Structural Report: Calamarata

Page 1

Page 1 Group 7 Julia Wisniewska 10842910 Tyler Bakhtiari 10876309 Teodora Matei 10816072 prof. Grigor Angjeliu STRUCTURAL REPORT 2021/2022 ARCHITECTURAL DESIGN STUDIO FOR COMPLEX CONSTRUCTIONS 1 School: AIUC AY 2021/2022 Programs: Msc Architecture - Building Architecture Course: Architectural Design Studio for Complex Constructions 1 Professors: Angjeliu Grigor | Belloni Francesca Claudia Maria | Diez Medina Carmen | Mirarchi Claudio Julia Wisniewska 10842910 Tyler Bakhtiari 10876309 Teodora Matei 10816072
Page 1 TABLE OF CONTENT: Project description p. 3 Structural load calculations p. 8 Slab design p. 16 Continious beam design p. 22 Column design p. 35 Load analysis - Testing p. 38 Case Study p. 43 Structural drawings p. 45 Bibliography p. 47

1. PROJECT DESCRIPTION

Page 2

Project description

Per our studio brief, we had the task of designing a lower secondary school. Based on the size and the structural needs we performed a structural analysis for the building concept (as an overview of the whole volume) and chose a specific area of focus to run tests and do the required pillar, beam and slab load calculations.

Due to its peculiar shape, there have been a couple of issues encountered during our analysis process, such as: the loads of the circular volume upper levels proved to be too heavy for the auditorium to carry, the structural grid clash between the radial grid and rectangular/standard grid and also there was the question on which material would be better suited for the project from a structural eficiency point of view.

Our structural analysis of the school project indicates that the solutions work and the proposed structural elements have passed the safety checks.

•Project location

Via Pescarenico, 2, 20142 Milano MI, Italy

•Surface/volume information

Site surface: 6, 252 m2

Volume surface: 2,794 m2

Volumes height:

- Main building: 14.70 m

- Gymnasium: 11.10 m

- Canteen: 3.63 m

- Auditorium: 5.13 m

- Library: 4.33 m

•Typical dimensions

Span between the shear wall and square column: approx. 6.1m

Span between the square column and round column: approx. 3.9m

Span between beams - outer circle: approx. 8.3m

Span between beams - middle circle: approx. 6.1m

Span between beams - inner circle: approx. 4.6m

Page 3
drawing
•Axonometry
Drawings

Overlapped structural and architectural plan

Reinforced concrete

Reinforced concrete

C35 C35

•Structural plans

Helps resist against lateral loads, such as the force from wind

Transmits the load of the structure above through compression

Plan at 3000mm

C25 C25 C25

Reinforced concreteC25

H:

primarily vertical loads (offering resistance to forces and

400 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 7 Transfer primarily vertical loads (offering resistance to forces and differ

W: 400 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 8 Transfer primarily vertical loads (offering resistance to forces and differ

Reinforced concreteC25

Reinforced concreteC25

W: 400 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 9

W: 400 mm

One way slab, transfering loads to Beams

Page 5 B6 B6 C9 C9 A18 01 A2 A3 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 15 16 B3 B3 C2 C2 B4 B4 C8 C8 C7 C7 B2 B2 B5 B5 B1 B1 D1 D5 D5 02 D4 A11 C1 C1 C3 C3 C6 C6 C5 C5 C4 C4 D3 D2 A17 03 D6 D6 D7 D7 D8 E5 E5 E6 E6 E1 E1 E2 E2 E3 E3 E4 E4 2967 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 2 630 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 449 450 567 450 450 264 1350 390 565 95 1 500 926 565 848 628 495 413 P2 P3 P1 P3 P P2 P3 P1 P TRUSS TRUSS TRUSS TRUSS TRUSS P P3 P P3 P4 TRUSS P6 TRUSS P2 P3 P2 P2 P P2 P2 P2 P2 P2 P2 P P2 P2 P P2 P3 P P P3 P1 P2 P3 P2 P3 P P3 P1 P6 P6 P6 P P6 P6 6 6 P P4 P P P P P P P P P4 P4 P P1 2 P3 P2 3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P P6 P P2 P4 P4 P6 P6 P P A18 B3 B4 B4 B2 B1 A17 E5 E1 758 537 722 821 2 080 P4 P4 P4 P
B B C C E E D2 D2 J J B6 B6 A4 03 01 02 C1 F F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 B1 O O A1 A1 D D D1 D1 I G G H H B5 B5 B4 B4 B3 B3 B2 A A C4 C4 C3 C3 C2 C2 K K L L M M N N A2 A2 A3 A3 469 607 834 1 350 390 660 2400 20,0° P2500x500mm P3Ø500mm P1500x900mm P2 P3 P1 P 1 P2 P P1 P2 P3 P1 P2 P 1 P2 P 1 P2 P P1 P2 P3 P1 P2 P3 P1 P4 350x350mm P P4 P P4 P P4 P P4 P P P4 P P4 P P4 P1 P5 350 900 P5 P P5 P4 P P P4 P4 P4 P4 P4 P4 4 P4 P4 P4 P4 P P3 P P2 P P3 P 3 P P3 P2 P3 P3 450mmx600mm P6 P1 P6 P P6 6 P6 P P6 6 P6 P6 P P1 P Key B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 3 2 P P TRUSS P6 TRUSS P2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P3 1 P2 P3 P2 P3 P P 1 P3 P1 P6 P6 P6 P6 P6 P6 P6 6 6 6 P4 P4 P P4 4 4 P P5 P5 P P5 P P4 P4 P4 P1 P2 P3 P P3 P1 P2 P3 P1 P2 P3 P1 2 P3 P1 P6 P P 2 3 P2 P4 4 P6 P6 6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 B B C C A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 A A A2 A2 A3 A3 9 F F 02 9 10 9 9 B1 03 G G H H I D D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 613 495 413 A P4 4 P4 P P P4 P P P P P4 P4 P4 P A P2 P3 P3 A A P 6 P6 P P P6 6 P6 P6 P6 6 P6 P6 P4 P P P2 P3 1 P P3 P1 P2 P3 P1 P2 P3 P1 P P3 P1 P P P2 P3 P P2 P3 P1 P2 P P1 2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 1 P2 P P1 2 3 P P P6 P4 P6 P6 C C P P3 P1 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure
through compression GymnasiumE1 ‐ E5
500 mm 4 Transfer primarily vertical
differ W: 300 mmbending
compressive
columns
500 mm 5 Transfer
vertical
differ W: 300
above
H:
loads (offering resistance to forces and
under said loads) to the
element, in this case
H:
primarily
loads (offering resistance to forces and
mmbending under said loads) to the compressive element, in this case columns
6 Transfer
differ W:
600 mm
Reinforced concrete
Reinforced concrete
Key B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 P3 P2 P3 P4 TRUSS 6 TRUSS 2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P3 P P2 P3 P2 P3 P P P P3 P P6 P6 P6 P6 P6 P6 6 P6 P 6 P4 P4 P P P4 P4 P P5 P5 P P5 P P4 P4 P4 P P1 P2 P3 P2 P3 P1 P2 P3 P1 P2 P3 P1 2 P3 P P6 P P P 3 P2 P P4 P6 P P6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure above through compression GymnasiumE1 ‐ E5 H: 500 mm 4 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns H: 500 mm 5 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns C25 C25 Helps resist against lateral loads, such as the force from wind Transmits the load of the structure above through compression C35 C35 Reinforced concrete Reinforced concrete
concrete
concrete
Reinforced concrete
Reinforced
Reinforced

Reinforced concrete

Reinforced concrete

C35 C35

Helps resist against lateral loads, such as the force from wind

Transmits the load of the structure above through compression

Reinforced concrete

Reinforced concrete

Reinforced concrete

C25 C25 C25

Reinforced concreteC25

Reinforced concreteC25

H:

H:

H:

H:

Reinforced concreteC25 One way slab, transfering loads to Beams

W: 400 mm

Page 6 A7 A8 A9 A10 A12 A13 D1 D5 D5 D4 A11 D3 D2 D6 D6 D7 D7 D8 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 390 565 95 6 6 P6 P6 P6 P6 6 6 P6 P6 P P6 P P P1 P2 P3 P P2 P1 P2 P3 P1 P P P1 P2 P3 1 P P 6 P6 J 5 6 7 8 9 11 12 13 D1 K L 9 F F 9 10 M N 9 9 G G H H I 1440 834 604 2400 469 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 P2 P3 P1 P3 P1 P2 TRUSS TRUSS TRUSS P2 P3 TRUSS 6 P2 P2 P2 P2 P3 P P6 P6 P6 P6 P6 P6 6 P6 P 6 P1 P2 P3 P2 P3 P1 P2 P3 P1 P2 P3 P1 P6 P P P 3 P2 50 50 60 45 45 45 35 35 P2 P3 P4 P5 P6 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure above through compression GymnasiumE1 ‐ E5 H: 500 mm 4 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns H: 500 mm 5 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns C25 C25 Helps resist against lateral loads, such as the force from wind Transmits the load of the structure above through compression C35 C35 Reinforced concrete Reinforced concrete Reinforced concrete Reinforced concrete Plan at -1000mm
B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 3 P2 P P TRUSS P6 TRUSS P2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P 1 P2 P3 P2 P3 P P 1 P3 P1 P6 P6 P6 P P6 P6 P6 6 6 P6 P4 P4 P P4 P4 P4 P P5 P5 P P5 P P4 P4 P4 P1 P P3 P P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P6 P 2 3 P2 P4 4 P6 P6 P6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 B B C C A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 A A A2 A2 A3 A3 9 F F 02 9 10 9 9 B1 03 G G H H I D D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 613 495 413 A P4 P4 P4 P P P4 P4 P4 P4 P A P2 P3 P3 A A P6 6 P6 P P P P6 6 P6 P6 P6 P6 P6 P4 P P P2 P3 1 P P3 P1 P2 P3 P1 P2 P3 P1 P 3 P1 P P P P3 P1 P2 P3 P1 P2 P3 P1 2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 1 P2 P P1 2 3 P P P6 P4 6 P6 C C P P P1 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure above through compression GymnasiumE1 ‐ E5 H: 500 mm 4 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns H: 500 mm 5 Transfer primarily vertical loads
differ W: 300 mmbending under
to
compressive
Key
(offering resistance to forces and
said loads)
the
element, in this case columns
600
6 Transfer
vertical
differ W: 400 mmbending
to the
mm
primarily
loads (offering resistance to forces and
under said loads)
compressive element, in this case columns
600
7 Transfer primarily vertical loads
forces and differ W: 400 mmbending under said loads) to the compressive
columns
mm
(offering resistance to
element, in this case
600
8 Transfer primarily vertical
and differ W: 400 mmbending
to
mm
loads (offering resistance to forces
under said loads)
the compressive element, in this case columns
600
9
mm

Reinforced concrete

Reinforced concrete

C35 C35

Reinforced concrete

Reinforced concrete

Helps resist against lateral loads, such as the force from wind

Transmits the load of the structure above through compression

primarily vertical loads (offering resistance to forces and

300 mmbending under said loads) to the compressive element, in this case columns

H: 500 mm 5 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns

Reinforced concrete

C25 C25 C25

H: 600 mm 6 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 7 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

Reinforced concreteC25

H: 600 mm 8 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

Reinforced concreteC25

Reinforced concreteC25

H: 600 mm 9

W: 400 mm

One way slab, transfering loads to Beams

Page 7
at 10450mm B6 B6 B4 B4 B2 B2 B5 B5 B1 B1 01 02 E2 E2 E4 E4 E3 E3 E1 B3 B3 03 E6 E6 E5 E5 A1 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 A16 A17 A11 A18 A2 A3 1 612 854 758 1 350 390 565 95 834 604 469 537 722 821 2 080 926 564 849 628 2967 1 500 2400 P2 P3 P1 P3 P P2 P3 P1 P2 P3 P1 P2 3 P1 P2 P3 P1 P P2 P P1 P2 P2 3 P2 P P2 P3 P P3 P P1 P2 1 P4 P4 P4 P 4 P4 P P4 P P P P 4 2 P P3 P1 P2 P3 P2 P P 1 P2 P3 P1 01 02 E2 E2 E4 E4 E3 E3 E1 E5 E5 E6 E6 03 A1 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 A16 A17 A11 A18 A2 A3 1 350 390 565 95 834 604 926 564 849 628 1 500 2400 2968 P2 P3 P1 2 P P1 P2 P3 P1 P2 P3 P1 2 P3 P2 P3 P1 P2 P3 P P 2 P3 P3 P2 P3 P2 P P3 P P P4 P4 P4 P4 P4 P2 P3 P1 P1 P P2 P3 P1 P2 P1 1 P P P P2 P C C Key B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P M N 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS 2 P3 P2 P3 P4 P6 TRUSS P2 P3 P2 P2 P P2 P2 P2 P P3 P1 P P3 P1 P2 P3 P2 P3 P P P1 P P P 6 P 6 P6 P6 P6 P6 P P P4 P4 P4 P4 P4 P1 P P2 P 2 P P P2 P3 P1 P2 P3 P1 P2 P P1 6 1 P P2 P4 P P P6 P6 P 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure above through compression GymnasiumE1 ‐ E5 H: 500 mm 4 Transfer primarily vertical loads (offering resistance to forces and W: 300 mmbending under said loads) to the compressive element, in this case columns H: 500 mm 5 Transfer primarily vertical loads (offering resistance to forces and W: 300 mmbending under said loads) to the compressive element, in this case columns C25 C25 Helps resist against lateral loads, such as the force from wind Transmits the load of the structure above through compression C35 C35 Reinforced concrete Reinforced concrete Reinforced concrete Reinforced concrete Plan at 7000mm A9 A10 D1 D5 D5 D4 D3 D2 D6 D6 D7 1 653 377 788 488 466 510 1 171 510 466 1 783 6 6 6 P6 P6 P6 P6 P6 B6 B6 A18 01 A2 A3 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 15 16 B3 B3 B4 B4 B2 B2 B5 B5 B1 B1 D1 D5 D5 02 D4 A11 D3 D2 A17 03 D6 D6 D7 D7 D8 E5 E5 E6 E6 E1 E1 E2 E2 E3 E3 E4 E4 2967 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 628 495 413 P P4 P P4 P P P P5 P5 P4 P4 P P4 P2 P3 P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 6 6 P P P6 P2 P3 P2 3 1 P2 P3 P1 P2 P3 P1 P2 P3 P P 1 P2 P3 P2 P3 P1 P2 P3 P1 P2 P P P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P 1 P6 P P4 P P6 P2 P3 P Key B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 3 P2 P P TRUSS P6 TRUSS P2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P 1 P2 P3 P2 P3 P P P3 P1 P6 P6 P6 P P6 P6 P6 P6 6 P6 P4 P4 P P4 P4 P4 P4 P5 P5 P P5 P P4 P4 P4 1 P 3 P P3 P1 P2 P3 P1 P2 P3 P1 P P3 P1 P P 2 3 P2 P4 P4 P6 P6 P6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 B B C C A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 A A A2 A2 A3 A3 9 F F 02 10 9 B1 03 G G H H I D D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 613 495 413 A P P4 P4 P P P4 P4 P4 P4 P P1 A P2 P3 P3 A A 6 6 P P P P P6 6 P6 P6 P6 P6 P6 P4 P P 2 P3 P1 P2 P3 P P2 P3 P1 P2 P3 P1 P 3 P1 P P P P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P P1 P 3 P P P6 P4 6 P6 C C P P P1 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500
Transmits
GymnasiumE1
500
Transfer
Plan
mm 3
the load of the structure above through compression
‐ E5 H:
mm 4
differ W:

Reinforced concrete

Reinforced concrete

C35 C35

Reinforced concrete

Reinforced concrete

Reinforced concrete

C25 C25 C25

H:

Helps resist against lateral loads, such as the force from wind

Transmits the load of the structure above through compression

300 mmbending under said loads) to the compressive element, in this case columns

mm 5

primarily vertical loads (offering resistance to forces and

W: 300 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 6 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

H: 600 mm 7 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

Reinforced concreteC25

H: 600 mm 8 Transfer primarily vertical loads (offering resistance to forces and differ W: 400 mmbending under said loads) to the compressive element, in this case columns

Reinforced concreteC25

Reinforced concreteC25

H: 600 mm 9

W: 400 mm

One way slab, transfering loads to Beams

Page 8 Plan at 14300mm 01 02 03 A1 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 A16 A17 A11 A18 A2 A3 1 350 390 565 95 834 604 469 2400 P2 P3 P1 P3 P P2 P3 P1 P2 P3 P1 P2 P P 2 P P2 P3 P2 P3 P1 P P P P P1 P2 P2 P P2 3 P2 P3 P2 P3 P3 P1 P6 P P1 P1 P3 P1 P2 P2 3 1 1 P P1 P1 Key B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 P3 2 P3 P TRUSS P6 TRUSS 2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P3 P1 P2 P3 P2 P3 P P 1 P3 P P6 P6 P6 P6 P6 P6 6 6 P6 6 P4 P4 P P P4 P4 P P5 P5 P P5 P P4 P4 P4 P1 2 P3 P2 P3 P1 P2 P3 P1 P2 P3 P1 2 P3 P P6 P P 3 P2 P P4 P6 P6 P6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1 ‐ C9 W: 500 mm Canteen D1 ‐ D8 columnReinforced concreteC35 D: 500 mm 3 Transmits the load of the structure above through compression GymnasiumE1 ‐ E5 H: 500 mm 4 Transfer primarily vertical loads (offering resistance to forces and differ W: 300 mmbending under said loads) to the compressive element, in this case columns H: 500 mm 5 Transfer primarily vertical loads (offering resistance to forces and C25 C25 Helps resist against lateral loads, such as the force from wind Transmits the load of the structure above through compression C35 C35 Reinforced concrete Reinforced concrete Reinforced concrete
concrete Plan at 10600mm 01 02 E2 E2 E4 E4 E3 E3 E1 E5 E5 E6 E6 03 A1 A4 A5 A6 A7 A8 A9 A10 A12 A13 A14 A15 A16 A17 A11 A18 A2 A3 1 350 390 565 95 834 604 926 564 849 628 1 500 2400 2968 TRUSS P4 P4 P P4 P4 P4 P4 P2 P2 TRUSS TRUSS TRUSS TRUSS P2 P3 P1 P3 P1 P P3 P1 P2 P P2 3 P P2 3 P P3 P1 P2 3 1 P2 P3 P2 P3 2 P P1 P P2 P P2 P P P2 P3 P1 P2 P3 P1 P2 3 1 P P2 P1
B B C C J A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 D1 D1 A A K L A2 A2 A3 A3 9 F F 02 9 10 D1 P P M N N 0 0 9 9 B1 03 G G H H I D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 1440 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 450 450 264 1350 390 565 95 1 500 926 565 848 613 495 413 P2 P3 P1 P3 P1 P2 P3 P1 P2 TRUSS TRUSS TRUSS TRUSS TRUSS P2 3 P2 P P TRUSS P6 TRUSS P2 P P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P3 P1 P2 P 1 P2 P3 P2 P3 P P 1 P3 P1 P6 P6 P6 P P6 P6 P6 6 6 P6 P4 P4 P P4 P4 P4 P P5 P5 P P5 P P4 P4 P4 P1 P P3 P P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P6 P 2 3 P2 P4 4 P6 P6 P6 P1 50 95 50 50 50 60 45 45 45 35 35 P1 P2 P3 P4 P5 P6 B B C C A4 01 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 A1 A1 A A A2 A2 A3 A3 9 F F 02 9 10 9 9 B1 03 G G H H I D D E E B1 B1 B1 B1 B1 B1 B1 B1 O 2952 834 604 2400 469 854 758 537 722 821 2 080 1 612 1 653 377 788 488 195 466 510 1 171 510 466 490 317 1 783 1350 390 565 95 1 500 926 565 848 613 495 413 A P4 P4 P4 P P P4 P4 P4 P4 P A P2 P3 P3 A A P6 6 P6 P P P P6 6 P6 P6 P6 P6 P6 P4 P P P2 P3 P1 P P3 P1 P2 P3 P1 P2 P3 P1 P 3 P1 P P P P3 P1 P2 P3 P1 P2 P3 P1 2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 1 P2 P P1 2 3 P P P6 P4 6 P6 C C P P P1 MaterialClassDimensionNo. Purpose Programme Structural elements H: 900 mm 1 Main buildingA1 ‐ A17 W: 500 mm Library B1 ‐ B6 H: 500 mm 2 AuditoriumC1
W: 500 mm Canteen D1
D: 500 mm 3 Transmits
GymnasiumE1
H: 500 mm 4 Transfer
differ W:
Reinforced
Key
‐ C9
‐ D8 columnReinforced concreteC35
the load of the structure above through compression
‐ E5
primarily vertical loads (offering resistance to forces and
differ
500
Transfer

2. STRUCTURAL LOAD CALCULATIONS

Page 9
Plan of chosen load calculations

for Complex Constructions

Module: Structures

Prof. Grigor Angjeliu

A. Single Load Case

Academic Year 2021-2022

Structural/ Dead/ Live Load Calculations

In the grey cells the numbers can be hard typed. In other cells there are already

In order to start the analysis we calculated the total beam load firstly with consideration of the permanent dead load and secondly with consideration to live loads of classrooms and corridors.

Part 1: Single load calculation

Concrete rectangular beam

Wall layering

Dead load: Beam self-weight

Dead load: Floor self-weight (structural)

Standard lightweight concrete/bricks (non structural)

Variable load: Schools

Selection of g2 for divisory walls:

For the Gym:

Dead load: Beam self-weight

Page 10
Reinforced Concrete Slab B 40cm0.4m B100cm 1m H 60cm0.6m H20cm 0.2m Material density 2500kg/m325kN/m3Mater 2500kg/m3 25kN/m3 Linear load G1' 6.0kN/mLinear load G1' 5.0kN/m Layer LengthWidthHeightVolumetric weightWeight Reinforced Concrete Slab1.0m1.0m0.2m25kN/m35.0000kN/m2 Area load G1" 5.0000kN/m2 Layer LengthWidthHeightVolumetric weightWeight Ceramic Finish 1.0m1.0m0.02m17.65kN/m3 0.4kN/m2 Levelling 1.0m1.0m0.06m20kN/m3 1.2kN/m2 Insulation 1.0m1.0m0.08m0.118kN/m3 0.0kN/m2 Suspended Ceiling 1.0m1.0m0.02m20kN/m3 0.4kN/m2 Divisory walls 2.0kN/m2 Area load G2 4.0kN/m2 Classroom Live Load Area load q 1.92 Corridor Live Load Area load q 4.79
kN/m2 kN/m2

For the Gym:

Concrete rectangular beam

Dead load: Beam self-weight

Dead load: Floor self-weight (structural)

Standard lightweight concrete/bricks (non structural)

Page 11
B 40cm0.4m H 60cm0.6m Material density 2500kg/m325kN/m3 Linear load G1' 6.0kN/m Layer LengthWidthHeightVolumetric weightWeight Reinforced Concrete Slab1.0m1.0m0.2m25kN/m35.0000kN/m2 Area load G1" 5.0000kN/m2 Layer LengthWidthHeightVolumetric weightWeight Ceramic 1.0m1.0m0.01m2.5kN/m3 0.0kN/m2 Levelling 1.0m1.0m0.04m20kN/m3 0.8kN/m2 Insulation 1.0m1.0m0.15m0.118kN/m3 0.0kN/m2 Insulation 1.0m1.0m0.15m0.118kN/m3 0.0kN/m2 Steel 1.0m1.0m0.05m77kN/m4 3.9kN/m3 Divisory walls kN/m2 Area load G2 4.7kN/m2

B. General Load Case

Structural/ Dead/ Live Load Calculations

Part 2: Typical Beam Total Load Calculation

In the grey cells the numbers can be

In order to start the analysis we calculated the total beam load firstly with consideration of the permanent dead load and secondly with consideration to live loads of classrooms and corridors.

Page 12
BEAM 1 LOAD Influence area width I 2.048m Area load: floor structural (G1") 5.000kN/m2 Dead load: Beam self weight (G1') 6.000kN/m Dead load: permanent structural (G1) 16.238kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 8.190kN/m Area load Q1 4.790kN/m2 Linear load Q1 9.808kN/m Dead load: Beam self weight (G1) 16.2kN/m Dead load: Floor Self weight 8.2kN/m Linear load Q1 9.8kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50TOTAL BEAM LOAD Quls 48.1kN/m BEAM 2 LOAD Influence area width I 1.355m Area load: floor structural (G1") 5.000kN/m2 Dead load: Beam self weight (G1') 6.000kN/m Dead load: permanent structural (G1) 12.775kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 5.420kN/m Area load Q1 4.790kN/m2 Linear load Q1 6.490kN/m Dead load: Beam self weight (G1) 12.8kN/m Dead load: Floor Self weight (G2) 5.4kN/m Linear load Q1 6.5kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50TOTAL BEAM LOAD Quls 34.5kN/m BEAM 3 LOAD Influence area width I 1.355m
Page 13 TOTAL BEAM LOAD Quls 34.5kN/m BEAM 3 LOAD Influence area width I 1.355m Area load: floor structural (G1``) 5.000kN/m2 Dead load: Beam self weight (G1`) 6.000kN/m Dead load: permanent structural (G1) 12.775kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 5.420kN/m Area load Q1 4.790kN/m2 Linear load Q1 6.490kN/m Dead load: Beam self weight (G1) 12.8kN/m Dead load: Floor Self weight (G2) 5.4kN/m Linear load Q1 6.5kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50This is in addition to: Influence area width I 1.983m Area load: floor structural (G1``) 5.000kN/m2 Dead load: Beam self weight (G1`) 6.000kN/m Dead load: permanent structural (G1) 15.913kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 7.930kN/m Area load Q1 1.920kN/m2 Linear load Q1 3.806kN/m Dead load: Beam self weight (G1) 15.9kN/m Dead load: Floor Self weight (G2) 7.9kN/m Linear load Q1 3.8kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50TOTAL BEAM LOAD Quls 72.8kN/m BEAM 4 LOAD Influence area width I 3.250m Area load: floor structural (G1``) 5.000kN/m2 Dead load: Beam self weight (G1`) 6.000kN/m Dead load: permanent structural (G1) 22.250kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 13.000kN/m Area load Q1 1.920kN/m2 Q���� 1.3 ����1 � 1.5 ����2 � 1.5 ����
Page 14 TOTAL BEAM LOAD Quls 72.8kN/m BEAM 4 LOAD Influence area width I 3.250m Area load: floor structural (G1``) 5.000kN/m2 Dead load: Beam self weight (G1`) 6.000kN/m Dead load: permanent structural (G1) 22.250kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 13.000kN/m Area load Q1 1.920kN/m2 Linear load Q1 6.240kN/m Dead load: Beam self weight (G1) 22.3kN/m Dead load: Floor Self weight (G2) 13.0kN/m Linear load Q1 6.2kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50TOTAL BEAM LOAD Quls 57.8kN/m BEAM 5 LOAD Influence area width I 1.983m Area load: floor structural (G1``) 5.000kN/m2 Dead load: Beam self weight (G1`) 6.000kN/m Dead load: permanent structural (G1) 15.915kN/m Area load G2 4.000kN/m2 Dead load: Permanent non structural (G2) 7.932kN/m Area load Q1 1.920kN/m2 Linear load Q1 3.807kN/m Dead load: Beam self weight (G1) 15.9kN/m Dead load: Floor Self weight (G2) 7.9kN/m Linear load Q1 3.8kN/m Coefficient for G1 1.3Coefficient for G2 1.50Coefficient for Q1 1.50TOTAL BEAM LOAD Quls 38.3kN/m Q���� 1.3 ����1 � 1.5 ����2 � 1.5 ���� Q���� 1.3 ����1 � 1.5 ����2 � 1.5 ����
Page 15
For Typical Floor Beams Load Beam 1 Quls1 48.100kN/m Lenght Beam 1 4.158m Load Support Beam 1 Ruls1 100.000kN Load Beam 3 and 3' Quls2 72.800kN/m Length Beam 5 6.053m Load Support Beam 2 Ruls2 440.658kN Load Beam 3 Quls2 57.400kN/m Length Beam 4 6.600m Load Support Beam 2 Ruls2 189.420kN PILLAR LOAD FROM BEAMS Puls,beams 730.078kN Density Pillar Base dimension a 0.500 m Pillar Base dimension b 0.500 m Pillar Height H 3.600 m PILLAR SELF-WEIGHT Puls,self 30.375kN Number of pillars 4 Total load self weight pillars 121.500kN Cumulative Load in kN Load on upper Pillar 1 730.078kN 730.13 Load on upper Pillar 2 730.078kN 1460.22 Load on upper Pillar 3 730.078kN 2190.21 Load on Ground Floor Pillar 730.078kN 30420 TOTAL PILLAR LOAD Puls 3042kN Central column 0 0.5 1 1.5 2 2.5 3 3.5 0.0 1000.0 2000.0 3000.0 4000.0 Floor [n] Axial Force [kN]
Part 3: Pillar Total Load Calculation
Pillar Total Load Calculation For Typical Floor Beams Load Beam 1 Quls1 48.100kN/m Lenght Beam 1 4.158m Load Support Beam 1 Ruls1 100.000kN Load Beam 3 and 3' Quls2 72.800kN/m Length Beam 5 6.053m Load Support Beam 2 Ruls2 440.658kN Load Beam 3 Quls2 57.400kN/m Length Beam 4 6.600m Load Support Beam 2 Ruls2 189.420kN PILLAR LOAD FROM BEAMS Puls,beams 730.078kN Density Pillar Base dimension a 0.500 m Pillar Base dimension b 0.500 m Pillar Height H 3.600 m PILLAR SELF-WEIGHT Puls,self 30.375kN Number of pillars 4 Total load self weight pillars 121.500kN Cumulative Load in kN Load on upper Pillar 1 730.078kN 730.13 Load on upper Pillar 2 730.078kN 1460.22 Load on upper Pillar 3 730.078kN 2190.21 Load on Ground Floor Pillar 730.078kN 30420 TOTAL PILLAR LOAD Puls 3042kN Central column 0 0.5 1 1.5 2 2.5 3 3.5 0.0 1000.0 2000.0 3000.0 4000.0 Floor [n] Axial Force [kN]
Part 3:

Drawings

Typical plan with different categories of live load

Floor Loads

Key

Classrooms: 1.92 kN/m2

Corridor: 4.79 kN/m2

Library: 5.27 kN/m2

Grand stand: 4.79 kN/m2

Key

Dead Load

Snow Load

Live Load

Wind Load

Resistant Load

3. REINFORCED CONCRETE SLAB DESIGN

Page 17
Plan of chosen slab’s main reinforcement

Based on what is described in BS8110 for two-way simply supported slabs, the maximum moments per unit width are determined from (and

Calculations

Based on what is described in BS8110 for two-way simply supported slabs, the maximum moments per unit width are determined from

The bending moment multipliers for both lengths of the slab are referenced from the source below, which are from BS8110

Based on what is described in BS8110 for two-way simply supported slabs, the maximum moments per unit width are determined from (and

The bending moment multipliers for both lengths of the slab are referenced from the source below, which are from BS8110

Based on what is described in BS8110 for two-way simply supported slabs, the maximum moments per unit width are determined from (and show the tables and formulas below)

The bending moment multipliers for both lengths of the slab are referenced from the source below, which are from BS8110

Module: Structures

Prof. Grigor Angjeliu

Academic Year 2021-2022 Slab

4.

Page 18
Ly in mLx in mLy/Lx in m 8.3336.125 1.4
Ly in mLx in mLy/Lx in m 8.3336.125 1.4
1. M_ED External Bending Moment Calculation Ly Slab A, n in kN/m^2l Moment Calculation For 2 Way Slabs 29.46 kNm29464772Nmm 15.48.333 αsx*n*Lx^2 2. Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Type: Two-Way Solid Slab
3.
Constructions
Slab A, Ly n in kN/m^2l in mMoment Multiplier (αsy) 15.48.333 0.051 for
typed.
SLAB A, Ly
Slab parameters Calculations for the course Architectural Design Studio for Complex
1 In the grey cells the numbers can be hard typed. In other cells are already formulas.
Complex
In other cells there
Ly in mLx in mLy/Lx in m 8.3336.125 1.4

4. Slab parameters

b 1000mmusually 1/2 - 2/3 h

h 200mmusually 1/8 - 1/12 span

c 50mm

bar diameter 8mm

d 146mm effective depth

5. Section calculations

� � 0.167

6. Convert reinf. area into bars

Bar diameter 8mm*suggestions: slab - fi 8 - fi12 mm

Bar area 50.2mm2concrete beam fi 14mm or more

Provide bars 10per meter

Provided area 502mm2 OK bars @100mm ro = A

7. Check Beam Dimension

1 row

8. Summary

0.34% OK

One way slab thickness200mm Tension Steel

8bars @100mm with As=502mm2/m

Distribution Steel (min ratio)  8bars @200mm with As=251mm2/m

Source for the vertical spacing between bars

https://paddyengineering.blogspot.com/2015/02/spacing-of-reinforcement-in-rcc-members.html

Page 19 γc 1.5 fcd 17MPa
minimum and maximum reinforcement 0.13% 4%
0.055OK 138mm 489mm2 Check
189.8mm2 5840mm2
bd
s /
Minimum width "b" 360 OK
����� ���� �������� � ������
���������
���� 1.134 � �����
����
������ ���� � ������� ������������� ,
0.5 � 0.25
0.87

1.

2.

3.

4.

5.

6.

Page 20
M_ED External Bending Moment Calculation Lx Slab A, n in kN/m^2l Moment Calculation For 2 Way Slabs 57.20 kNm57196322Nmm 15.46.125 αsy*n*Lx^2
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Slab parameters b 1000mmusually 1/2 - 2/3 h h 200mmusually 1/8 - 1/12 span c 20mm bar diameter 12mm d 174mm effective depth
Section calculations 0.076OK 162mm 815mm2 Check minimum and maximum reinforcement 0.13% 4% 226.2mm2 6960mm2
Convert reinf. area into bars Bar diameter 12mm*suggestions: slab - fi 8 - fi12 mm Bar area 113.0mm2concrete beam fi 14mm or more Provide bars 8per meter Provided area 904mm2 OK bars @125mm ����� ���� �������� � ������ � � 0.167 ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� , Slab A, Lx n in kN/m^2l in mMoment Multiplier (αsx) 15.46.125 0.099 mm more
A, Lx
SLAB

6. Convert reinf. area into bars

Bar diameter 12mm*suggestions: slab - fi 8 - fi12 mm

Bar area 113.0mm2concrete beam fi 14mm or more

Provide bars 8per meter

Provided area 904mm2 OK

bars @125mm

ro = A s /bd 0.52% OK

7. Check Beam Dimension

1 row

Minimum width "b" 346 OK

8. Summary

One way slab thickness200mm

Tension Steel  12bars @ 125mm with As= 904mm2/m

Distribution Steel (min ratio)  8bars @ 200mm with As= 251mm2/m

Page 21 Check minimum and maximum reinforcement 0.13% 4% 226.2mm2 6960mm2
������� ������������� ,

Drawings

Section of designed slab with reinforcement - parallel to Lx

Section of designed slab with

of a fully realised two-way slab

Page 22
Example
- parallel to Ly 1000 mm 200 mm 125 mm 200 mm 100 mm 8 mm 12 mm 8 mm 12 mm 18 mm 20 mm 18 mm 20 mm 1000 mm 200 mm 125 mm 1000 mm 200 mm 100 mm 8 mm 12 mm 8 mm 12 mm 18 mm 20 mm 18 mm 20 mm
reinforcement

4. CONTINIOUS BEAM DESIGN

Page 23
2 1 3 5 4 3`
Plan of chosen beam with influence area

2

A. Single Reinforced Beam

Calculations

We used the moment diagrams from the continuous beam analysis soft to verify our calculations. These calculations use the various q values calculated for the beams earlier in the report, and the respective lengths of said beams (l).

Page 24
Iteration 1 M_ED External Bending Moment Calculation Beam q M_ED_ULS 103.95 kNm 103949896Nmm (ql^2/8 or software value) 2. Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa 3. Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Beam parameters b 300mmusually 1/2 - 2/3 h h 500mmusually 1/8 - 1/12 span c 50mm
4.
rows: if selected, recompute "d" Minimum width "b" 190 OK
Summary Beam dimension300x 500mm Provide Tension Steel4  20 bars with As= 1256mm2 Maximum bending moment and shear forces diagrams
1 Beam 1 q in kN/ml in m 48.14.158
8.
BEAM

4. Beam parameters

b 300mmusually 1/2 - 2/3 h

h 500mmusually 1/8 - 1/12 span

c 50mm bar diameter 20mm

d 440mm

5. Section calculations 0.072<0.167 OK

6. Convert reinf. area into bars

7. Check Beam Dimension

2 rows: if selected, recompute "d"

8. Summary

1.5
17MPa
γc
fcd
410mm 583mm2 Check minimum and maximum reinforcement 0.13% 4% 171.6mm2 5280mm2
Bar diameter 20mm Bar area 314.0mm2 Provid bars 4 Provided area 1256mm2 OK r = A s /bd 0.95% OK
width "b"
1 row Minimum
300 OK
Minimum width "b" 190 OK
Beam dimension300x 500mm Provide Tension Steel4  20 bars with As= 1256mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� ,

Maximum bending moment and shear forces diagrams

2.

3.

4.

5. Section calculations

Page 26 BEAM 2 Beam 2 Iteration 1 M_ED External Bending Moment Calculation q in kN/ml in m 34.54.603 M_ED_ULS 103.95 kNm (ql^2/8 or software value)
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa 4. Beam parameters b 300mmusually 1/2 h 500mmusually 1/8 c 50mm bar diameter 20mm d 440mm 5. Section calculations 0.072<0.167 OK 410mm 583mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � Provide Tension Steel4  20 bars with As= 1256mm2 Iteration 1 M_ED External Bending Moment Calculation Beam q M_ED_ULS 91.37 kNm 91371564Nmm (ql^2/8 or software value)
2.
3.
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Beam parameters b 300mmusually 1/2 - 2/3 h h 500mmusually 1/8 - 1/12 span c 50mm bar diameter 20mm d 440mm
0.063<0.167 OK ����� ���� �������� � ������ � ����

5. Section calculations

6.

7. Check Beam Dimension 1

2

8.

diameter 20mm d 440mm
bar
0.063<0.167 OK 414mm 508mm2 Check minimum and maximum reinforcement 0.13% 4% 171.6mm2 5280mm2
Convert reinf. area into bars Bar diameter 20mm Bar area 314.0mm2 Provid bars 4 Provided area 1256mm2 OK r = A s /bd 0.95% OK
row Minimum width "b" 300 OK
rows: if
Minimum width "b" 190 OK
selected, recompute "d"
Beam dimension300x 500mm Provide Tension Steel4  20 bars with As= 1256mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� ,
Summary

Provide Tension

BEAM 3

Maximum bending moment and shear forces diagrams

5. Section calculations

Page 28
Steel6  20 bars with As= 1884mm2 Iteration 1 M_ED External Bending Moment Calculation Beam q in M_ED_ULS 333.41 kNm 333413162Nmm (ql^2/8 or software value)
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Beam parameters b 400mmusually 1/2 - 2/3 h h 600mmusually 1/8 - 1/12 span c 50mm bar diameter 20mm d 510mm
2.
3.
4.
0.128<0.167 OK ����� ���� �������� � ������ � ����
q in kN/ml in m 72.86.053
Beam 3

5.

8.

bar diameter 20mm d 510mm
Section calculations 0.128<0.167 OK 444mm 1728mm2 Check minimum and maximum reinforcement 0.13% 4% 265.2mm2 8160mm2
Convert reinf. area into bars Bar diameter 20mm Bar area 314.0mm2 Provid bars 6 Provided area 1884mm2 OK r = A s /bd 0.92% OK
Check Beam Dimension 1 row Minimum width "b" 420 KO
rows: if selected, recompute "d" Minimum width "b" 260 OK
6.
7.
2
Summary Beam dimension400x 600mm Provide Tension Steel6  20 bars with As= 1884mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� ,

Provide Tension Steel6

Maximum bending moment and shear forces diagrams

q values calculated for the beams earlier in the report, and the respective lengths of said beams (l).

2.

2.

3. Choose

3.

4.

4.

5. Section calculations

5.

Page 30
BEAM 4
 20 bars with As= 1884mm2
Iteration 1 M_ED External Bending Moment Calculation Beam q in M_ED_ULS 314.72 kNm 314721000Nmm (ql^2/8 or software value)
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Choose concrete class
Beam
b 400mmusually 1/2 - 2/3 h h 600mmusually 1/8 - 1/12 span c 50mm bar diameter 20mm d 510mm
parameters
0.121<0.167 OK ����� ���� �������� � ������ � ����
Beam 4 Iteration 1 M_ED External Bending Moment Calculation q in kN/ml in m 57.86.6 M_ED_ULS 333.41 kNm (ql^2/8 or software value)
Choose steel
Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
class
concrete
Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
class
Beam
b 400mmusually 1/2h 600mmusually 1/8c 50mm bar diameter 20mm d 510mm
parameters
Section
0.128<0.167 OK 444mm 1728mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� �
calculations

5.

6.

7.

8.

diameter 20mm d 510mm
bar
Section calculations 0.121<0.167 OK 448mm 1616mm2 Check minimum and maximum reinforcement 0.13% 4% 265.2mm2 8160mm2
Convert reinf. area into bars Bar diameter 20mm Bar area 314.0mm2 Provid bars 6 Provided area 1884mm2 OK r = A s /bd 0.92% OK
Check Beam Dimension 1 row Minimum width "b" 420 KO
rows: if selected, recompute "d" Minimum width "b" 260 OK
2
Summary
dimension400x 600mm Provide Tension Steel6  20 bars with As= 1884mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� ,
Beam

Maximum bending moment and shear forces diagrams

These calculations use the various q values calculated for the beams earlier in the report, and the respective lengths of said beams

We used the moment diagrams from the continuous beam analysis soft to verify our calculations. These calculations

2.

2.

3.

4.

parameters

4.

5. Section calculations

5.

Page 32
BEAM 5
 20 bars with As= 1884mm2
Provide Tension Steel6
Iteration 1 M_ED External Bending Moment Calculation Beam q in M_ED_ULS 332.44 kNm 332438681Nmm (ql^2/8 or software value)
Choose steel class Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
3.
Beam parameters b 400mmusually 1/2 - 2/3 h h 600mmusually 1/8 - 1/12 span c 50mm bar diameter 20mm d 510mm
0.128<0.167 OK ����� ���� �������� � ������ � ����
Beam 5 Iteration 1 M_ED External Bending Moment Calculation q in kN/ml in m 38.38.333 M_ED_ULS 314.72 kNm (ql^2/8 or software value)
Choose steel
Steel class S… 500 fyk 500MPa γs 1.15 fyd 435MPa
class
Choose concrete class Concrete class C… 25 fck 25MPa γc 1.5 fcd 17MPa
Beam
b 400mmusually 1/2h 600mmusually 1/8c 50mm bar diameter 20mm d 510mm
Section calculations 0.121<0.167 OK 448mm 1616mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� �

5.

8.

bar diameter 20mm d 510mm
Section calculations 0.128<0.167 OK 444mm 1722mm2 Check minimum and maximum reinforcement 0.13% 4% 265.2mm2 8160mm2
Convert reinf. area into bars Bar diameter 20mm Bar area 314.0mm2 Provid bars 6 Provided area 1884mm2 OK r = A s /bd 0.92% OK
Check Beam Dimension 1 row Minimum width "b" 420 KO
rows: if selected, recompute "d" Minimum width "b" 260 OK
6.
7.
2
Summary Beam dimension400x 600mm Provide Tension Steel6  20 bars with As= 1884mm2 ����� ���� �������� � ������ � ��������� 0.5 � 0.25 ���� 1.134 � ����� � ���� 0.87 ������ ���� � ������� ������������� ,
Page 34
Section of designed beam with reinforcement - Beam type 1
300 mm 500 mm 78 mm 20 mm 78 mm 42 mm 42 mm 400 mm 600 mm 78 mm 20 mm 78 mm 42 mm 8 mm 42 mm
Section of designed beam with reinforcement - Beam type 2
Page 35
Arrangement of the reinforcement - Beam type 1 Arrangement of the reinforcement - Beam type 2

5. COLUMN DESIGN

Page 36
Plan of chosen column with influence area

Calculations

For the pillar calculation we chose to calculate the general axial force for the middle column (square column), the axial force applied to the roof and calculated for the middle column (square column) and the axial force for the roof calculated for the shear wall.

Pillar calculation - Square column

1. Obtain N_ED Axial force

2. Choose Pillar cross section dimensions

3.

4. Calculate Concrete Area Ac

5. Select Concrete Area Ac

6. Check that capacity NRd > demand

7.

Note: Minimum number of bars 4

Page 37
N_ED 3042kN 3042000N
(width) x height H Pillar width H 0.5m 500mm Pillar height H 0.5m 500mm
B
Insert Concrete Class Concrete class 3545 Concrete fck 35MPa αc 0.85 γc 1.5 Concrete fcd 19.8MPa
Required minimal Ac 340,840 mm2 suggested
45%) 584mm
edge dimension (for ratio
Dimensions a, b 500500mm Choosen area 250,000 mm2
N_Ed 3042kN check OK N_RD 4958kN current ratio 61%
NEd
Calculate As Choose bar diameter Φ 18mm As (1.5% of concrete area Ac) 3750mm2 Calculate Nbars 15
suggested ratio 45% - 65%
Page 38
Section of designed column with reinforcement
500mm 500mm 70 mm 8 mm 78mm
mm
mm 78 mm 18 mm
mm 42 mm 42 mm
Arrangement of the reinforcement in the column
500
500
78

7. LOAD ANALYSIS - TESTING

Page 39

B. Specific Case Testing

ITERATION 1(Initial Test) - Steel Cantilever

Tested structural elements:

Column type 1 - Reinforced concrete, round, 450mm

Column type 2 - Reinforced concrete, square, 450x450mm

Column type 3 - Reinforced concrete shear wall, rectangular, 450x450mm

Floor slabs - Reinforced concrete, 500mm

Beams - Steel, HEA 300x300mm

Truss Beams - Steel, 190x200mm

Cantilever Beams - Steel, 490x300mm

Cantilever Columns- Steel, 490x300mm

Evaluation

The purpose of testing out 2 different iterations has been to asses potential of steel and concrete for the proposed cantilever solution. In both cases we made a model, input structural elements dimensions and load values in order to run the following simulations: self-weight analysis, beam deformation, dead load deformation and live load deformation.

For the first iteration where steel was tested and the Vierendeel cantilever was designed to have supports at the corners, the results were not satisfactory for beam stress deformation and dead load deformation, whereas the self-weight test and live load deformation maximum deflection points have not gone over 10mm deflection.

Self-weight analysis

Page 40
midas Gen POST-PROCESSOR DISPLACEMENT 1.15121e+01 1.04655e+01 9.41899e+00 8.37244e+00 7.32588e+00 6.27933e+00 5.23277e+00 4.18622e+00 3.13966e+00 2.09311e+00 1.04655e+00 0.00000e+00 1.9644E+02 FILE:4_7_2022 DATE:07/04/2022 VIEW-DIRECTION Y:-0.612 Z:0.500 midas Gen POST-PROCESSOR DISPLACEMENT RESULTANT 1.15121e+01 1.04655e+01 9.41899e+00 8.37244e+00 7.32588e+00 6.27933e+00 5.23277e+00 4.18622e+00 3.13966e+00 2.09311e+00 1.04655e+00 0.00000e+00 SCALEFACTOR= 1.9644E+02 ST: DL MAX : 151 MIN : 56 FILE:4_7_2022 UNIT:mm DATE:07/04/2022 VIEW-DIRECTION X:-0.612 Y:-0.612 Z:0.500
Page 41 Beam Stress
Dead Load Deformation Live Load Deformation

Tested structural elements:

Column type 1 - Reinforced concrete, round, 450mm

Column type 2 - Reinforced concrete, square, 450x450mm

Column type 3 - Reinforced concrete shear wall, rectangular, 450x450mm

Floor slabs - Reinforced concrete, 500mm

Beams - Reinforced concrete 300x300mm

Truss Beams - Steel, 190x200mm

Cantilever Beams - Reinforced concrete 600x400mm

Cantilever Columns - Reinforced concrete 490x300mm

Evaluation

For the second iteration the material changed to concrete, with slight increase in dimensions for the elements belonging to the cantilever system. Compared to the first iteration, here we simply the cantilever system by removing the supports at the joints. The same tests apply here as well: self-weight analysis, beam stress deformation, dead load deformation and live load deformation.

Self-weight analysis

FILE:6_7_22

UNIT:mm

midas Gen POST-PROCESSOR DISPLACEMENT RESULTANT 1.29220e+01 1.17473e+01 1.05726e+01 9.39783e+00 8.22310e+00 7.04837e+00 5.87364e+00 4.69891e+00 3.52418e+00 2.34946e+00 1.17473e+00 0.00000e+00 SCALEFACTOR= 1.7501E+02 ST: DL MAX : 41 MIN : 56 FILE:6_7_22 UNIT:mm DATE:07/16/2022 VIEW-DIRECTION X:-0.612 Y:-0.612 Z:0.500 midas Gen POST-PROCESSOR DISPLACEMENT RESULTANT 1.29220e+01 1.17473e+01 1.05726e+01 9.39783e+00 8.22310e+00 7.04837e+00 5.87364e+00 4.69891e+00 3.52418e+00 2.34946e+00 1.17473e+00 0.00000e+00 SCALEFACTOR= 1.7501E+02 ST: DL MAX : 41 MIN : 56
ITERATION 2 (Solution)- Concrete Cantilever
DATE:07/16/2022
VIEW-DIRECTION
Z:0.500
X:-0.612 Y:-0.612

midas Gen

midas Gen

POST-PROCESSOR

BEAM STRESS COMBINED

6.04759e-02

4.89901e-02

3.75043e-02

2.60185e-02

1.45327e-02

0.00000e+00

-8.43891e-03

-1.99247e-02

-3.14105e-02

-4.28963e-02

-5.43821e-02

-6.58679e-02

SCALEFACTOR= 2.7762E+01

CB: LCB1

MAX : 57 MIN : 81

FILE:6_7_22

UNIT:kN/mm^2

DATE:07/16/2022

VIEW-DIRECTION

X:-0.612

Y:-0.612

Z:0.500

Page 43
Beam Stress Live Load Deformation Dead Load Deformation

6. CASE STUDY

Page 44
Image of the built work with colours that identify the deformations analyzed

Vierendeel House

ARCHITECTURE - Patricio Llordella, Juan Fostel

STRUCTURAL ENGINEERING - Jorge Farez

LOCATION - Hudson, Argentina

STATUS - in construction, 2018

Content:

The parametric modeling of the house was carried out to create an editable volume of all its elements allowing the study of the combination of the structural and architectural parameters. In this way the possibilities, advantages and disadvantages of each proposal are evaluated in real-time. The structural design is achieved through an interdisciplinary interplay between the architecture and the structure, obtaining the desired aesthetic and functional results for the house without compromising the stability.

•Main features: cantilever and use of concrete

•Main structural characteristic: cantilevered structural system

•Comparison with designed project: using the cantilevered main characteristic of the house and implement it as reinforcement for the auditorium, canteen and gym areas.

•Source: https://www.karamba3d.com/project/vierendeel-house/

Page 45
Tension diagram from Karamba3d are collated with the reinforcement indicated by the software Removal of Formwork not affected by the Vierendeel; Removal of Formwork below the Vierendeel

8. STRUCTURAL DRAWINGS

Page 46
Warner truss solution for Auditorium

Structural drawings

Structural References - Warren Steel Struss

Structural Sketches

Page 47

Bibliography

1. Eurocode, ``Table of design material properties for structural steel``, EurocodeApplied.com. Accessed June 13 ,2022. https://eurocodeapplied.com/design/en1993/steel-design-properties

2. The Engineering TooldBox, `` Young’s Modulus, Tensile Strength and Yield Strength Values for some Materials``, www.TheEngineeringTooldBox.com. June 13, 2022. https://www.engineeringtoolbox. com/young-modulus-d_417.html

3. Indiana Government, `` MATERIAL PROPERTIES OF CONCRETE``, www.in.gov.com. Accessed June 13 ,2022. https://www.in.gov/dot/div/contracts/standards/dm-Archived/09Metric/Part6/Ch62/figures/ Fig62-1A.pdf

4. Eurocode, ``Table of concrete design properties``, EurocodeApplied.com. Accessed June 13 ,2022. https://eurocodeapplied.com/design/en1992/concrete-design-properties

5. Greyspace Engineering Services, ’’ What is two way slab || Solid slab reinforcement details || Two-Way Slab Animation’’, www.greyspace-es.com/blogs. Accessed July 15, 2022. https://www.youtube.com/ watch?v=A7LGJGayL8E&ab_channel=GreyspaceEngineeringServices

Page 48

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.