Volume 16, Issue 2
SUMMER 2019
Security Shredding News Serving the Security Shredding & Records Storage Markets
Visit us online at www.SecurityShreddingNews.com
A Look Inside The Bale New technology to measure the quality of recovered fiber bales can give mills and MRFs data for more informed business decisions.
T
he U.S. paper manufacturing sector is one of the world’s biggest consumers of recovered fiber, with more than three-quarters of domestic mills using recovered fiber in some or all of their products. The United States is also a huge contributor to the recovered fiber supply, achieving 65.8 percent recovery, nearly 51 million tons, in 2017, according to the American Forest & Paper Association (Washington, D.C.). Despite that strong domestic supply and demand, quality measurement in recovered paper has not been as effective as it could be. Times are changing, however, and new technologies are offering more detailed and reliable methods to measure and report bale quality and yield, data that can provide more growth and opportunity for today’s buyers and suppliers.
A Look Back
he recovered fiber sector’s lack of T fundamental quality-control measures that are consistent, thorough, and reproducible has been a significant liability for fiber buyers. Up until a few years ago, quality measurement relied primarily on what’s called “ocular technology”—a visual assessment of the exterior of the bale. While experienced mill operators can tell a lot about a bale’s quality simply by looking at it, this approach has significant drawbacks: Results will vary from person to person, and you’re only seeing the exterior of the bale. The first systematic approaches to measuring bale quality were aimed at moisture. Visual observations of a bale’s exterior can identify very high moisture content, roughly 20 percent or more, whereas 12 percent is what the preamble of ISRI’s scrap specifications for paper stock declares is the maximum acceptable moisture content. That substantial gap between
By Michael McSween and Bill Moore Near-infrared spectroscopy can measure multiple quality factors in recovered fiber bales in addition to moisture. Here, the operator has drilled a roughly 1-inch-diameter hole into the bale and inserted the NIR probe to take a reading, which takes about one minute. the acceptable moisture limit and what the naked eye can see could be costly to a mill that ends up purchasing excessive moisture when it expects to be buying fiber. The first commonly used moisture measurement tool was a moisture probe, a long and narrow metal rod that can penetrate a few inches into a bale at best. It’s certainly an improvement over visual examination, but the inspector must do multiple insertions to get a sense of moisture variation throughout the bale. This measurement device takes away some of the person-to-person variation of visual inspection, but it is not widely known for its accuracy. Plate-style devices were the next advancement in bale moisture measurement. These devices are an improvement over probes in that they can read moisture levels deeper into a bale and evaluate much more of a bale’s content, and they’re still in wide use by U.S. paperboard mills. T h e m o s t a dva n c e d approach to moisture measurement available today is a microwave frame, which is prevalent in some parts of Europe and China. This technology can evaluate the moisture content in an entire bale or a whole shipment of bales while it’s on the truck—but only if the shipment is on an open-sided or soft-sided truck. The microwave technology’s inability to work with metal truck
or container bodies, which are by far the most common in the United States, explains why it has not been adopted in North America despite its distinct advantage over older technologies.
Seeking More and Better Quality Analysis
hile the industry has certainly experienced W progress, all the above approaches, short of those overseas, have only been aimed at moisture, with no systematic way to measure the other important compositional components of recovered fiber that could greatly impact quality and yield, such as plastic and ash content. To date, the only reliable way for mills to measure those other factors has been to break open the bales and weigh the different contaminants, which is a very laborious and expensive endeavor. It was a routine practice at U.S. newsprint mills, but few recycled newsprint mills remain in North Amer-ica. The practice has been less common at paperboard and tissue mills. Moore & Associates believes recovered paper buyers could benefit from a better analysis of the entire composition of the bale to understand how the shipment conforms to the grade’s specification in terms of prohibitives and outthrows—not just moisture—and to calculate the total amount of usable fiber. Having access to this type of information would provide valuable quantitative data to buyers for claim management as well as serve as inputs for buyers looking to normalize the true landed cost of fiber. It can also be useful for a mill’s papermakers to determine what recipe of recovered paper to use. Continued on page 3