Calculus for the Life Sciences Marvin L. Bittinger Solution Manuals.pdf (79)

Page 1

345

Chapter 6 Test R3 + R1 and R3 + R2

5. Write the augmented matrix 3

-1  3

2

-3

-10 26

3R1+R2and4R1+R3 3

-1  0

-3

2

-1  0

3

87 -10

8

3

1

12.

-3 

−32 = Thus,z=4,y= −3, and 417 5 − 3−8+9 x= =2 −1 7. det= −3(2) − 6(−1) = 0, the matrix is not invertible

10.

11.

− 0.2(3.4)] 3[2.4(7.3) − + −−1.3(0.5)] −41.283,−−the is 1.3(0.2)] invertible det = 0.5[0.5(7.3) 8(−1)] −=(−5)[3(4) 8(1)]matrix + 0[3(−1) − 1(1)] = 1.2[2.4(3.4) det = 2[4(1) 44, the matrix is invertible − 4(1) = −1 det = 3(1) Thus,theinverseisgivenby 0 -1 -2 1 0 0  1 1 2 0 1 0   0 1 1 0 0 1  

Swap R1 and R2 → 1  0  0

1 -1 1

2 0 -2 1 1 0

1 0 0

 0  0 1 

1 0 0

0 1 0

Swap R2 and R3 → 1 0  0 

1 1 -1

2 0 1 0 -2 1

−R2 + R1 and R2 + R3 → 1  0  0

0 1 0

1 1 -1

0 0 1

1 -1

1 0 1 0 0

0  2  1

0  -1 

1 0 0

-1  1 1 

[

-1

1 -1

1 0

[ 11-r

0  -1  20

]

The eigenvector]sare[−5t,3t]and[−2t,t]respectively 15-r 4 13. [

6. det = 2(4) − 1(8) = 0, the matrix is not invertible

9.

0 0

0 1

1 1

r2 − 1 = 0 The eigenvalues are r = −1andr=1

17

8.

1 0

0 -1 0

Thus, the inverse is given by

2

−1R3→

 -3

2

0 0

−R3→

−14R2 + 5R3 →

1 0

4

]

r2 −4r+3=0 The eigenv [aluesarer=]1[and]r=[3 14 4 x Forr = ]=1,[ -42] -12 y x -2t = [ [7t 4 x 12 Forr [ -14 ] [ y ] ]=3,[ -42] x -t [ 3t  -5-r 14.  2

-4 -2

0 0

] ]

0 0

-8  -1-R 

r3 + r2−9r−9=0 The eigenvalues are r = −3,r=−1andr=3 The eigenvectors are [2t,t, −t], [t, t, −t] and [0, −2t, t] resp ectively -1-r 0 15.  4 0 

-8  11-r 

r3 −3r2−49r+147=0 The eigenvalues are r = −7,r=3andr=7 6

0

-8

 4 x 0   =   y t  0   z 

0

18

Forr=−7,



x

0

z 0 y=0

For exam and test prep, contact excellentessaywriters@gmail.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.