
Section 0.1
1. 2(4 + ( 1))(2 4) = 2(3)( 8) = (6)( 8) = 48 2. 3 + ([4 2] 9) = 3 + (2 Γ 9) = 3 + 18 = 21
3. 20β(3 * 4) 1 = 20 12 1 = 5 3 1 = 2 3 4. 2 (3 * 4)β10 = 2 12 10 = 2 6 5 = 4 5
5. 3 + ([3 + ( 5)]) 3 2 Γ 2 = 3 + ( 2) 3 4 = 1 1 = 1 6. 12 (1 4) 2(5 1) 2 1 = 12 ( 3) 16 1 = 15 15 = 1
7. (2 5 * ( 1))β1 2 * ( 1) = 2 5 ( 1) 1 2 β ( 1) = 2 + 5 1 + 2 = 7 + 2 = 9 8. 2 5 * ( 1)β(1 2 * ( 1)) = 2 5 ( 1) 1 2 ( 1) = 2 5 1 + 2 + 2 = 2 + 5 3 = 11 5
9. 2 ( 1) 2β2 = 2 Γ ( 1) 2 2 = 2 Γ 1 2 = 2 2 = 1 10. 2 + 4 3 2 = 2 + 4 Γ
11. 2 4 2 + 1 = 2 Γ 16 + 1 = 32 + 1 = 33
13. 3^2+2^2+1 = 3 2 + 2 2 + 1 = 9 + 4 + 1 = 14 14. 2^(2^2-2) = 2 (2 2 2) = 2 4 2 = 2 2 = 4
15. 3 2( 3) 2 6(4 1) 2 = 3 2 Γ 9 6(3) 2 = 3 18 6 Γ 9 = 15 54 = 5 18 16. 1 2(1 4) 2 2(5 1) 2 2 = 1 2( 3) 2 2(4) 2 2 = 1 2 Γ 9 2 Γ 16 Γ 2 = 1 18 64 = 17 64
17. 10*(1+1/10)^3 = 10(1 + 1 10 ) 3 = 10(1.1) 3 = 10 Γ 1 331 = 13 31
19. 3[ 2 3 2 (4 1) 2 ] = 3β‘ β£ β’ β’ 2 Γ 9 3 2 β€ β¦ β₯ β₯ = 3[ 18 9 ] = 3 Γ 2 = 6
20. [ 8(1 4) 2 9(5 1) 2 ] = [ 8 Γ 9 9 Γ 16 ] = ( 72 144 ) = ( 1 2 ) = 1 2
21. 3β‘ β£ β’ β’1 ( 1 2 ) 2β€ β¦ β₯ β₯ 2 + 1 = 3[1 1 4 ] 2 + 1 = 3[ 3 4 ] 2 + 1 = 3[ 9 16 ] + 1 = 27 16 + 1 = 43 16 22. 3β‘ β£ β’ β’ 1 9 ( 2 3 ) 2β€ β¦ β₯ β₯ 2 + 1 = 3[ 1 9 4 9 ] 2 + 1 = 3[ 3 9 ] 2 + 1 = 3[ 1 3 ] 2 + 1 = 3 1 9 + 1 = 3 9 + 1 = 4 3
23. (1/2)^2-1/2^2 = # 1 2 $ 2 1 2 2 = 1 4 1 4 = 0 24. 2/(1^2)-(2/1)^2 = 2 1 2 # 2 1 $ 2 = 2 1 4 1 = 2
25. 3 Γ (2 5) = 3*(2-5) 26. 4 + 5 9 = 4+5/9 or 4+(5/9)
27. 3 2 5 = 3/(2-5) 28. 4 1 3 = (4-1)/3
29. 3 1 8 + 6 = (3-1)/(8+6)
Note 3-1/8-6 is wrong, as it corresponds to 3 1 8 6
30. 3 + 3 2 9 = 3+3/(2-9)
31. 3 4 + 7 8 = 3-(4+7)/8 32. 4 Γ 2 ! 2 3 " = 4*2/(2/3) or (4*2)/(2/3)
33. 2 3 + π₯ π₯π¦ 2 = 2/(3+x)-x*y^2 34. 3 + 3 + π₯ π₯π¦ = 3+(3+x)/(x*y)
35. 3.1π₯ 3 4π₯ 2 60 π₯ 2 1 = 3.1x^3-4x^(-2)-60/(x^2-1)
36. 2 1π₯ 3 π₯ 1 + π₯ 2 3 2 = 2.1x^(-3)-x^(-1)+(x^2-3)/2
Solutions Section 0.1
37. ! 2 3 " 5 = (2/3)/5 38. 2 ! 3 5 " = 2/(3/5)
39. 3 4 5 Γ 6 = 3^(4-5)*6
Note that the entire exponent is in parentheses.
41. 3(1 + 4 100 ) 3 = 3*(1+4/100)^(-3)
43. 3 2π₯ 1 + 4 π₯ 1 = 3^(2*x-1)+4^x-1
45. 2 2π₯ 2 π₯+1 = 2^(2x^2-x+1)
Note that the entire exponent is in parentheses.
47. 4π 2π₯ 2 3
= 4*e^(-2*x)/(2-3e^(-2*x)) or 4(*e^(-2*x))/(2-3e^(-2*x)) or (4*e^(-2*x))/(2-3e^(-2*x))
40. 2 3+5 7 9 = 2/(3+5^(7-9))
Note that the entire exponent is in parentheses.
Note that the entire exponent is in parentheses.
= (e^(2*x)+e^(-2*x))/(e^(2*x)e^(-2*x))
49. 3(1 ! 1 2 " 2) 2 + 1 = 3(1-(-1/2)^2)^2+1 50. 3β β β β 1 9 ( 2 3 ) 2β β β β 2 + 1 = 3(1/9-(2/3)^2)^2+1
Section 0.2
Section 0.3
π₯ = (1 + 2π₯), then = 1 β π₯ = 1 3 . So, π₯ = 1 or 1 3 .
22. (π₯ 3 2π₯ 2 + 4)(3π₯ 2 π₯ + 2) = π₯ 3(3π₯ 2 π₯ + 2) 2π₯ 2(3π₯ 2 π₯ + 2) + 4(3π₯ 2 π₯ + 2)
23. (π₯ + 1)(π₯ + 2) + (π₯ + 1)(π₯ + 3)
= (π₯ + 1)(π₯ + 2 + π₯ + 3)
= (π₯ + 1)(2π₯ + 5)
25. (π₯ 2 + 1) 5(π₯ + 3) 4 + (π₯ 2 + 1) 6(π₯ + 3) 3 = (π₯ 2 + 1) 5(π₯ + 3) 3(π₯ + 3 + π₯ 2 + 1)
= (π₯ 2 + 1) 5(π₯ + 3) 3(π₯ 2 + π₯ + 4)
24. (π₯ + 1)(π₯ + 2) 2 + (π₯ + 1) 2(π₯ + 2)
= (π₯ + 1)(π₯ + 2)(π₯ + 2 + π₯ + 1)
= (π₯ + 1)(π₯ + 2)(2π₯ + 3)
26. 10π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 5 + 15π₯ 2(π₯ 2 + 1) 5(π₯ 3 + 1) 4 = 5π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 4[2(π₯ 3 + 1) + 3π₯(π₯ 2 + 1)] = 5π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 4(5π₯ 3 + 3π₯ + 2)
27. (π₯ 3 + 1) π₯ + 1 β (π₯ 3 + 1) 2 π₯ + 1 β = (π₯ 3 + 1) π₯ + 1 β β [1 (π₯ 3 + 1)] = π₯ 3(π₯ 3 + 1) π₯ + 1 β 28. (π₯ 2 + 1) π₯ + 1 β (π₯ + 1) 3 β = π₯ + 1 β [π₯ 2 + 1 (π₯ + 1) 2 β ] = π₯ + 1 β [π₯ 2 + 1 (π₯ + 1)] = (π₯ 2 π₯) π₯ + 1 β = π₯(π₯ 1) π₯ + 1 β
29. (π₯ + 1) 3 β + (π₯ + 1) 5 β = (π₯ + 1) 3 β β [1 + (π₯ + 1) 2 β ] = (π₯ + 1) 3 β (1 + π₯ + 1) = (π₯ + 2) (π₯ + 1) 3 β 30. (π₯ 2 + 1) (π₯ + 1) 4 3 β (π₯ + 1) 7 3 β = (π₯ + 1) 4 3 β [π₯ 2 + 1 (π₯ + 1) 3 3 β ] = (π₯ + 1) 4 3 β β [π₯ 2 + 1 (π₯ + 1)] = (π₯ 2 π₯) (π₯ + 1) 4 3 β = π₯(π₯ 1) (π₯ + 1) 4 3 β
31. π = 2, π = 6, π = 5, so that the discriminant is π 2 4ππ = 6 2 4(2)(5) = 36 40 = 4
As the discriminant is negative, the expression does not factor at all.
32. π = 4, π = 6, π = 2, so that the discriminant is π 2 4ππ = ( 6) 2 4(4)(2) = 36 32 = 4 = 2 2
As the discriminant is a perfect square, the expression factors over the integers.
33. π = 3, π = 2, π = 3, so that the discriminant is π 2 4ππ = ( 2) 2 4( 3)(3) = 4 + 36 = 40
As the discriminant is positive but not a perfect square, the expression factors, but not over the integers.
34. π = 1, π = 4, π = 7, so that the discriminant is π 2 4ππ = ( 4) 2 4(1)( 7) = 16 + 28 = 44
As the discriminant is positive but not a perfect square, the expression factors, but not over the integers.
35. π = 8, π = 12, π = 4, so that the discriminant is π 2 4ππ = 12 2 4(8)(4) = 144 128 = 16 = 4 2
As the discriminant is a perfect square, the expression factors over the integers.
Solutions Section 0.4
36. π = 1, π = 2, π = 19, so that the discriminant is π 2 4ππ = 2 2 4(1)(19) = 4 76 = 72
As the discriminant is negative, the expression does not factor at all.
37. π = 40, π = 64, π = 24, so that the discriminant is π 2 4ππ = ( 64) 2 4(40)(24) = 4,096 3,840 = 256 = 16 2
As the discriminant is a perfect square, the expression factors over the integers.
38. π = 10, π = 32, π = 32, so that the discriminant is π 2 4ππ = ( 32) 2 4( 10)( 32) = 1,024 1,280 = 256
As the discriminant is negative, the expression does not factor at all.
39. π = 6, π = 22, π = 16, so that the discriminant is π 2 4ππ = ( 22) 2 4(6)(16) = 484 384 = 100 = 10 2
As the discriminant is a perfect square, the expression factors over the integers.
40. π = 48, π = 32, π = 4, so that the discriminant is π 2 4ππ = 32 2 4(48)(4) = 1,024 768 = 256 = 16 2
As the discriminant is a perfect square, the expression factors over the integers.
41. a. 2π₯ + 3π₯ 2 = π₯(2 + 3π₯)
b. π₯(2 + 3π₯) = 0
π₯ = 0 or 2 + 3π₯ = 0
π₯ = 0 or 2β3
43. a. 6π₯ 3 2π₯ 2 = 2π₯ 2(3π₯ 1)
b. 2π₯ 2(3π₯ 1) = 0
π₯ 2 = 0 or 3π₯ 1 = 0
π₯ = 0 or 1β3
45. a. π₯ 2 8π₯ + 7 = (π₯ 1)(π₯ 7)
b. (π₯ 1)(π₯ 7) = 0
π₯ 1 = 0 or π₯ 7 = 0
π₯ = 1 or 7
47. a. π₯ 2 + π₯ 12 = (π₯ 3)(π₯ + 4)
b. (π₯ 3)(π₯ + 4) = 0
π₯ 3 = 0 or π₯ + 4 = 0
π₯ = 3 or 4
49. a. 2π₯ 2 3π₯ 2 = (2π₯ + 1)(π₯ 2)
b. (2π₯ + 1)(π₯ 2) = 0
2π₯ + 1 = 0 or π₯ 2 = 0
π₯ = 1β2 or 2
42. a. π¦ 2 4π¦ = π¦(π¦ 4) b. π¦(π¦ 4) = 0 π¦ = 0 or π¦ 4 = 0 π¦ = 0 or 4
44. a. 3π¦ 3 9π¦ 2 = 3π¦ 2(π¦ 3) b. 3π¦ 2(π¦ 3) = 0
π¦ 2 = 0 or π¦ 3 = 0 π¦ = 0 or 3
46. a. π¦ 2 + 6π¦ + 8 = (π¦ + 2)(π¦ + 4) b. (π¦ + 2)(π¦ + 4) = 0
π¦ + 2 = 0 or π¦ + 4 = 0
π¦ = 2 or 4
48. a. π¦ 2 + π¦ 6 = (π¦ 2)(π¦ + 3)
b. (π¦ 2)(π¦ + 3) = 0
π¦ 2 = 0 or π¦ + 3 = 0
π¦ = 2 or 3
50. a. 3π¦ 2 8π¦ 3 = (3π¦ + 1)(π¦ 3)
b. (3π¦ + 1)(π¦ 3) = 0
3π¦ + 1 = 0 or π¦ 3 = 0
π¦ = 1β3 or 3
Solutions Section 0.4
51. a. 6π₯ 2 + 13π₯ + 6 = (2π₯ + 3)(3π₯ + 2)
b. (2π₯ + 3)(3π₯ + 2) = 0
2π₯ + 3 = 0 or 3π₯ + 2 = 0
π₯ = 3β2 or 2β3
53. a. 12π₯ 2 + π₯ 6 = (3π₯ 2)(4π₯ + 3)
b. (3π₯ 2)(4π₯ + 3) = 0
3π₯ 2 = 0 or 4π₯ + 3 = 0
π₯ = 2β3 or 3β4
55. a. π₯ 2 + 4π₯π¦ + 4π¦ 2 = (π₯ + 2π¦) 2
52. a. 6π¦ 2 + 17π¦ + 12 = (3π¦ + 4)(2π¦ + 3)
b. (3π¦ + 4)(2π¦ + 3) = 0 3π¦ + 4 = 0 or 2π¦ + 3 = 0 π¦ = 4β3 or 3β2
54. a. 20π¦ 2 + 7π¦ 3 = (4π¦ 1)(5π¦ + 3)
b. (4π¦ 1)(5π¦ + 3) = 0 4π¦ 1 = 0 or 5π¦ + 3 = 0 π¦ = 1β4 or 3β5
b. (π₯ + 2π¦) 2 = 0 π₯ + 2π¦ = 0 π₯ = 2π¦ 56. a. 4π¦ 2 4π₯π¦ + π₯ 2 = (2π¦ π₯) 2 b. (2π¦ π₯) 2 = 0 2π¦ π₯ = 0 π¦ = π₯β2
57. a. π₯ 4 5π₯ 2 + 4 = (π₯ 2 1)(π₯ 2 4) = (π₯ + 1)(π₯ 1)(π₯ + 2)(π₯ 2)
b. (π₯ + 1)(π₯ 1)(π₯ + 2)(π₯ 2) = 0
π₯ + 1 = 0 or π₯ 1 = 0 or π₯ + 2 = 0 or π₯ 2 = 0 π₯ = Β±1 or Β±2
59. a. π₯ 2 3 = (π₯ 3β )(π₯ + 3β )
b. (π₯ 3β )(π₯ + 3β ) = 0
π₯ 3β = 0 or π₯ + 3β = 0
π₯ = Β± 3β
58. a. π¦ 4 + 2π¦ 2 3 = (π¦ 2 1)(π¦ 2 + 3) = (π¦ + 1)(π¦ 1)(π¦ 2 + 3) b. (π¦ + 1)(π¦ 1)(π¦ 2 + 3) = 0
π¦ + 1 = 0 or π¦ 1 = 0 or π¦ 2 + 3 = 0 π¦ = Β±1 (Notice that π¦ 2 + 3 = 0 has no real solutions.)
60. a. π¦ 2 7 = (π¦ 7β )(π¦ + 7β )
b. (π¦ 7β )(π¦ + 7β ) = 0
π¦ 7β = 0 or π¦ + 7β = 0
π¦ = Β± 7β
(
+ 2)
+ 1) 3(π₯ + 2)
+
(
+ 1)] (
Section 0.7
β2
6. (π₯ + 1)(π₯ + 2) 2 + (π₯ + 1) 2(π₯ + 2) = 0, (π₯ + 1)(π₯ + 2)(π₯ + 2 + π₯ + 1) = 0, (π₯ + 1)(π₯ + 2)(2π₯ + 3) = 0, π₯ = 1, 2, 3β2
7. (π₯ 2 + 1) 5(π₯ + 3) 4 + (π₯ 2 + 1) 6(π₯ + 3) 3 = 0, (π₯ 2 + 1) 5(π₯ + 3) 3(π₯ + 3 + π₯ 2 + 1) = 0, (π₯ 2 + 1) 5(π₯ + 3) 3(π₯ 2 + π₯ + 4) = 0, π₯ = 3 (Neither π₯ 2 + 1 = 0 nor π₯ 2 + π₯ + 4 = 0 has a real solution.)
8. 10π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 5 10π₯ 2(π₯ 2 + 1) 5(π₯ 3 + 1) 4 = 0, 10π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 4[π₯ 3 + 1 π₯(π₯ 2 + 1)] = 0, 10π₯(π₯ 2 + 1) 4(π₯ 3 + 1) 4(1 π₯) = 0, π₯ = 1, 0, 1
9. (π₯ 3 + 1) π₯ + 1 β (π₯ 3 + 1) 2 π₯ + 1 β = 0, (π₯ 3 + 1) π₯ + 1 β [1 (π₯ 3 + 1)] = 0, π₯ 3(π₯ 3 + 1) π₯ + 1 β = 0, π₯ = 0, 1
10. (π₯ 2 + 1) π₯ + 1 β (π₯ + 1) 3 β = 0, π₯ + 1 β [π₯ 2 + 1 (π₯ + 1)] = 0, (π₯ 2 π₯) π₯ + 1 β = 0, π₯(π₯ 1) π₯ + 1 β = 0, π₯ = 1, 0, 1
11. (π₯ + 1) 3 β + (π₯ + 1) 5 β = 0, (π₯ + 1) 3 β (1 + π₯ + 1) = 0, (π₯ + 2) (π₯ + 1) 3 β = 0, π₯ = 1 (π₯ = 2 is not a solution because (π₯ + 1) 3 β is not defined for π₯ = 2 )
12. (π₯ 2 + 1) (π₯ + 1) 4 3 β (π₯ + 1) 7 3 β = 0, (π₯ + 1) 4 3 β [π₯ 2 + 1 (π₯ + 1)] = 0, (π₯ 2 π₯) (π₯ + 1) 4 3 β = 0, π₯(π₯ 1) (π₯ + 1) 4 3 β = 0, π₯ = 1, 0, 1
13. (π₯ + 1) 2(2π₯ + 3) (π₯ + 1)(2π₯ + 3) 2 = 0, (π₯ + 1)(2π₯ + 3)(π₯ + 1 2π₯ 3) = 0, (π₯ + 1)(2π₯ + 3)( π₯ 2) = 0, π₯ = 2, 3β2, 1
Solutions Section 0.7
14. (π₯ 2 1) 2(π₯ + 2) 3 (π₯ 2 1) 3(π₯ + 2) 2 = 0,
(π₯ 2 1) 2(π₯ + 2) 2(π₯ + 2 π₯ 2 + 1) = 0, (π₯ 2 1) 2(π₯ + 2) 2(π₯ 2 π₯ 3) = 0, π₯ = 2, 1, 1, (1 Β± 13β )β2
15. (π₯ + 1) 2(π₯ + 2) 3 (π₯ + 1) 3(π₯ + 2) 2 (π₯ + 2) 6 = 0,
(π₯ + 1) 2(π₯ + 2) 2[(π₯ + 2) (π₯ + 1)] (π₯ + 2) 6 = 0,
(π₯ + 1) 2
(π₯ + 2) 4 = 0, (π₯ + 1) 2 = 0, π₯ = 1
16. 6π₯(π₯ 2 + 1) 2(π₯ 2 + 2) 4 8π₯(π₯ 2 + 1) 3(π₯ 2 + 2) 3 (π₯ 2 + 2) 8 = 0, 2π₯(π₯ 2 + 1) 2(π₯ 2 + 2) 3[3(π₯ 2 + 2) 4(π₯ 2 + 1)] (π₯ 2 + 2) 8 = 0, 2π₯(π₯ 2 + 1) 2(π₯ 2 2) (π₯ 2 + 2) 5 = 0, 2π₯(π₯ 2 + 1) 2(π₯ 2 2) = 0, π₯ = 0, Β± 2β
2(
24.
Section 0.8
Solutions Section 0.8
1. π (0, 2), π(4, 2), π ( 2, 3), π( 3.5, 1.5), π ( 2.5, 0), π (2, 2.5)
2. π ( 2, 2), π(3.5, 2), π (0, 3), π( 3.5, 1.5), π (2.5, 0), π ( 2, 2.5)


5. Solve the equation π₯ + π¦ = 1 for π¦ to get π¦ = 1 π₯ Then plot some points:
Graph:

6. Solve the equation π¦ π₯ = 1 for π¦ to get π¦ = 1 + π₯ Then plot some points:



9.
Graph:

10.


