Page 1

FISICA I UNIVERSIDAD AUTÓNOMA DE


BLOQUE I

LA FÍSICA Y EL UNIVERSO

Seguramente, cuando menos en una ocasión, has observado las estrellas. Te habrás preguntado ¿cómo es el universo? ¿Cómo se formó el universo? ¿Por qué el universo es como es? La ciencia trata de entender el universo deduciendo leyes generales. Esto se establece con base a patrones de fenómenos que se repiten y pueden servir para describir la naturaleza. Por ejemplo, una de las últimas teorías de la creación del universo, la teoría del Big Bang. Para poder llegar a ella, el hombre observó los sucesos ocurridos a su alrededor y formuló algunas leyes. Si retrocedemos en el tiempo, el hombre se vio primero en la necesidad de medir, de comparar, de establecer unidades (longitud, masa, tiempo) y sistemas de unidades de medida, para realizar estimaciones o aproximaciones de diferentes fenómenos, como las interacciones de grandes cuerpos como planetas y soles, tratando, hasta el día de hoy, de conocer el universo tanto en lo macro como en lo micro.


BLOQUE I

LECCION 2


BLOQUE I

Con fines de estudio, las unidades se han clasificado en

TIPOS DE MAGNITUDES

unidades fundamentales y unidades derivadas.

TIPOS DE MAGNITUDES

En 1960 se estableció un solo sistema de unidades para ser utilizado por todos los países: El Sistema Internacional de Unidades (SI) (M.K.S.). UNIDADES FUNDAMENTALES O BÁSICAS

UNIDADES DERIVADAS

Son aquellas a partir de las

Reciben el nombre de

cuales, mediante su

compuestas, porque resultan

mencionar que la física se considera ciencia cuantitativa,

combinación, se construyen las

de la combinación de las

pues cada uno de los términos se mide en función de

demás unidades.

unidades fundamentales.

Estas son la longitud, tiempo y

Ejemplos de estas son el peso,

masa.

velocidad y potencia.

Pues bien, habiendo referido lo anterior, resulta conveniente

magnitudes, existiendo dos clases: Escalares y Vectoriales. MAGNITUDES ESCALARES

Son aquellas cantidades que solo tienen número y unidades. Ejemplo: 20 segundos; 50 Km.

MAGNITUDES VECTORIALES

Son las que, además de tener un número y unidad, poseen también dirección y sentido. Ejemplo: 60 metros al norte.

Pero para lograr medir la magnitud, resulta necesario un conjunto o clase de unidades, entendiendo unidades como el conjunto de medidas de la misma clase o especie que se agrupan,

tomando como base a una de ellas

denominada unidad patrón (Burbano 2008).

page 3


Para iniciarnos en el estudio de las unidades, empezaremos con las unidades fundamentales:

UNIDADES FUNDAMENTALES La longitud se define como la medida de la distancia entre UNIDAD DE LONGITUD

dos puntos. Metro: unidad fundamental de la longitud. Tiempo: duraci贸n determinada por la sucesi贸n de los

UNIDAD DE TIEMPO

acontecimientos. Segundo: unidad fundamental del tiempo. Masa es la cantidad de materia que posee un cuerpo.

UNIDAD DE MASA

Kilogramo: unidad patr贸n de la masa.

page 4


BLOQUE I

LECCION 4


BLOQUE I

INTERPRETACIÓN Y TRANSFORMACIÓN DE LA NOTACIÓN CIENTÍFICA

¿Cómo lo llevamos a la mínima expresión? 1.

Primero, empezaremos a contar los espacios que

separan a cada número de

derecha a izquierda, hasta

llegar al último número entero. 2.

Antes de llegar a dicho número, separamos la

cantidad con un punto dejando como compañía dos

En el estudio de la física encontramos, a menudo,

decimales más (en éste caso 3 y 9).

magnitudes como estas, las cuales están expresadas por

3.

números muy grandes o muy pequeños; el enunciado

(que es la base) y lo elevamos a la potencia 11 (pues son

escrito u oral de tal número, por lo común, es bastante

11 espacios los cuales separan a cada número).

Por último,

multiplicamos la cantidad (1.39) por 10

incomodo y difícil. Para facilitar el problema, lo usual es hacer uso de la Notación Científica, la cual nos ayuda a poder expresar de forma más sencilla aquellas cantidades numéricas que son demasiado grandes o, por el contrario, demasiado pequeñas (Burbano 2008). Se conoce también como Notación Exponencial y puede definirse como el Producto de un número localizado en el intervalo comprendido del 1 al 10, multiplicándose por la potencia de 10. Por ejemplo, tenemos la siguiente cantidad: 139000000000 cm.

Veamos otro ejemplo, tenemos 0.000096784 cm. En este caso, el procedimiento será de la siguiente manera: 1.

Partiremos desplazando el punto de derecha a

izquierda, hasta llegar al primer número diferente de cero (en éste caso 9). 2.

Separamos el número seguido por dos decimales (6 y

7), multiplicado por 10 como base constante. 3.

La potencia, a diferencia del primer ejemplo, será

Ahora lo llevamos a la mínima expresión y tenemos como

negativa, pues contamos de izquierda a derecha, tomando

respuesta:

en cuenta únicamente los números enteros.

page 6


Es decir, tenemos como resultado:

MÚLTIPLOS

SUBMÚLTIPLOS

9.67 x 10-5 cm. O bien:

10

=

10 1

1

= 10 - 0

9.68 x 10-5

100

=

10 2

0. 1

= 10 - 1

Aproximado, en donde la respuesta también sigue siendo válida.

1000

=

10 3

0. 01

= 10 - 2

10000

=

10 4

0. 001

=

10 - 3

100000

=

10 5

0. 0001

=

10 - 4

1000000

=

10 6

0. 00001

=

10 - 5

Cabe mencionar, se seleccionaron únicamente los números enteros, debido a que en términos matemáticos los ceros a la izquierda no cuentan y no deben ser incluidos. Dentro de esta postura, se le llama múltiplos cuando se utilizan para medir cantidades mayores y submúltiplos cuando sirven para medir cantidades menores al protón, habiendo siempre una relación o equivalencia entre ellos.

page 7


Una regla práctica para obtener la potencia con base de

Observa la siguiente tabla; podría serte de gran ayuda.

10, es la siguiente:

a)

Se cuenta el número de lugar que debe

recorrerse el punto decimal para colocarlo a la izquierda; este número nos proporciona el exponente positivo de 10. Así pues:

62300

= 6 .2300

6.23 X 10 4

4 lugares b)

Se cuenta el número de lugares que debe

recorrerse el punto decimal hacia la derecha; este número nos proporciona el exponente negativo de 10. Así:

0.00003

=

0.00003

= 3 10-5

5 lugares

page 8


BLOQUE I

OPERACIONES CON POTENCIA CON BASE DE 10

a)

En operaciones de división, los exponentes se restan:

Cuando los números se escriben con la notación con potencia con base de 10, las operaciones se vuelven más simples siguiendo las leyes establecidas por el

álgebra

para las operaciones con potencias. a)

Para multiplicar cantidades con exponentes, estos se

sumarán: b) Para elevar a una potencia, los exponentes se multiplican

page 9


c) Para sacar ra铆z cuadrada, los exponentes se dividen:

d) Cuando tratemos de la adici贸n o la sustracci贸n, se debe tener cuidado, antes de efectuar la operaci贸n, en expresar el problema en la misma potencia con base 10.

page 10


BLOQUE I

Ejemplo:

CONVERSIÓN DE UNIDADES

50 km

m a

hr.

Para efectuar cualquier operación matemática con las

s

unidades mostradas anteriormente, estas deben encontrarse expresadas en el mismo sistema; de no ser así, deberán efectuarse conversiones de unidades. Escribir la cantidad a convertir, indicando qué unidades se

1. A n a l i z a c u á n t a s u n i d a d e s d e b e r á n c a m b i a r s e , escribiendo sus equivalencias:

desean obtener: km hr

EQUIVALENCIAS 1m

= 100

cm

1m

= 1000

mm

1 cm

= 10

mm

1 Km

= 1000

m

1m

= 3.28

pies

1m

= 1.093

yardas

1 pie

= 30.48 cm

1 pie

= 12

pulgadas

1 pulg. = 2.54

cm.

1 milla = 1.609

Km

1 libra

= 454

g.

1 Kg

= 2.2

libras

= 1

ml

1 litro

= 1000

cm3

1 litro

= 1

dm.3

1 galón = 3.785

litros

1 N.

= 1 x 10 dinas

1kg

= 9.8

N

1 libra

= 0.454 Kg

1 ton.

= 1000

Kg

1 cm

3

1m

2

= 10,000 cm

1m

3

= 1000

lts

2

1m

3

1 milla

m s

1 km 1 hr

-

1000 m 3600 s

2. Separadamente, escribe el número y las unidades a convertirse, seguidas del signo de multiplicación y de una línea horizontal: Ejemplo: 50 km X hr.

= 100,000 = 1609

a a

m

page 11


3. En la línea horizontal debe formarse un nuevo quebrado

6. Anota las unidades y cantidades que quedan:

en el término opuesto, la unidad a transformarse,

Ejemplo:

y

completando el quebrado con su equivalencia. 50

Ejemplo:

1000 m X

50 km

1000 m

1 X

1

1

3600 s

X hr

7. Efectuar las operaciones:

1 km

Ejemplo: 4. Repetir la operación, formando nuevos quebrados tantas veces como unidades vayan a convertirse. 50

Ejemplo:

1000 m X

50 km

1000 m X

hr

X

1

1hr

1

1

50,000 m =

3600s

3600s

X 1 km

3600 s 8. Realizar las últimas operaciones escribiendo el resultado

5. Eliminar las unidades

iguales que aparezcan

en

y unidades: Ejemplo:

términos opuestos:

50,000 m

Ejemplo:

= 13.88m/s 50 km

1000 m X

hr

1hr

360

X 1 km

3600 s

page 12


BLOQUE I

LECCION 6


BLOQUE I

FÓRMULAS Y SU DESPEJE

1º Escribir la fórmula ; se indica la incógnita. Ejemplo: 1° Despejar “a “ de la siguiente fórmula: c + d __________

=

b ____

Como la física es una ciencia cuantitativa, es usual el e

manejo de fórmulas.

CONCEPTO DE FÓRMULA:

a

2º Quitar los denominadores, aplicando la regla de álgebra la cual establece: si un término está

Fórmula es la representación cuantitativa y gráfica de un fenómeno por medio de literales, a las cuales se la asigna

dividiendo, pasará al miembro opuesto de la fórmula multiplicando.

valores numéricos variables y consonantes, y en su ordenamiento guardan siempre una relación de igualdad.

DESPEJE DE FÓRMULAS: Fórmula es la representación cuantitativa y gráfica de un fenómeno por medio de literales, a las cuales se la asigna valores numéricos variables y consonantes, y en su ordenamiento guardan siempre una relación de igualdad.

(c+d) (a) = b x e

3º Pasar los términos necesarios para dejar sola la incógnita, al miembro opuesto, aplicando nuevamente la regla de álgebra la cual especifica: cuando un término está sumando, pasará restando al miembro opuesto de la fórmula y cuando un término está multiplicando, pasará dividiendo, y viceversa:

A continuación se explica, por medio de pasos, el procedimiento a seguirse para despejar correctamente la incógnita en una fórmula.

a= bxe ______ c+d

page 14


BLOQUE II

LA FISICA EN MI VIDA ¿Porquéson importantes los vectores?

Los vectores son muy importantes para estudiar fenómenos sucedidos a nuestro alrededor. Con ellos podemos explicar, por ejemplo: ¿por qué si elevamos una comenta cuando el viento está soplando en contra, y empezamos a correr para mantenerla en el aire, esta retrocede al punto en donde la cuerda con la cual la sostenemos, queda inclinada hacia atrás?:


Ejemplo:

Los vectores poseen magnitud; esta es una característica de los mismos. Es decir, cada uno representa un valor numérico; para este caso, corresponde a la cantidad de velocidad del viento y la cometa. Si ves de nuevo los vectores de arriba, notarás como uno es más largo que el otro, ¿cierto? En el ejemplo, el viento tiene más velocidad que la cometa y por eso su vector es más estirado. Por esta razón, la cometa se va hacia atrás de ti cuando corres con ella. Al sumar gráficamente  ambos vectores, el resultado es un vector dirigido hacia atrás (más adelante te explicaremos cómo se deben ubicar los vectores para poder sumarlos gráficamente):

Para casos como este,usamos los vectores para representar la velocidad de la cometa y la velocidad del viento. Lo importante es ubicar los vectores en la dirección en la cual se mueve cada uno, así:

Este sería el vector,el cual nos permite explicar por qué la cometa se va hacia atrás y no hacia adelante, o por qué no se queda fija cuando la elevas contra el viento. Ejemplo tomado

de

Interactuando con la

Física, revisado 2012,

http://interactuandoconlafisica.jimdo.com/1-importancia-de-losvectores/

page 16


Ejemplo:

Si queremos representar la velocidad de un caballo

¿Cómo simbolizamos la magnitud? Recuerda, un vector se

moviéndose a 40km/h hacia el Este.  

simboliza con una letra y una flecha arriba o con la letra en negrilla. Para referirnos a la magnitud o a la longitud del

Podemos hacer el siguiente vector, conteniendo: valor

vector, usamos la letra con la flecha, pero encerrada entre

numérico 40, unidad de medida km/h, dirección 0º  y

dos líneas o la letra sin negrilla, así:

sentido hacia el Este. 40km/h !

Este

Imagina que necesitas

resolver el siguiente problema;

cómo lo harías. 2) DIRECCIÓN: Dentro

de las características de los vectores, es

importante considerar:

Se refiere a qué tanto giró el vector. Es el que indica cuántos grados gira el vector.

1) MAGNITUD: se refiere a cuánto mide el vector. Es el valor numérico acompañado de la unidad de medida, por ejemplo 8 N. El 8 es el número y N (se lee Newton) es la unidad de medida de la Fuerza.

page 17


3) SENTIDO: Se refiere a hacia dónde dirijo el vector.

Dibuja el vector de 10 kilopondios, los cuales forman un ángulo de 30° sobre el eje de las

x positivas (sentido

noroeste).

Orienta el vector, puede ser hacia el norte, el sur, el este;arriba, abajo, derecha o izquierda. Nota: para dibujar los vectores, debemos tomar en cuenta las posibles direcciones del vector. Entre las más generales,tenemos las siguientes:

1.2 Resultante de un sistema de vectores rectangulares. La resultante de un sistema de vectores es un vector capaz de producir los mismos efectos de la combinación de los vectores que actúan originalmente en el sistema.

Existen dos formas de resolver los problemas relacionados con las magnitudes vectoriales,el método gráfico y el método trigonométrico analítico.

Siguiendo el método gráfico para el caso especifico del e j e m p l o a n t e r i o r, d e b e r í a m o s d i b u j a r a e s c a l a e l desplazamiento y medir el tamaño de vector “a-c “, el cual en realidad es el desplazamiento real o resultante.

page 18


En el método trigonométrico analítico se evita analizar escalas y medir.La forma de resolver este problema usando dicho método con la regla del paralelogramo, se explica la continuación en forma de pasos:

El valor del desplazamiento fue de 6.4 metros.

1.- A partir de un mismo origen, se dibujan los dos vectores tomando en cuenta,

para cada uno de ellos, el valor, la

dirección y el sentido mencionado en el enunciado del problema. 2.-

Se trazan lados paralelos a los anteriores para formar una

figura cerrada de cuatro lados (paralelogramo).

Nota: la resultante debe ser mayor a cualquiera de los 2 catetos.

3.- A partir del origen, se traza una diagonal dividiendo a la

Como ya mencionamos, para la dirección y el

figura en dos triángulos, por lo cual se calcula el valor del vector

sentido exacto del vector resultante podemos

resultante empleando el Teorema de Pitágoras, y la dirección con

utilizar cualquier función trigonométrica:

cualquier función trigonométrica.

Ejemplo:

sentido exacto del vector resultante podemos utilizar cualquier función trigonométrica:

Un pasajero en una plataforma de ferrocarril se mueve 4 m al norte y el carro se mueve a 5 m al oriente (este), ¿cuál sería el valor del desplazamiento resultante?

page 19


El resultado correcto serĂ­a: R

=

6.4 m.

A

38 °

arriba de la

horizontal; con sentido noreste.

page 20


BLOQUE II

LECCION 8


SECTION 6

vectores, así como las fuerzas que ya se encontraban en

SISTEMA DE DOS O MÁS VECTORES

este eje . 4) Encuentre las componentes “y“ de la resultante (sumas de fuerzas en “y“), sumando las componentes en “y“ de los vectores, así como las fuerzas que se encontraban en ese eje. 5) Obtenga la magnitud y dirección de la resultante a partir de los dos vectores obtenidos anteriormente, dibujándolos

Frecuentemente, sobre un cuerpo actúan varias fuerzas; de

a partir de un origen con un ángulo de 90 ° entre ellos y

la misma manera, un cuerpo puede sufrir varios

siguiendo la regla del paralelogramo.

desplazamientos en distintas direcciones antes de llegar a su destino. Estos son los casos en los cuales participan más de dos vectores.

EJEMPLO: Tres sogas están atadas a una estaca, ejerciéndose las siguientes fuerzas: A= 20 N a 0 °,

B = 30 Nformando un

Para calcular el vector resultante de este tipo de

ángulo de 30 ° al noroeste,C= 40 Nformando un ángulo de

problemas, se siguen los siguientes pasos:

52° sureste. Encuentre la fuerza resultante en la estaca y su

1) Se dibujan todos los vectores a partir del origen en un

dirección.

sistema de ejes de coordenadas.

A = 20 N.

2) Se encuentran las componentes rectangulares “x “ y “y“

Ax = 20 N.

de los vectores localizados fuera de los ejes.

Ay = 0

3) Encuentre la componente “x“ de la resultante (suma de fuerzas en “x“), sumando las componentes “x” de los

page 22


Fx = ( 30 N. ) ( COS 30 ° )

Fx = ( 40 N. ) ( COS 52 ° )

Fx= ( 30 N. ) ( .8660 )

Fx = ( 40 n. ) ( 0.6156 )

Fx= - 25.98 N.

F x = - 24.62 N.

Fy= ( 30 N. ) ( SEN 30 ° )

Fy= ( 40 N. ) ( SEN 52 ° )

Fy= ( 30 N. ) ( 0 . 5 )

Fy= ( 40 n. ) ( 0.7380 )

FY = 15 n.

Fy

Suma de fuerzas “X“

suma de fuerzas en “Y“

= - 31.54 N.

20 .00 N - 25.98 N.

15.00 N.

- 24.62 N.

- 31.52 N

- 30. 60 N.

- 16. 52 N.

La fuerza resultante es de 34.79 Nformando un ángulo

de

28.36°.

page 23


BLOQUE II

LECCION 9


BLOQUE II

La velocidad y la rapidez generalmente se usan como

MOVIMIENTO

sinónimos en forma equivocada; no obstante, la rapidez es

La mecánica es una rama de la física; estudia los

además de la magnitud, cuál es su dirección y sentido.

movimientos y estados en los cuales se encuentran los

La velocidad se define como el desplazamiento realizado

cuerpos. Describe y predice las condiciones de reposo y

por un móvil, dividido entre el tiempo que tarda en

movimiento de los cuerpos, bajo la acción de las fuerzas.

efectuarlo.

una cantidad escalar y señala únicamente la magnitud vectorial,y para quedar bien definida, requiere se señale,

Se divide, por lo general, en dos partes: d

v = velocidad del móvil

1.- Cinemática. Estudia las diferentes clases de movimiento de los cuerpos, sin atender a las causas que lo producen. 2.- Dinámica. Estudia la causa original del movimiento de los cuerpos. La estática, analiza las

v =

_____ t

d = desplazamiento del movil t = tiempo que se realiza

situaciones del

equilibrio de los cuerpos, queda comprendida dentro del estudio de la dinámica. •

MOVIMIENTO DE LOS CUERPOS

RECTILÍNEO UNIFORME, TEORÍA Y PROBLEMAS DE APLICACIÓN

Cuando un cuerpo se encuentra en movimiento, deducimos

MOVIMIENTO RECTILÍNEO UNIFORME.Cuando un móvil

que su posición está variando respecto a un punto

sigue una trayectoria recta, en la cual realiza

considerado fijo. El estudio de la cinemática nos permite

desplazamientos iguales en tiempos iguales, se dice que

conocer y predecir en cuál lugar se encontrará un cuerpo

efectúa un movimiento rectilíneo uniforme. Supongamos, un

o bien, en qué lapso de tiempo llegará a su destino.

móvil, en un segundo, se habrá desplazado cuatro metros;

al transcurrir dos segundos, se habrá desplazado cuatro

VELOCIDAD Y RAPIDEZ

page 25


metros; al transcurrir tres segundos, se habrá desplazado 6 metros, y así sucesivamente. •

VELOCIDAD

MEDIA Y VELOCIDA PROMEDIO La

mayoría de los movimientos

que realizan los cuerpos no

son uniformes. Es decir, los desplazamientos efectuados,

EJEMPLO: Calcular la velocidad de un móvil si partió al este con una velocidad inicial de 2 m / s y su velocidad final fue de 2.7 m / s.

generalmente no son proporcionales al cambio de tiempo; debido a ello, es necesario considerar

el concepto de

velocidad media. Por tanto, una velocidad media representa la relación entre desplazamiento total hecho por un móvil y el tiempo que tarda en efectuarlo. Velocidad 2m/s

Velocidad 2.7m/s

• También es común determinar la velocidad final (Vf) con su velocidad inicial (Vo) y dividiéndola entre dos. Solución: Vf + Vo Vf + Vo

2

=

2 m/s + 2.7 m/s

= 2.35 m/s

2

Vm = 2

page 26


RECTILÍNEO UNIFORMEMENTE VARIADO (M.R.U.V), TEORÍA Y PROBLEMAS.

a = Vf - Vo

a

=

aceleración m / s 2

Vf

=

velocidad m / s

Vo

=

velocidad m / s

t

=

tiempo s .hr.

min.

Aceleración: cuando la velocidad de un móvil no permanece Como la velocidad es una magnitud vectorial, la

constante, sino varía, decimos que sufre una aceleración. Por definición, aceleración es la variación de la velocidad de un

aceleración también será vectorial.

móvil en cada unidad de tiempo .Si el móvil parte del reposo, su

El signo de la aceleración será el mismo que tenga la variación

aceleración será igual a:

de la velocidad.

a=

v

Por tanto, la aceleración será positiva cuando:

t

A.

La velocidad es de signo positivo y experimenta un

Para determinar las unidades de la aceleración,substituimos las

aumento.

unidades de la velocidad y de tiempo,según el sistema de

B.

unidades delcual se trate.

disminución, o sea, un frenado.

a =

m / s2

“O “

cm / s 2

Si el móvil no parte del reposo, entonces, en el intervalo de

La

velocidad es de signo negativo y sufre una

La aceleración es negativa cuando: A.

La velocidad es de signo negativo y tiene un aumento.

B.

La velocidad es de signo positivo y disminuye, o sea, un

tiempo considerado, su movimiento ya lleva una velocidad llamada inicial (Vo). La aceleración, cuando el móvil no parte del reposo, es igual a:

frenado.

page 27


DEDUCCIÓN DE LAS ECUACIONES UTILIZANDO M.R.U.V.

Cuando se desea conocer la velocidad final que alcanzará un móvil cuando parte del reposo y la velocidad inicial es cero.

Ecuación para calcular “desplazamientos” o distancia en un movimiento uniformemente variado.

EJEMPLOS: 1. Un automóvil adquiere una velocidad de 40 km/hr en 4 s;¿cuál es su aceleración en m/s?

Datos

v = 40 km/hr

conversión de unidades

40 km/hr x 1000 m/1km x 1 hr/ 3600 s = 11.1 m/s

Cuando se desea conocer el desplazamiento de un móvil y este parte del reposo, la velocidad inicial vale cero.

t= 4s a= ?

a = v/t

a = 2.77 m/s

page 28


1. Un motociclista lleva una velocidad inicial de 2 m/s; a los 3 s, su velocidad es de 6 m/s. Determinar: a) su aceleraci贸n media

b ) su desplazamiento en ese tiempo .

page 29


BLOQUE III

SOLUCIÓN DE PROBLEMAS DE APLICACIÓN

TRABAJO.-Se realiza un trabajo mecánico cuando una fuerza motriz mueve una resistencia a cierta distancia.Trabajo es igual al producto de la fuerza motriz por la distancia recorrida. Trabajo

=

fuerza motriz

Trabajo = Joule Fuerza= N Distancia = m

X distancia


BLOQUE III

ENERGIA POTENCIAL: Es la energía que posee un cuerpo

SOLUCIÓN DE PROBLEMAS DE APLICACIÓN

debido a su altura o posición en la cual se encuentra. Energía potencial = gravedad x altura

Ep = joule

ENERGIA CINÉTICA: Es la energía que posee un cuerpo debido a su velocidad. Es igual a la mitad del producto de su masa por el cuadrado de su velocidad.

POTENCIA.- Es la rapidez con la cual se efectúa un trabajo, y se calcula dividiendo el trabajo entre el tiempo empleado en efectuarlo.

Energía cinética = masa x aceleración x distancia Ec = joule

page 31


BLOQUE III

LECCION 15


UNIDADES DE MEDICIÓN DE TEMPERATURA Y ESCALAS TERMOMÉTRICAS; SU RELACIÓN: CELSIUS, FAHRENHEIT, KELVIN

grados. Esta fue establecida en el sistema internacional de unidades en 1954.

Relativas por que se comparan con un proceso fisicoquímico establecido, el cual siempre se produce a la

De acurdo con PCE Instruments, la temperatura es una

misma temperatura.

magnitud física la cual expresa el grado o nivel de calor o frío de los cuerpos o del ambiente. En el sistema

- Grados Celsius (sistema internacional): o también

internacional de unidades, la unidad de temperatura es el

denominado grado centígrado, se representa con el

Kelvin. A continuación, de forma general, hablaremos de

símbolo ºC. Esta unidad de medida se define escogiendo el

otras unidades de medida para la temperatura.

punto de congelación del agua a 0º y el punto de ebullición del agua a 100º, ambas medidas a una atmósfera de

En primer lugar, se distinguen dos categorías en las unidades de medida para la temperatura: absolutas y relativas. Absolutas son las que parten del cero absoluto, la cual es la temperatura teórica más baja posible, y corresponde al punto en el que las moléculas y los átomos de un sistema tienen la mínima energía térmica posible.

presión, y dividiendo la escala en 100 partes iguales en las que cada una corresponde a 1 grado. Esta escala la propuso Anders Celsius en 1742, un físico y astrónomo sueco. - Grados Fahrenheit (sistema internacional): este toma las divisiones entre los puntos de congelación y evaporación de disoluciones de cloruro amónico. Así, la

Kelvin (sistema internacional): se representa por la letra K y

propuesta de Gabriel Fahrenheit en 1724, establece el cero

no lleva ningún símbolo "º" de grado. Fue creada por

y el cien en las temperaturas de congelación y evaporación

William Thomson, sobre la base de grados Celsius,

del cloruro amónico en agua. Este utilizó un termómetro de

estableciendo así el punto cero en el cero absoluto

mercurio en el cual introduce una mezcla de hielo triturado

(-273,15 ºC) y conservando la misma dimensión para los

con cloruro amónico a partes iguales. Esta disolución salina concentrada daba la temperatura más baja posible

page 33


en el laboratorio, por aquella época. A continuación realizaba otra mezcla de hielo triturado y agua pura, que determina el punto 30 ºF, el cual después fija en 32 ºF (punto de fusión del hielo) y posteriormente expone el termómetro al vapor de agua hirviendo y obtiene el punto 212 ºF (punto de ebullición del agua). La diferencia entre los dos puntos es de 180 ºF, que dividida en 180 partes iguales determina el grado Fahrenheit. Por tanto, las escalas más importantes de temperatura son: Celsius, Fahrenheit, y Kelvin o absoluta

page 34


BLOQUE III

LECCION 16


BLOQUE III

K i l o c a l o r í a : E s l a  c a n t i d a d d e c a l o r  q u e

UNIDADES DE MEDICIÓN DEL CALOR

debe extraerse  o  transferirse  a  1 kilogramo  de agua  para cambiar su temperatura en 1º C. Se abrevia kcal. Ejemplos: 325 calorías son 325.000 kilocalorías, porque se debe multiplicar 325 * 1.000 1.500 kilocalorías son  1,5 calorías, porque se debe dividir

El calor es una forma de energía, y sus unidades de medida son el Joule (J) y la caloría (cal) (1 cal = 4,186 J),

1.500 * 1.000

se había establecido que era una forma de energía.

EQUIVALENCIA MECÁNICA DEL CALOR

El calor es una forma de energía, y sus unidades de

Como ya dijimos, cuando hablamos de calor nos estamos

medida son el Joule (J) y la caloría (cal) (1 cal = 4,186 J),

refiriendo a una forma de energía, pero ¿qué sucede

la cual fue definida en su momento para el calor, cuando no

cuando queremos convertir energía calórica en energía

se había establecido que era una forma de energía.

mecánica?

C a l o r í a : E s l a c a n t i d a d d e c a l o r  q u e

El calor puede ser convertido en energía mecánica y

debe extraerse  o  transferirse  a  un gramo de agua  para

viceversa, y como el calor es una forma de energía,

cambiar su temperatura en 1º C (cambiar su temperatura

s i m p l e m e n t e s e e s t a r í a c o m p ro b a n d o l a l e y d e

significa aumentarla en 1º C o disminuirla en lº C). Se

conservación de la energía, la cual señala:

la cual fue definida en su momento para el calor, cuando no

abrevia “cal” (Profesor en línea 2012). Junto con la caloría, se usa también la kilocaloría para medir el calor.

La energía no se crea ni se destruye, solo se transforma. La energía mecánica puede convertirse en calor a través del rozamiento, y el trabajo mecánico necesario para

page 36


producir 1 caloría se conoce como equivalente mecánico del calor. A una caloría le corresponden 4,186 joules. Según la ley de conservación de la energía, todo el trabajo mecánico realizado para producir calor por rozamiento aparece en forma de energía en los objetos sobre los cuales se realiza el trabajo. O sea, cuando hablamos del equivalente mecánico del calor, no es más que una manera de expresar dos formas de energía, las cuales son iguales valóricamente hablando: la energía calórica (representada en calorías) y la energía mecánica (representada en Joules). La relación entre la cantidad de calor producido y el trabajo realizado es una constante llamada equivalente mecánico del calor. En el Sistema Internacional de Unidades (SI), la unidad de calor es la misma de energía, es decir, el Joule. Si expresamos el calor en calorías y el trabajo en Joules o julios (J), se tiene la siguiente equivalencia entre Joules y Calorías: 1 caloría = 4,186 Joule y la relación inversa es: 1 J = 0,24 cal

Calor: Unidades de medida. (s. f.). Recuperado junio 18, 2012, a partir de http://www.profesorenlinea.cl/fisica/Calor_Unidades_medida.html

page 37


BLOQUE IV

DENSIDAD ABSOLUTA Y DENSIDAD RELATIVA

Los vectores son muy importantes para estudiar fenómenos sucedidos a nuestro alrededor. Con ellos podemos explicar, por ejemplo: ¿por qué si elevamos una comenta cuando el viento está soplando en contra, y empezamos a correr para mantenerla en el aire, esta retrocede al punto en donde la cuerda con la cual la sostenemos, queda inclinada hacia atrás?:


BLOQUE IV

DENSIDAD ABSOLUTA Y DENSIDAD

Ahora bien, las sustancias, comúnmente, tienen la densidad similar a la del agua y, si utilizamos la fórmula anterior, los números resultantes serán muy grandes; por esto se utiliza la unidad de medida de Gramo por Centímetro Cúbico (gr/c.c.) o bien gr/cm3

A continuación se te presenta un ejemplo extraído de la página FísicaNet.com.ar

SUSTANCIA

DENSIDAD en kg/m3

DENSIDAD en g/ c.c. (gr/cm3)

Agua

1000

1

Aceite

920

0.92

Por ejemplo:

Gasolina

680

0.68

AGUA: 1kg ocupa un Volumen de 1lt, es decir: 0.001 m3, la

Plomo

11300

11.3

DENSIDAD será de: 1000 kg/m3

Acero

7800

7.8

Mercurio

13600

13.6

Madera

900

0.9

Aire

1.3

0.0013

existen ciertas características en el tipo de materia que los

Butano

2.6

0.026

componen.

Dióxido de  Carbono

1.8

0.018

RECUERDA, los cuerpos no son iguales en su masa y en su volumen; estos van a variar de un cuerpo a otro, PERO

page 39


También te presento estos datos interesantes de Física Net.com.ar

La densidad  de un cuerpo está relacionada con

su flotabilidad, una sustancia  flotará sobre otra si su densidad es menor. •

Por eso, la madera  flota sobre el  agua  y el  plomo  se

hunde en ella, porque el plomo posee mayor densidad que el agua, mientras la densidad de la madera es menor; pero ambas sustancias se hundirán en la gasolina, de densidad más baja. Densidad:  La densidad es una característica de cada sustancia. Nos vamos a referir a líquidos y sólidos homogéneos. Su densidad, prácticamente, no cambia con la presión y la temperatura; mientras, los gases son muy sensibles a las variaciones de estas magnitudes

page 40


BLOQUE IV

LECCION 20


BLOQUE IV

LECCIÓN20 DENSIDAD ABSOLUTA

Donde

La DENSIDAD ABSOLUTA o densidad real, se expresa

sustancia, y  

es la densidad relativa,

es la densidad de la

es la densidad de referencia o absoluta.

como la: Masa por Unidad de Volumen de una sustancia. Su unidad en el Sistema Internacional es kg/m3, o bien g/ cm3

Para los líquidos y los sólidos, la densidad de referencia habitual es la del agua líquida a la presión de 1 atm  y la temperatura de 4  °C. En esas condiciones, la densidad absoluta del agua destilada es de

es decir,

.

La DENSIDAD RELATIVA o aparente, se expresa como: Relación entre la Densidad de una sustancia y una densidad de referencia, resultando una magnitud sin dimensiones y sin unidades.

page 42


BLOQUE IV

LOS FLUIDOS EN MOVIMIENTO PESO ESPECÍFICO, ABSOLUTO Y RELATIVO

pe: peso específico de la sustancia en N/ P: peso de la sustancia en newton (N) V: volumen que ocupa en

La relación existente entre la densidad y el peso específico de una sustancia, la podemos obtener si recordamos que: d= m g Pe= p/V

RECUERDA: La DENSIDAD se relaciona con el grado de

Sustituyendo 1 en 2 tenemos:

acumulación de materia así como con el peso. Recordando como se mostro en el video anterior, un cuerpo pequeño es

Pe= mg/V

mucho más pesado que otro más grande, el cual es

d= m/V

también más denso. Peso Específico= densidad por aceleración de la gravedad Pues bien, si lo que quieres es referirte al peso por unidad

Pe=dg

de volumen, deberás utilizar la fórmula y concepto de PESO ESPECÍFICO. El peso específico refiere a la fuerza con la cual la tierra atrae a una unidad de volumen de la

Revisa la explicación, la cual te ayudará a resolver los

misma sustancia.

problemas correspondientes.

page 43


BLOQUE IV

LECCION 21


BLOQUE IV

LOS FLUIDOS EN MOVIMIENTO PRESIÓN- PRESIÓN HIDROSTÁTICA PRESIÓN La presión indica la relación que hay entre una fuerza aplicada y el área sobre la cual actúa. En cualquier caso en el cual exista presión, una fuerza estará actuando perpendicularmente sobre una superficie; matemáticamente se expresa por:

Donde: P= presión en N/

= pascal

F= fuerza perpendicular a la superficie en Newton A= área o superficie sobre la que actúa la fuerza en

page 45


BLOQUE IV

LECCION 22


PRESIÓN HIDROSTÁTICA Todo líquido contenido en un recipiente origina una presión sobre el fondo y las paredes del mismo; esto se debe a la fuerza que el peso de las moléculas ejerce sobre un área determinada. Esta presión recibe el nombre de presión hidrostática, la cual aumenta confor me es mayor la profundidad.

Ph = Pe h o bien Ph = dg h Ph= presión hidrostática en N/ d= densidad del líquido en kg/ Pe= peso específico del líquido en N/ g= aceleración de la gravedad igual a 9.8 m/ h= altura de la superficie libre al punto de m

La presión ejercida por un líquido en cualquier punto de un recipiente, no depende de la forma de este ni de la cantidad de líquido, sino únicamente del peso específico y de la altura que hay del punto considerado a la superficie libre del líquido.

page 47


BLOQUE IV

LECCION 23


PRINCIPIO DE ARQUÍMEDES Todo cuerpo sumergido en un fluido recibe un empuje ascendiente igual al peso del fluido desalojado. 1.

Densidad del sólido X vol. Del sólido = densidad del líquido X vol. Desalojado Densidad del sólido = peso fuera del agua

D (agua)

peso fuera -peso

Si el peso de un cuerpo es menor al empuje el cual

recibe, el cuerpo flota, pues desaloja una menor cantidad de líquido que su volumen. 2.

Si el peso del cuerpo es igual al empuje, permanecerá

en equilibrio, sumergido dentro del líquido. 3.

Densidad del líquido =

peso fuera - peso dentro peso fuera - fuera dentro del agua

Si el peso del cuerpo es mayor al empuje, sufriendo

una disminución aparente en su peso, para que un cuerpo flote en cualquier fluido, su densidad promedio debe ser

Altura sumergida = Densidad del cuerpo X altura del liquido Densidad del líquido

menor a la densidad del fluido.

Peso del sólido = peso del líquido desalojado

Densidad del sólido X vol. Del sólido = densidad del líquido X vol. Desalojado

page 49


BLOQUE IV

LECCION 24


PRINCIPIO DE PASCAL Hemos visto que un líquido produce una presión llama hidrostática, debido a su peso, pero si el líquido se cierra herméticamente dentro de un recipiente, se puede aplicar otra presión utilizando un émbolo; dicha presión se transmitirá integralmente a todos los puntos del líquido. “Toda presión la cual se ejerce sobre un líquido encerrado en un recipiente se transmite con la misma intensidad a todos los puntos del líquido”. La presión hidráulica es una de las aplicaciones del principio de Pascal. Consta, esencialmente, de dos cilindros de diferente diámetro, cada uno con su respectivo émbolo, unidos por medio de un tubo de comunicación.

Donde: F= fuerza obtenida en el émbolo mayor, en newton A= área del émbolo mayor en f= fuerza obtenida en el émbolo menor en newton a= área del émbolo menor en

page 51


BLOQUE IV

Podemos observar, de forma más sencilla y cotidiana, la

ANALIZANDO LOS LÍQUIDOS EN MOVIMIENTO

aplicación de la hidrodinámica en comparación a la hidrostática; por ejemplo, la hidrodinámica se aplica en el diseño de canales, construcción de puertos y presas o en la misma fabricación de barcos.

GASTO Y FLUJO Presta atención. GASTO: Cuando a través de una tubería fluye un líquido, es

HIDRODINÁMICA

muy común hablar del gasto del líquido, el cual por definición es: la relación que hay entre el volumen del líquido el cual

La HIDRODINÁMICA es la parte de la física que se

fluye por un conducto y el tiempo que tarda en fluir.

encarga del estudio de los líquidos en movimiento; por ello, considera entre otras cosas: la velocidad, la presión, el

FLUJO: se define como la cantidad de masa del líquido que

flujo y el gasto del líquido. Con el objeto de facilitar el

fluye a través de una tubería en un segundo:

estudio de los líquidos en movimiento, generalmente se

F= flujo en kg/s

hacen las siguientes suposiciones: m= masa del líquido que fluye en kg 1.

Los líquidos son completamente incomprensibles t= tiempo que tarda en fluir en seg.

2.

Se considera que no existe viscosidad, es decir, los

líquidos son ideales 3.

Se considera que el flujo de los líquidos es

d= densidad kg/m3

estacionario o de régimen estable

page 52


FLUJO: se define como la cantidad de masa del líquido que fluye a través de una tubería en un segundo:

F= flujo en kg/s m= masa del líquido que fluye en kg t= tiempo que tarda en fluir en seg. d= densidad kg/m3

F =Gd

page 53


BLOQUE IV

LECCION 25


LECCION 25

ECUACIÓN DE CONTINUIDAD

A CONTINUACIÓN TE MUESTRO UN EJEMPLO GRÁFICO.

Este tema vamos a comenzarlo con un ejemplo sumamente sencillo y de aplicación cotidiana. Imagina estás lavando los platos y está abierta la llave. Colocas tu pulgar tapando la salida del agua, ¿qué es lo que pasa? Pues el agua sale disparada, porque la velocidad del chorro de agua incrementa. Precisamente aquí y a esto, le podemos llamar ECUACIÓN DE CONTINUIDAD.

PRIMERO, ATENDAMOS A LO SIGUIENTE: la masa del fluido a través del tubo se llamará RAZÓN DE FLUJO DE MASA. Por tanto, cuando cierto líquido entra por el tubo (kg/s) saldrá con la misma razón de flujo de masa.

page 55


A continuación te extiendo la información acerca de la Ecuación de Continuidad; Flujo Estacionario, presentándote del tema extraído del libro: Física By Joseph W. Kane, José Casas Vázquez, Morton M. Sternheim. Supóngase que un fluido incompresible llena por completo un conducto como, por ejemplo, una tubería o una arteria. Entonces, si entra un fluido ha de salir por el otro extremo. Este principio, que puede escribirse matemáticamente de

!

varias for mas, recibe el nombre de ecuación de continuidad. Si el flujo entra por un extremo con un gasto o caudal (volumen por unidad de tiempo) Q1 ha de salir por el otro extremo con un gasto Q2, que vale lo mismo que Q1. Así pues, la ecuación de continuidad puede escribirse como:

Q=Av El gasto es igual al área de la sección transversal del conducto por la velocidad del fluido. Para un conducto Por ejemplo, si entra 1m3s-1, habrá de salir 1m3s-1. Esto

cuya área transversal varíe desde A1 a A2, este resultado

puede escribirse de una forma más conveniente si todo el

junto con Q1=Q2 da otra forma de la ecuación de

fluido del conducto se mueve con una velocidad uniforme

continuidad.

v. Consideremos una sección del tubo de área transversal constante A.

page 56


El producto del área transversal por la velocidad del fluido es constante. Si en algún punto A disminuye, v debe aumentar. Por ejemplo, si el área se divide por dos, la velocidad se ha de duplicar. En general, la velocidad de flujo no es uniforme en un conducto. La ecuación de continuidad sigue siendo válida en estos casos si se escribe en términos de la velocidad

!

media v!.

El gasto es , y en

dos puntos cualesquiera

del canal

page 57


BLOQUE IV

LECCION 26


BLOQUE IV

PRINCIPIO DE BERNOULLI

En esta sección vemos cómo se obtiene la ecuación de Bernoulli a partir de la relación entre trabajo y energía mecánica. Consideremos el fluido en una sección recta de un tubo de flujo de área transversal constante A. De acuerdo con la

Física By Joseph W. Kane, José Casas Vázquez, Morton M.

ecuación de continuidad, el producto Av permanece

Sternheim.

constante. Así pues, la velocidad v no cambia mientras el fluido se mueve a lo larga del tubo y su energía cinética no varía. Sin embargo, la energía potencial varía a medida que

Principio de Bernoulli: establece las consecuencias del principio, según el cual, el trabajo que se hace sobre un fluido cuando fluye de un sitio a otro es igual a la variación de su energía mecánica. Se puede utilizar la ecuación de Bernoulli bajo las condiciones siguientes: 1.

El fluido es incomprensible; su densidad permanece

constante 2.

El fluido no tiene efectos de rozamiento apreciables:

es ideal. En consecuencia, no se pierde energía mecánica por razonamiento 3.

el fluido sube. La fuerza neta sobre el fluido del interior del tubo debida al fluido circundante es el área transversal A, multiplicada por la diferencia de presiones entre los extremos del tubo A. Si el flujo de una sección transversal avanza una pequeña distancia, entonces el trabajo realizado sobre él es igual al producto de la fuerza por la distancia, es decir Como

es el volumen del fluido que sale de la

sección, el trabajo hecho sobre el fluido es:

El flujo es estacionario, no turbulento. A velocidad del

fluido en cualquier punto no varía durante el período de observación

page 59


!

BLOQUE IV

PRINCIPIO DE TORRICELLI Es una aplicación de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad. A partir del teorema de Torricelli se puede calcular el caudal de salida de un

!

líquido por un orificio. "La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio". Se puede calcular la velocidad de la salida de un liquido por un orificio:

page 60


Donde: = velocidad teórica del líquido a la salida del orificio = velocidad de aproximación = distancia desde la superficie del líquido al centro del orificio = aceleración de la gravedad

En la práctica, para velocidades de aproximación bajas, la expresión anterior se transforma en:

Donde: = velocidad del líquido a la salida del orificio = coeficiente que puede admitirse para cálculos preliminares, en aber turas de paredes delgadas, como 0.61

page 61

Fisica i  
Read more
Read more
Similar to
Popular now
Just for you