatureoftheEarthistheonlyvariableconsideredinthesemodels.

Radiativeconvectivemodels(the1960sto1970s)

Laterresearchersdevelopedradiative-convectivemodelsbyincorporatingtheverticaldimension(air convection)intoenergybalancemodels.Thesemodelscansimulateenergytransferthroughtheheight oftheatmosphereandcalculatethetemperatureandhumidityofdifferentlayersoftheatmosphere.

Generalcirculationmodels/Globalclimatemodels(the1970sto1980s)

Thedevelopmentprocessofthegeneralcirculationmodelcanbedividedintotwostages.Theearly stagefocusedoncharacterizingtheevolutionofthedynamicandthermodynamicstateoftheatmosphereandocean,respectively.Thedevelopedmodelscancaptureairandwaterflowsandheattransfer intheatmosphereandoceans.Thelaterstagecoupledatmosphereandoceanmodelsandnamedthem thecoupledatmosphere-oceangeneralcirculationmodels(AOGCMs).TheAOGCMscansimulatethe exchangeofheatandwaterbetweentheland,atmosphere,andocean.

Earthsystemmodels(startingfromthe1990s)

Toimprovetheunderstandingofhowclimaterespondstoincreasedgreenhousegasemissions,more complicatedtreatmentsofseaiceandlandsurfacewereincludedinAOGCMs,alongwithsubmodels ofvegetation,ecosystems,andbiogeochemicalcycles.TheseformedtheEarthsystemmodel,which includesthesimulationofthecarboncycle,nitrogencycle,atmosphericchemistry,oceanecology,and changesinvegetationandlanduse.

Regionalclimatemodels

Thefirstregionalclimatemodel(RCM)wasdevelopedinthelate1890s,andsincethen,regional modelinghasexperiencedtremendousgrowth.RegionalmodelingiscommonlyreferredtoasdynamicaldownscalingbecauseRCMsusethedataofglobalclimatemodels(GCMs)asinputtogenerate fine,subgridscaleresults.Thefine-gridresultscanhelpdecision-makersevaluatepotential impactsofclimatechangeoncropproduction,hydrology,speciesdistribution,andsuchatscalesof 10–50km.TheGCMsconsiderglobalcirculationandlarge-scaleforcings,suchasgreenhousegases andsolarradiation,whereasRCMssimulatealimitedareaoftheEarthandaccountforsgridscale forcingsandprocesses,includingcomplextopography,inlandwaterbodies,andmesoscaledynamical processes.

SeveralRCMshavebeendevelopedandmaintainedascommunitytoolsforregionalclimateresearch,includingtheUSRegionalClimateModel,theUSNCAR’sWeatherResearchandForecasting (WRF)model,theUSNationalCenterforEnvironmentalPrediction’sEtamodel,CanadianRegional ClimateModel,UKMetOfficeHadleyCentre’sRegionalClimateModel,GermanConsortiumfor Small-scaleModelingandClimateLimited-areaForecasting,GermanREgionalMOdel(REMO),EuropeanApplicationsofResearchtoOperationsatMesoscale(AROME/ALADIN),SwedishRossby Centre’satmosphericmodel(RCA),andScrippsExperimentalClimatePredictionCenter’sregional spectralmodel(ECPC-RSM).

TheCoordinatedRegionalClimateDownscalingExperiment(CORDEX)programwaslaunched bytheWorldClimateResearchProgramin2009tocoordinateandadvancethescienceandpracticeof regionalclimatemodelinganddownscaling.Theprogramprovidedframeworksformodelevaluation andclimateprojectionandproducedimprovedregionalprojectionsinsupportofthefifthandsixth IPCCreports.TheprojectionsofCORDEXcoveralllandareas,includingtheArctic,considervarious emissionscenarios,andattainahighgridresolutionof50kmandeven25kmforsomeregions.The climateprojectionsforNorthAmericaareaccessiblefromtheClimateGatewayattheNCAR(https:// www.earthsystemgrid.org/search/cordexsearch.html?nsc¼true).

TheuncertaintyofRCMsismostlyinheritedfromGCMs.GCMsmayproducedifferentresponses tothesameclimaticforcingbecausetheyarebuiltonvariousphysicalschemes,parameterization methods,andland-oceancouplingtechniques.ItisworthnotingthatRCMsaredrivenbyasmallsubset

ofGCMs,andthustheydonotadequatelysamplemodeluncertainty.Thisleadstotheuncertainty associatedwithdomainselection.Othersourcesofuncertaintyarerelatedtofutureemissionscenarios, internalclimatevariability,andthechoiceofRGM.

Integratedassessmentmodels

Integratedassessmentmodels(IAMs)weredevelopedoverthepastyearsbycombiningclimate,economic,landuse,andenergymodelsthroughcomputercodesordatafilesthatexchangeinformation amongeachmodule.TheinputsofIAMsaretypicallycountry-levelpopulationandgrossdomestic productionbasedonexistingorassumedfutureeducation,urbanization,andeconomicconditions. Theoutputstypicallyincluderegional-scalegreenhousegasemissions,airpollution,andaerosolemissions,energysupplyanddemand,andland-useandland-coverchange.Themodelscanalsogenerate thecostsofmitigationpoliciesandthepricesoffossilfuelsandrenewableenergy,whichhelpstoevaluatepolicyoptionsthatcouldbedeployedtotackletheemissionproblem.

Anewscenarioframework,namedtheSharedSocioeconomicPathway(SSP),wascreatedtofacilitatetheintegratedanalysisoffutureclimateimpacts,vulnerabilities,andadaptationandmitigation potential,byusingIAMsdevelopedbysixresearchgroups.ThescenarioframeworkcontainsfiveSSPs (SSP1,SSP2,SSP3,SSP4,andSSP5),representingfiveassumedglobaldevelopmentpaths:sustainabledevelopment,middle-of-the-roaddevelopment,regionalrivalry,inequality,andfossil-fueleddevelopment.Sustainabledevelopmentmeansthattheworldwillshifttowardamoresustainablepath, emphasizingmoreinclusivedevelopmentthatrespectsperceivedenvironmentalboundaries.Middleof-the-roaddevelopmentimpliesthattheworldwillfollowapathinwhichsocial,economic,andtechnologicaltrendsdonotshiftobviouslyfromhistoricalpatterns.Regionalrivalryscenarioassumesthat countrieswillconcernmoreaboutcompetitivenessandsecurityandincreasinglyfocusondomesticor regionalissues.Theinequalityscenarioassumesincreasingdisparitiesineconomicopportunityand politicalpowerinthefuture,whichwillleadtoincreasinginequalitiesandstratificationbothacross andwithincountries.Fossil-fueleddevelopmentmeansthattheworldwillspeedtechnology,economy, andsocietydevelopmentandexperiencerapidpopulationgrowth,alongwiththeexploitationofabundantfossilfuelresourcesandtheadoptionofresource-andenergy-intensivelifestylesaroundtheworld (Rahiletal.,2017).

Ensemblemodeling

Coupledmodelintercomparisonprojectphasefive

Thereareroughly30researchgroupsthathavedevelopedtheirclimatemodels.Thesemodelsaresimilarinthestructurebutdifferentindetails,suchasphysicalschemesandthenumberofverticallayers. Toenableacomparisonbetweentheresultsofdifferentmodels,theCoupledModelIntercomparison Projectsetupthesemodelsinthesamewayandusedthesameinputs.TheCoupledModelIntercomparisonProjectPhaseFive(CMIP5)waspublishedinthefifthIPCCclimatechangeassessmentreport, incorporatingthelatestandmostsophisticatedclimatemodelexperimentsworldwide.Comparedtoa singleAOGCM,amultiplemodelensemblehasshownsuperiorperformanceforhistoricalclimateassessment,becausecouplingthesemodelscantakeadvantageoftheirstrengthsandcompensate limitations.

Toaddressfutureuncertaintiesregardingemissionsandconcentrationsofgreenhousegasses,aerosols,landchange,andsolarradiation,CMIP5adoptsfourclimatescenariosthatarerepresentativeconcentrationpathway(RCP)2.6,RCP4.5,RCP6.0,andRCP8.5,correspondingtoaradiativeforcingof

2.6,4.5,6.0,and8.5W/m2 by2100,respectively. Radiativeforcing isdefinedasthenetchangeinthe energybalanceoftheEarthsystembecauseofnaturalandanthropogenicsubstancesandprocesses, relativetothereferenceyearof1750.ThefourscenariosassumeCO2 concentrationsof421,538, 670,and936ppmby2100,andgreenhousegasconcentrations(CO2,CH4,N2O)of475,630,880, and1313ppmby2100,respectively.

Coupledmodelintercomparisonprojectphasesix

TheCoupledModelIntercomparisonProjectPhaseSix(CMIP6)wasinitiatedin2014tofillscientific gapsremaininginCMIP5andaddressnewchallengesemerginginclimatemodeling(Eyringetal., 2016).CMIP6hasendorsed23modelintercomparisonprojectsinvolving33modelinggroupsin16 countriesandformedthebasisofthesixthIPCCassessmentreporttobepublishedin2021.Forclimate projection,CMIP6considerstheimpactofsocioeconomicconditions(e.g.,population,economy)on greenhousegasemissionsbylinkingRCPstoSSPs,whichenhancestherobustnessofclimateprojectionsandprovidesbettersupporttoclimatepolicies.Also,CMIP6keepsfourscenariosusedinCMIP5 (SSP1-2.6,SSP2-4.5,SSP4-6.0,andSSP5-8.5)andaddsfournewscenarios(SSP1-1.9,SSP4-3.4, SSP5-3.4-OS,andSSP3-7.0)togiveawiderselectionoffuturesforscientiststosimulate.CMIP6data areopentopublicuseandaccessiblefromtheLawrenceLivermoreNationalLaboratory(https://esgfnode.llnl.gov/search/cmip6/).

Weightedandunweightedensemblesimulation

TheCMIP5archivecontainssimulationsof29institutionsand62models.Someofthemodelsare similartoothersbecausetheysharethesamephysicalschemesandnumericalmethods.ThefifthclimateassessmentofIPCCandthethirdnationalclimateassessmentconsideredeachmodeltobe equallylikelyindepictingfutureclimatechange,whereasthefourthnationalclimateassessmentof theUSGlobalChangeResearchProgramadoptedaweightingstrategytocouplingmodelsbased ontheirskillsandindependence. Sandersonetal.(2017) indicatedthattheoverallperformanceof theweightedmodelensemblecanbebetterthanthatofmodeldemocracy,especiallywhenselected modelsaresignificantlyindependentofeachother.However,thereisatradeoffbetweenmodelskills andmodeluniqueness,whichmayweakentheperformanceofweightedmodels.Modelskillsdeterminewhetherthesimulationisofsufficientaccuracy,whereasmodeluniquenessensuresthatuncertaintiesandbiasaresmallenough.Itshouldbenotedthattheweightingvariesforvariedregions becausethecapacityofmodelsisdifferentinsimulatingtheclimateofdifferentgeographicalregions.

Downscalingtechniques

Climatechangeimpactsregionsandpopulationsunevenlyduetodifferentgeographical,socioeconomic,andtechnologicalconditions.Toassesslocal-scaleimpacts,high-resolutionclimatedataare needed.Thedatacanbeobtainedusingdownscalingtechniquesthatgeneratelocaldetailedinformationbasedonglobalcoarsesimulation.Therearetwomaindownscalingtechniques—statisticaldownscalinganddynamicaldownscaling—whichcanbeusedaloneortogether.

Statisticaldownscaling

Statisticaldownscalinghastheadvantageofinexpensivecomputingandiseasytousecomparedwith dynamicalmethods.Moreover,statisticaldownscalingiscapableofproducingsite-specificclimate projections(e.g.,thelocationofaweatherstation),whereasdynamicaldownscalingcannotprovide

site-specificclimateprojections.Statisticaldownscalingisbuiltontheassumptionthattherelationship betweenmodelsimulationandobservationisstationary,andhencetherelationshipderivedfromthe historicalperiodcanbeappliedtoprojectingfutureconditions.Thethreemajorcategoriesofstatistical downscalingmethodsarelinearmethod(e.g.,deltamethod,simpleandmultiplelinearregression,canonicalcorrectionanalysis,singularvaluedecomposition),weatherclassification(e.g.,analogmethod, clusteranalysis,artificialneuralnetwork,self-organizingmap),andweathergenerator(e.g.,LongAshtonResearchStationWeatherGenerator,MarkSimWeatherGenerator,nonhomogeneoushiddenMarkovmodel).See TrzaskaandSchnarr(2014) fordetails.

AsynchronousRegionalRegressionModeling(ARRM)isoneoftheempiricalstatisticaldownscalingtechniques,usingaquantilemappingmethodtoadjustglobalprojectionstostation-basedorfine grid-basedobservations.TheARRMassumesthattwoindependenttimeseriesshouldhavesimilar probabilitydensityfunctionsiftheydescribethesamevariableandareatapproximatelythesamelocation,suchastemperaturessimulatedbyaclimatemodelandobservedbyaweatherstationforthe samelocation.ThreestepsarerequiredforapplyingARRMtodownscalingtheinformationofGCMs. Thefirststepistoranktheobservedhistoricaldataandmodel-simulatedhistoricaldatainanascending sequencebasedonrespectivevaluesregardlessoftimestamps,asshownin Fig.1A.Astrongcorrelation shouldbeobservedinascatterplotforobservationsversusmodelsimulations.Thesecondstepistousea mathematicalfunctiontosimulatetherelationshipbetweenrankedobservationsandsimulations. Fig.1Ashowsapiecewiselinearregressionfunctionusedtofitrankedresultsofstationobservations andCMIP5simulations.Thethirdstepistovalidatethedevelopedregressionfunctionusinghistorical

FIG.1

Observedandsimulatedtemperaturesatthelocationofaweatherstationduring1965–2000:(A)observedversus CMIP5-simulatedmaximumdailytemperaturesandquantilemappingbetweenobservationsandsimulations (breakpointsrepresentingthe1st,10th,25th,50th,75th,90th,and99thquantiles);(B)probabilitydensity distributionsofobserved,CMIP5-simulatedanddownscaledCMIP5-simulatedtemperatures.

AdaptedfromZhang,Y.,Ayyub,B.,2018.Urbanheatprojectionsinachangingclimate:Washington,DC,casestudy.ASCE-ASME J.RiskUncertaintyEng.Syst.Civ.Eng.4(4),04018032.

data,andthelaststepistodownscalemodelprojectionsusingthedevelopedregressionfunction. Fig.1B comparesCMIP5-simulatedtemperaturesanddownscaledresultsanddemonstratesthatdownscaling helpscapturelocalclimatecharacteristicsandimprovetheaccuracyofthesimulation.ThemajorweaknessoftheARRMisthattherealrelationshipbetweenobservationsandsimulationscanchangeover time,especiallyunderdifferentfutureclimateconditions,whichcanweakentheaccuracyofprojections.Also,theerrorcausedbythevariedrelationshipcannotbemeasuredusingstatisticalmeans.

TheLocalizedConstructedAnalogs(LOCA)isastate-of-the-artdownscalingtechniquethatuses multiscalematchingtoimprovetherepresentationoftemperatureandprecipitationextremesandspatialpatternsindownscaledresults.Multiscalematchingcomprisestwosteps.Steponeselectsobserved days(typically30days),whichbestmatchthemodeldayinawiderregionaroundthelocationtobe downscaled.Steptwoselectsthesingleoneofthoseobserveddaysthatbestmatchesthemodeldayin animmediateneighborhoodofthelocationtobedownscaled.Theobserveddayschoseninsteponeare calledanalogdays,andthelocationtobedownscalediscalledanalogpoolpointoranalogpoollocation,whichisselectedfromthecoarsegrid.Steponerequiresdefiningtherangeofregionthatsharesa similartemperatureorprecipitationpatternwiththeanalogpoolpoint,whichisresolvedbymeasuring thePearsoncorrelationbetweentheanalogpoolpointandnearbycoarse-gridpoints.Themagnitudeof correlationtypicallydecreasesfromonetozeroasthedistancefromtheanalogpoolpointincreases, andzeromeansnocorrelation,whichformstheedgeoftheregion.Analogdaysaredeterminedinsuch aregionbyminimizingtheroot-mean-squaredifferencesfromthemodelday.Oncesteponeiscompleted,fine-gridanalogresultscanbedrawnfromanalogdaysatthenearestanalogpoolpoints.Step twostartswithadjustingcoarse-gridsimulationsandcoarse-gridanalogresultstothefinegridthrough bicubicinterpolation,andcalculatingtheroot-mean-squaredifferencesbetweentheirinterpolatedresults,overasmallsquareregioncenteredontheanalogpoolpoint.Thenthesingledaywiththeminimumdifferenceisidentified,andthefine-gridanalogresultsofthesingledayarescaledtothemodel dayfortheregiondefinedinstepone.Indownscalingtemperature,thescalingissimplyaddingthe meandifferencebetweeninterpolatedsimulationandfine-gridanalogresult,whereasindownscaling precipitation,thescalingismultiplyingthemeanratioofinterpolatedsimulationtofine-gridanalog result.Thisensuresthattheextremesandspatialpatternsoftemperatureandprecipitationsimulatedby climatemodelsarekeptinthedownscaledresults.Consideringthatfutureanomaliesoftemperatureor precipitationmayexceedtherangeofhistoricalvariability,theLOCAmethodcorrectsdownscaled projectionsbyaddingthemeandifferencebetweenfine-resolutionandcoarse-resolutionanalogresults.Thiscorrectionisnotrequiredfordownscaledhistoricalsimulations.TheLOCAmethodcan alsobeextendedtodownscalemultipleclimatevariablesatthesametimebyassigningaweightto eachvariable,whichcansignificantlyimprovecomputingefficiency.

Dynamicaldownscaling

Dynamicaldownscalingadjustscoarse-gridsimulationsofGCMstofine-gridresultsbyusingRCMs. AprevioussectionintroducedRCMsandtheircharacteristics,andthissectionusesoneoftheRCMsto illustratedownscalingmechanisms.TheWRFmodelisdevelopedbytheNCARincollaborationwith manyresearchinstitutesanduniversities.Themodelhasbeenimprovedmanytimessincethefirstversioncameoutin2000,anditslatestversionWRF4.1wasdevelopedasasoftwareprogramreleasedlast yearforclimateresearchcommunityuse.TheinputsoftheWRFmodelincludethree-dimensional temperature,windspeed,geopotentialheight,andrelativeorspecifichumidity,andtwo-dimensional surfacepressure,meansealevelpressure,skintemperature,2-mtemperature,2-mrelativeorspecific

humidity,and10-mwindspeed.Optionalinputsincludesoiltemperature,soilmoistureandsoforth, dependingonresearchneeds.TheseinputsareobtainedfromGCMsforadomaindesignatedbyusers. Inadditiontodirectdownscaling,theWRFmodelusesnestdomainstoimprovetheresolutionofclimatesimulation.Thegridresolutionofnestdomainsisseveraltimesgreaterthanthatoftheirpresent domains,andthusincreasingthenumberofnestingcanexponentiallyimprovetheresolutionofthe innermostdomain,butmorecomputationloadsaregenerated.TheWRFmodelproducestheresults ofnesteddomainsbasedonthesolutionsoftheirparentdomains,andhence,theoutermostdomain shouldbelargeenoughtoenablethedevelopmentofaregionalclimateeventthatisusuallyrelevant tothetopography,atmosphere,andotherfactorsinalargespace.

TheWRFsoftwareprogramprovidesmultiplephysicalschemesandnumericalordynamicsoptions foruserstochooseanappropriatecombinationandallowsuserstomodifyparametervalues(e.g.,urban morphology,anthropogenicheatemission)basedontheirresearchneeds.TheoutputsoftheWRF modelcontainallinputvariablesatahigherspatialandtemporalresolutionandotherstatuevariables suchasheatfluxes. Fig.2 showsanexampleofusingtheWRFmodeltodownscaletemperaturessimulatedbytheCommunityEarthSystemModelversionone(CESM1).Thegridresolutionsbeforeand afterdownscalingare0.9 1.25degrees(approximately100 106km)and4 4km,respectively.

AlthoughdynamicaldownscalingimprovesGCMinformationatafinescale,systematicbiasin GCMisprorogatedtodownscaledresults.ThiscanberesolvedbyremovingthebiasofGCMdata beforedownscaling.Inaddition,RCMitselfmayproducebias,whichcanbecorrectedusingstatistical methods.

FIG.2

ProjectedheatwavesintheWashingtonDCmetropolitanregionforthreefutureperiods2036–2040,2066–2070, and2096–2100,andthereferenceperiod2011–2005,plottedat4-kmgridintervals.(A)–(D)Maximum temperatureduringheatwaves;(E)–(H)Annualnumberofheatwavedays. Blacklines arecountyboundaries, andthewhiteareaiswaters.

ReprintedfromZhang,Y.,Ayyub,B.,2020a.Projectingheatwavestemporallyandspatiallyforlocaladaptationsinachangingclimate: WashingtonD.C.asacasestudy.Nat.Hazards,1–20, https://doi.org/10.1007/s11069-020-04008-6

Mitigationandadaptationstrategies

Overviewofmitigationandadaptationstrategies

TheParisAgreementenactedin2016broughtallnationsintoacommoncausetopreventtheriseof globaltemperaturesthiscenturyabove2°Crelativetopreindustriallevels,andtomakefurtherefforts tolimitthetemperatureincreaseto1.5°C.ManyUScitieshaveevaluatedtheimpactsofclimatechange ontheircommunitiesanddevelopedactionplanstoreducegreenhousegasemissions.Forinstance, WashingtonDCpublishedasustainableplanin2013,aimingtoreduce50%and80%ofgreenhouse gasemissionsinthedistrictbytheyear2032and2050,respectively,relativetotheemissionlevelof 2006.Thisplanwasadjustedin2018tonet-zerocarbonfootprintby2050.LosAngelesreleasedanaction planin2007,intendingtoreducegreenhousegasemissionsto35%below1990levelsbytheyear2030.

Climatechangemitigationintendstoreducegreenhousegasemissionsandconcentrationsinthe atmosphere.ThestrategiesemployedbymajorUScitiesareasfollows:

•Retrofittingexistingcommercialandmultifamilybuildingstoimprovetheirenergyefficiencyand reducetheirrelianceonfossilfuelsforheatingandcooling

•Implementingnet-zeroenergybuildingcodefornewconstruction

•Improvingenergyefficiencyandreducingoverallconsumption

•Increasingelectricitygenerationandoptimizeenergydistributionsystem

•Increasingtheshareofrenewableenergyinenergysupply

•Developingrenewableportfoliostandardstosteadilyincreasetheuseofrenewableenergy

•Reducingdependenceonprivatevehiclesandincreasingtheuseofpublictransit

•Increasingbikingandwalking

•Deployingzero-emissionelectricvehicles

Climatechangeadaptationmeanstotakeappropriateactiontopreventandminimizedamagesandto takeadvantageofopportunitiescreatedbysuchchange.ThestrategiesadoptedbymajorUScitiesare asfollows:

•Deployingcoolroofs,greenroofs,reflectivepavementsandothernewtechnologiestomitigatethe urbanheatislandeffect

•Improvingtransportationandutilityinfrastructuretomaintainvariabilityduringextremeweather events(e.g.,heatwaves,severestorm,flooding)

•Upgradingexistingbuildingsanddesigningnewbuildingsanddevelopmentprojectstowithstand climatechangeimpacts

•Strengtheningcommunity,social,andeconomicresiliencetomakeneighborhoodsand communitiessaferandmoreprepared

Strategyevaluation

TheIPCCproposedalinearprocessforclimateadaptationinits1994technicalguidelines.Thisprocessstartswithscientificanalysisofclimatechange,includingvariability,thenmeasuresresidualor netclimateimpactsafterautonomousadaptations,andfinally,determinesadaptationneeds.Subsequentlyintroducedframeworksforclimateadaptationaccountedforpolicycriteria,populationgrowth, economicdevelopment,andothernonclimatefactorstogenerateaccessibleandaffordableoptions.

FIG.3

Theframeworkforclimateadaptationplanningincorporatingtheprobabilisticriskmethod.

ReprintedfromZhang,Y.,Ayyub,B.,2020b.Electricitysystemassessmentandadaptationtorisingtemperaturesinachangingclimate withWashingtonMetroAreaasacasestudy.ASCEJ.Infrastruct.Syst.26(2),04020017.

Arecentstudyincorporatesaprobabilisticriskmethodintotheframeworktoenablequantitativeassessmentsofadaptationoptionsanduncertaintieswithinoutcomes,asshownin Fig.3.Theprobabilisticriskmethodisdefinedbythefollowingequation.

where R isthenetpresentvalueofclimaterisks. P(C)istheprobabilitythataclimate-changescenario occurs. P(S j C)istheprobabilitythatastressorintensifieswhenclimatechanges. P(F j S)istheprobabilityofsystemfailurewhenthestressorintensifies. P(L j F)istheprobabilityofalosswhenthesystemfails. L isthemonetizedloss. r istheannualdiscountrate. t isthetimeinyearsstartingfromthe year t0. n isthenumberofyearsaccountedforriskestimation. Ifweconsideronlyoneclimatescenarioandclimatestressorandonetypeoffailureandloss, Eq. (1) canberewrittenasfollows.

Aftertakingadaptionactions,theriskisreducedasfollows.

where Δ R isthecoefficientofriskreductionduetoclimateadaptation,rangingbetween0and1.

Thefirststepoftheassessmentframework(Fig.3)isselectingclimatestressorsandprojectfuture exposures.Theclimatestressorcanbetemperatureshift,precipitationchange,orsealevelrise.The probabilitythatthestressorincreasesunderaclimatescenario, P(S j C),canbeestimatedbasedon theprojectionresultsofclimatemodelssupplementedwithprofessionaljudgmentinsomecases. Thesecondstepisidentifyingvulnerablesystemsandassetsandmeasuringthesensitivityofeachsystemtotheclimatestressor.Thefailureprobabilityofasystemwhenexposedtotheclimatestressor, P(F j S),canbeestimatedusinghistoricaldata,modelsimulationresults,orexpertopinionelicitation. Thethirdstepistoselectadaptationoptionsandassessriskreductionsassociatedwithrespectiveadaptationactions.Adaptationoptionsmayincludedeployingnewtechniquesandequipment,developingnewregulationsonsomeindustrysectors,andestablishingincentiveprogramsforsomepractice. Theadaptationcapacityofasystem, △ P(F j S),ismeasuredasthereductioninfailureprobabilitywhen adaptationactionsaretaken.Itisworthnotingthatadaptationcapacitymayvarywithdifferentgeographicregionsandsystemcharacteristics.

Thelaststepistoanalyzethebenefitandcostofeachadaptationschemeandcompareandoptimize theseschemes.Benefit-costanalysisiswidelyusedintheengineeringdecision-makingprocess,where thebenefit(B)ispotentialriskreductionandcost(C)istheinvestmentmadetomitigaterisks.The probabilitythatbenefitisgreaterthanthecost, P(B > C),isametricfordeterminingwhetheranadaptationoptioniscost-effectiveornot.Theothermetricsusedfordecisionmakingarenetbenefit (B C)andbenefit-to-costratio(B/C).Strategycomparisonaimstofindtheoptionthatreduces theriskincost-effectivetermswithinanybudgetaryorregulatoryconstraints,andoptimizationintends toseektheappropriatetimingfortheadaptationtoenabletheinvestmenttobemostcost-effective.

Summaryandconclusions

Carbonemissionfromhumanactivitieshaselevatedglobaltemperaturesandintensifiedextremeheat events.Theurbanheatislandeffectfurtherincreaseslocaltemperaturesandstrengthenstheimpactsof heatwaves.Heatwavescanimpairhumanhealth,deteriorateairquality,intensifycoolingenergydemands,andcausedamagestotheelectricalpowerandtransportationsystems.Considerableefforts havebeenmadeinrecentdecadestoimprovethetechnologyinmonitoringandsimulatingclimate change.Researcherscreatedobservationdatasets(e.g.,HadEX3,GHCNDEX)usingdailyweatherdata collectedfromthousandsofstationstorevealtherealclimateconditionsandproducedreanalysisdatasets(e.g.,ERA5)usingdataassimilationmethodsandmillionsofobservationstoestimatethemost likelyclimateconditions.Thesedatasetsareessentialforclimatechangedetectionandattributionstudies,climatemodelevaluation,andextremeclimateeventsinvestigation.

Researchersalsocoupledatmosphere,ocean,vegetation,ecosystem,andbiogeochemicalcycle modelstosimulateamorecomplicatedclimatesystem.Thesemodelingeffortshaveimprovedour understandingofhowclimaterespondstoincreasedgreenhousegasemissions.GCMsdeveloped bydifferentinstitutesandgroupshavebeencoupledtogeneratecredibleprojectionsfortemperature, precipitation,andothervariablesthroughoutthe21stcentury(e.g.,CMIP6,CMIP5).Climate,economic,landuse,andenergymodelshavebeenintegratedtoprovideimportantinsightsintotherelationshipbetweensocialdevelopmentandclimatechange,whichfacilitatescomprehensivepolicy analysis.Meanwhile,RCMsarecoordinatedtoencourageglobaleffortsonimprovingmodelingtechniquesandevaluatingandcomparingmodels’performances(i.e.,CORDEX).Theimprovementin

globalandregionalclimatemodelingwillhelpgovernmentsandstakeholdersbetterforeseeandassess potentialrisksandopportunitiesunderlyingachangingclimate.

Becauseclimateimpactsaredistributedunevenlyoverdifferentregions,agrowinginterestinassessingregionalclimateimpactsandsimulatingregionalclimatechangecanbeobservedinrecentstudies. ThisdrivesthedevelopmentofstatisticaldownscalingmethodsthatadjustinformationofGCMsto regionalorlocal-scaleresults(e.g.,LOCA).Moreover,governmentsatdifferentlevelshavestarted tomitigateclimateimpactsbyreducinggreenhousegasemissionsandincreasingtheresilienceofinfrastructureandcriticalbuildings.Thischapterreviewedmitigationandadaptationstrategies employedbymajorUScitiesandpresentedthemethodsforstrategyevaluationandoptimization, whichrepresentsasmallportionofthestate-of-the-artpractice.Readersmayrefertosomerecentreviewarticlestogainamorecomprehensiveunderstanding.

References

Anderson,G.B.,Bell,M.L.,2011.HeatwavesintheUnitedStates:mortalityriskduringheatwavesandeffect modificationbyheatwavecharacteristicsin43U.S.Communities.Environ.HealthPerspect.119(2), 210–218.

Carrassi,A.,Bocquet,M.,Bertino,L.,Evensen,G.,2018.Dataassimilationinthegeosciences:anoverviewof methods,issues,andperspectives.WIREsClim.Change9,e535. https://doi.org/10.1002/wcc.535

CDC(U.S.CentersforDiseaseControlandPrevention),2019.UnderlyingCauseofDeath,1999-2018Results. CDCWONDERdatabase(Feb.7,2020) http://wonder.cdc.gov/mortSQL.html

Dunn,R.J.H.,Alexander,L.V.,Donat,M.G.,Zhang,X.,Bador,M.,Yussof,M.,2020.Developmentofanupdated globallandin-situ-baseddatasetoftemperatureandprecipitationextremes:HadEX3.J.Geograph.Res. Atmos. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD032263.

EPA(EnvironmentalProtectionAgency),2016.ClimateChangeIndicatorsintheUnitedStates,fourthed. https:// www.epa.gov/sites/production/files/2016-08/documents/climate_indicators_2016.pdf .(June30,2020).

Eyring,V.,Bony,S.,Meehl,G.A.,Senior,C.A.,Stevens,B.,Stouffer,R.J.,Taylor,K.E.,2016.Overviewofthe CoupledModelIntercomparisonProjectPhase6(CMIP6)experimentaldesignandorganization.Geosci. ModelDev.9,1937–1958.

Habeeb,D.,Vargo,J.,Stone,B.,2015.RisingheatwavetrendsinlargeUScities.Nat.Hazards76,1651–1665.

IPCC(IntergovernmentalPanelonClimateChange),2013.ClimateChange2013,thePhysicalScienceBasis. WorkingGroupI,CambridgeUniversityPress,London.

IPCC(IntergovernmentalPanelonClimateChange),2019.AnIPCCSpecialReportontheImpactsofGlobal Warmingof1.5°CAbovePre-IndustrialLevelsandRelatedGlobalGreenhouseGasEmissionPathways, intheContextofStrengtheningtheGlobalResponsetotheThreatofClimateChange,SustainableDevelopment,andEffortstoEradicatePoverty.WorkingGroupI,CambridgeUniversityPress,London. Rahil,K.,vanVuuren,D.P.,Kriegler,E.,Edmonds,J.,Tavoni,M.,2017.Thesharedsocioeconomicpathwaysand theirenergy,landuse,andgreenhousegasemissionsimplications:anoverview.Glob.Environ.Chang.42, 153–168.

Reichler,T.,Kim,J.,2008.Uncertaintiesintheclimatemeanstateofglobalobservations,reanalyses,andthe GFDLclimatemodel.J.Geograph.Res.Atmos.113. https://doi.org/10.1029/2007JD009278,D05106.

Sanderson,B.M.,Wehner,M.,Knutti,R.,2017.Skillandindependenceweightingformulti-modelassessments. Geosci.ModelDev.10,2379–2395.

Santamouris,M.,Cartalis,C.,Synnefa,A.,Kolokotsa,D.,2015.Ontheimpactofurbanheatislandandglobal warmingonthepowerdemandandelectricityconsumptionofbuildings—areview.EnergyBuild.98, 119–124. 22CHAPTER2

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.