Nachhaltig konstruieren

Page 14

Umweltwirkungen von Bauteilen

Deckenkonstruktionen Geschossdecken haben normalerweise maßgeblichen Anteil an den Umweltwirkungen von Gebäudekonstruktionen. Zwar ist ihr Primärenergieinhalt pro Qua­ dratmeter bei klassischen Aufbauten mit 330 – 1390 MJ/m2 eher begrenzt [3], das Bauteil Decke ist jedoch flächen- und massenmäßig besonders relevant (Abb. 5.6). So haben z. B. bei Stahlbetonbauten die Deckenelemente in der Regel einen Anteil von ca. 45 – 55 % an der Gesamtbetonmasse [4]. Aufgrund ihrer geschützten Lage sind Geschossdecken meist langlebig. Unabhängig von der Konstruktionsart kann für die tragende Schicht von einer Lebensdauer von 80 und mehr Jahren ausgegangen werden. Nur bei baukonstruktiven Problemen, Schäden der Gebäudeabdichtung und Havarien im Gebäude verkürzt sich die Nutzungsdauer [5]. Die Art der Lastabtragung beeinflusst dabei maßgeblich die Umweltwirkungen einer Tragkonstruktion. Sofern möglich, sollten Lasten stets ohne große Verschiebung im statischen System abgetragen werden. Aus Sicht einer flexib­len Nutzung und späteren Umnutzungsfähigkeit des Gebäudes ist es außerdem sinnvoll, nicht zu geringe Nutzlasten und Spannweiten vorzusehen. Dies wirkt sich jedoch auf die Ökobilanz des Faktoren zur Optimierung ++

Reduzierung von Spannweiten

++

Vorhaltung von Nutzlastreserven

-

Optimierung der statischen Höhe

++

Material der Zugzone

+++

Reduzierung der Eigenlast

+

Reduzierung der Schallschutzanforderungen

+

Reduzierung der Brandschutzanforderungen

++

bei erhöhten Brandschutzanforderungen:   Reduzierung der Gipsplattenstärke   Reduzierung des Metalleinsatzes   Reduzierung des Dämmstoffeinsatzes Decken

+ + +

Primärenergie [%/50a]

Zusammenspiel von Tragstruktur und Deckenkonstruktion

5.5

100 80 60 40 20 0 0 Haustechnik Ausbau Fassade Rohbau

90

10

20

30 40 50 Nutzungsdauer [a] Geschossdecken Gebäude gesamt: mit heutigem Energiestandard mit Energiestandard 2021 5.6

Bauteils negativ aus. Der Mehrwert einer erhöhten Flexibilität sollte daher vor der Bewertung klar kommuniziert werden. Neben ihrer tragenden Funktion erfüllen Decken meist auch Anforderungen des Schall- und Brandschutzes. Daher bestehen sie in der Regel aus tragender Schicht und Bekleidung. Bodenaufbauten werden im Rahmen dieses Buchs gesondert behandelt (siehe S. 100f.). Gerade Decken mit unverkleideter Unterseite tragen durch thermische Pufferung besonders zum Raumklima bei und können – eingebunden in ein entsprechendes Energiekonzept – bei einer Nachtluftspülung auch Kühlleistung für das Gebäude zur Verfügung stellen.

gegenüber Ortbetondecken nur bis zu einer Entfernung von ca. 250 – 350 km zwischen Herstellungsort und Baustelle vorteilhaft [8]. Holzkonstruktionen zeigen noch deutlich geringere Umweltwirkungen. Hier lassen sich für tragende Deckenbauteile sogar negative Primärenergieinhalte erzielen. Sowohl Massivholzdecken als auch HolzHohlkastendecken und Holz-/Beton-Verbunddecken, bei denen eine massive Holzplatte als Zugbewehrung dient, las­ sen dabei eine optimierte Konstruktion zu (Abb. 5.7). Weniger empfehlenswert ist dabei jedoch die Brettstapelbauweise, die aufgrund ihres hohen Eisenanteils (Nagelung) viel Herstellungsenergie erfordert [9].

Verfügbare Tragkonstruktionen

Unterdecken

Neben der typischen Flachdecke aus Stahlbeton existiert eine Vielzahl weiterer Deckenkonstruktionen. Aus bauökologischer Sicht lassen sich dabei zwei Gruppen unterscheiden: Konstruktionen mit vorrangig mineralischen Bestandteilen sowie Holzkonstruktionen. Bei mineralischen Konstruktionen lassen sich die Umweltwirkungen im Vergleich zu einer Betonflachdecke um bis zu 30 % reduzieren. Besonders große Potenziale bieten die Vergrößerung der statischen Höhe (z. B. durch Plattenbalkendecken) sowie die Nutzung des ressourcenschonenden Hochofenzements (siehe Verwaltungsgebäude in Krems, S. 125ff.). Geringer fallen die Einsparungen bei der Massenreduktion von Betonbauteilen aus: Mit Betonhohldielen lässt sich der Primärenergieinhalt um etwa 10 % reduzieren. Hohlkörperdecken mit Verdrängungs­ körpern aus Kunststoff können gerade bei weiten Spannweiten den Primärenergie­ inhalt um ca. 15 – 20 % senken [6]. Auch die Änderung des Materials für die Zugzone (z. B. Holzbetonverbundecke auf Holzträgern oder Trapezblechverbund­ decke) kann zu einer Verringerung der Umweltwirkungen beitragen, muss jedoch immer im Zusammenspiel mit dem Brandschutz untersucht werden. Klassische Betonkonstruktionen lassen sich auch über Vorspannung optimieren: Spann­ beton-Fertigdecken reduzieren den kumulierten Energieaufwand um ca. 13 %; das Treibhauspotenzial liegt jedoch weiterhin in der gleichen Größenordnung wie bei einer typischen Ortbetondecke [7]. Bei Fertigteilkonstruktionen kann auch der Transport des Bauteils eine mitentscheidende Rolle bei der Bewertung spielen. Je nach Bewertungsgrundlage (Treibhauspotenzial oder Primärenergie) sind vorgefertigte Spannbeton-Fertigdecken

Als Unterdecke bieten sich aus primär­ energetischer Sicht Putz, Gipskarton- und Gipsfaserplatten an. Ebenso empfehlenswert sind z. B. Holzwerkstoffe mit geringem Bearbeitungsgrad oder zementgebundene Holzwolleplatten. Abgehängte Decken verursachen durch die erhöhte Materialmenge einen höheren Primärenergieeinsatz als flächig aufgebrachte oder direkt montierte Unterdecken. Aber auch die Art der Unterkon­struktion hat einen wesentlichen Einfluss. Als vorteilhaft haben sich Holz-Unterkon­struktionen erwiesen. Bei Metall-Unterkonstruktionen ist der Primärenergiebedarf deutlich höher [11], wobei verzinkter Stahl hier noch am besten abschneidet. Deutlich wirken sich auch brandschutztechnisch notwendige Dämmlagen aus. Konstruktionen, die die Brandschutz­ anforderungen ohne Dämmlage aus Mineralwolle erfüllen, weisen meist geringere Umweltwirkungen auf als solche mit Dämmstoffen. Werden im Holzbau aus Brandschutzgründen abgehängte Decken erforderlich, kann sich der materialbedingte, ­ökologische Vorteil der Tragkonstruktion deutlich reduzieren. Bei einer konstruktiv optimierten, massiven Holz-Beton-­ Verbunddecke in F 90 verursacht z. B. die Unterdecke höhere Umweltwirkungen als durch die Nutzung von Holz (im Vergleich zur Betonflachdecke) eingespart werden konnte (Abb. 5.7). 5.5 ökologische Optimierungspotenziale bei Decken und Unterdecken 5.6 Primärenergieverbrauch eines typischen Nichtwohngebäudes (einschließlich Betriebsenergie) im Lebenszyklus und Graue Energie der Geschossdecken 5.7 Ökobilanzkennwerte von unterschiedlichen ­Deckenkonstruktionen über 50 Jahre 5.8 Ökobilanzkennwerte von unterschiedlichen Unter­ decken über 50 Jahre


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Nachhaltig konstruieren by DETAIL - Issuu