57
Exercise Set 2.5 −2 ) 1) 50. dy = 2x+2(1−x ( Theslopeat(2,25 4)isdx |x=2=254 The equation of the line is
40. f′ (x)=2cos x The slops at (0, 0) is f′(0) = cos(0) = 1. So the equation of the tangent lilne is y −y1 = m(x−x1) y −0 = 1(x−0) y = x
y−
41. f ′(x) = −3sin x
25 = 4 = y
The slope at (1,0) is dy dx|x=1 = 0 The equation of the line is
y −y1 = m(x−x1) y −4 = 0(x−0) −4 = 0 y y = 4
y −y1 = m(x−x1) y −0 = 0(x−1) y = 0
1 −1/2
52. Let D(x) = f(x)
42. f′(x)=3 1/2 2x +2x The slope at (4,10) is f′(4)=3 2(4) 1/2 +2(4) 1 −1/2 =3.25 So the equation of the line is
− g(x). Then
D(x + h) −D(x) h
= =
[f(x+h)−g(x+h)]−[f(x)−g(x)] h f(x+h) − f(x) −g(x+h)−g(x) h
y −10 −10 = = 3.25(x−4) =3.25x−13 y = 3.25x
′
D(x)
− 3
y −y1 − = m(x−x1) 17 20 = = 17(x−8) = y y y 6 68 17x − 3 +20 x 6 − 8 3
x2/31/3
lim
h→ 0
h
D(x+h)−D(x) h f(x+h)−()
g(x) (+)− h fx gx ] + h h g(x+h)−g(x) f(x+h) −f(x) h lim +lim h→0 h→ 0 h = f′(x) − g′(x) lim [
h→ 0
53. Let f(x) = cos x then ′
f(x)
44. y = x1/12 1 −11/12 dy dx = 12x ( x 3 / 2)
= = =
43. f′(x)=4 1/3 3 x + 3 x 2 −2/3 The slope at (8,20) is 2 −2/3 =617 f′(8)=4 3(8)1/3 +3(8) So the equation of the line is
45. Rewritey=
(x−2) 4 25 25 4x− 4
dy √−√1 51. dx=2 ( √ 1 +√1 ) ( x x ) 2x 2x3
The slope at (0,4) is f′(0) = 0. So the equation of the tangent line is
y
25
= x −5/18
dy
− 5 −23/8 dx=18x
46 4sin x dy dx = 4cos x . Use the trigonometric identity 1+tan2x = sec2x to rewrite 47 ydy= 3sec2x cos3x = 3cos x dx= −3sin x .48. y=√1sinx+√1cosx 2 2 √ 1 dy (cosx − sinx) dx= 2 √
49. Use the sum identity for cosine to rewrite y = 23 cos x− 1 2 sin −x√ 3 1 dy dx= 2 sinx − 2cosx
f(x+h)−f(x) limh →0 h cos(x + h) −cos(x) lim h−sinxsinh−cosx = h→ 0 cos xcos h lim = h→ 0 h cosh − ) sinh ) ( limcosx − sinx ( h →0 h h cosh−1 − sinh sinx·lim cosx · hlim h→0 →0 h h ·0−sin x·1 = cosx = = =
=
−sin x
54. The value of the slope of the tangent lines of the sine function posi-correspond to whether the cosine function is has
tive or negative values. For a positive slope of the 55. tangent
line means the cosine has a positive values at the 56. aprticular x value, and vice versa. Left to the student Left to the 57. ± 0.6922 student The tangent line is horizontal at x = 58. The tangent line is horizontal at x = 0
For exam and test prep, contact excellentessaywriters@gmail.com