

CHAPTER 1FUNDAMENTALS
1.1 RealNumbers1
1.2 ExponentsandRadicals6
1.3 AlgebraicExpressions13
1.4 RationalExpressions19
1.5 Equations27
1.6 ComplexNumbers36
1.7 ModelingwithEquations39
1.8 Inequalities50
1.9 TheCoordinatePlane;GraphsofEquations;Circles72
1.10 Lines91
1.11 SolvingEquationsandInequalitiesGraphically101
1.12 ModelingVariation111 Chapter1Review115 Chapter1Test132
¥ FOCUSONMODELING: FittingLinestoData138 ErratainExercisesandAnswersinFirstPrinting141
1
1.1
FUNDAMENTALS
REALNUMBERS
1.(a) Thenaturalnumbersare 1 2 3.
(b) Thenumbers 3 2 1 0 areintegersbutnotnaturalnumbers.
(c) Anyirreduciblefraction p q with q 1isrationalbutisnotaninteger.Examples: 3 2 , 5 12 , 1729 23
(d) Anynumberwhichcannotbeexpressedasaratio p q oftwointegersisirrational.Examplesare 2, 3, ,and e
2.(a) ab ba ;CommutativePropertyofMultiplication
(b) a b c a b c ;AssociativePropertyofAddition
(c) a b c ab ac;DistributiveProperty
3.(a) Insetbuildernotation: x 3 x 5
(b) Inintervalnotation: 3 5
(c) Asagraph: _35
4. Thesymbol x standsforthe absolutevalue ofthenumber x .If x isnot0,thenthesignof x isalways positive.
5. Thedistancebetween a and b onthereallineis d a b b a .Sothedistancebetween 5and2is 2
7.
6.(a) If a b ,thenanyintervalbetween a and b (whetherornotitcontainseitherendpoint)containsinfinitelymany numbers—including,forexample a b a 2n foreverypositive n .(Ifanintervalextendstoinfinityineitherorboth directions,thenitobviouslycontainsinfinitelymanynumbers.)
(b) No,because 5 6 doesnotinclude5.
7.(a) No: a b b a b a ingeneral.
(b) No;bytheDistributiveProperty, 2 a 5 2
10.
8.(a) Yes,absolutevalues(suchasthedistancebetweentwodifferentnumbers) arealwayspositive.
(b) Yes, b a a b
9.(a) Naturalnumber:100
(b) Integers:0,100, 8
(c) Rationalnumbers: 1 5,0, 5 2 ,2 71,3 14,100, 8
(d) Irrationalnumbers: 7,
10.(a) Naturalnumbers:2, 9
(b) Integers:2, 100
,10
(c) Rationalnumbers:4 5 9 2 , 1 3 ,1 6666
(d) Irrationalnumbers: 2, 3 14
35.(a) False (b) True
37.(a) True (b) False
True (b) True 39.(a) x 0 (b) t 4 (c)
83.(a) a isnegativebecause a ispositive.
(b) bc ispositivebecausetheproductoftwonegativenumbersispositive.
(c) a b a b ispositivebecauseitisthesumoftwopositivenumbers.
(d) ab ac isnegative:Eachsummandistheproductofapositivenumberandanegative number,andthesumoftwo negativenumbersisnegative.
84.(a) b ispositivebecause b isnegative.
(b) a bc ispositivebecauseitisthesumoftwopositivenumbers.
(c) c a c a isnegativebecause c and a arebothnegative.
(d) ab2 ispositivebecauseboth a and b 2 arepositive.
85. DistributiveProperty
86.(a) When L 150, x 20,and y 15,wehave
220.Because 220 274,thepostofficewillacceptthispackage. When L 120, x 60,and y 60,wehave
360,andsince 360 274,thepostofficewill not acceptthispackage.
(b) If x y 22 5,then L
184cm 184m.
87. Let x m 1 n 1 and y m 2 n 2 berationalnumbers.Then x
, x y m 1
,and
.Thisshowsthatthesum,difference,andproduct oftworationalnumbersareagainrationalnumbers.Howevertheproductof twoirrationalnumbersisnotnecessarily irrational;forexample, 2 2 2,whichisrational.Also,thesumoftwoirrationalnumbersisnotnecessarilyirrational; forexample, 2 2 0whichisrational.
88. 1 2 2isirrational.Ifitwererational,thenbyExercise6(a),thesum 1 2 2 1 2 2wouldberational,but thisisnotthecase. Similarly, 1 2 2isirrational. (a) Followingthehint,supposethat r t q ,arationalnumber.ThenbyExercise6(a),thesumofthetworational numbers r t and r isrational.But r t r t ,whichweknowtobeirrational.Thisisacontradiction,and henceouroriginalpremise—that r t isrational—wasfalse.
89.
(b) r isanonzerorationalnumber,so r a b forsomenonzerointegers a and b .Letusassumethat rt q ,arational number.Thenbydefinition, q c d forsomeintegers c and d .Butthen rt q a b t c d ,whence t bc ad ,implying that t isrational.Onceagainwehavearrivedatacontradiction,andweconclude thattheproductofarationalnumber andanirrationalnumberisirrational.
As x getslarge,thefraction1 x getssmall.Mathematically,wesaythat1 x goestozero.
As x getssmall,thefraction1 x getslarge.Mathematically,wesaythat1 x goestoinfinity.
90. Wecanconstructthenumber 2onthenumberlineby transferringthelengthofthe hypotenuseofarighttriangle withlegsoflength1and1.
Similarly,tolocate 5,weconstructarighttrianglewithlegs oflength1and2.BythePythagoreanTheorem,thelength ofthehypotenuseis 12 22 5.Thentransferthe lengthofthehypotenusetothenumberline.
Thesquarerootofanyrationalnumbercanbelocatedona numberlineinthisfashion.
Thecircleinthesecondfigureinthetexthascircumference ,soifwerollitalonganumberlineonefullrotation,wehave found onthenumberline.Similarly,anyrationalmultipleof canbefoundthisway.
91.(a) Supposethat a b ,somax a b
Ontheotherhand,if b
If a b ,then a b
(b) If a b ,thenmin
0andtheresultistrivial.
and
Similarly,if b a ,then
92. Answerswillvary.
;andif a b ,theresultistrivial.
93.(a) Subtractionisnotcommutative.Forexample,5 1 1 5.
(b) Divisionisnotcommutative.Forexample,5 1 1 5.
(c) Puttingonyoursocksandputtingonyourshoesarenotcommutative.Ifyouputonyoursocksfirst,thenyourshoes, theresultisnotthesameasifyouproceedtheotherwayaround.
(d) Puttingonyourhatandputtingonyourcoatarecommutative.Theycanbedoneineitherorder,withthesameresult.
(e) Washinglaundryanddryingitarenotcommutative.
94.(a)
Ineachcase,
andtheTriangleInequalityissatisfied.
(b) Case0: Ifeither x or y is0,theresultisequality,trivially.
Case1: If x and y havethesamesign,then x y
y if x and y arepositive
and y arenegative
Case2: If x and y haveoppositesigns,thensupposewithoutlossofgeneralitythat x 0and y 0.Then
1.2 EXPONENTSANDRADICALS
1.(a) Usingexponentialnotationwecanwritetheproduct5 5 5 5 5 5as56
(b) Intheexpression34 ,thenumber3iscalledthe base andthenumber4iscalledthe exponent
2.(a) Whenwemultiplytwopowerswiththesamebase,we add theexponents.So34 35 39
(b) Whenwedividetwopowerswiththesamebase,we subtract theexponents.So 35 32 33
3. Tomoveanumberraisedtoapowerfromnumeratortodenominatororfromdenominatortonumeratorchangethesignof the
4.(a) Usingexponentialnotationwecanwrite 3 5as513
(b) Usingradicalswecanwrite51
(c) No.
5.
6. Becausethedenominatorisoftheform a ,wemultiplynumeratoranddenominatorby
7. 513 523
8.(a)
(d) No;if a isnegative,then 4a 2
13.(a)
21.(a)
(c) x 16 x 10 x 16 10 x 6
23.(a) a 9 a 2 a a 9 2 1 a 6 (b) a 2 a 4 3 a 24 3
22.(a) y 2 y 5 y 2 5 y 3 1 y 3 (b) z 5 z 3 z 4 z 5 3 4 z 2 1 z 2 (c) y 7 y 0 y 10 y 70 10 y 3 1 y 3
24.(a)
28.(a)
30.(a)
75.(a) 1 5 x 1 5 x 5 x 5 x 5 x 5 x (b) x 5 x 5 5 5 5 x 5 (c) 5 1 x 3 1 x 35 x 25 x 25
79.(a)
81.(a) 69,300,000 6 93 107 (b) 7,200,000,000,000 72 1012
(c) 0000028536 28536 10 5 (d) 0 0001213 1 213 10 4
83.(a) 3 19 105 319,000
(b) 2 721 108 272,100,000
(c) 2 670 10 8 0 00000002670 (d) 9 999 10 9 0 000000009999
85.(a) 9,460,000,000,000km 95 1012 km (b) 00000000000004cm 4 10 13 cm (c) 33billionbillionmolecules
86.(a) 150,000,000km 1 5 108 km
(b) 0 000000000000000000000053g 5 3 10 23 g (c) 5,970,000,000,000,000,000,000,000kg
87. 7 2 10 9 1 806 10 12
82.(a) 129,540,000 1 2954 108 (b) 7,259,000,000 7259 109
(c) 00000000014 14 10 9 (d) 0 0007029 7 029 10 4
84.(a) 7 1 1014 710,000,000,000,000
(b) 6 1012 6,000,000,000,000 (c) 8 55 10 3 0 00855 (d) 6 257 10 10 0 0000000006257
93.(a) b 5 isnegativesinceanegativenumberraisedtoanoddpowerisnegative.
(b) b 10 ispositivesinceanegativenumberraisedtoanevenpowerispositive.
(c) ab2 c3 wehave positive
whichisnegative.
(d) Since b a isnegative, b a 3 negative3 whichisnegative.
(e) Since b a isnegative, b a 4 negative4 whichispositive.
(f) a 3 c3 b 6 c6
94.(a) Since 1 2
(b)
(c) Wefindacommonroot:71
95. Sinceonelightyearis9
98. Eachperson’sshareisequalto
99. First,weestimatethetotalmassofthestarsintheobservableuniverse:
whichisnegative.
Thus,thenumberofhydrogenatomsintheobservableuniverseis
100. Firstconvert346meterstokilometers.Thisgives346m 346 1kilometer 1000meters 0 346km.Thusthedistanceyoucansee isgivenby D
2kilometers.
101.(a) Using f 0 4andsubstituting d 65,weobtain s 30 fd 30 0 4 65
28km/h. (b) Using f
102. Since1day 86,400s,365 25days 31,557,600s.Substituting,weobtain d
103. Since106 103 103 itwouldtake1000days 2 74yearstospendthemilliondollars. Since109 103 106 itwouldtake106 1,000,000days 2739 72yearstospendthebilliondollars.
104.(a)
Sowhen n getslarge,21 n decreasesto1.
105.(a)
Sowhen n getslarge,
factors .Because m n ,wecancancel n factorsof a fromnumeratoranddenominatorandareleftwith m n factorsof a inthenumerator.Thus, a m a n a m n . (b) a b n
1.3 ALGEBRAICEXPRESSIONS
1. Thegreatestcommonfactorintheexpression18 x 3 30 x is6 x ,andtheexpressionfactorsas6 x 3 x 2 5
2.(a) Thepolynomial2 x 3 3 x 2 10 x hasthreeterms:2 x 3 ,3 x 2 ,and10 x (b) Thefactor x iscommontoeachterm,so2 x
3. Tofactorthetrinomial x 2 8 x 12welookfortwointegerswhoseproductis12andwhosesumis8.Theseintegersare6 and2,sothetrinomialfactorsas x 6 x 2
4. TheSpecialProductFormulaforthe“squareofasum”is
2 x 32
5. TheSpecialProductFormulaforthe“productofthesumanddifferenceofterms”is
6. TheSpecialFactoringFormulaforthe“differenceofsquares”is
7. TheSpecialFactoringFormulafora“perfectsquare”is
8.(a) No;
(b) Yes;
Yes;byaSpecialProductFormula,
(d) No, x a x a x 2 a 2 ,byaSpecialProductFormula.
9. Type:binomial.Terms:5 x 3 and6.Degree:3.
10. Type:trinomial.Terms: 2 x 2 ,5 x ,and 3.Degree:2.
11. Type:monomial.Term: 8.Degree:0.
12. Type:monomial.Terms: 1 2 x 7 .Degree:7.
13. Type:fourtermpolynomial.Terms:
,and
14. Type:binomial.Terms: 2 x and 3.Degree:1.
15.
95. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis, x
96. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis, x
97. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis, x
98. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis, x 13
Thus, x 53 x 23
99. Startbyfactoringoutthepowerof x 2 1withthesmallestexponent,thatis,
127. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis,
(differenceofsquares)
(eachfactorisadifferenceofsquares)
143. Thevolumeoftheshellisthedifferencebetweenthevolumesoftheoutside cylinder(withradius R )andtheinsidecylinder (withradius r ).Thus
.The averageradiusis R r 2 and2
2 istheaveragecircumference(lengthoftherectangularbox), h istheheight,and R r isthethicknessoftherectangularbox.Thus
height
144.(a) Movedportion field habitat (b) Usingthedifferenceofsquares,weget
145.(a) Thedegreeoftheproductisthesumofthedegrees.
averageradius
(b) Thedegreeofasumisatmostthelargestofthedegrees—itcouldbesmallerthaneither.Forexample,thedegreeof
146.(a)
(b) Basedonthepatterninpart(a),wesuspectthat
(b)
1.4
RATIONALEXPRESSIONS
1. Arationalexpressionhastheform P x Q x ,where P and Q arepolynomials.
(a) 3 x x 2 1 isarationalexpression.
(b) x 1 2 x 3 isnotarationalexpression.Arationalexpressionmustbeapolynomialdividedbyapolynomial,andthe numeratoroftheexpressionis x 1,whichisnotapolynomial.
(c) x x 2 1 x 3 x 3 x x 3 isarationalexpression.
2. Tosimplifyarationalexpressionwecancelfactorsthatarecommontothe numerator and denominator.So,theexpression x 1 x 2 x 3 x 2 simplifiesto x 1 x 3
3. Tomultiplytworationalexpressionswemultiplytheir numerators togetherandmultiplytheir denominators together.So 2 x 1 x x 3 isthesameas
4.(a) 1 x 2 x 1 x x 12 hasthreeterms.
(b) Theleastcommondenominatorofallthetermsis x x 12
5.(a) Yes.Cancelling
(b) No;
6.(a) Yes, 3 a 3
(b) No.Wecannot“separate”thedenominatorinthisway;onlythenumerator,asinpart(a).(SeealsoExercise101.)
7. Thedomainof4
Since x 3 0wehave x 3.Domain:
x
22. x 2 x 12 x 2 5 x 6 x 4
23. y 2 y y 2 1 y y
numeratoranddenominatorbythecommondenominatorofboththenumerator anddenominator,inthiscase x 2 y
76. Incalculusitisnecessarytoeliminatethe h inthedenominator,andwedothisbyrationalizingthenumerator:
100.(a) Theaveragecost A
numberofshirts
(b)
Fromthetable,weseethattheexpression x 2 9 x 3 approaches6as x approaches3.Wesimplifytheexpression: x 2 9 x 3 x 3 x 3 x 3 x 3, x 3.Clearlyas x approaches3, x 3approaches6.Thisexplainstheresultinthe table.
102. No,squaring 2 x changesitsvaluebyafactorof 2 x
103. Answerswillvary.
,sothestatementistrue.
(b) Thisstatementisfalse.Forexample,take
(c) Thisstatementisfalse.Forexample,take
(d) Thisstatementisfalse.Forexample,take
(e) Thisstatementistrue:
(f) Thisstatementistrue: 1 x x 2 x 1 x x x
105.(a)
Itappearsthatthesmallestpossiblevalueof x 1 x is2.
(b) Because x 0,wecanmultiplybothsidesby x andpreservetheinequality:
x 0,andbecauseeachstepis reversible,wehaveshownthat x 1 x 2forall x 0.
1.5
EQUATIONS
1.(a) Yes.If a b ,then a x b x ,andviceversa.
(b) Yes.If a b ,then ma mb for m 0,andviceversa.
(c) No.Forexample, 5 5,but
2.(a) Takepositiveandnegativesquarerootsofbothsides:
(b) Subtract5frombothsides:
(c) Subtract2frombothsides:
3.(a) Tosolvetheequation x 2 6 x
(b) Tosolvebycompletingthesquare,wewrite x
(c) TosolveusingtheQuadraticFormula,wewrite x
or x 2.
4.(a) TheZeroProductPropertysaysthatif a b 0theneither a or b mustbe0.
(b) Thesolutionsoftheequation x 2 x 4 0are x 0and x 4.
(c) Tosolvetheequation x 3 4 x 2 0we factor thelefthandside: x 2 x 4 0,asabove.
5.(a) Isolatingtheradicalin 2 x x 0,weobtain 2 x x
(b) Nowsquarebothsides: 2 x 2 x 2 2 x x 2
(c) Solvingtheresultingquadraticequation,wefind2 x x 2 x 2 2 x x x 2 0,sothesolutionsare x 0and x 2.
(d) Wesubstitutethesepossiblesolutionsintotheoriginalequation: 2 0 0 0,so x 0isasolution,but 2 2 2 4 0,so x 2isnotasolution.Theonlyrealsolutionis x 0.
6. Theequation x 12 5 x 1 6 0isof quadratic type.Tosolvetheequationweset W x 1.Theresulting quadraticequationis W 2 5
x 1or x 2.Youcanverifythatthesearebothsolutionstotheoriginalequation.
7. Toeliminatethedenominatorsintheequation 3 x 5 x 2 2,multiplyeachsidebythelowestcommondenominator x x 2 togettheequivalentequation3
8. Toeliminatethesquarerootintheequation2x 1 x 1, square eachsidetogettheequation 2
1
2 x 1.(But don’tforgetthatsquaringsometimesintroducesextraneoussolutions.)
9.(a) When x 2,LHS 4 2 7 8 7
21.SinceLHS RHS, x 2isnotasolution.
(b) When x 2,LHS 4
3
15.SinceLHS RHS, x 2isa solution.
10.(a) When x 2,LHS 1
0.Since LHS RHS, x 2isasolution.
(b) When x 4LHS 1
SinceLHS RHS, x 4isnotasolution.
11.(a) When x 2,LHS 1 2
RHS, x 2isasolution.
(b) When x 4theexpression 1 4 4 isnotdefined,so x 4isnotasolution.
12.(a) When
(b) When
4isasolution.
46.
47. 2 x 2 8 x 2 4 x
thereisnorealsolution. 72. z
D isnegative,this equationhasnorealsolution.
75. D b 2 4ac 2
Potentialsolutionsare x
4.Theseareonlypotentialsolutionssincesquaringisnotareversible operation.Wemustcheckeachpotentialsolutionintheoriginalequation.Checking
0isfalse.Checking
4istrue.Thus,theonlysolutionis x 4.
0 4 x 2 33 x 63 4 x 21 x 3.Potentialsolutionsare x 21 4 and x 3.Substitutingeachofthesesolutions intotheoriginalequation,weseethat x 3isasolution,but x 21 4 isnot.Thus3istheonlysolution.
0becomes
2 13 40 0
5
8 0. So 5 0 5,and 8 0 8.When 5,wehave x 2 5 x 5.When 8,wehave
are x 4, 3, 1,and0.
94. 2 x 4 4 x 2 1 0.TheLHSisthesumoftwononnegativenumbersandapositivenumber,so2 x 4 4 x
Thisequationhasnorealsolution.
95. Let u x 23 .Then0
u 3 0,then x 2
Thesolutionsare
1,0,1,or2.If W 0,then W x
x 32 neverequals0,andnosolutioncanbenegative,becausewecannottakethesquarerootofanegativenumber.Thus2 istheonlysolution.
Theonlysolutionis256.
usingtheQuadraticFormula,weget
Thusthesolutionsare
.Potentialsolutionsare x 20and x 31.Wemustcheckeachpotentialsolutionintheoriginalequation.
Checking x 20:
5,whichistrue,andhence x 20isa solution.
Checking x 31:
5,whichisfalse,andhence x 31isnota solution.Theonlyrealsolutionis x 20.
122. 3
solutionsare0and2.
123. x
If x 312 0,then
124. Let u 11 x 2 .Bydefinitionof u werequireittobenonnegative.Now 11 x 2 2 11 x 2 1 u 2 u
mustbenonnegative,weonlyhave
7.Thesolutionsare 7.
125. 0 x 4 5ax 2 4a 2 a x 2 4a x 2
x a 2 36.Checkingtheseanswers,weseethat x a 2 36isnotasolution(forexample,trysubstituting a 8),but x a 2 36isasolution.
128. Let x 16 .Then x 13 2 and x 12 3 ,andso
0 3 a 2 b
a 6 x x a 6 isonesolution.Settingthefirstfactorequaltozero,wehave
However,theoriginalequationincludestheterm b 6 x ,andwecannottakethesixthrootofanegativenumber,sothisisnot asolution.Theonlysolutionis x a 6 .
129. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
Using h 0 88,wesolve0
Thusittakes4 28secondsfortheballthehittheground.
130.(a) Using h 0 29,halfthedistanceis14 5,sowesolvetheequation14 5
t 2 14 5 4
3 t 3.Since t 0,ittakes 3 1732s.
(b) Theballhitsthegroundwhen h 0,sowesolvetheequation0 4
Since t 0,ittakes 6 2 449s.
131. Wearegiventhat 0 12m/s.
(a) Setting h 7 2,wehave7
2 4 2t 3t 1 0 t 1or t 1 1
Therefore,theballreaches7 2metersin1second(ascending)andagain after1 1 2 seconds(descending).
(b) Setting h 14
4,wehave14
.However,sincethediscriminant D 0,thereisnorealsolution,andhencetheball neverreachesaheightof14 4meters.
(c) Thegreatestheight h isreachedonlyonce.So
(d) Setting h
0hasonlyonesolution.Thus
5.Sothegreatestheightreachedbytheballis7 5meters.
.Thustheballreachesthehighest pointofitspathafter1 1 4 seconds.
(e) Setting h 0(groundlevel),wehave0
Sotheballhitsthegroundin2 1 2 s.
132. Ifthemaximumheightis30meters,thenthediscriminantoftheequation4
30 0mustequalzero.So
24doesnotmakesense,wemusthave 0 24m/s.
133.(a) Theshrinkagefactorwhen
0 00055.Sothebeamshrinks 0 00055 12 025 0 007m,sowhenitdriesitwillbe12 025 0 007 12 018mlong. (b) Substituting S 0 00050weget0 00050 0 032
7 5 0 032 234 375.Sothewatercontentshouldbe234 375kg/m3
134. Let d bethedistancefromthelenstotheobject.Thenthedistancefromthelenstotheimageis d 4.Sosubstituting F 4 8, x d ,and y d 4,andthensolvingfor x ,wehave
d 4 .Nowwemultiplybythe LCD,4 8d
,toget
d 13 6 10 4 2 .So d 1 6or d 12.Since d 4mustalsobepositive,theobjectis12cmfromthelens.
136. Setting P 1250andsolvingfor x ,wehave1250
quadraticformula,
200,heshouldmake50ovensperweek.
137. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x bethedistancefromthecenteroftheearthtothedeadspot(inthousandsof kilometers).Nowsetting F 0,wehave 0 K x 2
0 988 x 2 764 x 145,924 0.UsingtheQuadraticFormula,weobtain
x 386 64 42 35 344.Since429,000isgreaterthanthedistancefromthe earthtothemoon,werejectthefirstroot;thus x 344,000kilometers.
138. Sincethetotaltimeis3s,wehave3
so d 40 46.Thewellis40 5mdeep.
(b)
1.Sincebothsidesofthisequationareequal, x 2isasolutionforeveryvalueof k .Thatis, x 2isasolutiontoeverymemberofthisfamilyofequations.
140. Whenwemultipliedby x ,weintroduced x 0asasolution.Whenwedividedby x 1,wearereallydividingby0,since x 1 x 1 0.
141.(a) x 2 9 x 20 0 x 4 x
4or x
5.Theproductofthesolutionsis4 5 20,theconstant termintheoriginalequation;andtheirsumis4 5 9,thenegativeofthecoefficientof x intheoriginalequation. (b) Ingeneral,theequation x 2 bx c 0hassolutions r 1 b
and
142.(a) Wemakethesubstitution
possiblesolutionsare4and1.Checkingwillresultinthesamesolution.
(b) Method1:
Thesolutionsare
Method2: MultiplyingbytheLCD,
1.6 COMPLEXNUMBERS
1. Theimaginarynumber i hasthepropertythat i 2 1.
2. Forthecomplexnumber3 4i therealpartis3andtheimaginarypartis4.
3.(a) Thecomplexconjugateof3 4
(b) 3 4i
3 4i 32 42 25
2 13.
4. If3 4i isasolutionofaquadraticequationwithrealcoefficients,then 3 4i 3 4i isalsoasolutionoftheequation.
5. Yes,everyrealnumber a isacomplexnumberoftheform a 0i
6. Yes.Foranycomplexnumber z
7. 3 8i :realpart3,imaginarypart 8. 8.
9. 2 5i 3 2 3 5 3 i :realpart 2 3 ,imaginarypart
2a ,whichisarealnumber.
5 i
5 i :realpart 5,imaginarypart1.
:realpart2,imaginarypart 7 2
11. 3:realpart3,imaginarypart0. 12. 1 2 :realpart 1 2 ,imaginarypart0.
13. 2 3 i :realpart0,imaginarypart 2 3 14. 3i :realpart0,imaginarypart 3.
RHS,thisprovesthestatement.
SinceLHS
SinceLHS
RHS,thisprovesthestatement.
84. Suppose z z .Thenwehave
,whichisapureimaginarynumber.
,whichisarealnumber.
0,so z isreal.Nowif z isreal, then z a 0i (where a isreal).Since z a 0i ,wehave z z
85. UsingtheQuadraticFormula,thesolutionstotheequationare x b
b 2 4ac 2a .Sincebothsolutionsarenonreal,we have b2 4ac 0 4ac b 2 0,sothesolutionsare x
2a 4ac b2 2a i ,where 4ac b2 isarealnumber. Thusthesolutionsarecomplexconjugatesofeachother.
86. i i , i 5 i 4 i i , i 9 i 8
Because i 4 1,wehave i n i r ,where r istheremainderwhen n isdividedby4,thatis, n 4 k r ,where k isan integerand0 r 4.Since4446 4
1.7 MODELINGWITHEQUATIONS
1. Anequationmodelingarealworldsituationcanbeusedtohelpusunderstandarealworldproblemusingmathematical methods.Wetranslaterealworldideasintothelanguageofalgebratoconstructourmodel,andtranslateourmathematical resultsbackintorealworldideasinordertointerpretourfindings.
2. Intheformula I Prt forsimpleinterest, P standsfor principal, r for interestrate,and t for time(inyears)
3.(a) Asquareofside x hasarea A x 2 . (b) Arectangleoflength l andwidth hasarea A l (c) Acircleofradius r hasarea A r 2
4. Balsamicvinegarcontains5%aceticacid,soa960mLbottleofbalsamicvinegarcontains 960 5% 960 5 100 48millilitersofaceticacid.
5. Apainterpaintsawallin x hours,sothefractionofthewallshepaintsinonehouris 1wall x hours 1 x
6. Solving d rt for r ,wefind d t
7. If n isthefirstinteger,then n 1isthemiddleinteger,and n 2isthethirdinteger.Sothesumofthethreeconsecutive integersis n
3.
8. If n isthemiddleinteger,then n 1isthefirstinteger,and n 1isthethirdinteger.Sothesumofthethreeconsecutive integersis n 1 n
1
3n
9. If n isthefirsteveninteger,then n 2isthesecondevenintegerand n 4isthethird.Sothesumofthreeconsecutive evenintegersis n
6.
10. If n isthefirstinteger,thenthenextintegeris n 1.Thesumoftheirsquaresis
11. If s isthethirdtestscore,thensincetheothertestscoresare78and82,theaverageofthethreetestscoresis
12. If q isthefourthquizscore,thensincetheotherquizscoresare8,8,and8,the averageofthefourquizscoresis
13. If x dollarsareinvestedat2 1 2 %simpleinterest,thenthefirstyearyouwillreceive0 025 x dollarsininterest.
14. If n isthenumberofmonthstheapartmentisrented,andeachmonththerentis$945,thenthetotalrentpaidis945n
15. Since isthewidthoftherectangle,thelengthisfourtimesthewidth,or4 .Then area length width
2 m2 .
16. Since isthewidthoftherectangle,thelengthis 6.Theperimeteris
17. If d isthegivendistance,inkilometers,anddistance rate time,wehavetime distance rate d 55
18. Sincedistance rate timewehavedistance s 45min
19. If x isthequantityofpurewateradded,themixturewillcontain750gofsaltand3 x litersofwater.Thusthe concentrationis 750 3 x
20. If p isthenumberofpenniesinthepurse,thenthenumberofnickelsis2 p ,thenumberofdimesis4 2 p ,and thenumberofquartersis 2 p 4
4.Thusthevalue(incents)ofthechangeinthepurseis 1
21. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. If d isthenumberofdaysand m thenumberofkilometers,thenthecostofarentalis C
65d 0 40m .Inthiscase, d 3 and C 283,sowesolvefor m :283
220.Thus, thetruckwasdriven220kilometers.
22. Thecostofspeakingfor m minutesonthisplanis
Inthiscase m 250 and C 120 50,sowesolve100
m
250 82 332.Therefore,thetouristused332minutesoftalkinthemonthofJune.
23. If x isthestudent’sscoreontheirfinalexam,thenbecausethefinalcountstwiceasmuchaseachmidterm,theaverage scoreis
86.Sothestudentscored86%ontheirfinalexam.
24. Sixstudentsscored100andthreestudentsscored60.Let x betheaveragescoreoftheremaining25 6 3 16students. Becausetheoverallaverageis84%
16 x 1320 x 1320 16 82 5.Thus,theremaining16students’averagescorewas82 5%.
25. Let m betheamountinvestedat2 1 2 %.Then12,000 m istheamountinvestedat3%. Sincethetotalinterestisequaltotheinterestearnedat2 5%plustheinterestearnedat3%,wehave 318
8400.Thus, $8400isinvestedat2 1 2 %and12,000 8400 $3600isinvestedat3%.
26. Let m betheamountinvestedat5%.Then8000 m isthetotalamountinvested.Thus 4%ofthetotalinvestment interestearnedat3 1 2 % interestearnedat5%
4000.Thus,$4000mustbe investedat5%.
27. Usingtheformula I Prt andsolvingfor r ,weget262
5%.
28. If$3000isinvestedataninterestrate a %,then$5000isinvestedat a 1 2 %,so,rememberingthat a isexpressedasa percentage,thetotalinterestis I 3000 a 100 1 5000 a 1
25.Sincethetotalinterest is$265,wehave265 80a 25 80a 240 a 3.Thus,$3000isinvestedat3%interest.
29. Let x bethemonthlysalary.Sinceannualsalary 12 monthlysalary Christmasbonus,wehave 180,100 12 x 7300 172,800 12 x x 14,400.Themonthlysalaryis$14,400.
30. Let s betheassistant’sannualsalary.Thentheforeman’sannualsalaryis1 15s .Theirtotalincomeisthesumoftheir salaries,so s 115s 113,305 215s 113,305 s 52,700.Thus,theassistant’sannualsalaryis$52,700.
31. Let x betheovertimehoursworked.Sincegrosspay regularsalary overtimepay,weobtaintheequation
6.Thus,thelab technicianworked6hoursofovertime.
32. Let x bethenumberofhoursworkedbytheplumber.Thenthecabinetmakerworksfor9 x hours.Thetotallaborchargeis thesumoftheircharges,so2610
3.Thus,theplumberworks for3hoursandthecabinetmakerworksfor3 9 27hours.
33. Allagesareintermsofthedaughter’sage7yearsago.Let y beageofthedaughter7yearsago.Then11 y istheageofthe moviestar7yearsago.Today,thedaughteris y 7,andthemoviestaris11 y 7.Butthemoviestarisalso4timeshis daughter’sagetoday.So4
3.Thus,todaythemoviestaris 11 3 7 40yearsold.
34. Let h benumberofhomerunsBabeRuthhit.Then h 41isthenumberofhomerunsthatHankAaronhit.So 1469 h h 41 1428 2h h 714.ThusBabeRuthhit714homeruns.
35. Let n bethenumberofnickels.Thentherearealso n dimesand n quarters.Thetotalvalueofthecoinsinthepurseisthe sumofthevaluesofnickels,dimes,andquarters,so2
pursecontains7nickels,7dimes,and7quarters.
36. Let q bethenumberofquarters.Then2q isthenumberofdimes,and2q 5isthenumberofnickels.Thus300 value ofnickels valueofdimes valueofquarters,so 3 00 0 05 2
Thusyouhave5quarters,2 5 10dimes,and2 5 5 15nickels.
37. Let l bethelengthofthegarden.Sincearea width length,weobtaintheequation1125
thegardenis45meterslong.
38. Let bethewidthofthepasture.Thenthelengthofthepastureis2 .Sincearea length width,wehave 115,200
39. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let bethewidthofthebuildinglot.Thenthelengthofthebuildinglotis5 .Sinceahalfhectareis 1 2 10,000 5000 andareaislengthtimeswidth,wehave5000
31 6.Thusthewidthofthe buildinglotis31 6metersandthelengthofthebuildinglotis5 31 6 158meters.
40. Let x bethelengthofasideofthesquareplot.Asshowninthefigure, areaoftheplot areaofthebuilding areaoftheparkinglot.Thus,
landmeasures120metersby120meters. x
41. Let bethewidthofthegardeninmeters.Thenthelengthis 10.Thus875 10
0,then
35,whichisimpossible.Therefore
25
0,andso
25. Thegardenis25meterswideand35meterslong.
42. Let bethewidthofthebedroom.Thenitslengthis 4.Sinceareaislengthtimeswidth,wehave 21
7or 3.Sincethewidthmust bepositive,thewidthis3meters.
43. Let bethewidthofthegardeninmeters.Weusetheperimetertoexpressthelength l ofthegardenintermsof width.Sincetheperimeteristwicethewidthplustwicethelength,wehave
100 .Usingtheformulaforarea,wehave2400
40.Sothelengthis60metersandthewidthis40meters.
44. Let bethewidthofthelotinmeters.Thenthelengthis 6.UsingthePythagoreanTheorem,wehave
0.Sincewidthsmustbepositive,thewidthis120metersandthelengthis126meters.
45. Let l bethelengthofthelotinmeters.Thenthelengthofthediagonalis l 10. WeapplythePythagoreanTheoremwiththehypotenuseasthediagonal.So l 2
Thusthelengthofthelotis120meters.
46. Let r betheradiusoftherunningtrack.Therunningtrackconsistsoftwosemicirclesandtwostraightsections110meters long,sowegettheequation2r
35 03.Thustheradiusofthesemicircleis about35meters.
47.(a) Firstwewriteaformulafortheareaofthefigureintermsof x .Region A has dimensions10cmand x cmandregion B hasdimensions6cmand x cm.Sothe shadedregionhasarea 10 x
6 x
16 x cm2 .Wearegiventhatthisisequal to144cm2 ,so144 16 x x 144 16 9cm.
(b) Firstwewriteaformulafortheareaofthefigureintermsof x .Region A has dimensions14cmand x cmandregion B hasdimensions 13 x cmand x cm.
Sotheareaofthefigureis
48.(a) Theshadedareaisthesumoftheareaofasquareandtheareaofatriangle.So
Wearegiventhattheareais120cm2
(b) Theshadedareaisthesumoftheareaofarectangleandtheareaofatriangle.So
Wearegiventhattheareais1200cm2
y 48cm.
49. Let x bethewidthofthestrip.Thenthelengthofthematis50 2 x ,andthewidthofthematis38 2 x .Nowthe perimeteristwicethelengthplustwicethewidth,so256 2
256 176 8 x 80 8 x x 10.Thusthestripofmatis10centimeterswide.
50. Let x bethewidthofthestrip.Thenthewidthoftheposteris100 2 x anditslengthis140 2 x .Theperimeterofthe printedareais2 100
480,andtheperimeteroftheposteris2
.Nowweusethe factthattheperimeteroftheposteris1 1 2 timestheperimeteroftheprintedarea:2
480
30.Theblankstripisthus30cmwide.
51. Let h betheheighttheladderreaches(inmeters).UsingthePythagoreanTheoremwehave
54meters.
52. Let h betheheightoftheflagpole,inmeters.Thenthelengthofeachguywireis h 1 5.Sincethe distancebetweenthepointswherethewiresarefixedtothegroundisequaltooneguywire,thetriangleis equilateral,andtheflagpoleistheperpendicularbisectorofthebase.ThusfromthePythagoreanTheorem,we get
53. Let x bethelengthoftheperson’sshadow,inmeters.Usingsimilartriangles,
x 5.Thustheperson’sshadowis5meterslong.
54. Let x betheheightofthetalltree.Hereweusethepropertythatcorresponding sidesinsimilartrianglesareproportional.Thebaseofthesimilartrianglesstartsat eyelevelofthewoodcutter,1 5meters.Thusweobtaintheproportion
5meterstall.
55. Let x betheamount(inmL)of60%acidsolutiontobeused.Then300 x mLof30%solutionwouldhavetobeusedto yieldatotalof300mLofsolution.
Thusthetotalamountofpureacidusedis0
So200mLof60%acidsolutionmustbemixedwith100mLof30%solutiontoget300mLof50%acidsolution.
56. Theamountofpureacidintheoriginalsolutionis300
50%
150.Let x bethenumberofmLofpureacidadded.Then thefinalvolumeofsolutionis300 x .Becauseitsconcentrationistobe60%,wemusthave
75.Thus,75mLofpureacidmustbe added.
57. Let x bethenumberofgramsofsilveradded.Theweightoftheringsis5 18g 90g. 5rings Puresilver Mixture
mustbeaddedtogettherequiredmixture.
58. Let x bethenumberoflitersofwatertobeboiledoff.Theresultwillcontain6 x liters.
59. Let x bethenumberoflitersofcoolantremovedandreplacedbywater.
mustberemovedandreplacedbywater.
60. Let x bethenumberoflitersof2%bleachremovedfromthetank.Thisisalsothenumberoflitersofpurebleachaddedto makethe5%mixture.
Purebleach 5%mixture
06litersneedtoremovedand replacedwithpurebleach.
61. Let c betheconcentrationoffruitjuiceinthecheaperbrand.Thenewmixtureconsistsof650mLoftheoriginalfruitpunch and100mLofthecheaperfruitpunch. OriginalFruitPunch CheaperFruitPunch Mixture
35.Thusthecheaperbrandisonly 35%fruitjuice.
62. Let x bethenumberofpacketsof$3 00packetteaThen80 x isthenumberofpacketsof$2 75packettea.
48.Themixtureuses 48packetsof$3 00packetteaand80 48 32packetsof$2 75packettea.
63. Let t bethetimeinminutesitwouldtaketowashthecarifthefriendsworkedtogether.Friend1washes 1 25 ofthecarper minute,whileFriend2washes 1 35 ofthecarperminute.Thesumofthese fractionsisequaltothefractionofthejobthey candoworkingtogether,sowehave
t 14 35 60 minutes,or14minutes35seconds
64. Let t bethetime,inminutes,ittakesthelandscapertomowthelawn.Sincetheassistantishalfasfast,itwouldtakethem 2t minutestomowthelawnalone.Thus,
assistant2 15 30minutestomowthelawnalone.
65. Let t bethenumberofhoursitwouldtakeyourfriendtopaintahousealone.Thenworkingtogether,ittakes 2 3 t hours. Becauseittakesyou7hours,wehave
.Thus,it wouldtakeyourfriend3 5htopaintahousealone.
66. Let h bethetime,inhours,tofilltheswimmingpoolusingthesmallerhosealone. Sincethelargerhosetakes20%less time,ittakes0 8h tofillthepoolalone.Thus16
h 28 8 0 8 36.Thus,thesmallerhosetakes36hourstofillthepoolalone,andthelargerhosetakes0 8 36 28 8hours.
67. Let t bethetimeinhoursthatittakesyoutowashallthewindows.Thenittakesyourroommate t 3 2 hoursto washallthewindows,andthesumofthefractionsofthejobyoucandoindividuallyperhourequalsthefraction ofthejobyoucandotogether.Since1hour48minutes
or t 21 39 20 3.Since t 0isimpossible,youcanwashthewindowsalonein3hours,andittakesyourroommate
68. Let t bethetime,inhours,ittakesyourmanagertodeliveralltheflyersalone.Thenittakestheassistant t
1 hourstodeliveralltheflyersalone,andittakesthegroup0 4t hourstodoittogether.Thus
2isimpossible, ittakesyourmanager3hourstodeliveralltheflyersalone.
69. Let t bethetimeinhoursthatthecommuterspentonthetrain.Then 11 2 t isthetimeinhoursthatcommuterspentonthe bus.Weconstructatable:
Thetotaldistancetraveledisthesumofthedistancestraveledbybusandbytrain,so480
70. Let r bethespeedoftheslowercyclist,inkm/h.Thenthespeedofthefastercyclistis2r
Whentheymeet,theywillhavetraveledacombinedtotalof90kilometers,so2
speedoftheslowercyclistis15km/h,whilethespeedofthefastercyclist is2
71. Let r bethespeedoftheplanefromMontrealtoLosAngeles.Then
15
30km/h.
isthespeedoftheplanefromLos AngelestoMontreal.
ataspeedof800km/honthetripfromMontrealtoLosAngeles.
72. Let x bethespeedofthecarinkm/h.Sinceakilometercontains1000mandanhourcontains3600s, 1km/h 1000 m 3600 s 5 18 m/s.Thetruckistravelingat80 5 18 200 9 m/s.Soin6seconds,thetrucktravels 6 200 9 133meters.Thusthebackendofthecarmusttravelthelengthofthecar,the lengthofthetruck,and the133metersin6seconds,soitsspeedmustbe
m/s.Convertingtokm/h,thespeedofthecaris 147 6 18 5 882km/h.
73. Let x betherate,inkm/h,atwhichthesalespersondrovebetweenAjaxandBarrington.
Wehaveusedtheequationtime distance rate tofillinthe“Time”columnofthetable.Sincethesecondpartofthetrip took6minutes(or 1 10 hour)morethanthefirst,wecanusethetimecolumntogettheequation
salesmandroveeither80km/hor384km/hbetweenAjaxandBarrington.(The formerseemslikelier.)
74. Let x betherate,inkm/h,atwhichthetruckerdrovefromTortulatoCactus.
Wehaveusedtime distance rate tofillinthetimecolumnofthetable.Wearegiventhat thesumofthetimesis11hours.Thuswegettheequation
Hence,thetruckerdroveeither 7 27km/h(impossible)or80km/h betweenTortulaandCactus.
75. Let r betherowingrateinkm/hofthecrewinstillwater.Thentheirrateupstreamwas r 3km/h,andtheirrate downstreamwas r 3km/h.
Sincethetimetorowupstreamplusthetimetorowdownstreamwas2hours40minutes 8 3 hour,wegettheequation
76. Let r bethespeedofthesouthboundboat.Then r 3isthespeedoftheeastboundboat.Intwohoursthesouthbound boathastraveled2r kilometersandtheeastboundboathastraveled2
r 3
2r 6kilometers.Sincetheyare travelingisdirectionswithare90 apart,wecanusethePythagoreanTheoremtoget
or r 9.Sincespeedispositive,thespeedofthesouthboundboatis9km/h.
77. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x bethedistancefromthefulcrumtowherethe56kgfriendsits.Thensubstitutingtheknownvaluesintotheformula given,wehave45
6.Sothe56kgfriendshouldsit16metersfromthefulcrum.
78. Let bethelargestweightthatcanbehung.Inthisexercise,theedgeofthebuildingactsasthefulcrum,sothe110kg manissitting7 5metersfromthefulcrum.ThensubstitutingtheknownvaluesintotheformulagiveninExercise77,we have110
550.Therefore,550kilogramsisthelargestweightthatcanbehung.
79. Thevolumeis180m3 ,so
6istheonlypositive solution.Sotheboxis2metersby6metersby15meters.
80. Let r betheradiusofthelargersphere,inmm.Equatingthevolumes,wehave
63mm.
81. Let x bethelengthofonesideofthecardboard,sowestartwithapieceofcardboard x by x .When4centimetersare removedfromeachside,thebaseoftheboxis x 8by x 8.Sincethevolumeis100cm3 ,weget4 x 82 100 x 2 16 x 64 25 x 2 16 x 39 0 x 3 x 13 0 So x 3or x 13.But x 3isnotpossible,since thenthelengthofthebasewouldbe3 8 5 andalllengthsmustbepositive.Thus x 13,andthepieceofcardboard is13centimetersby13centimeters.
82. Let r betheradiusofthecan.Nowusingtheformula V r 2 h with V 40 cm3 and h 10,wesolvefor r .Thus 40 r 2 10 4 r 2 r 2.Since r representsradius, r 0.Thus r 2,andthediameteris4cm.
83. Let r betheradiusofthetank,inmeters.Thevolumeofthesphericaltankis 4 3 r 3 andisalso2840 0001 284.So 4 3 r 3 2 84 r 3 0 678 r 0 88meters.
84. Let x bethelengthofthehypotenuseofthetriangle,inmeters.Thenoneofthe othersideshaslength x 7meters,andsincetheperimeteris392meters,the remainingsidemusthavelength392 x x 7 399 2 x .Fromthe PythagoreanTheorem,weget
4 x 2 1610 x 159,250 0.UsingtheQuadraticFormula,weget x-7x
x 227 5,then thesideoflength x 7combinedwiththehypotenusealreadyexceedstheperimeterof392meters,andsowemusthave x 175.Thustheothersideshavelength175
49.Thelothassidesoflength49meters, 168meters,and175meters.
85. Let x bethelength,inkilometers,oftheabandonedroadtobeused.Thenthelengthoftheabandonedroadnotusedis 40 x ,andthelengthofthenewroadis 102 40 x 2 kilometers,bythePythagoreanTheorem.Sincethecostof theroadiscostperkilometer numberofkilometers,wehave100,000 x
2 x 2 80 x 1700 68 x Squaringbothsides,weget4 x
islongerthanthe existingroad,16kilometersoftheabandonedroadshouldbeused.Acompletelynewroadwouldhavelength 102 402 (let x 0)andwouldcost 1700 200,000 8 3milliondollars.Sono,itwouldnotbecheaper.
86. Let x bethedistance,inmeters,thatyougoontheboardwalkbeforeveeringoffontothesand.Thedistancealongthe boardwalkfromwhereyoustartedtothepointontheboardwalkclosesttotheumbrellais 2292 642 220m.Thusthe distanceyouwalkonthesandis
Since4minutes45seconds 285seconds,weequatethetimeittakestowalkalongtheboardwalkandacrossthesandto thetotaltimetoget285
x 213 3or145 4.Checking x 213 3:Thedistanceacrossthesandis64m,so
284 4s.Checking x 145 4:Thedistanceacrossthesandis
285 0s.Sinceboth solutionsarelessthanorequalto220m, wehavetwosolutions:Eitheryouwalk145 4metersdowntheboardwalkand thenheadtowardstheumbrella,oryouwalk213 3metersdowntheboardwalkandthenheadtowardstheumbrella.
87. Let x betheheightofthepileinmeters.Thenthediameteris3 x andtheradiusis 3 2 x meters.Sincethevolumeofthecone is28m3 ,wehave 3 3 x 2
2
88. Let h betheheightofthescreensincentimeters.Thewidthofthesmallerscreen is h 17 5centimeters, andthewidthofthebiggerscreenis1 8h centimeters.Thediagonalmeasureofthesmallerscreenis
,andthediagonalmeasureofthelargerscreenis
5.Squaringbothsidesgives
5.ApplyingtheQuadraticFormula, weobtain
screensareapproximately34
2centimetershigh.
89. Let h betheheightinmetersofthestructure.Thestructureiscomposedofarightcylinderwithradius3andheight 2 3 h and aconewithbaseradius3andheight 1 3 h .Usingtheformulasforthevolumeofa cylinderandthatofacone,weobtain theequation40
structureis5 7meters.
90. Let y bethecircumferenceofthecircle,so360 y istheperimeterofthesquare.Usethecircumferencetofindthe radius, r ,intermsof y
.Thustheareaofthecircleis
.Nowifthe perimeterofthesquareis360 y ,thelengthofeachsideis 1 4 360 y andtheareaofthesquareis
Settingtheseareasequal,weobtain y
169 1.Thusonewireis169 1cmlongandtheotheris 190 9cmlong.
91. Let h betheheightofthebreak,inmeters.Thentheportionofthebambooabove thebreakis10 h .ApplyingthePythagoreanTheorem,weobtain
h 91 20 4 55.Thusthebreakis4 55mabovetheground. 10-h h 3
92. Answerswillvary.
93. Let x equaltheoriginallengthofthereedincubits.Then x 1isthepiecethatfits60timesalongthelength ofthefield,thatis,thelengthis60 x 1.Thewidthis30 x .Thenconvertingcubitstoninda,wehave 375 60 x 1
6or x 5.Since x mustbepositive,theoriginallengthofthereedis6cubits.
1.8 INEQUALITIES
1.(a) If x 5,then x 3 5 3 x 3 2.
(b) If x 5,then3 x 3 5 3 x 15.
(c) If x 2,then 3 x 3 2 3 x 6.
(d) If x 2,then x 2.
2. Tosolvethenonlinearinequality x 1 x 2 0we
firstobservethatthenumbers 1and2arezeros ofthenumeratoranddenominator.These numbersdividethereallineintothethree intervals
Theendpoint 1satisfiestheinequality,because
defined.
Signof x 1
Signof x 2
Thus,referringtothetable,weseethatthesolutionoftheinequalityis[ 1 2
3.(a) Thesolutionoftheinequality x 3istheinterval [ 3 3].Anynumber thatliesinsidethisintervalsatisfiestheinequality. _33
(b) Thesolutionoftheinequality x 3istheunionofintervals
3] [3 .Anynumberthatlieinsideoneoftheseintervals satisfiestheinequality. _33
4.(a) Thesetofallpointsonthereallinewhosedistancefromzeroislessthan3canbedescribedbytheabsolutevalue inequality x 3.
(b) Thesetofallpointsonthereallinewhosedistancefromzeroisgreaterthan3canbedescribedbytheabsolutevalue inequality x 3.
5.(a) No.Forexample,if x 2,then
(b) No.Forexample,if
6.(a) Tosolve3 x 7,startbydividingbothsidesoftheinequalityby3.
(b) Tosolve5 x 2 1,startbyadding2tobothsidesoftheinequality.
(c) Tosolve 3 x 2 8,startbyusingProperty2ofAbsoluteValueInequalitiestorewritetheinequalityas
5 6 ,1, 5,3,and5satisfytheinequality.
1,and0satisfytheinequality.
x 1 2 x 4 7
5 1 14 7;no 1 1 6 7;no 0 1 4 7;no
2 3 1 8 3 7;no
5 6 1 7 3 7;no 1 1 2 7;no
5 1 047 7;no 3 1 2 7;yes 5 1 6 7;yes
Theelements3and5satisfytheinequality.
x 1 x 1 2 5 1 5 1 2 ;yes 1 1
2 3 x 2
2 8 2;no
2 4 2;no
Theelements 5, 1, 5,3,and5satisfytheinequality.
Theelements 5,3,and5satisfytheinequality.
x x 2
2 4
27 4;no 1 3 4;yes
2 4;yes 2 3 22 9 4;yes 5 6 97 36 4;yes 1 3 4;yes
5 7 4;no 3 11 4;no 5 27 4;no
Theelements 1,0, 2 3 , 5 6 ,and1satisfytheinequality.
37. x 2 x 3 0.Theexpressionontheleftoftheinequalitychangessignwhere x 2andwhere x 3.Thuswe mustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph: _23
38. x 5 x 4
0.Theexpressionontheleftoftheinequalitychangessignwhen x 5and x 4.Thuswemust checktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x x 4or5 x
Signof x 5
Interval:
Graph: _45
39. x 2 x 7 0.Theexpressionontheleftoftheinequalitychangessignwhere x 0andwhere x 7 2 .Thuswemust checktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x x 7 2 or0 x
Signof x
Signof2 x 7
Signof
Interval:
Graph: 70 2
40. x 2 3 x 0.Theexpressionontheleftoftheinequalitychangessignwhen x 0and x 2 3 .Thuswemustcheckthe intervalsinthefollowingtable.
Fromthetable,thesolutionsetis x x 0or 2 3 x
Signof x
Signof x 2 3 x
41. x 2 3 x 18 0
3
x
Interval:
Graph: 2 3 0
x 6 0.Theexpressionontheleftoftheinequalitychangessignwhere x 6andwhere x 3.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x 3 x 6.Interval: [ 3 6]
Signof x 3
Signof x 6
Signof
x
Graph: _36
42. x 2 8 x
0.Theexpressionontheleftoftheinequalitychangessignwhere x 7andwhere x 1.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph: 17
.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
0.Theexpressionontheleftofthe inequalitychangessignwhen x 1and x 2.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x 1 x 2.Interval:
0.Theexpressionontheleftoftheinequalitychangessign where x 1andwhere x 4.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x 1 x 4.Interval: 1
Graph: _14
0.Theexpressionontheleftoftheinequalitychanges signwhen x 1 2 and x 2.Thuswemustchecktheintervalsinthefollowingtable. Interval
Fromthetable,thesolutionsetis
x x 2or 1 2 x
Graph: 1 2 _2
Fromthetable,thesolutionsetis
0.Theexpressionontheleftoftheinequalitychangessignwhen x 3and x 1.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x x
Interval:
Graph: _31
0.Theexpressionontheleftoftheinequalitychangessignwhere x 2and where x 2.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph:
0.Theexpressionontheleftoftheinequalitychangessignwhen x
3and x 3.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph: _33
Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph: _23 1
52. x 5 x 2 x 1 0.Theexpressionontheleftoftheinequalitychangessignwhen x 5, x 2,and x 1. Thuswemustchecktheintervalsinthefollowingtable.
Signof x 5
Signof x 2
Signof x 1
Signof x 5
Fromthetable,thesolutionsetis
.Graph: _15 2 53.
x 4
x
2
0forall x
2,sotheexpressionontheleftoftheoriginalinequalitychanges signonlywhen x 4.Wechecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x
2and x 4.Weexcludethe endpoint 2sincetheoriginalexpressioncannot be0.Interval:
Graph: _24
x 4 x 22 0.Notethat x
2 0forall x 2,sotheexpressionontheleftoftheoriginalinequalitychanges signonlyat x 4.Wechecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x x 4 (Thepoint 2isalreadyexcluded.)
Signof x 4
Signof x 22
Interval: 4
Graph: 4
55. x 32 x 2 x 5 0.Thelefthandsideis0when x
Signof x
Signof x 5
Signof x 2
Signof x 2
When x 3,thelefthandsideisequalto0andtheinequalityissatisfied.Thus,the solutionsetis
x x 5, x 3,or x 2.Interval: 5] 3 [2
.Graph: _52 _3
56. 4 x 2 x 2 9 0 4 x 2 x 3 x 3 0.Theexpressionontheleftofthe inequalitychangessignwhen x 3and x 0.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
.(Theendpoint0isincludedsincetheoriginalexpressionisallowedto be0.)Interval:[ 3 3].Graph: _33 57. x 3 4 x 0
0.Theexpressionontheleftoftheinequalitychangessignwhere x 0,
Fromthetable,thesolutionsetis
when x 3, x 0,and x 3.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x 4 x
0.Theexpressionontheleftoftheinequality changessignwhere x 0,where x 1,andwhere x 1.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Sincethesearenotrealsolutions.Theexpression x 2 x 1doesnotchangessigns,sowemustchecktheintervalsinthe followingtable.
Fromthetable,thesolutionsetis
61. x 3 x 1 0.Theexpressionontheleftoftheinequalitychangessignwhere x 1andwhere x 3.Thuswemustcheck theintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Signof x
Signof x 3
Signof x 3 x
x x 1or x 3.Sincethedenominator cannotequal0wemusthave x 1.
Interval:
1
Graph: _13
62. 2 x 6 x 2 0.Theexpressionontheleftoftheinequalitychangessignwhen x 3and x 2.Thuswemustcheckthe intervalsinthefollowingtable.
Fromthetable,thesolutionsetis x 3 x 2.Interval: 3
Signof2 x 6
Signof x 2
Signof 2 x 6 x 2
Graph: _32
oftheinequalitychangessignwhen
.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
changessignwhen x 1and x
Fromthetable,thesolutionsetis
5 0.Theexpressionontheleftoftheinequality changessignwhere x 16andwhere x 5.Thuswemustchecktheintervalsinthefollowingtable.
Signof x
Signof x 5
Signof x 16 x 5
Fromthetable,thesolutionsetis x x 5or x 16.Sincethedenominator cannotequal0,wemusthave x 5.
Interval:
Graph: 516
0.Theexpressionontheleftoftheinequalitychanges signwhen x 0and x 3.Thuswemustchecktheintervalsinthefollowingtable.
Sincethedenominatorcannotequal0,wemust have x 3.Thesolutionsetis x
Signof3 x
Signof2 x
Signof 2 x 3 x
Interval: [0 3
Graph: 03
table.
Fromthetable,thesolutionsetis
theleftoftheinequalitychangessignwhen
table.
2,where x
1,where x 0,andwhere x 1.Thuswemustchecktheintervalsinthefollowingtable.
Signof
Signof x
Since x 1and x 0yieldundefinedexpressions,wecannotincludetheminthesolution.From thetable,thesolution
Theexpressionontheleftoftheinequalitychangessignwhen
x 0,and x 1.
Thuswemustchecktheintervalsinthefollowingtable.
Signof2 x
Signof2
Signof x
Signof x
Signof
Since x 0and x 1giveundefinedexpressions,wecannotincludetheminthesolution.Fromthetable,thesolutionset is x 2 x 0or1 x 2.Interval: [
1 2].Graph: _22 01
Fromthetable,thesolutionsetis
expressionontheleftoftheinequalitychangessignwhen
2.Thuswemustchecktheintervals inthefollowingtable.
Signof
Fromthetable,thesolutionsetis
1are excludedfromthesolutionbecausetheexpressionisundefinedatthosevalues.Interval:
Graph: _44
Graph: _22
Graph:
Graph: _20
Graph: _3_1
Sincetheabsolutevalueisalwaysnonnegative,the inequalityistrueforallrealnumbers.Inintervalnotation, thisis
Graph:
Graph: 28
.Theexpressionontheleftoftheinequalitychangessign when
Fromthetable,thesolutionsetis
expressionontheleftoftheinequalitychangessignwhere
mustchecktheintervalsinthefollowingtable.
Signof
Fromthetable,thesolutionsetis
1areexcludedfromthe solutionsetbecausetheymakethedenominatorzero.Interval:
_23 01
x
0.Theexpressionontheleftoftheinequalitychangessignwhen x 3and x 2.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Graph: _3_2
3,sotheexpressionontheleftoftheoriginalinequalitychanges signonlywhen x 1.Wechecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x x 1
(Theendpoint 3isalreadyexcluded.)
Interval: 1
Graph: _1
changessignwhen x
Fromthetable,thesolutionsetis
109. For x 2 9tobedefinedasarealnumberwemusthave x 2 9 0 x 3 x 3 0.Theexpressioninthe
inequalitychangessignat x 3and x 3. Interval
Signof x 3
Signof x 3
Thus x 3or x 3.
110. For x 2 5 x 50tobedefinedasarealnumber wemusthave x
0.The expressionontheleftoftheinequalitychangessignwhen x 5and x 10.Thuswemustchecktheintervalsinthe followingtable.
Signof x 5
Signof x 10
Thus x 5or x 10.
111. For
expressioninthelastinequalitychangessignat x 2and x 5.
0.The
Thus x 2or x 5,andthesolutionsetis
112. For 4 1 x 2 x tobedefinedasarealnumberwemusthave 1 x 2 x 0 Theexpressionontheleftoftheinequalitychanges signwhen x 1and x 2.Thuswemustchecktheintervalsinthefollowingtable.
Signof1 x
Signof2 x
Signof 1 x 2 x
Thus 2 x 1andthesolutionsetis 2 1].Notethat x 2hasbeenexcludedfromthesolutionsetbecausethe expressionisundefinedatthatvalue.
118. Insertingtherelationship
119. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x betheaveragenumberofkilometersdrivenperday.EachdaythecostofPlan Ais95 0 40 x ,andthecostofPlanB is135.PlanBsavesmoneywhen135 95
x .SoPlanBsavesmoneywhenyouaverage morethan100kilometersaday.
120. Let m bethenumberofminutesofinternationalcallsplacedpermonth.ThenunderPlanA,thecostwillbe25 0 05m ,and underPlanB,thecostwillbe5 012m .TodeterminewhenPlanBisadvantageous,wemustsolve25
12
20 0 07m 285 7 m .SoPlanBisadvantageousifapersonplacesfewerthan286minutesofinternationalcalls permonth.
121. Weneedtosolve6400
12,000 m 14,000.Sheplansondrivingbetween12,000and14,000miles.
122.(a) T 20 h 100 ,where T isthetemperaturein C,and h istheheightinmeters. (b) Solvingtheexpressioninpart(a)for h ,weget h 100 20 T .So0
30.Thustherangeoftemperatureisfrom20 Cdownto 30 C.
123.(a) Let x bethenumberof$3increases.Thenthenumberofseatssoldis120 x .So P 200
.Substitutingfor x wehavethatthenumberofseatssoldis
(b)
290 P 215.Puttingthisintostandardorder,wehave215 P 290.Sotheticketpricesarebetween$215and $290.
124. Ifthecustomerbuys x kilogramsofcoffeeat$6 50perkilograms,thentheircost c willbe6 50 x .Thus x c 6 5 .Since thescale’saccuracyis 0 03kg,andthescaleshows3kg,wehave3 0
695.Sincethecustomerpaid$19 50,hecouldhavebeenoveror underchargedbyasmuchas195cents.
125. 00004 4,000,000 d 2 001.Since d 2 0and d 0,wecanmultiplyeachexpressionby d 2 toobtain
00004d 2 4,000,000 001d 2 .Solvingeachpair,wehave00004d 2 4,000,000 d 2 10,000,000,000 d 100,000(recallthat d representsdistance,soitisalwaysnonnegative).Solving4,000,000 0 01d 2 400,000,000 d 2 20,000 d .Puttingthesetogether,wehave20,000 d 100,000.
126. 600,000 x 2 300 500 600,000 500 x 2 300 (Notethat x 2 300 300 0,sowecanmultiplybothsidesbythe denominatorandnotworrythatwemightbemultiplyingbothsidesbyanegativenumberorbyzero.)1200 x 2 300
0 x 2 900 0 x 30 x 30.Theexpressionintheinequalitychangessignat x 30and x 30.However, since x representsdistance,wemusthave x 0.
Signof x 30
Signof x 30
Signof x 30 x 30
So x 30andyoumuststandatleast30metersfromthecenterofthefire.
127. Note:Inthefirstprintingofthetext,theanswergivenforpart(a)ofthisexerciseisincorrect. (a) Wesubstitute d 402mand t 10sintothegivenformulaandfindthevalueof a thatresultsinaquartermiletime ofexactly10s:402 1 2 a 102 402 50a a 402 50 8 04ms2 .Thus,thequartermiletimewillbelessthan 10sif a 8 04ms2
(b) Wesubstitute a
andsolvefor
thatthequartermiletimefora(downward)quartermileunderEarth’sgravityis
Solve13
Thus,theconditionissatisfiedwhenthecarisdrivenbetweenroughly33and67km/h.
and
70.However,since representsthespeed,wemusthave 0.
Soyoumustdrivebetween0and35km/h.
130. Solve2400
0 0025 x 1 x 4400 0.Theexpressionontheleftoftheinequalitychangessignwhen x 400and x 4400. Sincethemanufacturercanonlysellpositiveunits,wechecktheintervalsinthefollowingtable.
Signof0 0025 x 1
Signof x 4400
Signof 0 0025 x 1 x 4400
Sothemanufacturermustsellbetween400and4400unitstoenjoyaprofitofatleast$2400.
131. Let x bethelengthofthegardenand itswidth.Usingthefactthattheperimeteris120m,wemusthave2 x 2 120
60 x .Nowsincetheareamustbeatleast800m2 ,wehave800
x 2
x
0.Theexpressionintheinequalitychangessignat x 20and x 40.
However,since x representslength,wemusthave x 0. Interval
Signof
Thelengthofthegardenshouldbebetween20and40meters.
132.(a) Let x bethethicknessofthelaminate.Then
0 0075. (b)
x 005
h 170
0075
0075
arebetween156cmand185cm.
134. Case1:a b 0Wehave a a
isodd.
Case2: 0 a b Wehave a a a b,since a 0,and b a b b ,since b 0.So a 2 a b b2 .Thus0 a b a 2 b2 .Likewise, a
,forallpositive
integers n .
Case3:a 0 b If n isodd,then a n bn ,because a n isnegativeand b n ispositive.If n iseven,thenwecouldhave either a n b n or a n b n .Forexample, 1 2and 12 22 ,but 3 2and
135. Therulewewanttoapplyhereis“a b ac bc if c 0and a b ac bc if c 0”.Thuswecannotsimply multiplyby x ,sincewedon’tyetknowif x ispositiveornegative,soinsolving1 3 x ,wemustconsidertwocases.
Case1:x 0Multiplyingbothsidesby x ,wehave x 3.Togetherwithourinitialcondition,wehave0 x 3.
Case2:x 0Multiplyingbothsidesby x ,wehave x 3.But x 0and x 3havenoelementsincommon,sothis givesnoadditionalsolution.Hence,theonlysolutionsare0 x 3.
136. x 1 isthedistancebetween x and1; x 3 isthedistancebetween x and3.So x 1 x 3 representsthose pointscloserto1thanto3,andthesolutionis x 2,since2isthepointhalfwaybetween1and3.If a b ,thenthe solutionto x a x b is x a b 2
137. a b ,sobyRule1, a c b c.UsingRule1again, b c b d ,andsobytransitivity, a c b d
138. a b c d ,sobyRule3, d a b d c d ad b c .Adding a tobothsides,wehave ad b a c a .Rewritingthelefthand
sideas ad b ab b a b d b anddividingbothsidesby b d gives a b a c b
Similarly, a c cb d c c
d ,so a c b d c d
139.(a) Because x isnonnegative, x y x 2 xy ,andbecause y isnonnegative, x y xy y 2 .Thus,bytransitivity, x 2 y 2 .
(b) Bypart(a), xy x
2 4 .Expanding,thisbecomes4 xy
x 2 y 2 2 xy 0 x y
0.Thisistrueforany x and y ,sotheoriginalinequalityistrueforallnonnegative x and y
1.9 THECOORDINATEPLANE;GRAPHSOFEQUATIONS;CIRCLES
1.(a) Thepointthatis3unitstotherightofthe y axisand5unitsbelowthe x axishascoordinates 3 5 (b) Thepoint 2 7 is2unitstotherightofthe y axisand7unitsabovethe x axis,soitisclosertothe y axis.
2. Thedistancebetweenthepoints a b and c d is c a 2
3. Thepointmidwaybetween a b and c
.Sothedistancebetween
.Sothepointmidwaybetween
and
and
is
4. Ifthepoint 2 3 isonthegraphofanequationin x and y ,thentheequationissatisfiedwhenwereplace x by2and y by3. Wecheckwhether2 3
3.Thisisfalse,sothepoint
Tocompletethetable,weexpress y intermsof x :2
5.(a) Tofindthe x intercept(s)ofthegraphofanequationweset y equalto0intheequationandsolvefor x :2 0 x 1 x 1,sothe x interceptof2 y x 1is 1.
(b) Tofindthe y intercept(s)ofthegraphofanequationweset x equalto0intheequationandsolvefor y
y 1 2 ,sothe y interceptof2 y x 1is 1 2
6.(a) Thegraphoftheequation x 12 y 22 9isacirclewithcenter 1 2 andradius 9 3.
(b) Inordertojusttouchthe y axis,acirclecenteredat 3
touchesthe y axisatthepoint 0 4
musthaveradius3andequation
7.(a) Ifagraphissymmetricwithrespecttothe x axisand a b isonthegraph,then a b isalsoonthegraph.
(b) Ifagraphissymmetricwithrespecttothe y axisand a b isonthegraph,then a b isalsoonthegraph.
(c) Ifagraphissymmetricabouttheoriginand a b isonthegraph,then a b isalsoonthegraph.
8.(a) The x interceptsare 5and3,andthe y interceptsare 2.
(b) Thegraphissymmetricaboutthe x axis.
9. Yes.If a b isonthegraph,thenbysymmetryaboutthe x axis,thepoint a b isonthegraph.Thenbysymmetry aboutthe y axis,thepoint a b isonthegraph.Thus,thegraphissymmetricwithrespecttotheorigin.
10. No,thegraphisnotnecessarilysymmetricwithrespecttoeitheraxis.For example,thegraphof y x 3 issymmetricwith respecttotheorigin,butnotwithrespecttoeitheraxis.
11. Thepointshavecoordinates
12. A and B lieinQuadrantIand E and G lieinQuadrantIII.
21. Thetwopointsare
22. Thetwopointsare
23. Thetwopointsare
24. Thetwopointsare
(b)
27.(a)
Midpoint:
Midpoint:
32. Theareaofaparallelogramisitsbasetimesitsheight. Sincetwosidesareparalleltothe x axis,weusethelength ofoneoftheseasthebase.Thus,thebaseis
4.The heightisthechangeinthe y coordinates,thus,theheight is6 2 4.Sotheareaoftheparallelogramis base height 4 4 16. y 1x 1
33. Fromthegraph,thequadrilateral ABCD hasapairof parallelsides,so ABCD isatrapezoid.Theareais b1 b2 2 h .Fromthegraphweseethat b
h isthedifferencein y coordinatesis
34. Thepoint S mustbelocatedat 0 4.Tofindthearea, wefindthelengthofonesideandsquareit.Thisgives
38.(a)
theorigin.
(b) Thedistancefrom
totheoriginis
39. Sincewedonotknowwhichpairareisosceles,wefindthelengthofallthreesides.
40. Sincetheside AB isparalleltothe x axis,weusethisasthebaseintheformulaarea 1 2 base height.Theheightisthe changeinthe y coordinates.Thus,thebaseis 2 4
6andtheheightis
41.(a) Herewehave
(b) Theareaofthetriangleis
,weconcludethatthetriangleisarighttriangle.Theareais
43. Weshowthatallsidesarethesamelength(itsarhombus)andthenshowthatthediagonalsareequal.Herewehave
therhombusisasquare.
andthepointsarecollinear.
45. Let P
y besuchapoint.Settingthedistancesequalweget
.Check:
46. Themidpointof
47. AsindicatedbyExample3,wemustfindapoint
suchthatthemidpoints of PR andof QS arethesame.Thus
Settingthe y coordinatesequal,weget
48. Wesolvetheequation6
tofindthe x coordinateof B .Thisgives6
(b) Themidpointof
(c) Sincethetheyhavethesamemidpoint,weconcludethatthe diagonalsbisecteachother.
areallpointsonthegraphofthisequation.
3,sothe x interceptis3,and x 0
2
6,sothe y interceptis 6. x axissymmetry:2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe x axis.
y axissymmetry: 2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe y axis.
Originsymmetry: 2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe origin.
x
1,sothe x interceptis1, and x 0 y 2
2,sothe y interceptis2.
x axissymmetry: y 2 x 12 ,whichisnotthesameas
y 2 x 12 ,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y 2 x 12 ,whichisnotthesameas y 2 x 12 ,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: y 2 x 12 y 2 x 12 , whichisnotthesameas y 2 x 12 ,sothegraphisnot symmetricwithrespecttotheorigin. 1 1 y x
62.(a) Solvefor y : x 4 y 8 y 1 4 x 2. x y 2 5 2 0 2 2 3 2 4
x interceptis8,and
2,sothe y interceptis 2.
x axissymmetry: y 2 x 6,whichisnotthesameas y 2 x 6,sothegraphisnotsymmetricwithrespecttothe x axis.
y axissymmetry: y 2 x 6 y 2 x 6,whichis notthesameas y 2 x 6,sothegraphisnotsymmetric withrespecttothe y axis.
Originsymmetry: y
2 x 6,whichis notthesameas y 2 x 6,sothegraphisnotsymmetric withrespecttotheorigin. y 1x
y
2,sothe x interceptsare
2,and x 0
y
4 4,sothe y interceptis4. x axissymmetry: y x 2 4,whichisnotthesameas y x 2 4,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y
x 2 4,sothegraph issymmetricwithrespecttothe y axis.
Originsymmetry: y x 2 4,whichisnotthesameas
y x 2 4,sothegraphisnotsymmetricwithrespectto theorigin. y 1x 1l 0
y 0 0 x 2,sothereisno x intercept,and x 0
y 0 2 2,sothe y interceptis2.
x axissymmetry: y x 2,whichisnotthesameas
y x 2,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y x 2,whichisnotthesameas
y x 2,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: y x 2 y x 2, whichisnotthesameas y x 2,sothegraphisnot symmetricwithrespecttotheorigin.
64.(a) y x 4
x
0 x 0,sothe x interceptis0,and x 0
y
0
0,sothe y interceptis0.
x axissymmetry: y
x y x ,whichisnotthe sameas y
x ,sothegraphisnotsymmetricwith respecttothe x axis.
y axissymmetry: y
x
x ,sothegraphis symmetricwithrespecttothe y axis.
Originsymmetry: y
x ,whichisnotthe sameas y x ,sothegraphisnotsymmetricwith respecttotheorigin. y 5x 5 0
4,sothe x interceptis4,and x 0 y 0 4,sothereisno y intercept.
x axissymmetry: y x 4,whichisnotthesameas
y x 4,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y x 4,whichisnotthesameas
y x 4,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: y x 4 y x 4, whichisnotthesameas y x 4,sothegraphisnot symmetricwithrespecttotheorigin. y 1l 01x (b) x y .Here y isnotafunctionof x
y 0 x 0 0,sothe x interceptis0,and x 0
y 0 y 0,sothe y interceptis0.
x axissymmetry: x y y ,whichisthesameas
x y ,sothegraphissymmetricwithrespecttothe x axis. y axissymmetry: x y ,whichisnotthesame,sothe graphisnotsymmetricwithrespecttothe y axis.
Originsymmetry: x y y ,whichisnotthesame, sothegraphisnotsymmetricwithrespecttotheorigin.
65.(a) y 4 x 2 x y 2 0 1 3 0 2 1 3 2 0
y 0 4 x 2 0 x 2,sothe x interceptsare 2,and x 0 y 4 02 2,sothe y interceptis2.
x axissymmetry: y 4 x 2 ,whichisnotthesameas y 4 x 2 ,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y 4 x 2 4 x 2 ,sothegraph issymmetricwithrespecttothe y axis.
Originsymmetry: y
y 4 x 2 ,whichisnotthesameas y 4 x 2 ,so thegraphisnotsymmetricwithrespecttotheorigin.
the x interceptsare0and 2,and x 0 y 03 4 0
0,sothe y interceptis0. x axissymmetry:
isnotthesameas y x 3 4 x ,sothegraphisnotsymmetric withrespecttothe x axis.
y axissymmetry: y x 3 4 x x 3
isnotthesameas x x 3 4 x ,sothegraphisnotsymmetric withrespecttothe y axis.
y x 3 4 x ,so thegraphissymmetricwithrespecttotheorigin.
66.(a) y 4 x 2 x y 2 0 1 3 0 2 1 3 2 0
2,sothe x interceptsare 2,and x
y
4 2,sothe y interceptis 2. x axissymmetry: y 4 x 2 y 4 x 2 ,which isnotthesameas y 4 x 2 ,sothegraphisnot symmetricwithrespecttothe x axis. y axissymmetry: y 4 x 2 4 x 2 ,sothe graphissymmetricwithrespecttothe y axis.
Originsymmetry: y 4 x 2 y 4 x 2 , whichisnotthesameas y 4 x 2 ,sothegraphisnot symmetricwithrespecttotheorigin.
(b) x y 3 y 3 x y x 8 2 4 3 4 1 1
0
3 4 8 2 y 0 x 03 0,sothe x interceptis0,and x 0 0 y 3 y 0,sothe y interceptis0.
x axissymmetry: x y 3 y 3 ,whichisnotthesame as x y 3 ,sothegraphisnotsymmetricwithrespecttothe x axis.
y axissymmetry: x y 3 x y 3 ,whichisnotthe sameas x y 3 ,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: x y 3 x y 3 ,sothegraphis symmetricwithrespecttotheorigin. y 10x 1l 0
67.(a) Tofind x intercepts,set y 0.Thisgives0 x 6 x 6,sothe x interceptis 6.Tofind y intercepts,set x 0.Thisgives y 0 6 6,sothe y interceptis6. (b) Tofind x intercepts,set y 0.Thisgives0 x 2 5 x 2 5 x 5,sothe x interceptsare 5.Tofind y intercepts,set x 0.Thisgives y 02 5 5,sothe y interceptis 5.
68.(a) Tofind x intercepts,set y 0.Thisgives4 x 2 25 0
x 5,sothe x interceptsare 5.To find y intercepts,set x 0.Thisgives4
2,sothe y interceptsare 2.
(b) Tofind x intercepts,set y 0.Thisgives x
x 1,sothe x interceptsare 1.To find y intercepts,set x 0.Thisgives02
69.(a) Tofind x intercepts,set y 0.Thisgives9
2,sothe x intercepts are 2.Tofind y intercepts,set x
(b) Tofind x intercepts,set y 0.Thisgives0 2 x
9,sothereisno y intercept.
,sothe x interceptis 1 4 .Tofind y intercepts, set x 0.Thisgives y 2 0 y 4 0 1,sothe y interceptis1.
70.(a) Tofind x intercepts,set y 0.Thisgives0 x 2 16 x 2 16 x 4,sothe x interceptsare 4.Tofind y intercepts,set x 0.Thisgives y 02 16,sothereisno y intercept. (b) Tofind x intercepts,set y 0.Thisgives0 64 x 3 x 3 64 x 4,sothe x interceptis4.Tofind y intercepts,set x 0.Thisgives y 64 03 y 8,sothe y interceptis8.
71. Tofind x intercepts,set y 0.Thisgives0
4,sothe x interceptsare0and 4.Tofind y intercepts,set x 0.Thisgives
0,sothe y interceptis0. 72. Tofind x intercepts,set y
y intercepts,set x
75. x 2 y 2 9hascenter 0 0 andradius3. y 1x 1l
82. Using
83. Theequationofacirclecenteredattheoriginis x 2
84. Using h 1and k 5,weget
,wesolvefor r 2 .Thisgives
x
.Usingthepoint
wesolvefor r 2 .Thisgives
.Next,usingthepoint
.Thus,anequationofthecircleis
85. Thecenterisatthemidpointofthelinesegment,whichis
86. Thecenterisatthemidpointofthelinesegment,whichis
87. Sincethecircleistangenttothe x axis,itmustcontainthepoint
0
,sotheradiusisthechangeinthe y coordinates. Thatis, r 3 0
3.Sotheequationofthecircleis
88. Sincethecirclewith r 5liesinthefirstquadrantandistangenttoboththe x axisandthe y axis,thecenterofthecircle isat
5
5.Therefore,theequationofthecircleis
89. Fromthefigure,thecenterofthecircleisat
Thustheequationofthecircleis
90. Fromthefigure,thecenterofthecircleisat
91. Completingthesquaregives
92.
95. Completingthesquaregives2
Thus,thecirclehascenter
96. Completingthesquaregives3
97. x axissymmetry:
.Theradiusisthechangeinthe y coordinates,so
.Theradiusisthedistancefromthecentertothepoint
.Thus
,whichisnotthesameas y
x 2 ,sothegraphisnotsymmetric withrespecttothe x axis. y axissymmetry:
x
,sothegraphissymmetricwithrespecttothe y axis.
Originsymmetry:
,whichisnotthesameas y x 4 x 2 ,sothegraphisnot symmetricwithrespecttotheorigin.
98. x axissymmetry: x y 4 y
2 y 4 y 2 ,sothegraphissymmetricwithrespecttothe x axis. y axissymmetry: x y 4 y 2 ,whichisnotthesameas x y 4 y 2 ,sothegraphisnotsymmetricwithrespecttothe y axis.
Originsymmetry:
,whichisnotthesameas x y 4 y 2 ,sothegraphisnot symmetricwithrespecttotheorigin.
99. x axissymmetry:
2,sothegraphissymmetricwithrespecttothe x axis. y axissymmetry:
Originsymmetry:
y axis.
2,sothegraphissymmetricwithrespecttothe origin.
(Notethatifagraphissymmetricwithrespecttoeachcoordinateaxis,itissymmetricwithrespecttotheorigin.The converseisnottrue,asshowninthenextexercise.) 100. x axissymmetry:
1,sothegraphisnotsymmetric withrespecttothe x axis.
y axissymmetry:
1,sothegraphisnotsymmetric withrespecttothe y axis.
Originsymmetry:
101. x axissymmetry: y x 3 10 x y x 3 10 x ,whichisnotthesameas y x 3 10 x ,sothegraphisnot symmetricwithrespecttothe x axis.
y axissymmetry: y x 3 10 x y x 3 10 x ,whichisnotthesameas y x 3 10 x ,sothegraphisnot symmetricwithrespecttothe y axis.
Originsymmetry: y x 3 10 x y x 3 10 x y x 3 10 x ,sothegraphissymmetricwithrespect totheorigin.
102. x axissymmetry: y x 2 x y x 2 x ,whichisnotthesameas y x 2
x ,sothegraphisnotsymmetric withrespecttothe x axis. y axissymmetry: y x
,sothegraphissymmetricwithrespecttothe y axis.Notethat
2
Originsymmetry:
x ,whichisnotthesameas y x 2 x ,so thegraphisnotsymmetricwithrespecttotheorigin.
103. Symmetricwithrespecttothe y axis. x y 0
104. Symmetricwithrespecttothe x axis. x y 0
105. Symmetricwithrespecttotheorigin. x y 0
107. x y
(andon)thecircle x
.Thisisthesetofpointsinside
106. Symmetricwithrespecttotheorigin. x y 0
.Thisisthesetofpointsoutside
109. Completingthesquaregives
,andthe radiusis4.Sothecircle x 2
y 2 4,withcenter
andradius2 sitscompletelyinsidethelargercircle.Thus, theareais 42 22 16 4
110. Thisisthetopquarterofthecircleofradius3.Thus,the areais 1
y x 3 3
111.(a) Thepoint 5 3
isshiftedto
(b) Thepoint a
b isshiftedto
(c) Let x y bethepointthatisshiftedto
y coordinatesequal,weget
isreflectedtothepoint
(b) Thepoint
(c) Sincethepoint a
isthereflectionof
(d) A
3
113.(a) Symmetricaboutthe x axis: x y 1 1 (b) Symmetricaboutthe y axis: x y 1 1 (c) Symmetricabouttheorigin: x y 1 1
114.(a) Fromthegraph,itappearsthattheclosestthesatellitegetstothecenter ofthemoonisapproximately5Mmand farthestapproximately70Mm.
Setting y 0intheequation(whichobviouslycorrespondstothedesireddistances), wehave
x 32
2.Thus,thesmallestandlargestdistances are52Mmand702Mm.
(b) Setting y 10,wehave
115.(a) d A
95.Thedistancesofthesepointsfromthecenterofthemoonare
(b) Wewantthedistancesfrom C 4 2 to D 11 26.Thewalkingdistanceis
24 31blocks.Straightlinedistanceis
4 112 2 26
2 72 242 625 25blocks.
(c) Thetwopointsareonthesameavenueorthesamestreet.
116. Lettheareaofthetrianglebe A.Ashinted,wedrawarectangle circumscribingthetriangle.Thisrectangleis7 1 6unitslongand 5 1 4unitshigh,soitsareais A R 6 4 24.Theareasofthethree righttrianglesinsidethe rectanglebutoutsidetheoriginaltriangleare
A1 1 2 7 15 2
A3 1 2 7 45 1 6.Sincetheareaoftherectangleisthesumof theareasoftherighttrianglesandtheoriginaltriangle,wehave
117. Completingthesquaregives
Whentheequationrepresentsacircle,thecenteris
118. Followingthehint,weconsideranequilateraltrianglewithsidelength1 anywhereintheplane.Eachofitsverticesis eitherredorblue,andeachis1unitawayfromtheothertwo.Soatleasttwohavethesamecolorandareexactly1unit apart.
1.10 LINES
1. Wefindthe“steepness”orslopeofalinepassingthroughtwopointsbydividingthedifferenceinthe y coordinatesofthese pointsbythedifferenceinthe x coordinates.Sothelinepassingthroughthepoints
2.(a) Thelinewithequation y 3 x 2hasslope3.
(b) Anylineparalleltothislinehasslope3.
(c) Anylineperpendiculartothislinehasslope 1 3
3. Thepointslopeformoftheequationofthelinewithslope3passingthroughthepoint
4. Forthelinearequation2 x 3 y 12 0,the x interceptis6andthe y interceptis4.Theequationinslopeinterceptform is y 2 3 x 4.Theslopeofthegraphofthisequationis 2 3
5. Theslopeofahorizontallineis0.Theequationofthehorizontallinepassingthrough
6. Theslopeofaverticallineisundefined.Theequationoftheverticallinepassingthrough
7.(a) Yes,thegraphof y 3isahorizontalline3unitsbelowthe x axis.
(b) Yes,thegraphof x 3isaverticalline3unitstotheleftofthe y axis.
(c) No,alineperpendiculartoahorizontallineisverticalandhasundefinedslope.
(d) Yes,alineperpendiculartoaverticallineishorizontalandhasslope0.
8. y 5x 5 0 y=_3 x=_3 Yes,thegraphsof y 3and x 3areperpendicularlines.
thatlieontheline.Thustheslopeof
19. Firstwefindtwopoints
theequationofthelineis
20. Wefindtwopointsonthegraph,
equationofthelineis
21. Wechoosethetwointerceptsaspoints,
theequationofthelineis
22. Wechoosethetwointercepts,
.Sotheslopeis
25.
28. Usingtheequation y
29. Firstwefindtheslope,whichis
30. Firstwefindtheslope,whichis
31. Wearegiventwopoints,
32. Wearegiventwopoints,
y1 m x x 1 ,weget y 7
33. Wearegiventwopoints,
34. Wearegiventwopoints,
.Thus,theslopeis
35. Sincetheequationofalinewithslope0passingthrough a b is y b ,theequationofthislineis y 3.
36. Sincetheequationofalinewithundefinedslopepassingthrough
37. Sincetheequationofalinewithundefinedslopepassingthrough
38. Sincetheequationofalinewithslope0passingthrough
a
b
a b
a
b
is x a ,theequationofthislineis x 3.
is x a ,theequationofthislineis x 2.
is y b ,theequationofthislineis y 1.
39. Anylineparallelto y 2 x 8hasslope2.Thedesiredlinepassesthrough
, weget y 4
40. Anylineperpendicularto y 1 2 x 7hasslope 1
,sosubstituting into y y1 m
x x 1
,weget y 2
41. Sincetheequationofahorizontallinepassingthrough a b
b ,theequationofthehorizontallinepassingthrough 4 5
is y 5.
42. Anylineparalleltothe y axishasundefinedslopeandanequationoftheform x a .Sincethegraphofthelinepasses throughthepoint
,theequationofthelineis
43. Since3 x 2 y 4
2,theslopeofthislineis 3 2 .Thus,thelineweseekisgivenby y
44. Since2
and b 6intotheslopeinterceptformula,thelineweseekisgivenby y 2
45. Anylineparallelto x 5hasundefinedslopeandanequationoftheform x a .Thus,anequationofthelineis x 1.
46. Anylineperpendicularto y 1hasundefinedslopeandanequationoftheform x a .Sincethegraphofthelinepasses throughthepoint 2 6,anequationofthelineis x 2.
47. Firstfindtheslopeof3 x
.Thus,theslopeofanylineperpendicular to3 x 4 y 7 0is m
48. Firstfindtheslopeoftheline4
.Sotheslopeofthe linethatisperpendicularto4
49. Firstfindtheslopeofthelinepassingthrough
ofthelineweseekis
50. Firstfindtheslopeofthelinepassingthrough
,andsotheslopeoftheline thatisperpendicularis
51.(a) y 1x 1 (_2,l 1)
53.
b=6 b=3 b=_1 b=_3 b=_6 b=1 b=0 y 2 x b , b 0, 1, 3, 6.Theyhavethesame slope,sotheyareparallel.
3 2 .Eachofthelines containsthepoint 0 3 becausethepoint 0 3 satisfieseachequation y mx 3.Since 0 3 ison the y axis,theyallhavethesame y intercept.
,
eachequation
57. y x 4.Sotheslopeis1andthe y interceptis 4. y 1x 1 58. y 1 2 x 1.Sotheslopeis 1 2 andthe y interceptis 1. y 1x 1
59. 2 x y 7 y 2 x 7.Sotheslopeis2andthe y interceptis7. y 1x 1
2
x .Sotheslopeis 2 5 andthe y interceptis0. y 1x 1l 61. 4 x
theslopeis
theslopeis 3 4 andthe y interceptis 3. y 1x 1l
63. y 4canalsobeexpressedas y 0 x 4.Sotheslopeis 0andthe y interceptis4. y 1x 1l
64. x 5cannotbeexpressedintheform y mx b .So theslopeisundefined,andthereisno y intercept.Thisisa verticalline.
y 1x 1l
65. x 3cannotbeexpressedintheform y mx b .Sothe slopeisundefined,andthereisno y intercept.Thisisa verticalline. y 1x 1
66. y 2canalsobeexpressedas y 0 x 2.Sotheslope is0andthe y interceptis 2. y 1x 1l
67. 3 x 2 y 6 0.Tofind x intercepts,weset y 0and solvefor x :3 x 2 0 6 0 3 x 6 x 2,so the x interceptis2.
Tofind y intercepts,weset x 0andsolvefor y :
3 0 2 y 6 0 2 y 6 y 3,sothe y interceptis 3. y 1x 1
68. 6 x 7 y 42 0.Tofind x intercepts,weset y 0and solvefor x :6 x 7 0 42 0 6 x 42 x 7,so the x interceptis7.
Tofind y intercepts,weset x 0andsolvefor y :
6 0 7 y 42 0 7 y 42 y 6,sothe y interceptis 6. y 2x 2
69. 1 2 x 1 3 y 1 0.Tofind x intercepts,weset y 0and
solvefor x : 1 2 x 1 3 0 1 0 1 2 x 1 x 2, sothe x interceptis 2.
Tofind y intercepts,weset x 0andsolvefor y : 1 2 0 1 3 y 1 0 1 3 y 1 y 3,sothe y interceptis3. y 1x 1
70. 1 3 x 1 5 y 2 0.Tofind x intercepts,weset y 0and
solvefor x : 1 3 x 1 5 0 2 0 1 3 x 2 x 6,so the x interceptis6.
1
Tofind y intercepts,weset x 0andsolvefor y : 1 3
2
y 10,sothe y interceptis 10. y 2x 2
71. y 6 x 4.Tofind x intercepts,weset y 0andsolve
for x :0 6 x 4 6 x 4 x 2 3 ,sothe
x interceptis 2 3
Tofind y intercepts,weset x 0andsolvefor y : y 6 0 4 4,sothe y interceptis4. y 1x 1
72. y 4 x 10.Tofind x intercepts,weset y 0and solvefor x :0 4 x 10 4 x 10 x 5 2 ,so the x interceptis 5 2
Tofind y intercepts,weset x 0andsolvefor y : y 4 0 10 10,sothe y interceptis 10. y x 2 1
73. Todetermineifthelinesareparallel orperpendicular,wefindtheirslopes.Thelinewithequation y 2 x 3hasslope2. Thelinewithequation2 y 4 x 5
5 2 alsohasslope2,andsothelinesareparallel.
74. Todetermineifthelinesareparallel orperpendicular,wefindtheirslopes.Thelinewithequation y 1 2 x 4hasslope 1 2
Thelinewithequation2 x 4 y 1 4 y 2 x 1 y 1 2 x 1 4 hasslope 1 2 1 12 ,andsothelinesareneither parallelnorperpendicular.
75. Todetermineifthelinesareparallelorperpendicular,wefindtheirslopes.Thelinewithequation2x 5 y 8 5 y 2 x 8 y
.Thelinewithequation10
4 y
1
y 5 2 x 1 4 has slope 5 2 1 25 ,andsothelinesareperpendicular.
x
76. Todetermineifthelinesareparallel orperpendicular,wefindtheirslopes.Thelinewithequation15 x 9 y 2 9 y 15 x 2 y 5 3 x 2 9 hasslope 5 3 .Thelinewithequation3 y 5 x 5 3 y 5 x 5 y 5 3 x 5 3 hasslope 5 3 ,andsothelinesareparallel.
77. Todetermineifthelinesareparallelorperpendicular,wefindtheirslopes.Thelinewithequation7x 3 y 2 3 y 7 x 2 y 7 3 x 2 3 hasslope 7 3 .Thelinewithequation9 y 21
slope 7 3 1 73 ,andsothelinesareneitherparallelnorperpendicular.
78. Todetermineifthelinesareparallelorperpendicular,wefindtheirslopes.Thelinewithequation6 y 2 x 5 6 y 2 x 5
.Thelinewithequation2
slope 3 1 13 ,andsothelinesareperpendicular.
79. Wefirstplotthepointstofindthepairsofpointsthatdetermineeachside.Nextwe findtheslopesofoppositesides.Theslopeof AB is 4 1 7 1 3 6 1 2 ,andthe slopeof DC is 10 7 5 1
3 6 1 2 .Sincetheseslopeareequal,thesetwosides areparallel.Theslopeof AD is 7 1 1 1 6 2 3,andtheslopeof BC is 10 4 5 7 6 2 3.Sincetheseslopeareequal, thesetwosidesareparallel. Hence ABCD isaparallelogram.
80. Wefirstplotthepointstodeterminetheperpendicularsides.Nextfindtheslopesof thesides.Theslopeof AB
,andtheslopeof AC is 8 1 9 3 9 6 3
thesidesareperpendicular, and ABC isarighttriangle.
81. Wefirstplotthepointstofindthepairsofpointsthatdetermineeachside.Nextwe findtheslopesofoppositesides.Theslopeof AB
andthe slopeof DC is 6
.Sincetheseslopeareequal,thesetwosides areparallel.Slopeof AD is 6 1 0 1 5 1 5,andtheslopeof BC is 3 8 11 10 5 1 5.Sincetheseslopeareequal,thesetwosidesareparallel. Since slopeof AB slopeof AD 1 5 5 1,thefirsttwosidesare eachperpendiculartothesecondtwosides.Sothesidesformarectangle.
82.(a) Theslopeofthelinepassingthrough 1 1 and 3 9 is 9 1 3 1 8 2 4.Theslopeofthelinepassingthrough 1 1 and 6 21 is 21 1 6 1 20 5 4.Sincetheslopesareequal,thepointsarecollinear.
(b) Theslopeofthelinepassingthrough
2.Theslopeofthelinepassingthrough
.Sincetheslopesarenotequal,thepointsarenotcollinear.
83. Weneedtheslopeandthemidpointoftheline AB .Themidpointof AB
1.Theslopeoftheperpendicularbisectorwillhaveslope
,andtheslopeof
1.Usingthe pointslopeform,theequationof theperpendicularbisectoris
84. Wefindtheintercepts(thelengthofthesides).When x 0,wehave2 y
3,andwhen
85.(a) Westartwiththetwopoints a 0 and 0 b .Theslopeofthelinethatcontainsthemis b 0 0 a b a .Sotheequation ofthelinecontainingthemis y b a x b (usingtheslopeinterceptform).Dividingby b (since b 0)gives y b x a 1 x a y b
1. (b) Setting a 6and b 8,weget x 6 y 8
86.(a) Thelinetangentat 3 4 willbeperpendiculartothelinepassingthroughthepoints
.Theslopeof thislineis
.Thus,theslopeofthetangentlinewillbe
.Thentheequationofthetangent
(b) Sincediametricallyoppositepointsonthecirclehaveparalleltangentlines,theotherpointis
87. Usingthediagramprovided,wecalculatethecoordinatesofthemidpoints: m 1 hascoordinates
Thelinejoiningthemidpointsthushasslope
0,andsoitisparalleltothethirdside(asegmentofthe x axis).
Thelinejoiningthemidpointshaslength
,halfthelengthofthethird sideofthetriangle;andsowehaveverifiedbothconclusionsofthetheorem
88.(a) Thesloperepresentstheincreaseintheaveragesurfacetemperaturein Cperyear.The T interceptistheaverage surfacetemperaturein1950,or15 C.
(b) In2050, t 2050 1950 100,so T 0 02
17degreesCelsius.
89.(a) Theslopeis0 0417 D 0 0417 200 8 34.Itrepresentstheincreaseindosageforeachoneyearincreaseinthe child’sage.
(b) When a 0, c 8 34 0 1 8 34mg.
90.(a) y 20x 100l 200l 406080100
91.(a) y x
l 10,000l 5001000
92.(a)
(b) Theslope, 4,representsthedeclineinnumberofspacessoldfor each$1increaseinrent.The y interceptisthenumberofspacesat thefleamarket,200,andthe x interceptisthecostperspacewhenthe managerrentsnospaces,$50.
(b) Theslopeisthecostpertoasteroven,$6.The y intercept,$3000,is themonthlyfixedcost—thecostthatisincurrednomatterhowmany toasterovensareproduced.
(b) Substituting a forbothFandC,wehave
.Thusbothscalesagreeat
93. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
(a) Using n inplaceof x and t inplaceof y ,wefindthattheslopeis
equationis
(b) When n 150,thetemperatureisapproximatelygivenby
94.(a) Using t inplaceof x and V inplaceof y ,wefindtheslopeoftheline usingthepoints
4000
and
4
.Thus,theslopeis m
200 4000 4 0 3800
950.Usingthe V intercept,the linearequationis V 950t 4000.
(c) Thesloperepresentsadecreaseinthevalueofthecomputerof$950 eachyear.The V interceptistheoriginalpriceofthecomputer.
(d) When t 3,thevalueofthecomputerisgivenby V 950 3 4000 1150. (b) y 2x
95. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
(a) Wearegiven changeinpressure 3meterchangeindepth 29 9 3 997.Using P for pressureand d fordepth,andusingthepoint P 103when d 0, wehave P 103
103.
(c) Thesloperepresentstheincreaseinpressurepermeterofdescent. The y interceptrepresentsthepressureatthesurface.
(d) When P 690,wehave690
d 58 9m.Thusthepressureis690kPaatadepthofapproximately 59m. (b) y x
96. Slopeistherateofchangeofonevariableperunitchangeinanothervariable.Soiftheslopeispositive,thenthe temperatureisrising.Likewise,iftheslopeisnegativethenthetemperatureisdecreasing.Iftheslopeis0,thenthe temperatureisnotchanging.
97. Welabelthethreepoints A, B ,and C .Iftheslopeofthelinesegment AB isequaltotheslopeofthelinesegment BC , thenthepoints A, B ,and C arecollinear.Usingthedistanceformula,wefindthedistancebetween A and B ,between B and C ,andbetween A and C .Ifthesumofthetwosmallerdistancesequalsthelargestdistance,thepoints A, B ,and C are collinear.
Anothermethod: Findanequationforthelinethrough A and B .Thencheckif C satisfiestheequation.Ifso,thepointsare collinear.
1.11
SOLVINGEQUATIONSANDINEQUALITIESGRAPHICALLY
1. Thesolutionsoftheequation x 2 2 x 3 0arethe x interceptsofthegraphof y x 2 2 x 3.
2. Thesolutionsoftheinequality x 2 2 x 3 0arethe x coordinatesofthepointsonthegraphof y x 2 2 x 3thatlie above the x axis.
3.(a) Fromthegraph,itappearsthatthegraphof y x 4 3 x 3 x 2 3 x has x intercepts 1,0,1,and3,sothesolutions totheequation x 4 3 x 3 x 2 3 x 0are x 1, x 0, x 1,and x 3.
(b) Fromthegraph,weseethatwhere 1 x 0or1 x 3,thegraphliesbelowthe x axis.Thus,theinequality x 4 3 x 3 x 2 3 x 0issatisfiedfor x 1 x 0or1 x 3 [ 1 0] [1 3]
4.(a) Thegraphsof y 5 x x 2 and y 4intersectat x 1andat x 4,sotheequation5 x x 2 4hassolutions x 1 and x 4.
(b) Thegraphof y 5 x x 2 liesstrictlyabovethegraphof y 4when1 x 4,sotheinequality5x x 2 4is satisfiedforthosevaluesof x ,thatis,for x 1 x 4 1 4
5.(a)
y x 3 x 2 ; [ 2
2] by [ 1
1] (b) x intercepts0,1; y intercept0. y x 3 x 2 x 2 x 1,so y 0 x 0or x 1and x 0 y 0. (c) Thegraphisnotsymmetricwithrespecttoeitheraxisortheorigin.
6.(a)
7.(a)
1 1 2 3
2 y x 4 2 x 3 ;[ 2 3]by[ 3 3] (b) x intercepts0,2; y intercept0. y x 4 2 x
(c) Thegraphisnotsymmetricwithrespecttoeitheraxisortheorigin.
2 2 4
(c) Thegraphissymmetricwithrespecttothe y axis:
(b) x intercepts 1, y intercept1. y
(c) Thegraphissymmetricwithrespecttothe y axis:
9. Althoughthegraphsof y 3 x 2 6 x 1 2 and y 7 7 12 x 2 appeartointersectintheviewing rectangle [ 4 4] by [ 1 3],thereisnopointof intersection.Youcanverifythisbyzoomingin.
10. Althoughthegraphsof y 49 x 2 and y 1 5 41 3 x appeartointersectintheviewing rectangle [ 8 8] by [ 1 8],thereisnopointof intersection.Youcanverifythisbyzoomingin. 8 6 4 2 2 4 6 8 2 4 6 8
11. Thegraphsof y 6 4 x x 2 and y 3 x 18appearto havetwopointsofintersectionintheviewingrectangle [ 6 2] by [ 5 20].Youcanverifythat x 4and x 3areexactsolutions.
12. Thegraphsof y x 3 4 x and y x 5appeartohave onepointofintersectionintheviewingrectangle[ 4 4] by [ 15 15].Thesolutionis x 2 627. 4 2 2 4 10 10
13. Algebraically:3 x 2 5 x 4 6 2 x x 3.
Graphically:Wegraphthetwoequations y1 3 x 2and y2 5 x 4intheviewingrectangle [1 4] by [ 1 13] Zoomingin,weseethatthesolutionis x 3.
14. Algebraically: 2 3 x 11 1 x 5 3 x 10 x 6.
Graphically:Wegraphthetwoequations y1 2 3 x 11 and y2 1 x intheviewingrectangle [ 12 2] by [ 2 8].Zoomingin,weseethatthesolutionis x 6.
Algebraically:
and y2 7intheviewingrectangle
Zoomingin,weseethatthesolutionis
Graphically:Wegraphthetwoequations
rectangle[ 5 5]by[ 10 10].Zoomingin,weseethat thereisonlyonesolutionat x 4.
17. Algebraically:4 x 2 8 0 x 2 2 x 2.
Graphically:Wegraphtheequation y1 4 x 2 8and determinewherethiscurveintersectsthe x axis.Weuse theviewingrectangle [ 2 2] by [ 4 4].Zoomingin,we seethatsolutionsare x 1 41and x 1 41. 2 1 1 2 4 2 2 4
18. Algebraically: x 3 10 x 2 0 x 2 x 10 0 x 0or x 10.
Graphically:Wegraphtheequation y x 3 10 x 2 and determinewherethiscurveintersectsthe x axis.Weuse theviewingrectangle [ 12 2] by [ 5 5].Weseethatthe solutionsare x 0and x 10. 12 10 8 6 4 2
19. Algebraically: x 2 9 0 x 2 9,whichhasnoreal solution.
Graphically:Wegraphtheequation y x 2 9andsee thatthiscurvedoesnotintersectthe x axis.Weusethe viewingrectangle [ 5 5] by [ 5 30]
20. Algebraically: x 2 3 2 x
Becausethediscriminantisnegative,thereisnoreal solution.
Graphically:Wegraphthetwoequations y1 x 2 3and y2 2 x intheviewingrectangle [ 4 6] by [ 6 12],and seethatthetwocurvesdonotintersect.
2 2 4 6 5 5 10
21. Algebraically:81 x 4
Graphically:Wegraphthetwoequations y1 81 x 4 and y2 256intheviewingrectangle[ 2 2]by[250 260].
Zoomingin,weseethatsolutionsare x 133.
22. Algebraically:2
Graphically:Wegraphtheequation y 2 x 5 243and determinewherethiscurveintersectsthe x axis.Weuse theviewingrectangle [ 5 10] by [ 5 5].
Zoomingin,weseethatthesolutionis x 2 61.
23. Algebraically: x 54 80 0 x 54 80 x 5 4 80 2 4 5 x 5
Graphically:Wegraphtheequation y1 x 54 80 anddeterminewherethiscurveintersectsthe x axis.We usetheviewingrectangle [ 1 9] by [ 5 5].Zoomingin, weseethatsolutionsare x 2 01and x 7 99. 2 4 6 8 4 2 2 4
25. Wegraph y x 2 11 x 30intheviewingrectangle [2 8] by [ 0 1 0 1].Thesolutionsappeartobeexactly
x 5and x 6.[Infact
x 2 11 x 30 x 5 x 6.] 4 6 8
0.1
0.1 0.0
27. Wegraph y x 3 6 x 2 11 x 6intheviewing
rectangle[ 1 4]by[ 0 1 0 1].Thesolutionsare
x 1 00, x 2 00,and x 3 00. 1 1 2 3 4 0.1 0.1
24. Algebraically:3 x
Graphically:Wegraphthetwoequations y
3 and y2 72intheviewingrectangle[ 3 1]by [65 78].Zoomingin,weseethatthesolutionis x 2 12
26. Wegraph y x 2 075 x 0125intheviewing
rectangle [ 2 2] by [ 0 1 0 1].Thesolutionsare
x 0 25and x 0 50. 2 1 1 2
0.1 0.1
28. Since16 x 3 16 x 2 x 1 16 x 3 16 x 2 x 1 0, wegraph y 16 x 3 16 x 2 x 1intheviewing
rectangle[ 2 2]by[ 0 1 0 1].Thesolutionsare:
x 100, x 025,and x 025. 2 1 1 2
29. Wefirstgraph y x x 1intheviewingrectangle [ 1 5] by [ 0 1 0 1] and findthatthesolutionisnear1 6.Zoomingin,weseethatsolutionsis x 1 62. 1 1 2 3 4 5 0.1 0.1
30. 1 x 1 x 2 1 x 1 x 2 0 Since x isonlydefined for x 0,westartwiththeviewingrectangle
[ 1 5] by [ 1 1].Inthisrectangle,there appearstobeanexactsolutionat x 0and anothersolutionbetween x 2and x 2 5.We thenusetheviewingrectangle[2 3 2 35]by [ 0 01 0 01],andisolatethesecondsolutionas x 2 314.Thusthesolutionsare x 0and x 231.
31. Wegraph y x 13 x intheviewingrectangle [ 3 3] by [ 1 1].Thesolutions are x 1, x 0,and x 1,ascanbeverifiedbysubstitution.
32. Since x 12 isdefinedonlyfor x 0,westartby graphing y x 12 x 13 x intheviewing rectangle [ 1 5] by [ 1 1] Weseeasolutionat x 0andanotheronebetween x 3and x 35.Wethenusetheviewingrectangle
[3 3 3 4] by [ 0 01 0 01],andisolatethesecond solutionas x 3 31.Thus,thesolutionsare x 0and x 3 31.
33. Wegraph y 2 x 1and y 3 x 5intheviewingrectangle [0 9] by [0 5] andseethattheonlysolutiontotheequation 2 x 1 3 x 5is x 4,which canbeverifiedbysubstitution.
34. Wegraph y 3 x and y x 2 1intheviewingrectangle [ 4 4] by [0 4] andseethattheequation 3 x x 2 1hassolutions x 1and x 2, whichcanbeverifiedbysubstitution.
35. Wegraph y 2 x 1 1and y x intheviewingrectangle [ 1 6] by [0 6] andseethattheonlysolutiontotheequation 2 x 1 1 x is x 4,whichcan beverifiedbysubstitution.
36. Wegraph y 2 x x 1and y 8intheviewingrectangle [ 2 6] by [ 2 12] andseethattheonlysolutiontotheequation2x x 1 8is x 3, whichcanbeverifiedbysubstitution.
37. x 3 2 x 2 x 1 0,sowestartbygraphing
thefunction y x 3 2 x 2 x 1intheviewing rectangle [ 10 10] by [ 100 100].There appeartobetwosolutions,onenear x 0and anotheronebetween x 2and x 3.Wethen usetheviewingrectangle[ 1 5]by[ 1 1]and zoominontheonlysolution, x 255.
38. x 4 8 x 2 2 0.Westartbygraphingthe
function y x 4 8 x 2 2intheviewing
rectangle [ 10 10] by [ 10 10].Thereappear tobefoursolutionsbetween x 3and x 3. Wethenusetheviewingrectangle [ 5 5] by [ 1 1],andzoomtofindthefoursolutions x 2 78, x 0 51, x 0 51,and x 2 78.
39. x x 1 x 2 1 6 x x x 1 x 2 1 6 x 0.Westartbygraphing
thefunction y x x 1 x 2 1 6 x inthe
viewingrectangle [ 5 5] by [ 10 10].There appeartobethreesolutions.Wethenusethe viewingrectangle[ 2 5 2 5]by[ 1 1]and zoomintothesolutionsat x 205, x 000, and x 1 05.
40. x 4 16 x 3 .Westartbygraphingthefunctions y1 x 4 and y2 16 x 3 intheviewingrectangle [ 10 10] by [ 5 40].Thereappearstobetwosolutions,onenear x 2andanotheronenear x 2.Wethenusetheviewing rectangle [ 2 4 2 2] by [27 29],andzoomintofindthesolutionat x 2 31.Wethenusetheviewingrectangle [1 7 1 8] by [9 5 10 5],andzoomintofindthesolutionat x 1 79.
41. Wegraph y x 2 and y 3 x 10intheviewingrectangle [ 4 7] by [ 5 30] Thesolutiontotheinequalityis [ 2 5].
42. Since05 x 2 0875 x 025 05 x 2 0875 x 0
25 0,wegraph
y 0 5 x 2 0 875 x 0 25intheviewingrectangle [ 3 1] by [ 5 5].Thusthe solutiontotheinequalityis[ 2 0 25].
43. Since x 3 11 x 6 x 2 6 x 3 6 x 2 11 x 6 0,wegraph
y x 3 6 x 2 11 x 6intheviewingrectangle [0 5] by [ 5 5].Thesolution setis 100] [2
44. Since16 x 3 24 x 2 9 x 1 16 x 3 24 x 2 9 x 1 0,wegraph y 16 x 3 24 x 2 9 x 1intheviewing rectangle [ 3 1] by [ 5 5].Fromthisrectangle, weseethat x 1isan x intercept,butitis unclearwhatisoccurringbetween x
x 0.Wethenusetheviewingrectangle[ 1 0]by[ 0 01 0 01].Itshows y 0at x 0 25.Thusinintervalnotation, thesolutionis 1 0 25 0 25
45. Since x 13 x x 13 x 0,wegraph y x 13 x intheviewingrectangle[ 3 3]by[ 1 1].Fromthis,we findthatthesolutionsetis
AnotherMethod: AsinExample7,wegraph y1 x 13 and y2 x inthesameviewingrectangle,andseethat x 13 x for 1 x 0andfor1 x
47. Since
wegraph y x 1
2 x 12 intheviewing rectangle [ 2 2] by [ 5 5].Thesolutionsetis
46. Since
graph y 05 x 2 1 2 x intheviewingrectangle [ 1 1] by [ 1 1].Welocatethe x interceptsat x 0 535.Thusinintervalnotation,thesolutionis approximately 0 535]
Since
x
intheviewingrectangle [ 4 4] by [ 1 1].The x interceptiscloseto x 2.Usingatrace function,weobtain x 2 148.Thusthesolutionis [2 148
49. Wegraphtheequations y 3 x 2 3 x and y 2 x 2 4intheviewingrectangle [ 2 6]by[ 10 50].Weseethatthetwocurvesintersectat x 1andat x 4, andthatthefirstcurveislowerthanthesecondfor 1 x 4.Thus,weseethat theinequality3 x 2 3 x 2 x 2 4hassolutionset
2 4
50. Wegraphtheequations y 5 x 2 3 x and y 3 x 2 2intheviewingrectangle
[ 3 2] by [ 5 25].Weseethatthetwocurvesintersectat x 2andat x 1 2 , whichcanbeverifiedbysubstitution.Thefirstcurveishigherthanthesecondfor x 2andfor x 1 2 ,sothesolutionsetoftheinequality5 x 2 3 x 3 x 2 2is
2] 1 2 .
51. Wegraphtheequation y x 32 x 2 x 5 intheviewingrectangle
[ 7 3] by [ 120 20] andseethattheinequality x 32 x 2 x 5 0has thesolutionset 5]
52. Wegraphtheequation y 4 x 2 x 2 9 intheviewingrectangle [ 5 5] by [ 100 100] andseethattheinequality4 x 2 x 2 9 0hasthesolutionset
[ 3 3]
53. Tosolve5 3 x 8 x 20bydrawingthegraphofasingleequation,weisolate alltermsonthelefthandside:5 3 x 8 x 20
5 3 x 8 x 20 8 x 20 8 x 20 11 x 25 0or11 x 25 0. Wegraph y 11 x 25,andseethatthesolutionis x 227,asinExample2.
54. Graphing y x 3 6 x 2 9 x and y x intheviewingrectangle [ 0 01 0 02] by [ 0 05 0 2],weseethat x 0and x 0 01aresolutionsoftheequation
x 3 6 x 2 9 x
55.(a) Wegraphtheequation
y 10 x 0 5 x 2 0 001 x 3 5000intheviewing rectangle [0 450] by [ 5000 20000].
100 200 300 400 0 10000 20000
(b) Fromthegraphitappearsthat
0 10 x 005 x 2 0001 x 3 5000for 100 x 500,andso101cooktopsmustbeproduced to begin tomakeaprofit.
(c) Wegraphtheequations y 15,000and y 10 x 0 5 x 2 0 001 x 3 5000intheviewing rectangle [250 450] by [11000 17000].Weuseazoom ortracefunctiononagraphingcalculator,andfindthat thecompany’sprofitsaregreaterthan$15,000for 279 x 400.
56. Note:Onpage123ofthefirstprintingofthetext,thedisplayedequationin thisexerciseshouldread y 2 4 x x 1000 2 andpart(a)oftheexerciseshouldreadasfollows: (a) Graphtheequationfor0 x 160. (a)
(b) Usingazoomortracefunction,wefindthat y 16for x 1067.We couldestimatethissinceif x 160,then x 1000 2 0 0256.Sofor x 160wehave 2 4 x
57. Answerswillvary.
58. Calculatorsperformoperationsinthefollowingorder:Exponentsareappliedbeforedivision,anddivisionisappliedbefore addition.Therefore, Y_1=x^1/3 isinterpretedas y x 1 3 x 3 ,whichistheequationofaline.Likewise, Y_2=x/x+4 is interpretedas y x x 4 1 4 5.Instead,enterthefollowing: Y_1=x^(1/3), Y_2=x/(x+4).
1.12 MODELINGVARIATION
1. Ifthequantities x and y arerelatedbytheequation y 5 x thenwesaythat y is directlyproportional to x ,andtheconstant of proportionality is5.
2. Ifthequantities x and y arerelatedbytheequation y 5 x thenwesaythat y is inverselyproportional to x ,andtheconstant of proportionality is5.
3. Ifthequantities x , y ,and z arerelatedbytheequation z 5 x y thenwesaythat z is directlyproportional to x and inversely proportional to y
4. Because z isjointlyproportionalto x and y ,wemusthave z kxy .Substitutingthegivenvalues,weget 10 k 45 20k k 1 2 .Thus, x , y ,and z arerelatedbytheequation z 1 2 xy.
5.(a) Intheequation y 3 x , y isdirectlyproportionalto x (b) Intheequation y 3 x 1, y isnotproportionalto x
6.(a) Intheequation y 3 x 1 , y isnotproportionalto x (b) Intheequation y 3 x , y isinverselyproportionalto x
7. T kx ,where k isconstant.
9. k z ,where k isconstant.
11. y ks t ,where k isconstant.
13. z k y ,where k isconstant.
8. P k ,where k isconstant.
10. kmn ,where k isconstant.
12. P k T ,where k isconstant.
14. A kx 2 t 3 ,where k isconstant.
15. V kl h ,where k isconstant.
17. R kP 2 t 2 b3 ,where k isconstant.
16. S kr 2 2 ,where k isconstant.
18. A k xy ,where k isconstant.
19. Since y isdirectlyproportionalto x , y kx .Since y 32when x 8,wehave32 k 8 k 4.So y 4 x
20. isinverselyproportionalto t ,so k t .Since 3when t 8,wehave3 k 8 k 24,so 24 t .
21. A variesinverselyas r ,so A k r .Since A 15when r 5,wehave15 k 5 k 75.So A 75 r .
22. P isdirectlyproportionalto T ,so P kT .Since P 60when T 72,wehave60 k 72
5 6 T
23. Since A isdirectlyproportionalto x andinverselyproportionalto t , A kx t .Since A 42when x 7and t 3,we
have42 k 7 3 k 18.Therefore, A 18 x t
24. S kpq .Since S 350when p 7and q 20,wehave350 k 720 350 140k k 5 2 .So S 5 2 pq
25. Since W isinverselyproportionaltothesquareof r , W k r 2 .Since W 24when r 3,wehave24 k
So W 216 r 2 .
26. t k xy r .Since t 125when x 10, y 15,and r 12,wehave125 k 10 15 12 k 10.So t 10 xy r
27. Since C isjointlyproportionalto l , ,and h ,wehave C kl h .Since C 128when l
h 2,wehave 128 k 222 128 8k k 16.Therefore, C 16l h .
28. H kl 2 2 .Since H 36when l 2and 1 3 ,wehave36
29. R k x .Since R 2 5when x
30. M k abc d .Since
31.(a) z k x 3 y 2
(b) Ifwereplace x with3 x and y with2 y ,then
32.(a) z k x 2 y 4
(b) Ifwereplace x with3 x and y with2 y ,then
33.(a) z kx 3 y 5
(b) Ifwereplace x with3 x and y with2 y ,then
34.(a) z k x 2 y 3
(b) Ifwereplace x with3 x and y with2 y ,then z
35.(a) Theforce F neededis F kx .
(b) Since F 30Nwhen x 9cmandthespring’snaturallengthis5cm,wehave30 k 9 5 k 7 5Ncm.
(c) Frompart(b),wehave F 7 5 x .Substituting x 11 5 6into
216.
36.(a) C kpm
(b) Since C 60,000when p 120and m 4000,weget60,000 k 1204000 k 1 8 .So C 1 8 pm .
(c) Substituting p 92and m 5000,weget C 1 8 925000 $57,500.
37.(a) P ks 3
(b) Since P 96when s 20,weget96 k 203 k 0 012.So P 0 012s 3
(c) Substituting x 30,weget P 0012 303 324watts.
38. LettheamountofsolubleCO2 be x andthetemperatureofthewaterbe T .Becausethesequantitiesareinversely proportional, x k T .Wearegiventhatwhen T 273K, x 3g,so3 k 273 k 819.Thus,if T 298,then x 819 298 2 75g.
39. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
D ks 2 .Since D 45when s 60,wehave45 k 602 ,so k 00125.Thus, D 00125s 2 .If D 60,then 60 0 0125s 2 s 2 4800,so s 69km/h(forsafetyreasonswerounddown).
40. L ks 2 A.Since L 5950when s 80and A 46,wehave5950 k 802 46 k 0 02021.Thus L 002021s 2 A .When A 56and s 64,theliftis L 002021 642 56 46357N.
41. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. F kAs 2 .Since F 980when A 4and s 8,wecansolvefor k :980 k 482 980 256k k 3 83.Now when A 25and F 780weget780
42.(a) T 2 kd 3
(b) Substituting T 365and d 149 106 ,weget3652 k
(c) T 2 4
5 98 104 days 164years.
43.(a) P kT V
4 03
.HencetheperiodofNeptuneis
(b) Substituting P 332, T 400,and V 100,weget332 k 400 100 k 83.Thus k 83andtheequationis P 8 3 T V
(c) Substituting T 500and V 80,wehave P 8
500
80 51875kPa.Hencethepressureofthesampleofgasis about51 9kPa.
44.(a) F k s 2 r (b) Forthefirstcarwehave 1 768and s1 100andforthesecondcarwehave 2 1200.Sincetheforcesareequal wehave k 768 1002 r k 1200 s 2 2 r 16 1002 25 s 2 2 ,so s2 80km/h.
45.(a) Theloudness L isinverselyproportionaltothesquareofthedistance d ,so L k d 2 . (b) Substituting d 10and L 70,wehave70 k 102 k 7000.
(c) Substituting2d for d ,wehave L
(d) Substituting 1 2 d for d ,wehave L
,sotheloudnessischangedbyafactorof 1 4
,sotheloudnessischangedbyafactorof4.
46.(a) Thepower P isjointlyproportionaltothearea A andthecubeofthevelocity ,so P kA 3
(b) Substituting2 for and 1 2 A for A,wehave P
(c) Substituting 1 2 for
47.(a) R kL d 2
and3 A for A,wehave
(b) Since R 140when L 1 2and d 0 005,weget140
(c) Substituting L 3and d 0 008,wehave R 7 2400
(d) Ifwesubstitute2d for d and3 L for L ,then R
3 ,sothepowerischangedbyafactorof4.
,sothepowerischangedbyafactorof 3 8 .
0 002916.
2400
137ohms.
,sotheresistanceischangedbyafactorof 3 4
48. Let S bethefinalsizeofthecabbage,inkilograms,let N betheamountofnutrientsitreceives,ingrams,andlet c bethe numberofothercabbagesaroundit.Then S k N c .When N 600and c 12,wehave S 15,sosubstituting,wehave 15 k 600 12 k 0 3.Thus S 0 3 N c .When N 300and c 5,thefinalsizeis S 0 3 300 5 18kg.
49. Note:Inthefirstprintingofthetext,theanswergivenforpart(b)ofthisexerciseisincorrect.
(a) Forthesun, E S k 60004 andforearth, E E k 3004 .Thus E S E E k 60004 k 3004 6000 300 4 204 160,000.Sothesun produces160,000timestheradiationenergyperunitareathantheEarth.
(b) Thesurfaceareaofthesunis4 696,0002 andthesurfaceareaoftheEarthis4 63402 .Sothesunhas
4 696,0002 4 63402 696,000 6340 2 timesthesurfaceareaoftheEarth.Thusthetotalradiationemittedbythe sunis 160,000 696,000 6340 2 1,928,234,931timesthetotalradiationemittedbytheEarth.
50.(a) Let T and l betheperiodandthelengthofthependulum,respectively.Then T k l (b) T k l T 2 k 2 l l T 2 k 2 .Iftheperiodisdoubled,thenewlengthis 2 T 2 k 2 4 T 2 k 2 4l .Sowewould quadruplethelength l todoubletheperiod T
51.(a) Since f isinverselyproportionalto L ,wehave f k L ,where k isapositiveconstant.
(b) Ifwereplace L by2 L wehave k 2 L 1 2 k L 1 2 f .Sothefrequencyofthevibrationiscutinhalf.
52.(a) Since r isjointlyproportionalto x and P x ,wehave r kx P x ,where k isapositiveconstant.
(b) When10peopleareinfectedtherateis r k 10 5000 10 49,900k .When1000peopleareinfectedtherateis r
4,000,000k .Sotherateismuchhigherwhen1000peopleareinfected.Comparing theserates,wefindthat 1000peopleinfected 10peopleinfected 4,000,000k 49,900k 80.Sotheinfectionratewhen1000peopleareinfected isabout80timesaslargeaswhen10peopleareinfected.
(c) Whentheentirepopulationisinfectedtherateis r k 50005000 5000 0.Thismakessensesincethereareno morepeoplewhocanbeinfected.
53. Wesubstitute e 0 2kWhkmand 100km/hintothesecondgivenequation:0
Now,becausetherangeis R 500kmforthesevaluesof e and ,wecanusethefirstequationtocalculatethevalueof C :
500 C
02 C 100,soafullchargeforthisvehicleis100kWh.
Substituting e k 2 intothefirstgivenequation,wehave R C k
2
Soat130km
54.(a) Wearegiventhatthemassflowrateis m A 0 0
.Because m isconstant,wecanequatetheflowratesforthewider andnarrowersectionsofpipe: A
A .Thevelocityofthefluidisindeedinverselyproportional tothecrosssectionalareaofthepipe.
(b) Wesubstitutethegivenvaluesintoourexpressionfor
s.Thus, thefluidflowsthroughtheconstrictedsectionofpipeat45m/s.
55. Using B k L d 2 with k 0 080, L 2 5
Thestar’sapparentbrightnessisabout3 47 10 14 Wm2
56. First,wesolve B k L d 2 for d : d 2 k L B d k L B because d ispositive.Substituting
,sothestarisapproximately2
57. Examplesincluderadioactivedecayandexponentialgrowthinbiology.
CHAPTER1REVIEW
1. CommutativePropertyforaddition. 2. CommutativePropertyformultiplication. 3. DistributiveProperty.
DistributiveProperty.
mfromearth.
21. 78,250,000,000 7 825 1010
22.
23. ab c
24.
x 2or x 5.However,since x 2makestheexpressionundefined,werejectthissolution.Hencetheonly solutionis x 5.
68. x 4 8 x 2 9 0 x 2 9
x 3,however x 2 1 0hasnorealsolution.Thesolutionsare x 3.
x 3
83. Let x bethenumberofkilogramsofraisins.Thenthenumberofkilogramsofnutsis50 x
20.Thusthemixtureuses 20kilogramsofraisinsand50 20 30kilogramsofnuts.
84. Let t bethenumberofhoursthatthedistrictsupervisordrives.Thenthestoremanagerdrivesfor t 1 4 hours.
Whentheypasseachother,theywillhavetraveledatotalof256kilometers.So72
2.Sincethesupervisorleavesat2:00 P M .andtravelsfor2hours,theypass eachotherat4:00 P. M .
85. Let r betheathlete’srunningspeed,inmi/h.Thentheycycleat r 8km/h.
Sincethetotaltimeoftheworkoutis1hour,wehave
speedis
86. Let x bethelengthofonesideincm.Then28 x isthelengthoftheotherside.UsingthePythagoreanTheorem,we have
2 x 12 x 16 0.So x 12or x 16.If x 12,thentheothersideis28 12 16.Similarly,if x 16,then theothersideis12.Thesidesare12cmand16cm.
87. Let t bethetimeitwouldtaketheinteriordecoratortopaintalivingroomiftheyworkalone.Itwouldtaketheassistant 2t hoursalone,anditwouldtaketheapprentice3t hoursalone.Thus,thedecoratordoes 1 t ofthejobperhour,theassistant does 1 2t ofthejobperhour,andtheapprenticedoes
t ofthejobperhour.So
6t 11 t 11 6 .Thus,itwouldtakethedecorator1hour50minutestopaintthelivingroom alone.
88. Let l belengthofeachgardenplot.Thewidthofeachplotisthen 80 l andthetotalamountoffencingmaterialis
4 l 10l 12 0.So l 10or l 12.If l 10m,thenthewidthofeachplotis 80 10 8m.If l 12m,thenthe widthofeachplotis 80 12 667m.Bothsolutionsarepossible. 89. 3 x 2
Interval: [ 2 0]
Graph: -3
Graph: _20 91. x 2 7 x 8 0 x 8 x 1 0.Theexpressionontheleftoftheinequalitychangessignwhere x 8andwhere x 1.Thuswemustchecktheintervalsinthefollowingtable.
Graph: _18
92. x 2 1 x 2 1 0
x 1 x
1 0.Theexpressionontheleftoftheinequalitychangessignwhen x 1and x 1.Thuswemustchecktheintervalsinthefollowingtable.
Interval: [ 1
Graph: _11
93. x 4 x 2 4
0 x 4
x 2
0.Theexpressionontheleftoftheinequalitychangessignwhere x
2,where x 2, andwhere x 4.Thuswemustchecktheintervalsinthefollowingtable.
Sincetheexpressionisnotdefinedwhen x 2
Graph: _224
weexcludethesevaluesandthesolutionis
expressionontheleftoftheinequalitychangessignwhen 2
and2.Thuswemustchecktheintervalsinthefollowing table.
Graph: _212
Themidpointis
Graph: 3.984.02 97.(a) y x P Q 1 1 (b) Thedistancefrom P to Q is
Thelinehasslope
Theradiusofthiscirclewasfoundinpart(b).Itis
(c) Themidpointis
98.(a) y x P Q 1 1 (b) Thedistancefrom P to Q is
(d) Thelinehasslope
(e) Theradiusofthiscirclewasfoundinpart(b).Itis
104. Themidpointofsegment PQ
,andtheradiusis 1 2 ofthedistancefrom P to Q ,or
Sincetheleftsideofthisequationmustbegreaterthanorequaltozero,thisequationhasnograph.
(b) Thisistheequationofthepoint
115. x 16 y 2
(a) x axissymmetry:replacing y by y gives x 16 y 2 16 y 2 ,whichisthesameastheoriginalequation,so thegraphissymmetricaboutthe x axis. y axissymmetry:replacing x by x gives x 16 y 2 x y 2 16,whichisnotthesameastheoriginal equation,sothegraphisnotsymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by y gives x 16 y 2 x 16 y 2 ,whichisnotthesameas theoriginalequation,sothegraphisnotsymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor x : x 16 02 16,sothe x interceptis16.
Tofind y intercepts,weset x 0andsolvefor y :0 16 y 2 y 4,sothe y interceptare4and 4.
116. x 2 4 y 2 9
(a) x axissymmetry:replacing y by y gives x
9,whichisthesameastheoriginal equation,sothegraphissymmetricaboutthe x axis.
y axissymmetry:replacing x by
gives
9,whichisthesameastheoriginal equation,sothegraphissymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by y gives
9,thesameasthe originalequation,sothegraphissymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor
Tofind y intercepts,weset x 0andsolvefor
x 2 9 y 9
(a) x axissymmetry:replacing y by y gives
3,sothe x interceptsare3and 3.
3
9,sothegraphisnotsymmetricaboutthe x axis.
y axissymmetry:replacing x by x gives
Originsymmetry:replacing x by x and y by
y axis.
9 y 9,sothegraphisnot symmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor
3,sothe x interceptsare3and 3. Tofind y intercepts,weset x 0andsolvefor y
1,sothe y interceptis 1.
x 12 y 2 4
(a) x axissymmetry:replacing y by y gives
4,sothegraphissymmetric aboutthe x axis.
y axissymmetry:replacing x by x gives
aboutthe y axis.
Originsymmetry:replacing x by x and y
4,sothegraphis notsymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor
3or1,sothe x interceptsare 3and1.
Tofind y intercepts,weset x 0andsolvefor y
y interceptsare 3and 3.
119. x 2 4 xy y 2 1
(a) x axissymmetry:replacing y by y gives x
1,whichisdifferentfromtheoriginalequation,so thegraphisnotsymmetricaboutthe x axis. y axissymmetry:replacing x by x gives
1,whichisdifferentfromtheoriginalequation, sothegraphisnotsymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by
1,so thegraphissymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor x
1and1.
Tofind y intercepts,weset x 0andsolvefor y
1,sothe y interceptsare 1and1.
120. x 3 xy 2 5
(a) x axissymmetry:replacing y by y gives x 3 x y 2 5 x 3 xy 2 5,sothegraphissymmetricaboutthe x axis.
y axissymmetry:replacing x by x gives x
y 2 5,whichisdifferentfromtheoriginalequation,sothe graphisnotsymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by y gives x 3 x y 2 5,whichisdifferentfromtheoriginal equation,sothegraphisnotsymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor x
5,sothe x interceptis 3 5.
Tofind y intercepts,weset x 0andsolvefor y :03 0 y 2 5hasnosolution,sothereisno y intercept.
121.(a) Wegraph y x 2 6 x intheviewingrectangle
[ 10 10] by [ 10 10]. 10 5 5 10
(b) Fromthegraph,weseethatthe x interceptsare0 and6andthe y interceptis0.
123.(a) Wegraph y x 3 4 x 2 5 x intheviewing rectangle[ 4 8]by[ 30 20]. 4 2 2 4 6 8 20 20
(b) Fromthegraph,weseethatthe x interceptsare 1, 0,and5andthe y interceptis0.
122.(a) Wegraph y 5 x intheviewingrectangle [ 10 6] by [ 1 5]. 10 5 5 2 4
(b) Fromthegraph,weseethatthe x interceptis5and the y interceptisapproximately2 24.
124.(a) Wegraph x 2 4 y 2 1 y 2 1 x 2 4 y 1 x 2 4 intheviewingrectangle [ 3 3] by [ 2 2] 3 2 1 1 2 3 2 1 1 2
(b) Fromthegraph,weseethatthe x interceptsare 2 and2andthe y interceptsare 1and1.
125.(a) Thelinethathasslope2and y intercept6hastheslopeinterceptequation y 2 x 6.
(b) Anequationofthelineingeneralformis2x y 6 0.
126.(a) Thelinethathasslope 1 2 andpassesthroughthepoint
127.(a) Thelinethatpassesthroughthepoints
128.(a) Thelinethathas x intercept4and y intercept12passesthroughthepoints
129.(a) Theverticallinethatpassesthroughthepoint 3 2 hasequation x 3.
(b) x 3 x 3 0. (c) y 1x 1
130.(a) Thehorizontallinewith y intercept5hasequation y 5.
(b) y 5 y 5 0.
y 1x 1
131.(a) Thelinecontaining 2
4
and 4
4 hasslope m
4 4 4 2 8 2 4,andthelinepassingthroughtheoriginwith thisslopehasequation y 4 x (b) y 4 x 4
132.(a) Thelinewithequation x 4
has slope 1 4 ,soanylineperpendiculartoithasslope
4.Sincethe desiredlinepassesthrough 2 3,ithasequation y 3 4 x 2 y 4 x 11. (b) y 4 x
133.(a) Theslope,0 3,representstheincreaseinlengthofthespringforeachunitincreasein weight .The s interceptisthe restingornaturallengthofthespring. (b) When 5, s 0 3 5 2 5 1 5 2 5 4 0centimeters.
134.(a) Weusetheinformationtofindtwopoints, 0 60000 and 3 70500.Thentheslopeis m 70,500 60,000 3 0 10,500 3 3,500.So S 3,500t 60,000.
(b) Thesloperepresentstheaccountant’sannualincreaseinsalary,$3500,andthe S interceptrepresentstheaccountant’s initialsalary,$60,000.
(c) When t 12,theaccountant’ssalarywillbe S 3500 12 60,000 42,000 60,000 $102,000.
135. Fromthegraph,weseethatthegraphsof y x 2 4 x and y x 6intersectat x 1and x 6,sothesearethe solutionsoftheequation x 2 4 x x 6.
136. Fromthegraph,weseethatthegraphof y x 2 4 x crossesthe x axisat x 0and x 4,sothesearethesolutionsof theequation x 2 4 x 0.
137. Fromthegraph,weseethatthegraphof y x 2 4 x liesbelowthegraphof y x 6for 1 x 6,sotheinequality x 2 4 x x 6issatisfiedontheinterval[ 1 6].
138. Fromthegraph,weseethatthegraphof y x 2 4 x liesabovethegraphof y x 6for x 1and6 x , sotheinequality x 2 4 x x 6issatisfiedontheintervals 1] and [6
139. Fromthegraph,weseethatthegraphof y x 2 4 x liesabovethe x axisfor x 0andfor x 4,sotheinequality x 2 4 x 0issatisfiedontheintervals 0] and [4
140. Fromthegraph,weseethatthegraphof y x 2 4 x liesbelowthe x axisfor0 x 4,sotheinequality x 2 4 x 0is satisfiedontheinterval [0 4]
141. x 2 4 x 2 x 7.Wegraphtheequations y1 x 2 4 x and y2 2 x 7intheviewingrectangle [ 10 10] by [ 5 25].Usingazoomortracefunction,wegetthe solutions x 1and x 7.
10 5 5
143. x 4 9 x 2 x 9.Wegraphtheequations y1 x 4 9 x 2 and y2 x 9intheviewingrectangle[ 5 5]by [ 25 10].Usingazoomortracefunction,wegetthe solutions x 2 72, x 1 15, x 1 00,and x 2 87. 4 2 2 4 20 10 10
142. x 4 x 2 5.Wegraphtheequations y1 x 4 and y2 x 2 5intheviewingrectangle [ 4 5] by [0 10].Usingazoomortracefunction,wegetthe solutions x 250and x 276. 4 2 0 2 4 5 10
144. x 3 5 2.Wegraphtheequations y1 x 3 5 and y2 2intheviewingrectangle [ 20 20] by [0 10].UsingZoomand/orTrace,wegetthe solutions x 10, x 6, x 0,and x 4. 20 10 0 10 20 5 10
145. x 2 12 4 x .Wegraphtheequations y1 x 2 and y2 12 4 x intheviewingrectangle[ 8 4]by[0 40].
Usingazoomortracefunction,wefindthepointsof
intersectionareat x 6and x 2.Sincewewant
x 2 12 4 x ,thesolutionistheunionofintervals
147. x 4 4 x 2 1 2 x 1.Wegraphtheequations
y1 x 4 4 x 2 and y2 1 2 x 1intheviewingrectangle
[ 5 5]by[ 5 5].Wefindthepointsofintersectionare
at x 1 85, x 0 60, x 0 45,and x 2 00.Since
wewant x 4 4 x 2 1 2 x 1,thesolutionis
1 85 0 60
146. x 3 4 x 2 5 x 2.Wegraphtheequations
y1 x 3 4 x 2 5 x and y2 2intheviewingrectangle [ 10 10] by [ 5 5].Wefindthatthepointofintersection isat x 5 07.Sincewewant x 3 4 x 2 5 x 2,the solutionistheinterval 507 . 10 5 5
148.
x 2 16
x 2 16
10 0.Wegraphtheequation
10intheviewingrectangle[ 10 10]by [ 10 10].Usingazoomortracefunction,wefindthatthe x interceptsare x 5 10and x 2 45.Sincewe want
x 2 16
10 0,thesolutionisapproximately
149. Herethecenterisat 0 0,andthecirclepassesthroughthepoint 5 12,sotheradiusis r
13.Theequationofthecircleis x 2 y 2 132 x 2 y 2 169.Thelineshownisthetangentthatpassesthroughthepoint 5 12,soitisperpendiculartotheline throughthepoints 0
.Theslopeofthelineweseekis m 2 1 m 1 1 125 5 12 .Thus,anequationofthetangentlineis y 12 5 12 x 5 y 12 5 12 x
150. Becausethecircleistangenttothe x axisatthepoint 5 0 andtangenttothe y axisatthepoint
0
5,thecenterisat 5 5 andtheradiusis5.Thusanequationis
,soanequationofthelineweseekis
25.Theslopeof thelinepassingthroughthepoints
151. Since M variesdirectlyas z wehave M kz .Substituting M 120when z 15,wefind120 k 15 k 8. Therefore, M 8z
152. Since z isinverselyproportionalto y ,wehave z k y .Substituting z 12when y 16,wefind12 k 16 k 192. Therefore z 192 y
153.(a) Theintensity I variesinverselyasthesquareofthedistance d ,so I k d 2
(b) Substituting I 1000when d 8,weget1000 k 82 k 64,000.
(c) Fromparts(a)and(b),wehave I 64,000 d 2 .Substituting d 20,weget I 64,000 202 160candles.
154. Let f bethefrequencyofthestringand l bethelengthofthestring.Sincethefrequencyisinverselyproportional tothe length,wehave f k l .Substituting l 12when k 440,wefind440 k 12 k 5280.Therefore f 5280 l .For f 660,wemusthave660 5280 l l 5280 660 8.Sothestringneedstobeshortenedto8centimeters.
155. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let betheterminalvelocityoftheparachutistinkm/hand betheirweightinkilograms.Sincetheterminalvelocityis directlyproportionaltothesquarerootoftheweight,wehave k .Substituting 14when 70,wesolve for k .Thisgives14 k 70 k 14 70 1 673.Thus 1 673 .When 105,theterminalvelocityis 1673105 17km/h.
156. Let r bethemaximumrangeofthebaseballand bethevelocityofthebaseball.Sincethemaximumrangeisdirectly proportionaltothesquareofthevelocity,wehave r l 2 .Substituting 96and r 74,wefind74 k 962 k 0 00803.If 112,thenwehaveamaximumrangeof r 0 00803 1122 100 7meters.
157. Thespeed isinverselyproportionaltothesquarerootofthedensity d ,so k d .Infreshwaterwithdensity d1 1gcm3 ,thespeedis 1 1480ms,so1480 k 1 k 1480.Thus,inseawaterwithdensity10273gcm3 ,we have 1480 10273 1460ms.
158.(a) Because 1 22 D ,forfixed D theangulardistance isdirectlyproportionaltothewavelength .Thus,theangular distanceissmallerforshorterwavelengths. (b) Forfixed ,ifwesubstitute D1 2 D intheformula 1 22 D thentheangulardistancebecomes
1 1 22 D1 1 22 2 D 1 2 1 22 D 1 2 .Thus,forafixedwavelength,ifthediameterofthemirrorisdoubled, theangulardistanceishalved.
159. Wesolvethefirstequationfor
ByHubble’sLaw, H0 D D H0 ,sosubstituting fromaboveand H0 208Mlykms,wehave D
2 4 105 208 11,538megalightyears.
160.(a) y 2 x 3isthegraphoftheabsolutevaluefunction y x ,stretchedverticallybyafactorof2andshifted downward3units.IthasgraphIII
(b) 2 y 3 x 2 y 3 2 x 1representsalinewithslope 3 2 , x intercept 2 3 ,and y intercept 1.IthasgraphV.
(c) y x 4 has y 0 0and y 0elsewhere.Itisanevenfunction,andhasgraphII.
(d) x 12
y 1
2 9istheequationofacirclewithcenter 1 1 andradius3.IthasgraphIV.
(e) 6 y x 3 y 1 6 x 1 2 representsalinewithslope 1 6 , x intercept3,and y intercept 1 2 .IthasgraphI.
(f) y 6 x 1 x 4 isanoddfunctionwith y 0 0andhorizontalasymptotethe x axis.IthasgraphVII.
(g) x y 3 isanoddfunctionwhosegraphcontainsthepoints 1 1 and 1 1.IthasgraphVIII.
(h) x 2 2 x y 2 4 y 1 0
4istheequationofacirclewithcenter 1 2 and radius2.IthasgraphVI.
CHAPTER1TEST
1.(a)
2.(a)
3.(a)
4.(a)
5.(a)
5.(Notethatthisisimpossible,sotherecanbenosolution.) Squaringbothsidesagain,weget1
4.Butthisdoesnotsatisfytheoriginalequation,sothereisno solution.(Youmustalwayscheckyourfinalanswersifyouhavesquaredboth sideswhensolvinganequation,since extraneousanswersmaybeintroduced,ashere.)
(f) x 4 3 x
11. UsingtheQuadraticFormula,2
12. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
Let t bethetime(inhours)ittookthetruckertodrivefromAmitytoBelleville. Then4 4 t isthetimeittookthetruckerto drivefromBellevilletoAmity.SincethedistancefromAmitytoBellevilleequalsthedistancefromBellevilletoAmity,we have80
13. Let bethewidthoftheparcelofland.Then 70isthelengthoftheparcelofland.Then
So 50or 120.Since
Interval: [ 4 3.Graph: _43 (b) x x 1 x 2 0.Theexpressionontheleftoftheinequalitychangessignwhen x 0, x 1,and x 2.Thus wemustchecktheintervalsinthefollowingtable.
Signof x 1
Fromthetable,thesolutionsetis
Graph: _201
x 4
3isequivalentto
50.Thusthemedicineistobestoredatatemperaturebetween 41 Fand50 F.
16. For 6 x x 2 tobedefinedasarealnumber6 x x 2 0 x 6 x
0.Theexpressionontheleftoftheinequality changessignwhen x 0and x 6.Thuswemustchecktheintervalsinthefollowingtable.
Signof x
Signof6 x
Signof x 6 x
Fromthetable,weseethat 6 x x 2 isdefinedwhen0 x 6.
17.(a) y 1x 1 P Q R S
Thereareseveralwaystodeterminethecoordinatesof S .Thediagonalsofa squarehaveequallengthandareperpendicular.Thediagonal PR ishorizontal andhaslengthis6units,sothediagonal QS isverticalandalsohaslength6. Thus,thecoordinatesof S are 3 6 (b) Thelengthof PQ is
2.Sotheareaof PQRS is 322 18.
18.(a) 1 1 y x (b) The x interceptsoccurwhen y 0,so0 4 x 2 x 2 4 x 2.The y interceptoccurswhen x 0,so y 4. (c) x axissymmetry: y 4 x 2 y x 2 4,whichisnotthesameasthe originalequation,sothegraphisnotsymmetricwithrespecttothe x axis. y axissymmetry: y 4 x 2 4 x 2 ,whichisthesameastheoriginal equation,sothegraphissymmetricwithrespecttothe y axis.
Originsymmetry: y 4 x 2 y 4 x 2 ,whichisnotthesame astheoriginalequation,sothegraphisnotsymmetricwithrespecttotheorigin.
19.(a) y 1x P1
(b) Thedistancebetween P and Q is
(c) Themidpointis
(d) Thecenterofthecircleisthemidpoint, 1
2 ,andthelengthoftheradiusis
89.Thustheequationofthecirclewhosediameteris PQ is
20.(a) x 2 y 2 5hascenter 0
and radius 5.
andthe y interceptis 5. y 1x 1
22.(a) Thelinethrough
y 5 0. (b) 3 x y 10 0
(c) Usingtheinterceptformweget x 6 y 4 1 2 x
3.Usingthepointslopeform,
23.(a) When x 100wehave T 0 08 100 4 8 4 4,sothe temperatureatonemeteris4 C.
(c) Thesloperepresentstheraiseintemperatureasthedepthincrease. The T interceptisthesurfacetemperatureofthesoilandthe x interceptrepresentsthedepthofthe“frostline”,wherethesoil belowisnotfrozen.
24.(a) x 3 9 x 1 0.Wegraphtheequation
y x 3 9 x 1intheviewingrectangle[ 5 5] by [ 12 12].Wefindthatthepointsof intersectionoccurat x 2 94, 0 11,3 05.
(b) T 20x 6080100120 _5 5 40
(b) x 2 1 x 1.Wegraphtheequations
y1 x 2 1and y2 x 1 intheviewing rectangle [ 5 5] by [ 5 10].Wefindthatthe pointsofintersectionoccurat x 1and x 2. Sincewewant x 2 1 x 1,thesolutionis theinterval[ 1 2].
25. Note:Inthefirstprintingofthetext,theanswersgivenforparts(b)and(c)ofthisexerciseareincorrect.
(a) M k h 2 L
(b) Substituting 10, h 15, L 30,and M 21,000,wehave21,000
280 h 2 L
280.Thus
(c) Nowif L 25, 7 5,and h 25,then M 280 7 5 252 25 52,500.Sothebeamcansupport52,500newtons.
FOCUSONMODELINGFittingLinestoData
1.(a) Usingagraphingcalculator,weobtaintheregression line y 1 8807 x 82 65.
(b) Using x 58intheequation y 1 8807 x 82 65, weget y 18807 58 8265 1917cm.
2.(a) Usingagraphingcalculator,weobtaintheregression line y 017565 x 18265.
(b) ForapercapitaGDPof$80,000,themodelpredicts carbonemissionsof y 0 17565 80 1 8265 15 9tonspercapita. For$32,000,itpredicts y 017565 32 18265 74tonspercapita.
(c) Alinearmodelisreasonableforthesedata.One limitationisthattherearenodatapointsbeyond percapitaincomeabove$51,000,sothemodel cannotreliablymakepredictionsforGDPsmuch largerthan$51,000.
3. Note:Inthefirstprintingofthetext,theanswergivenforpart(a)ofthisexerciseisincorrect.
(a) Usingagraphingcalculator,weobtaintheregression
(b) Using x 45intheequation y 2 579 x 0 1783, weget y 2579 45 01783 116years.
4.(a) Usingagraphingcalculator,weobtaintheregression line y 8278 x 5393. Temperature (°C) 0 100 200 1015202535x y 30
(b) Using x 38 Cintheequation y 8278 x 5393,weget y 261chirpsper minute.
5.(a) Usingagraphingcalculator,weobtaintheregression line y 013198 x 72514
Years since 1994 y x 2 4 6 8 01020
6.(a) Usingagraphingcalculator,weobtaintheregression line y 0 168 x 19 89. Flow rate (%)
(b) Using x 25intheregressionlineequation,weget y 013198 25 72514 395millionkm2 . Thisisroughly10%lessthantheactualfigureof 44millionkm2 .
(c) Despitefluctuationsoverbriefperiods,themodel seemsfairlyaccurate.Ifexternalcircumstances change(reducedorincreasedCO2 emissions,for example),itmaybecomelessreliable.Itisunlikely tobeaccuratefarintothefuture.
(b) Usingtheregressionlineequation y 0 168 x 19 89,weget y 8 13%when x 70%.
7.(a) Usingagraphingcalculator,weobtain y 39018 x 4197. Noise level (dB) 0 50 100 8090100110x y
(b) Thecorrelationcoefficientis r 0 98,solinear modelisappropriatefor x between80dBand 104dB.
(c) Substituting x 94intotheregressionequation,we get y 3 9018 94 419 7 53.Sothe intelligibilityisabout53%.
8. Studentsshouldfindafairlystrongcorrelationbetweenshoesizeandheight.
9. Resultswilldependonstudentsurveysineachclass.
1 ERRATAinExercisesandAnswersinFirstPrinting
Page1231.11.56Displayedequationshouldread y 2 4 x x 1000 2
Page1231.11.56(a) Graphtheequationfor0 x 160.
PageA21.5.129(Answer) 424s
PageA21.5.137(Answer) 344 000km
PageA31.7.21(Answer) 220km
PageA31.7.39(Answer) 31 6mby158m
PageA31.7.77(Answer) 1 6mfromthefulcrum
PageA41.8.119(Answer) Morethan100km
PageA41.8.127(Answer)(a) Accelerationgreaterthan8 04ms2
PageA71.10.93(Answer)(a) t 1 8 n 6 (b) 25 C
PageA71.10.95(Answer)(a) P 9 97d 103,where P is pressureinkPaand d isdepthinmeters (c) Thesloperepresentsanincreaseof9 97kPainpressure foreachonemeterincreaseindepth,andthe d interceptis theairpressureatthesurface. (d) 59m (b) y x
PageA71.12.39(Answer) 69kmh
PageA71.12.41(Answer) 9 03kmh
PageA71.12.49(Answer)(b) 1 928 234 931
PageA81.Review.155(Answer) 17kmh
PageA91.Test.12(Answer) 192km
PageA91.Test.25(Answer)(b) 280 (c) 52,500N
PageA101.Focus.3(Answer)(a) y 2 579 x 0 1783
CHAPTER 1FUNDAMENTALS1
1.1 RealNumbers1
1.2 ExponentsandRadicals3
1.3 AlgebraicExpressions7
1.4 RationalExpressions10
1.5 Equations14
1.6 ComplexNumbers20
1.7 ModelingwithEquations21
1.8 Inequalities27
1.9 TheCoordinatePlane;GraphsofEquations;Circles37
1.10 Lines47
1.11 SolvingEquationsandInequalitiesGraphically52
1.12 ModelingVariation57 Chapter1Review59 Chapter1Test68
¥ FOCUSONMODELING: FittingLinestoData70 ErratainExercisesandAnswersinFirstPrinting72
1
1.1
FUNDAMENTALS
REALNUMBERS
1.(a) Thenaturalnumbersare 1 2 3
(b) Thenumbers 3
areintegersbutnotnaturalnumbers.
(c) Anyirreduciblefraction p q with q 1isrationalbutisnotaninteger.Examples: 3 2 , 5 12 , 1729 23 .
(d) Anynumberwhichcannotbeexpressedasaratio p q oftwointegersisirrational.Examplesare 2, 3, ,and e
3.(a) Insetbuildernotation: x 3 x 5
(b) Inintervalnotation: 3 5
5. Thedistancebetween a and b onthereallineis d
7.(a) No: a b b a b a ingeneral.
(b) No;bytheDistributiveProperty, 2
9.(a) Naturalnumber:100
(b) Integers:0,100, 8
(c) Rationalnumbers: 1 5,0, 5 2 ,2 71,3 14,100, 8
(d) Irrationalnumbers: 7,
11. CommutativePropertyofaddition
(c) Asagraph: _35
.Sothedistancebetween 5and2is 2
13. AssociativePropertyofaddition
CommutativePropertyofmultiplication
83.(a) a isnegativebecause a ispositive.
(b) bc ispositivebecausetheproductoftwonegativenumbersispositive.
(c) a b a b ispositivebecauseitisthesumoftwopositivenumbers.
(d) ab ac isnegative:Eachsummandistheproductofapositivenumberandanegative number,andthesumoftwo negativenumbersisnegative.
85. DistributiveProperty
87. Let x m 1 n 1 and y m 2 n 2 berationalnumbers.Then x y m 1 n 1
x y m 1
.Thisshowsthatthesum,difference,andproduct oftworationalnumbersareagainrationalnumbers.Howevertheproductof twoirrationalnumbersisnotnecessarily irrational;forexample, 2 2 2,whichisrational.Also,thesumoftwoirrationalnumbersisnotnecessarilyirrational; forexample, 2 2 0whichisrational.
89.
As x getslarge,thefraction1 x getssmall.Mathematically,wesaythat1 x goestozero.
As x getssmall,thefraction1 x getslarge.Mathematically,wesaythat1 x goestoinfinity.
91.(a) Supposethat a b ,somax a b
Ontheotherhand,if b
,thenmax
If a b ,then a b 0andtheresultistrivial.
(b) If a b ,thenmin a b a and a b
Similarly,if b a ,then
.Inthiscase,
b a .Inthiscase a
;andif a b ,theresultistrivial.
93.(a) Subtractionisnotcommutative.Forexample,5 1 1 5.
(b) Divisionisnotcommutative.Forexample,5 1 1 5.
(c) Puttingonyoursocksandputtingonyourshoesarenotcommutative.Ifyouputonyoursocksfirst,thenyourshoes, theresultisnotthesameasifyouproceedtheotherwayaround.
(d) Puttingonyourhatandputtingonyourcoatarecommutative.Theycanbedoneineitherorder,withthesameresult.
(e) Washinglaundryanddryingitarenotcommutative.
1.2 EXPONENTSANDRADICALS
1.(a) Usingexponentialnotationwecanwritetheproduct5 5 5 5 5 5as56
(b) Intheexpression34 ,thenumber3iscalledthe base andthenumber4iscalledthe exponent
3. Tomoveanumberraisedtoapowerfromnumeratortodenominatororfromdenominatortonumeratorchangethesignof the exponent.So
9.(a)
77.(a) 4 1 4 4 1 64 4 1 4 43 1 4 (b) 5 40 5 40 1 8
79.(a) y 4 y 2 y 1
81.(a) 69,300,000 6 93 107
(b) 7,200,000,000,000 7 2 1012
(c) 0 000028536 2 8536 10 5
z .Since 0and z 0,thisisequivalentto 9 z .
(d) 0 0001213 1 213 10 4 83.(a) 3 19 105 319,000 (b) 2 721 108 272,100,000 (c) 2 670 10 8 0 00000002670 (d) 9 999 10 9 0 000000009999
85.(a) 9,460,000,000,000km 9 5 1012 km (b) 0 0000000000004cm
(c) 33billionbillionmolecules
93.(a) b 5 isnegativesinceanegativenumberraisedtoanoddpowerisnegative.
(b) b 10 ispositivesinceanegativenumberraisedtoanevenpowerispositive.
(c) ab2 c3 wehave positive
(d) Since b a isnegative, b a 3
(e) Since b a isnegative, b a
(f) a 3 c3 b 6 c6
4
negative3 whichisnegative.
negative
4 whichispositive.
whichisnegative.
whichisnegative.
95. Sinceonelightyearis9 5 1012 km,Centauriisabout4 3 9 5 1012 4 06 1013 km,or40,600,000,000,000kilometers away.
99. First,weestimatethetotalmassofthestarsintheobservableuniverse:
Thus,thenumberofhydrogenatomsintheobservableuniverseis
101.(a) Using f 0 4andsubstituting d 65,weobtain s 30 fd 30 0 4 65 28km/h. (b) Using f 0 5andsubstituting s 50,wefind d .Thisgives s 30 fd 50 30 0 5 d 50 15d 2500 15d d 500 3 167m.
103. Since106 103 103 itwouldtake1000days 2 74yearstospendthemilliondollars. Since109 103 106 itwouldtake106 1,000,000days 2739 72yearstospendthebilliondollars.
105.(a) 185 95
1.3 ALGEBRAICEXPRESSIONS
1. Thegreatestcommonfactorintheexpression18 x 3 30 x is6 x ,andtheexpressionfactorsas6 x 3 x 2
3. Tofactorthetrinomial x 2 8 x 12welookfortwointegerswhoseproductis12andwhosesumis8.Theseintegersare6 and2,sothetrinomialfactorsas
5. TheSpecialProductFormulaforthe“productofthesumanddifferenceofterms”is
6 x 6 x
7. TheSpecialFactoringFormulafora“perfectsquare”is
9. Type:binomial.Terms:5 x 3 and6.Degree:3.
11. Type:monomial.Term: 8.Degree:0.
13. Type:fourtermpolynomial.Terms: x
99. Startbyfactoringoutthepowerof
127. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis,
Startbyfactoring y
143. Thevolumeoftheshellisthedifferencebetweenthevolumesoftheoutside cylinder(withradius R )andtheinsidecylinder (withradius r ).Thus V R 2
.The averageradiusis R r 2 and2 R r 2 istheaveragecircumference(lengthoftherectangularbox), h istheheight,and R r isthethicknessoftherectangularbox.Thus V
145.(a) Thedegreeoftheproductisthesumofthedegrees.
(b) Thedegreeofasumisatmostthelargestofthedegrees—itcouldbesmallerthaneither.Forexample,thedegreeof
x 3
147.(a)
x 3 x
(b) Basedonthepatterninpart(a),wesuspectthat
Thegeneralpatternis
1.4 RATIONALEXPRESSIONS
1. Arationalexpressionhastheform P x
(a) 3 x x 2 1 isarationalexpression.
Q x ,where P and Q arepolynomials.
,where
isapositiveinteger.
(b) x 1 2 x 3 isnotarationalexpression.Arationalexpressionmustbeapolynomialdividedbyapolynomial,andthe numeratoroftheexpressionis x 1,whichisnotapolynomial.
(c) x x 2 1 x 3 x 3 x x 3 isarationalexpression.
3. Tomultiplytworationalexpressionswemultiplytheir numerators togetherandmultiplytheir denominators together.So 2 x 1 x x 3 isthesameas 2 x x 1 x 3 2 x x 2 4 x 3
5.(a) Yes.Cancelling x
(b) No;
7. Thedomainof4
11. Since x
.Analternativemethodistomultiplythe
numeratoranddenominatorbythecommondenominatorofboththenumerator anddenominator,inthiscase x 2 y 2 : x y y
101.
(b) Substituting R1 10ohmsand R2 20ohmsgives
Fromthetable,weseethattheexpression x 2 9 x 3 approaches6as x approaches3.Wesimplifytheexpression: x 2 9 x 3 x 3 x 3 x 3 x 3, x 3.Clearlyas x approaches3, x 3approaches6.Thisexplainstheresultinthe table.
103. Answerswillvary.
105.(a)
Itappearsthatthesmallestpossiblevalueof x 1 x is2.
(b) Because x 0,wecanmultiplybothsidesby x andpreservetheinequality:
0.Thelaststatementistrueforall x 0,andbecauseeachstepis reversible,wehaveshownthat x 1 x 2forall x 0.
1.5 EQUATIONS
1.(a) Yes.If a b ,then a x b x ,andviceversa.
(b) Yes.If a b ,then ma mb for m 0,andviceversa.
(c) No.Forexample, 5 5,but 52 52 25.
3.(a) Tosolvetheequation x 2 6 x 16 0byfactoring,wewrite x 2 6 x 16
(b) Tosolvebycompletingthesquare,wewrite x 2
x 3
(c) TosolveusingtheQuadraticFormula,wewrite x
5.(a) Isolatingtheradicalin
(b) Nowsquarebothsides:
(c) Solvingtheresultingquadraticequation,wefind2
0and x 2.
(d) Wesubstitutethesepossiblesolutionsintotheoriginalequation: 2 0 0 0,so x 0isasolution,but
2isnotasolution.Theonlyrealsolutionis
7. Toeliminatethedenominatorsintheequation 3 x 5 x 2 2,multiplyeachsidebythelowestcommondenominator x x 2 togettheequivalentequation3
9.(a) When x
21.SinceLHS RHS, x 2isnotasolution.
(b) When x 2,LHS
RHS, x 2isa solution.
11.(a)
(b) When
thereisnorealsolution.
32.Since D ispositive,thisequationhastworealsolutions.
0.Since D 0,thisequationhasonerealsolution.
77. D b 2 4ac 52 4 4 13 8 25 26 1.Since D isnegative,thisequationhasnorealsolution.
79. x 2 x 100 50 x 2 50 x 100
or x
Potentialsolutionsare x 0and x 4 x 4.Theseareonlypotentialsolutionssincesquaringisnotareversible operation.Wemustcheckeachpotentialsolutionintheoriginalequation.Checking
0isfalse.Checking
4istrue.Thus,theonlysolutionis x 4. 91. Let
x 32 neverequals0,andnosolutioncanbenegative,becausewecannottakethesquarerootofanegativenumber.Thus2 istheonlysolution.
Theonlysolutionis256.
hasnorealsolution).
121. x 5 x 5.Squaringbothsides,weget
x .Squaringbothsidesagain,we get x 5
x 31.Potentialsolutionsare x 20and x 31.Wemustcheckeachpotentialsolutionintheoriginalequation.
Checking x 20: 20
5,whichistrue,andhence x 20isa solution.
Checking x 31:
5,whichisfalse,andhence x 31isnota solution.Theonlyrealsolutionis x
127. x a x a 2 x 6.Squaringbothsides,wehave x a 2
x
x a
6.Squaringbothsidesagainwehave
x a 2 36.Checkingtheseanswers,weseethat x
a 2 36isnotasolution(forexample,trysubstituting a 8),but x a 2 36isasolution.
129. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
Using h 0 88,wesolve0 48t 2 88,for
Thusittakes4 28secondsfortheballthehittheground.
131. Wearegiventhat 0 12m/s.
(a) Setting h 7 2,wehave7 2
Therefore,theballreaches72metersin1second(ascending)andagain after1 1 2 seconds(descending).
(b) Setting h
4 .However,sincethediscriminant D 0,thereisnorealsolution,andhencetheball neverreachesaheightof14 4meters.
(c) Thegreatestheight h isreachedonlyonce.So
(d) Setting h 7 5,wehave7 5
12t
0hasonlyonesolution.Thus
5meters.
.Thustheballreachesthehighest pointofitspathafter1 1 4 seconds.
(e) Setting h 0(groundlevel),wehave0
Sotheballhitsthegroundin2
Theshrinkagefactorwhen
(b) Substituting S 0
018mlong.
137. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x bethedistancefromthecenteroftheearthtothedeadspot(inthousandsof kilometers).Nowsetting F 0,wehave
0 988 x 2 764 x
145,924 0.UsingtheQuadraticFormula,weobtain
344.Since429,000isgreaterthanthedistancefromthe earthtothemoon,werejectthefirstroot;thus x 344,000kilometers.
(c)
1.Sincebothsidesofthisequationareequal, x 2isasolutionforeveryvalueof k .Thatis, x 2isasolutiontoeverymemberofthisfamilyofequations. 141.(a) x 2 9 x
5.Theproductofthesolutionsis4
5 20,theconstant termintheoriginalequation;andtheirsumis4 5 9,thenegativeofthecoefficientof x intheoriginalequation.
(b) Ingeneral,theequation x 2 bx c 0hassolutions r 1
b2 4c 2 and r 2 b b2
Method1: Let
1.Checking
onlysolutionis4. Method2:x x
possiblesolutionsare4and1.Checkingwillresultinthesamesolution.
(b) Method1: Let
thequadraticformula,wehave
COMPLEXNUMBERS
1. Theimaginarynumber i hasthepropertythat i 2 1.
3.(a) Thecomplexconjugateof3
5. Yes,everyrealnumber a isacomplexnumberoftheform
11. 3:realpart3,imaginarypart0.
SinceLHS RHS,thisprovesthestatement.
81.
SinceLHS RHS,thisprovesthestatement.
85. UsingtheQuadraticFormula,thesolutionstotheequationare
,whichisarealnumber.
.Sincebothsolutionsarenonreal,we have
isarealnumber. Thusthesolutionsarecomplexconjugatesofeachother.
1.7 MODELINGWITHEQUATIONS
1. Anequationmodelingarealworldsituationcanbeusedtohelpusunderstandarealworldproblemusingmathematical methods.Wetranslaterealworldideasintothelanguageofalgebratoconstructourmodel,andtranslateourmathematical resultsbackintorealworldideasinordertointerpretourfindings.
3.(a) Asquareofside x hasarea A x 2
(b) Arectangleoflength l andwidth hasarea A l .
(c) Acircleofradius r hasarea A r 2
5. Apainterpaintsawallin x hours,sothefractionofthewallshepaintsinonehouris 1wall x hours 1 x
7. If n isthefirstinteger,then n 1isthemiddleinteger,and n 2isthethirdinteger.Sothesumofthethreeconsecutive integersis n
n 1
3.
9. If n isthefirsteveninteger,then n 2isthesecondevenintegerand n 4isthethird.Sothesumofthreeconsecutive evenintegersis n
11. If s isthethirdtestscore,thensincetheothertestscoresare78and82,theaverageofthethreetestscoresis 78 82 s 3 160 s 3
13. If x dollarsareinvestedat2 1 2 %simpleinterest,thenthefirstyearyouwillreceive0 025 x dollarsininterest.
15. Since isthewidthoftherectangle,thelengthisfourtimesthewidth,or4 .Then area length width 4 4 2 m2
17. If d isthegivendistance,inkilometers,anddistance rate time,wehavetime distance rate d 55 .
19. If x isthequantityofpurewateradded,themixturewillcontain750gofsaltand3 x litersofwater.Thusthe concentrationis 750 3 x
21. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. If d isthenumberofdaysand m thenumberofkilometers,thenthecostofarentalis C
.Inthiscase, d 3 and C 283,sowesolvefor
220.Thus, thetruckwasdriven220kilometers.
23. If x isthestudent’sscoreontheirfinalexam,thenbecausethefinalcountstwiceasmuchaseachmidterm,theaverage scoreis
86.Sothestudentscored86%ontheirfinalexam.
25. Let m betheamountinvestedat2 1 2 %.Then12,000 m istheamountinvestedat3%. Sincethetotalinterestisequaltotheinterestearnedat2 5%plustheinterestearnedat3%,wehave 318
8400.Thus, $8400isinvestedat2 1 2 %and12,000 8400 $3600isinvestedat3%.
27. Usingtheformula I Prt andsolvingfor r ,weget262 50 3500 r 1 r
5 3500 0 075or7 5%.
29. Let x bethemonthlysalary.Sinceannualsalary 12 monthlysalary Christmasbonus,wehave 180,100 12 x 7300 172,800 12 x x 14,400.Themonthlysalaryis$14,400.
31. Let x betheovertimehoursworked.Sincegrosspay regularsalary overtimepay,weobtaintheequation 814 18 50 35 18 50 1 5 x 814
6.Thus,thelab technicianworked6hoursofovertime.
33. Allagesareintermsofthedaughter’sage7yearsago.Let y beageofthedaughter7yearsago.Then11 y istheageofthe moviestar7yearsago.Today,thedaughteris y 7,andthemoviestaris11 y 7.Butthemoviestarisalso4timeshis daughter’sagetoday.So4
3.Thus,todaythemoviestaris 11 3 7 40yearsold.
35. Let n bethenumberofnickels.Thentherearealso n dimesand n quarters.Thetotalvalueofthecoinsinthepurseisthe sumofthevaluesofnickels,dimes,andquarters,so2
7.Sothe pursecontains7nickels,7dimes,and7quarters.
37. Let l bethelengthofthegarden.Sincearea width length,weobtaintheequation1125 25
45m.So thegardenis45meterslong.
39. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let bethewidthofthebuildinglot.Thenthelengthofthebuildinglotis5 .Sinceahalfhectareis 1 2 10,000 5000 andareaislengthtimeswidth,wehave5000 5
31 6.Thusthewidthofthe buildinglotis316metersandthelengthofthebuildinglotis5 316 158meters.
41. Let bethewidthofthegardeninmeters.Thenthelengthis 10.Thus875
35 25 0.If 35 0,then
35,whichisimpossible.Therefore 25 0,andso 25. Thegardenis25meterswideand35meterslong.
43. Let bethewidthofthegardeninmeters.Weusetheperimetertoexpressthelength l ofthegardenintermsof width.Sincetheperimeteristwicethewidthplustwicethelength,wehave
100 .Usingtheformulaforarea,wehave2400
40.Sothelengthis60metersandthewidthis40meters.
45. Let l bethelengthofthelotinmeters.Thenthelengthofthediagonalis l 10. WeapplythePythagoreanTheoremwiththehypotenuseasthediagonal.So l 2
Thusthelengthofthelotis120meters.
47.(a) Firstwewriteaformulafortheareaofthefigureintermsof x .Region A has dimensions10cmand x cmandregion B hasdimensions6cmand x cm.Sothe shadedregionhasarea 10 x 6 x 16 x cm2 .Wearegiventhatthisisequal to144cm2 ,so144 16 x x 144 16 9cm.
(b) Firstwewriteaformulafortheareaofthefigureintermsof x .Region A has dimensions14cmand x cmandregion B hasdimensions 13 x cmand x cm. Sotheareaofthefigureis
Wearegiventhatthisisequalto160cm2 ,so160 x 2 27 x x 2 27 x 160 0 x 32
49. Let x bethewidthofthestrip.Thenthelengthofthematis50 2 x ,andthewidthofthematis38 2 x .Nowthe perimeteristwicethelengthplustwicethewidth,so256 2 50 2 x 2
8
x 10.Thusthestripofmatis10centimeterswide.
51. Let h betheheighttheladderreaches(inmeters).UsingthePythagoreanTheoremwehave
54meters.
53. Let x bethelengthoftheperson’sshadow,inmeters.Usingsimilartriangles,
20 x 5.Thustheperson’sshadowis5meterslong.
55. Let x betheamount(inmL)of60%acidsolutiontobeused.Then300 x mLof30%solutionwouldhavetobeusedto yieldatotalof300mLofsolution.
So200mLof60%acidsolutionmustbemixedwith100mLof30%solutiontoget300mLof50%acidsolution.
57. Let x bethenumberofgramsofsilveradded.Theweightoftheringsis5 18g 90g.
5rings Puresilver Mixture
mustbeaddedtogettherequiredmixture.
59. Let x bethenumberoflitersofcoolantremovedandreplacedbywater.
Water Mixture
mustberemovedandreplacedbywater.
61. Let c betheconcentrationoffruitjuiceinthecheaperbrand.Thenewmixtureconsistsof650mLoftheoriginalfruitpunch and100mLofthecheaperfruitpunch.
35%fruitjuice.
63. Let t bethetimeinminutesitwouldtaketowashthecarifthefriendsworkedtogether.Friend1washes 1 25 ofthecarper minute,whileFriend2washes 1 35 ofthecarperminute.Thesumofthese fractionsisequaltothefractionofthejobthey candoworkingtogether,sowehave
65. Let t bethenumberofhoursitwouldtakeyourfriendtopaintahousealone.Thenworkingtogether,ittakes 2 3 t hours. Becauseittakesyou7hours,wehave
wouldtakeyourfriend3 5htopaintahousealone.
67. Let t bethetimeinhoursthatittakesyoutowashallthewindows.Thenittakesyourroommate t 3 2 hoursto washallthewindows,andthesumofthefractionsofthejobyoucandoindividuallyperhourequalsthefraction ofthejobyoucandotogether.Since1hour48minutes
0isimpossible,youcanwashthewindowsalonein3hours,andittakesyourroommate
69. Let t bethetimeinhoursthatthecommuterspentonthetrain.Then 11 2 t isthetimeinhoursthatcommuterspentonthe bus.Weconstructatable:
Thetotaldistancetraveledisthesumofthedistancestraveledbybusandbytrain,so480
71. Let r bethespeedoftheplanefromMontrealtoLosAngeles.Then r 0 20r 1 20r isthespeedoftheplanefromLos AngelestoMontreal. Rate Time Distance MontrealtoL.A. r
Thetotaltimeisthesumofthetimeseachway,so9
ataspeedof800km/honthetripfromMontrealtoLosAngeles.
73. Let x betherate,inkm/h,atwhichthesalespersondrovebetweenAjaxandBarrington.
Cities Distance Rate Time
Ajax Barrington
x Barrington Collins
x 16
x 16
Wehaveusedtheequationtime distance rate tofillinthe“Time”columnofthetable.Sincethesecondpartofthetrip took6minutes(or 1 10 hour)morethanthefirst,wecanusethetimecolumntogettheequation
salesmandroveeither80km/hor384km/hbetweenAjaxandBarrington.(The formerseemslikelier.)
75. Let r betherowingrateinkm/hofthecrewinstillwater.Thentheirrateupstreamwas r 3km/h,andtheirrate downstreamwas r 3km/h.
Sincethetimetorowupstreamplusthetimetorowdownstreamwas2hours40minutes 8 3 hour,wegettheequation
r 6 0 r 6.Sotherateoftherowingcrewinstillwateris6km/h.
77. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x bethedistancefromthefulcrumtowherethe56kgfriendsits.Thensubstitutingtheknownvaluesintotheformula given,wehave45 2 56
x 1 6.Sothe56kgfriendshouldsit1 6metersfromthefulcrum.
79. Thevolumeis180m3 ,so
solution.Sotheboxis2metersby6metersby15meters.
81. Let x bethelengthofonesideofthecardboard,sowestartwithapieceofcardboard x by x .When4centimetersare removedfromeachside,thebaseoftheboxis x 8by x 8.Sincethevolumeis100cm3 ,weget4 x 82
0 So x 3or x 13.But x 3isnotpossible,since thenthelengthofthebasewouldbe3 8 5 andalllengthsmustbepositive.Thus x 13,andthepieceofcardboard is13centimetersby13centimeters.
83. Let r betheradiusofthetank,inmeters.Thevolumeofthesphericaltankis 4 3 r 3 andisalso2840 0001 284.So 4 3 r 3 2 84 r 3 0 678 r 0 88meters.
85. Let x bethelength,inkilometers,oftheabandonedroadtobeused.Thenthelengthoftheabandonedroadnotusedis 40 x ,andthelengthofthenewroadis 102 40 x 2 kilometers,bythePythagoreanTheorem.Sincethecostof theroadiscostperkilometer numberofkilometers,wehave100,000 x 200,000 x 2 80 x 1700 6,800,000 2 x 2 80 x 1700 68 x Squaringbothsides,weget4 x 2 320 x 6800 4624 136 x x 2 3 x 2 184 x
16.Since45 1 3 islongerthanthe existingroad,16kilometersoftheabandonedroadshouldbeused.Acompletelynewroadwouldhavelength 102 402 (let x 0)andwouldcost 1700 200,000 8 3milliondollars.Sono,itwouldnotbecheaper.
87. Let x betheheightofthepileinmeters.Thenthediameteris3 x andtheradiusis 3 2 x meters.Sincethevolumeofthecone is28m3 ,wehave
89. Let h betheheightinmetersofthestructure.Thestructureiscomposedofarightcylinderwithradius3andheight 2 3 h and aconewithbaseradius3andheight 1 3 h .Usingtheformulasforthevolumeofa cylinderandthatofacone,weobtain theequation40
7.Thustheheightofthe structureis5 7meters.
91. Let h betheheightofthebreak,inmeters.Thentheportionofthebambooabove thebreakis10 h .ApplyingthePythagoreanTheorem,weobtain
h
55mabovetheground.
93. Let x equaltheoriginallengthofthereedincubits.Then x 1isthepiecethatfits60timesalongthelength ofthefield,thatis,thelengthis60 x 1.Thewidthis30 x .Thenconvertingcubitstoninda,wehave 375
x 5.Since x mustbepositive,theoriginallengthofthereedis6cubits.
1.8 INEQUALITIES
1.(a) If x 5,then x 3 5 3 x 3 2.
(b) If x 5,then3 x 3 5 3 x 15.
(c) If x 2,then 3 x 3 2 3 x 6.
(d) If x 2,then x 2.
3.(a) Thesolutionoftheinequality x 3istheinterval [ 3 3].Anynumber thatliesinsidethisintervalsatisfiestheinequality. _33
(b) Thesolutionoftheinequality x 3istheunionofintervals 3] [3 .Anynumberthatlieinsideoneoftheseintervals satisfiestheinequality. _33
5.(a) No.Forexample,if x 2,then x x 1 2 1 2 0,but x 0.
(b) No.Forexample,if x 2,then x x 1 2 3 6 5,but x 5.
1 0 isundefined;no
Theelements3and5satisfytheinequality.
Interval: [ 3 1.Graph: _3_1
0.Theexpressionontheleftoftheinequalitychangessignwhere x 2andwhere x 3.Thuswe mustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x 2 x 3.Interval:
Graph: _23
39. x 2 x 7 0.Theexpressionontheleftoftheinequalitychangessignwhere x 0andwhere x 7 2 .Thuswemust checktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x x 7 2 or0 x .
Signof x
Signof2 x
Signof x
Graph: 70 2 41. x 2 3 x
0.Theexpressionontheleftoftheinequalitychangessignwhere x 6andwhere x 3.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x
Graph: _36
0.Theexpressionontheleftoftheinequalitychangessign where x 2andwhere x 1 3 .Thuswemustchecktheintervalsinthefollowingtable. Interval
Signof3 x
Signof
Fromthetable,thesolutionsetis x x 2or x 1 3 .
Interval: 2] 1 3 .
Graph: 1 3 _2
Fromthetable,thesolutionsetis
Graph: _14
0.Theexpressionontheleftoftheinequalitychangessign where x 6andwhere x 3.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x x 3or6 x .
Graph: _36
0.Theexpressionontheleftoftheinequalitychangessignwhere x 2and where x 2.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
.Interval:
Signof x 2
Signof x 2
Signof
Graph: _22
51. x 2 x 1 x 3 0.Theexpressionontheleftoftheinequalitychangessignwhen x
3. Thuswemustchecktheintervalsinthefollowingtable.
Signof x 2
Signof x 1
Signof x 3
Fromthetable,thesolutionsetis
Graph: _23 1
53. x 4 x 22
2,sotheexpressionontheleftoftheoriginalinequalitychanges signonlywhen x 4.Wechecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Signof x 4
Signof
x x 2and x 4.Weexcludethe endpoint 2sincetheoriginalexpressioncannot be0.Interval:
Graph: _24
55. x 32 x 2 x 5 0.Thelefthandsideis0when x 5, 3,or2.Wechecktheintervalsinthefollowingtable.
Signof x
Signof x 2
When x 3,thelefthandsideisequalto0andtheinequalityissatisfied.Thus,the solutionsetis
0.Theexpressionontheleftoftheinequalitychangessignwhere x 0, x 2andwhere x 4.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
0.Theexpressionontheleftoftheinequality changessignwhere x
Signof x
Signof x
Signof x
Signof x 2
Fromthetable,thesolutionsetis
.Graph: _11
61. x 3 x 1 0.Theexpressionontheleftoftheinequalitychangessignwhere x 1andwhere x 3.Thuswemustcheck theintervalsinthefollowingtable. Interval
Signof x
Signof x 3
Signof x 3 x
Fromthetable,thesolutionsetis
x x 1or x 3.Sincethedenominator cannotequal0wemusthave x 1.
Interval:
Graph: _13
oftheinequalitychangessignwhen x 2and x 5 2 .Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
0.Theexpressionontheleftoftheinequality changessignwhere x 16andwhere x 5.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
x x 5or x 16.Sincethedenominator cannotequal0,wemusthave x 5.
Signof x 5
Signof x 16 x 5
Interval:
Graph: 516
x 0.Theexpressionontheleftofthe inequalitychangessignwhere x 0,where x 2,andwhere x 2.Thuswemustchecktheintervalsinthefollowing table.
Signof2
Signof x
Signof2 x
Signof
Fromthetable,thesolutionsetis x 2 x 0or2 x .Interval:
.Graph: _22 0
Signof
Signof
Since x 1and x 0yieldundefinedexpressions,wecannotincludetheminthesolution.From thetable,thesolution
0.Theexpressionontheleftoftheinequality changessignwhere
Fromthetable,thesolutionsetis
Graph: _44
Graph: _713
Graph:
.Theexpressionontheleftoftheinequalitychangessign when x 4, x 0,and x 4.Thuswemustchecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis
Fromthetable,thesolutionsetis
Graph: _3_2
0forall x
3,sotheexpressionontheleftoftheoriginalinequalitychanges signonlywhen x 1.Wechecktheintervalsinthefollowingtable.
Fromthetable,thesolutionsetis x
(Theendpoint 3isalreadyexcluded.)
Interval:
inequalitychangessignat
Thus x 3or x 3.
111. For 1 x 2 3 x 10
expressioninthelastinequalitychangessignat x 2and x 5.
117. Insertingtherelationship
68 F 86.
119. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let x betheaveragenumberofkilometersdrivenperday.EachdaythecostofPlan Ais95 0 40 x ,andthecostofPlanB is135.PlanBsavesmoneywhen135
.SoPlanBsavesmoneywhenyouaverage morethan100kilometersaday.
121. Weneedtosolve6400 0
4900 12,000 m 14,000.Sheplansondrivingbetween12,000and14,000miles.
123.(a) Let x bethenumberof$3increases.Thenthenumberofseatssoldis120 x .So P 200 3 x 3 x P 200 x 1 3
(b)
200.Substitutingfor x wehavethatthenumberofseatssoldis
290 P 215.Puttingthisintostandardorder,wehave215 P 290.Sotheticketpricesarebetween$215and $290.
125. 0 0004 4,000,000 d 2 0 01.Since d 2 0and d 0,wecanmultiplyeachexpressionby d 2 toobtain
0 0004d 2 4,000,000 0 01d 2 .Solvingeachpair,wehave0 0004d 2 4,000,000 d 2 10,000,000,000 d 100,000(recallthat d representsdistance,soitisalwaysnonnegative).Solving4,000,000 0 01d 2
400,000,000 d 2 20,000 d .Puttingthesetogether,wehave20,000 d 100,000.
127. Note:Inthefirstprintingofthetext,theanswergivenforpart(a)ofthisexerciseisincorrect.
(a) Wesubstitute d 402mand t 10sintothegivenformulaandfindthevalueof a thatresultsinaquartermiletime ofexactly10s:402 1 2
s2 .Thus,thequartermiletimewillbelessthan 10sif a 8 04ms2
(b) Wesubstitute a
8 .Takingthepositiveroot,wefind thatthequartermiletimefora(downward)quartermileunderEarth’sgravityis
129. 70
and 70.However,since representsthespeed,wemusthave 0.
Soyoumustdrivebetween0and35km/h.
131. Let x bethelengthofthegardenand itswidth.Usingthefactthattheperimeteris120m,wemusthave2 x
60 x .Nowsincetheareamustbeatleast800m2 ,wehave800
x 2 60 x
0.Theexpressionintheinequalitychangessignat x 20and x 40. However,since x representslength,wemusthave x 0.
Signof x 20
Signof x 40
Signof x 20
x 40
Thelengthofthegardenshouldbebetween20and40meters.
arebetween156cmand185cm.
135. Therulewewanttoapplyhereis“a b ac bc if c 0and a b ac bc if c 0”.Thuswecannotsimply multiplyby x ,sincewedon’tyetknowif x ispositiveornegative,soinsolving1 3 x ,wemustconsidertwocases.
Case1:x 0Multiplyingbothsidesby x ,wehave x 3.Togetherwithourinitialcondition,wehave0 x 3.
Case2:x 0Multiplyingbothsidesby x ,wehave x 3.But x 0and x 3havenoelementsincommon,sothis givesnoadditionalsolution.Hence,theonlysolutionsare0 x 3.
137. a b ,sobyRule1, a c b c.UsingRule1again, b c b d ,andsobytransitivity, a c b d
139.(a) Because x isnonnegative, x y x 2 xy ,andbecause y isnonnegative, x y xy y 2 .Thus,bytransitivity, x 2 y 2 .
(b) Bypart(a), xy x y 2 xy x y 2 4 .Expanding,thisbecomes4 xy x y 2 x 2 y 2 2 xy x 2 y 2 2 xy 0 x
0.Thisistrueforany x and y ,sotheoriginalinequalityistrueforallnonnegative x and y
1.9 THECOORDINATEPLANE;GRAPHSOFEQUATIONS;CIRCLES
1.(a) Thepointthatis3unitstotherightofthe y axisand5unitsbelowthe x axishascoordinates 3 5
(b) Thepoint 2 7 is2unitstotherightofthe y axisand7unitsabovethe x axis,soitisclosertothe y axis.
3. Thepointmidwaybetween
.Sothepointmidwaybetween
and
5.(a) Tofindthe x intercept(s)ofthegraphofanequationweset y equalto0intheequationandsolvefor x :2 0
x 1 x 1,sothe x interceptof2 y x 1is 1.
(b) Tofindthe y intercept(s)ofthegraphofanequationweset x equalto0intheequationandsolvefor y :2 y 0 1 y 1 2 ,sothe y interceptof2 y x 1is 1 2
7.(a) Ifagraphissymmetricwithrespecttothe x axisand a b isonthegraph,then a b isalsoonthegraph.
(b) Ifagraphissymmetricwithrespecttothe y axisand a b isonthegraph,then a b isalsoonthegraph.
(c) Ifagraphissymmetricabouttheoriginand a b isonthegraph,then a b isalsoonthegraph.
9. Yes.If a b isonthegraph,thenbysymmetryaboutthe x axis,thepoint a b isonthegraph.Thenbysymmetry aboutthe y axis,thepoint a b isonthegraph.Thus,thegraphissymmetricwithrespecttotheorigin.
11. Thepointshavecoordinates
Thetwopointsare
23. Thetwopointsare
21.
33. Fromthegraph,thequadrilateral ABCD hasapairofparallelsides,so ABCD is atrapezoid.Theareais
h .Fromthegraphweseethat
39. Sincewedonotknowwhichpairareisosceles,wefindthelengthofallthreesides.
41.(a) Herewehave
,weconcludethatthetriangleisarighttriangle.
(b) Theareaofthetriangleis
43. Weshowthatallsidesarethesamelength(itsarhombus)andthenshowthatthediagonalsareequal.Herewehave
rhombus.Also
therhombusisasquare.
45. Let P 0 y besuchapoint.Settingthedistancesequalweget
4.Thus,thepoint is P
.Check:
47. AsindicatedbyExample3,wemustfindapoint S x 1 y1 suchthatthemidpoints of PR andof QS arethesame.Thus
coordinatesequal,weget
49.(a) y
(b) Themidpointof
(c) Sincethetheyhavethesamemidpoint,weconcludethatthe diagonalsbisecteachother.
arepointsonthegraphofthisequation.
interceptis3,and
6 6,sothe y interceptis 6. x axissymmetry:2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe x axis.
y axissymmetry: 2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe y axis.
Originsymmetry: 2 x y 6,whichisnotthesameas
2 x y 6,sothegraphisnotsymmetricwithrespecttothe origin.
and
y interceptis2.
x axissymmetry: y 2 x 12 ,whichisnotthesameas
y 2 x 12 ,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y 2 x 12 ,whichisnotthesameas y 2 x 12 ,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: y 2 x 12 y 2 x 12 , whichisnotthesameas y 2 x 12 ,sothegraphisnot symmetricwithrespecttotheorigin. 1 1 y x
63.(a) y x 2
9 5 y 0 0 x 2,sothereisno x intercept,and x 0
1
y 0 2 2,sothe y interceptis2.
x axissymmetry: y x 2,whichisnotthesameas y x 2,sothegraphisnotsymmetricwithrespectto the x axis.
y axissymmetry: y x 2,whichisnotthesameas
y x 2,sothegraphisnotsymmetricwithrespectto the y axis.
Originsymmetry: y x 2 y x 2, whichisnotthesameas y x 2,sothegraphisnot symmetricwithrespecttotheorigin. y 1l
x 0,sothe x interceptis0,and x 0 y
0,sothe y interceptis0.
x axissymmetry: y
x
,whichisnotthe sameas y x ,sothegraphisnotsymmetricwith respecttothe x axis.
y axissymmetry: y
x x ,sothegraphis symmetricwithrespecttothe y axis.
Originsymmetry: y
x
x
,whichisnotthe sameas y x ,sothegraphisnotsymmetricwith respecttotheorigin.
65.(a) y 4 x 2 x y 2 0 1 3 0 2 1 3 2 0
y
y interceptis2.
x axissymmetry: y 4 x 2 ,whichisnotthesameas y 4 x 2 ,sothegraphisnotsymmetricwithrespectto the x axis. y axissymmetry: y
2
4 x 2 ,sothegraph issymmetricwithrespecttothe y axis.
Originsymmetry: y 4 x 2 4 x 2
y 4 x 2 ,whichisnotthesameas y 4 x 2 ,so thegraphisnotsymmetricwithrespecttotheorigin.
(b) y x 3 4 x y x 3 15 2
,so the x interceptsare0and 2,and x 0
y 03 4 0 0,sothe y interceptis0.
x axissymmetry: y x 3 4 x y x 3 4 x ,which isnotthesameas y x 3 4 x ,sothegraphisnotsymmetric withrespecttothe x axis.
y axissymmetry:
4
,which isnotthesameas x x 3 4 x ,sothegraphisnotsymmetric withrespecttothe y axis.
Originsymmetry: y
y x 3 4 x ,so thegraphissymmetricwithrespecttotheorigin. y x 1 10l 0
x 3 4 x
67.(a) Tofind x intercepts,set y 0.Thisgives0 x 6 x 6,sothe x interceptis 6.Tofind y intercepts,set x 0.Thisgives y 0 6 6,sothe y interceptis6.
(b) Tofind x intercepts,set y 0.Thisgives0 x 2 5 x 2 5 x 5,sothe x interceptsare 5.Tofind y intercepts,set x 0.Thisgives y 02 5 5,sothe y interceptis 5.
69.(a) Tofind x intercepts,set y 0.Thisgives9 x 2 4 02 36 9 x 2
x 2 4 x 2,sothe x intercepts are 2.Tofind y intercepts,set x 0.Thisgives9 0
2 4 y 2 36 y 2 9,sothereisno y intercept. (b) Tofind x intercepts,set y 0.Thisgives0 2 x
4 x
1 4 ,sothe x interceptis 1 4 .Tofind y intercepts, set x 0.Thisgives y 2 0
x
71. Tofind x intercepts,set y 0.Thisgives0 4 x x 2
0 x or x 4,sothe x interceptsare0and 4.Tofind y intercepts,set x 0.Thisgives y 4 0 02 y 0,sothe y interceptis0.
73. Tofind x intercepts,set y 0.Thisgives x 4 02 x 0 16 x 4 16 x 2.Sothe x interceptsare 2and2. Tofind y intercepts,set x 0.Thisgives04 y 2
4.Sothe y interceptsare 4and4.
75. x 2 y 2 9hascenter 0 0 andradius3. y 1x 1l 77. x 22 y 2 9hascenter 2 0 andradius3. x y 1 1l 0
79. x 32 y 42 25hascenter 3 4 andradius5. y 1x 1
81. Using
83. Theequationofacirclecenteredattheoriginis x 2 y 2 r 2 .Usingthepoint
.Thus,theequationofthecircleis
85. Thecenterisatthemidpointofthelinesegment,whichis
wesolvefor r 2 .Thisgives
.Theradiusisonehalfthe
87. Sincethecircleistangenttothe x axis,itmustcontainthepoint 7
,sotheradiusisthechangeinthe y coordinates. Thatis, r
3.Sotheequationofthecircleis
89. Fromthefigure,thecenterofthecircleisat 2
Thustheequationofthecircleis
91. Completingthesquaregives
.Theradiusisthechangeinthe y coordinates,so
Completingthesquaregives2
Thus,thecirclehascenter
97. x axissymmetry: y x 4
,whichisnotthesameas
x
,sothegraphisnotsymmetric withrespecttothe x axis. y axissymmetry: y
,whichisnotthesameas y x 4 x 2 ,sothegraphisnot symmetricwithrespecttotheorigin.
99. x axissymmetry:
y axissymmetry:
Originsymmetry:
2,sothegraphissymmetricwithrespecttothe origin.
(Notethatifagraphissymmetricwithrespecttoeachcoordinateaxis,itissymmetricwithrespecttotheorigin.The converseisnottrue,asshowninthenextexercise.)
101. x axissymmetry: y x 3 10 x y x 3 10 x ,whichisnotthesameas y x 3 10 x ,sothegraphisnot symmetricwithrespecttothe x axis. y axissymmetry: y x 3 10 x
y x 3 10 x ,whichisnotthesameas y x 3 10 x ,sothegraphisnot symmetricwithrespecttothe y axis. Originsymmetry: y x 3 10
x
y x 3 10 x y x 3 10 x ,sothegraphissymmetricwithrespect totheorigin.
103. Symmetricwithrespecttothe y axis. x y 0 105. Symmetricwithrespecttotheorigin. x y 0
107. x y x 2 y 2 1.Thisisthesetofpointsinside (andon)thecircle
109. Completingthesquaregives x 2 y 2 4
,andthe radiusis4.Sothecircle x 2 y 2 4,withcenter 0
0 andradius2 sitscompletelyinsidethelargercircle.Thus, theareais 42
Thepoint
(b) Thepoint
(c) Let
x
isshiftedto
bethepointthatisshiftedto
113.(a) Symmetricaboutthe x axis: x y 1
(b) Symmetricaboutthe y axis: x y 1 1 (c) Symmetricabouttheorigin: x y 1 1
(b) Wewantthedistancesfrom
(c) Thetwopointsareonthesameavenueorthesamestreet.
117. Completingthesquaregives
equationrepresentsapointwhen
Whentheequationrepresentsacircle,thecenteris
1.10 LINES
,andtheradiusis
1. Wefindthe“steepness”orslopeofalinepassingthroughtwopointsbydividingthedifferenceinthe y coordinatesofthese pointsbythedifferenceinthe x coordinates.Sothelinepassingthroughthepoints
3. Thepointslopeformoftheequationofthelinewithslope3passingthroughthepoint
5. Theslopeofahorizontallineis0.Theequationofthehorizontallinepassingthrough
7.(a) Yes,thegraphof y 3isahorizontalline3unitsbelowthe x axis.
(b) Yes,thegraphof x 3isaverticalline3unitstotheleftofthe y axis.
(c) No,alineperpendiculartoahorizontallineisverticalandhasundefinedslope.
(d) Yes,alineperpendiculartoaverticallineishorizontalandhasslope0.
9. m y2 y
17. For 1 ,wefindtwopoints,
and
thatlieontheline.Thustheslopeof
19. Firstwefindtwopoints 0 4 and 4 0
theequationofthelineis
21. Wechoosethetwointerceptsaspoints,
theequationofthelineis
23. Using
25. Usingtheequation y y
27. Usingtheequation y
29. Firstwefindtheslope,whichis
thatlieontheline.Sotheslopeis
31. Wearegiventwopoints, 2 5 and 5 1.Thus,theslopeis m
33. Wearegiventwopoints, 1
and 0 3.Thus,theslopeis
35. Sincetheequationofalinewithslope0passingthrough a
37. Sincetheequationofalinewithundefinedslopepassingthrough a b is x a ,theequationofthislineis x 2.
39. Anylineparallelto y 2 x 8hasslope2.Thedesiredlinepassesthrough 1 4,sosubstitutinginto y y1
, weget y 4
41. Sincetheequationofahorizontallinepassingthrough a
b is y b ,theequationofthehorizontallinepassingthrough 4 5 is y
43. Since3 x
2,theslopeofthislineis 3 2 .Thus,thelineweseekisgivenby
45. Anylineparallelto x 5hasundefinedslopeandanequationoftheform x a .Thus,anequationofthelineis x 1.
47. Firstfindtheslopeof3
.Thus,theslopeofanylineperpendicular to3 x
49. Firstfindtheslopeofthelinepassingthrough
_4 _2 0 2 4
m=0 m= 3 2 m= 3 4 m=_ 3 4 m= 1 4 m=_ 3 2 m=_ 1 4 y m x 3, m 0, 1 4 , 3 4 , 3 2 .Eachofthelines
containsthepoint 3 0 becausethepoint 3 0 satisfies
eachequation y m x 3.Since 3 0 isonthe x axis, wecouldalsosaythattheyallhavethesame x intercept.
59. 2 x y 7 y 2 x 7.Sotheslopeis2andthe y interceptis7.
57. y x 4.Sotheslopeis1andthe y interceptis 4. y 1x 1
2.So theslopeis 4 5 andthe y interceptis2. y 1x 1
63. y 4canalsobeexpressedas y 0 x 4.Sotheslopeis 0andthe y interceptis4. y 1x 1l
65. x 3cannotbeexpressedintheform y mx b.Sothe slopeisundefined,andthereisno y intercept.Thisisa verticalline. y 1x 1l
67. 3 x 2 y 6 0.Tofind x intercepts,weset y 0and solvefor x :3 x 2 0 6 0 3 x 6 x 2,so the x interceptis2.
Tofind y intercepts,weset x 0andsolvefor y :
3 0 2 y 6 0 2 y 6 y 3,sothe y interceptis 3. y 1x 1
69. 1 2 x 1 3 y 1 0.Tofind x intercepts,weset y 0and solvefor x : 1 2 x 1 3 0 1 0 1 2 x 1 x 2, sothe x interceptis 2.
Tofind y intercepts,weset x 0andsolvefor y : 1 2 0
y interceptis3. y 1x 1
71. y 6 x 4.Tofind x intercepts,weset y 0andsolve for x :0 6 x 4 6 x 4 x 2 3 ,sothe x interceptis 2 3 .
Tofind y intercepts,weset x 0andsolvefor y : y 6 0 4 4,sothe y interceptis4. y 1x 1
73. Todetermineifthelinesareparallel orperpendicular,wefindtheirslopes.Thelinewithequation y 2 x 3hasslope2. Thelinewithequation2 y 4 x 5 0
alsohasslope2,andsothelinesareparallel.
75. Todetermineifthelinesareparallelorperpendicular,wefindtheirslopes.Thelinewithequation2x 5 y 8 5 y 2 x 8 y 2 5 x 8 5 hasslope 2 5 .Thelinewithequation10 x 4 y
slope 5 2 1 25 ,andsothelinesareperpendicular.
77. Todetermineifthelinesareparallelorperpendicular,wefindtheirslopes.Thelinewithequation7x 3 y 2 3 y 7 x 2 y 7 3 x 2 3 hasslope 7 3 .Thelinewithequation9 y 21 x
slope 7 3 1 73 ,andsothelinesareneitherparallelnorperpendicular.
79. Wefirstplotthepointstofindthepairsofpointsthatdetermineeachside.Nextwe findtheslopesofoppositesides.Theslopeof AB is 4 1 7 1 3 6 1 2 ,andthe slopeof DC is 10 7 5 1 3 6 1 2 .Sincetheseslopeareequal,thesetwosides areparallel.Theslopeof AD is 7 1 1 1 6 2 3,andtheslopeof BC is 10 4 5 7 6 2 3.Sincetheseslopeareequal, thesetwosidesareparallel. Hence ABCD isaparallelogram. y 1x 1lA
81. Wefirstplotthepointstofindthepairsofpointsthatdetermineeachside.Nextwe findtheslopesofoppositesides.Theslopeof AB is 3 1 11 1 2 10 1 5 andthe slopeof DC is 6 8 0 10 2 10 1 5 .Sincetheseslopeareequal,thesetwosides areparallel.Slopeof AD is 6 1 0 1 5 1 5,andtheslopeof BC is 3 8 11 10 5 1 5.Sincetheseslopeareequal,thesetwosidesareparallel. Since slopeof AB slopeof AD 1 5
1,thefirsttwosidesare eachperpendiculartothesecondtwosides.Sothesidesformarectangle.
83. Weneedtheslopeandthemidpointoftheline AB .Themidpointof AB is
,andtheslopeof AB is m 2 4 7 1 6 6 1.Theslopeoftheperpendicularbisectorwillhaveslope 1 m 1 1 1.Usingthe pointslopeform,theequationof theperpendicularbisectoris y 1 1 x 4 or x
85.(a) Westartwiththetwopoints a
.Theslopeofthelinethatcontainsthemis b 0 0 a b a .Sotheequation ofthelinecontainingthemis y b a x b (usingtheslopeinterceptform).Dividingby b (since b 0)gives y b
and
b
1. (b) Setting a 6and b 8,weget x 6 y 8 1 4
87. Usingthediagramprovided,wecalculatethecoordinatesofthemidpoints: m 1 hascoordinates 0
Thelinejoiningthemidpointsthushasslope
0,andsoitisparalleltothethirdside(asegmentofthe x axis).
Thelinejoiningthemidpointshaslength
,halfthelengthofthethird sideofthetriangle;andsowehaveverifiedbothconclusionsofthetheorem.
89.(a) Theslopeis0 0417 D 0 0417 200 8 34.Itrepresentstheincreaseindosageforeachoneyearincreaseinthe child’sage.
(b) When a 0, c 8 34 0 1 8 34mg.
91.(a) y x 5000l 10,000l 5001000
(b) Theslopeisthecostpertoasteroven,$6.The y intercept,$3000,is themonthlyfixedcost—thecostthatisincurrednomatterhowmany toasterovensareproduced.
93. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
(a) Using n inplaceof x and t inplaceof y ,wefindthattheslopeis t2 t1 n 2 n
(b) When n 150,thetemperatureisapproximatelygivenby t 1 8 150 6 24 75 C 25 C.
95. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
(a) Wearegiven changeinpressure 3meterchangeindepth 29 9 3 9 97.Using P for pressureand d fordepth,andusingthepoint P 103when d 0, wehave P 103 9 97 d 0 P 9 97d 103.
(c) Thesloperepresentstheincreaseinpressurepermeterofdescent. The y interceptrepresentsthepressureatthesurface.
(d) When P 690,wehave690 9 97d 103 9 97d 587 d 58 9m.Thusthepressureis690kPaatadepthofapproximately 59m.
(b) y x
l
l
l
l
l 204080120 60100
97. Welabelthethreepoints A, B ,and C .Iftheslopeofthelinesegment AB isequaltotheslopeofthelinesegment BC , thenthepoints A, B ,and C arecollinear.Usingthedistanceformula,wefindthedistancebetween A and B ,between B and C ,andbetween A and C .Ifthesumofthetwosmallerdistancesequalsthelargestdistance,thepoints A, B ,and C are collinear.
Anothermethod: Findanequationforthelinethrough A and B .Thencheckif C satisfiestheequation.Ifso,thepointsare collinear.
1.11
SOLVINGEQUATIONSANDINEQUALITIESGRAPHICALLY
1. Thesolutionsoftheequation x 2 2 x 3 0arethe x interceptsofthegraphof y x 2 2 x 3.
3.(a) Fromthegraph,itappearsthatthegraphof y x 4 3 x 3 x 2 3 x has x intercepts 1,0,1,and3,sothesolutions totheequation x 4 3 x 3 x 2 3 x 0are x 1, x
(b) Fromthegraph,weseethatwhere 1 x 0or1 x 3,thegraphliesbelowthe x axis.Thus,theinequality x 4 3 x 3 x 2 3 x 0issatisfiedfor
5.(a)
x
y
(c) Thegraphisnotsymmetricwithrespecttoeitheraxisortheorigin.
1 y 2 x 2 1 ; [ 5 5] by [ 3 1]
(b) No x intercept; y intercept 2. y 0hasnosolution; x 0
(c) Thegraphissymmetricwithrespecttothe y axis:
9. Althoughthegraphsof y 3 x 2 6 x 1 2 and y 7 7 12 x 2 appeartointersectintheviewing rectangle [ 4 4] by [ 1 3],thereisnopointof intersection.Youcanverifythisbyzoomingin.
20 13. Algebraically:3 x 2 5 x 4 6
2 4 1 1 2 3 11. Thegraphsof y 6 4 x x 2 and y 3 x 18appearto havetwopointsofintersectionintheviewingrectangle [ 6 2]by[ 5 20].Youcanverifythat x 4and x 3areexactsolutions.
4 2 2
Graphically:Wegraphthetwoequations y1 3 x 2and y2 5 x 4intheviewingrectangle [1 4] by [ 1 13].
Zoomingin,weseethatthesolutionis x 3. 1 1 2 3
15. Algebraically:
Graphically:Wegraphthetwoequations y1 2 x 1 2 x and y2 7intheviewingrectangle[ 2 2]by[ 2 8].
Zoomingin,weseethatthesolutionis x 0 36.
17. Algebraically:4 x 2 8 0 x 2 2 x 2.
Graphically:Wegraphtheequation y1 4 x 2 8and determinewherethiscurveintersectsthe x axis.Weuse theviewingrectangle [ 2 2] by [ 4 4].Zoomingin,we seethatsolutionsare x 1
21. Algebraically:81 x 4 256
Graphically:Wegraphthetwoequations y1 81 x 4 and y2 256intheviewingrectangle [ 2 2] by [250 260]. Zoomingin,weseethatsolutionsare x 1 33.
19. Algebraically: x 2 9 0 x 2 9,whichhasnoreal solution.
Graphically:Wegraphtheequation y x 2 9andsee thatthiscurvedoesnotintersectthe x axis.Weusethe viewingrectangle [ 5 5] by [ 5 30]
1 0 1 2
25. Wegraph y x 2 11 x 30intheviewingrectangle
[2 8]by[ 0 1 0 1].Thesolutionsappeartobeexactly x 5and x 6.[Infact x 2 11
Algebraically:
Graphically:Wegraphtheequation y1 x 54 80 anddeterminewherethiscurveintersectsthe x axis.We usetheviewingrectangle [ 1 9] by [ 5 5].Zoomingin, weseethatsolutionsare x 2 01and x 7 99.
27. Wegraph y x 3 6 x 2 11 x 6intheviewing rectangle[ 1 4]by[ 0 1 0 1].Thesolutionsare x 100, x 200,and x 300.
29. Wefirstgraph y x x 1intheviewingrectangle [ 1 5]by[ 01 01]andfindthatthesolutionisnear 1 6.Zoomingin,weseethatsolutionsis x 1 62.
31. Wegraph y x 13 x intheviewingrectangle [ 3 3] by[ 1 1].Thesolutionsare x 1, x 0,and x 1, ascanbeverifiedbysubstitution.
33. Wegraph y 2 x 1and y 3 x 5intheviewingrectangle [0 9] by [0 5] andseethattheonlysolutiontotheequation 2 x 1 3 x 5is x 4,which canbeverifiedbysubstitution.
35. Wegraph y 2 x 1 1and y x intheviewingrectangle [ 1 6] by [0 6] andseethattheonlysolutiontotheequation 2 x 1 1 x is x 4,whichcan beverifiedbysubstitution.
37. x 3 2 x 2 x 1 0,sowestartbygraphing
thefunction y x 3 2 x 2 x 1intheviewing rectangle [ 10 10] by [ 100 100].There appeartobetwosolutions,onenear x 0and anotheronebetween x 2and x 3.Wethen usetheviewingrectangle[ 1 5]by[ 1 1]and zoominontheonlysolution, x 2 55.
39. x x 1 x 2 1 6 x x x 1 x 2 1 6 x 0.Westartbygraphing
thefunction y x x 1 x 2 1 6 x inthe
viewingrectangle [ 5 5] by [ 10 10].There appeartobethreesolutions.Wethenusethe
viewingrectangle[ 2 5 2 5]by[ 1 1]and zoomintothesolutionsat x 205, x 000, and x 1 05.
41. Wegraph y x 2 and y 3 x 10intheviewing rectangle[ 4 7]by[ 5 30].Thesolutiontothe inequalityis [ 2 5]
43. Since x 3 11 x 6 x
x
wegraph y x 3 6 x 2 11 x 6intheviewing rectangle[0 5]by[ 5 5].Thesolutionsetis
1 00] [2 00 3 00] 2 4
45. Since x 13 x x 13 x 0,wegraph y x 13 x intheviewingrectangle [ 3 3] by [ 1 1].Fromthis,we findthatthesolutionsetis
1
1
AnotherMethod: AsinExample7,wegraph y1 x 13 and y2 x inthesameviewingrectangle,andseethat x 13 x for 1 x 0andfor1 x
47. Since x 12 x 12 x
wegraph y
2 intheviewing rectangle [ 2 2] by [ 5
49. Wegraphtheequations y 3 x 2 3 x and y 2 x 2
4intheviewingrectangle [ 2 6] by [ 10 50].Weseethatthetwocurvesintersectat x 1andat x 4, andthatthefirstcurveislowerthanthesecondfor 1 x 4.Thus,weseethat theinequality3 x 2 3 x 2 x 2
4hassolutionset
51. Wegraphtheequation y
intheviewingrectangle [ 7 3] by [ 120 20] andseethattheinequality
thesolutionset
53. Tosolve5 3 x 8 x 20bydrawingthegraphofasingleequation,weisolate alltermsonthelefthandside:5 3 x 8 x 20
5 3 x 8 x 20 8 x 20 8 x 20 11 x 25 0or11 x 25 0. Wegraph y 11 x 25,andseethatthesolutionis x 2 27,asinExample2.
55.(a) Wegraphtheequation y 10 x 0 5 x 2 0 001 x 3 5000intheviewing rectangle [0 450] by [ 5000 20000] 100 200 300 400 0 10000 20000
(b) Fromthegraphitappearsthat
0 10 x 005 x 2 0001 x 3 5000for 100 x 500,andso101cooktopsmustbeproduced to begin tomakeaprofit.
57. Answerswillvary.
1.12 MODELINGVARIATION
(c) Wegraphtheequations y 15,000and y 10 x 0 5 x 2 0 001 x 3 5000intheviewing rectangle [250 450] by [11000 17000].Weuseazoom ortracefunctiononagraphingcalculator,andfindthat thecompany’sprofitsaregreaterthan$15,000for 279 x 400.
1. Ifthequantities x and y arerelatedbytheequation y 5 x thenwesaythat y is directlyproportional to x ,andtheconstant of proportionality is5.
3. Ifthequantities x , y ,and z arerelatedbytheequation z 5 x y thenwesaythat z is directlyproportional to x and inversely proportional to y
5.(a) Intheequation y 3 x , y isdirectlyproportionalto x (b) Intheequation y 3 x 1, y isnotproportionalto x
7. T kx ,where k isconstant.
9. k z ,where k isconstant.
11. y ks t ,where k isconstant. 13. z k y ,where k isconstant.
15. V kl h ,where k isconstant.
17. R kP 2 t 2 b 3 ,where k isconstant.
19. Since y isdirectlyproportionalto x , y kx .Since y 32when x 8,wehave32 k 8 k 4.So y 4 x
21. A variesinverselyas r ,so A k r .Since A 15when r 5,wehave15 k 5 k 75.So A 75 r
23. Since A isdirectlyproportionalto x andinverselyproportionalto t , A kx t .Since A 42when x 7and t 3,we have42 k 7 3 k 18.Therefore, A 18 x t
25. Since W isinverselyproportionaltothesquareof r , W k r 2 .Since W 24when r 3,wehave24 k 32 k 216. So W 216 r 2 .
27. Since C isjointlyproportionalto l , ,and h ,wehave C kl h .Since C 128when l
29. R k x .Since R 2 5when x
31.(a) z k x 3 y 2
(b) Ifwereplace x with3 x and y with2 y ,then
33.(a) z kx 3 y 5
(b) Ifwereplace x with3 x and y with2 y ,then z
35.(a) Theforce F neededis F kx
2,wehave
(b) Since F 30Nwhen x 9cmandthespring’snaturallengthis5cm,wehave30 k 9 5 k 7 5Ncm.
(c) Frompart(b),wehave F 75 x .Substituting x 11 5 6into F 7
5 x gives F 75 6 45N.
37.(a) P ks 3
(b) Since P 96when s 20,weget96 k 203 k 0 012.So P 0 012s 3
(c) Substituting x 30,weget P 0 012 303 324watts.
39. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
D ks 2 .Since D 45when s 60,wehave45 k 602 ,so k 0 0125.Thus, D 0 0125s 2 .If D 60,then 60 0 0125s 2 s 2 4800,so s 69km/h(forsafetyreasonswerounddown).
41. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect.
F kAs 2 .Since F 980when A 4and s 8,wecansolvefor k :980 k 482 980 256k k 3 83.Now when A 2 5and F 780weget780 3 83 2 5 s 2 81 4621 s 2 ,so s 81 4621 9 03km/h.
43.(a) P kT V
(b) Substituting P 33 2, T 400,and V 100,weget33 2 k 400 100 k 8 3.Thus k 8 3andtheequationis P 8 3 T V
(c) Substituting T 500and V 80,wehave P
51 875kPa.Hencethepressureofthesampleofgasis about51 9kPa.
45.(a) Theloudness L isinverselyproportionaltothesquareofthedistance d ,so L k d 2
(b) Substituting d 10and L 70,wehave70 k 102 k 7000.
(c) Substituting2d for d ,wehave L k
,sotheloudnessischangedbyafactorof 1 4 .
(d) Substituting 1 2 d for d ,wehave L k 1 2 d 2 4 k d 2 ,sotheloudnessischangedbyafactorof4.
47.(a) R kL d 2
(b) Since R 140when L 1 2and d 0 005,weget140 k 1 2
(c) Substituting L 3and d 0008,wehave R
(d) Ifwesubstitute2d for d and3 L for L ,then R k
3 L
2 k 7 2400 0 002916.
4375 32 137ohms.
2 3 4 kL d 2 ,sotheresistanceischangedbyafactorof 3 4
49. Note:Inthefirstprintingofthetext,theanswergivenforpart(b)ofthisexerciseisincorrect.
(a) Forthesun, E S k 60004 andforearth, E E k 3004 .Thus E S E E k 60004 k 3004 6000 300 4 204 160,000.Sothesun produces160,000timestheradiationenergyperunitareathantheEarth.
(b) Thesurfaceareaofthesunis4 696,0002 andthesurfaceareaoftheEarthis4 63402 .Sothesunhas
4 696,0002 4 63402 696,000 6340 2 timesthesurfaceareaoftheEarth.Thusthetotalradiationemittedbythe sunis
160,000 696,000 6340 2 1,928,234,931timesthetotalradiationemittedbytheEarth.
51.(a) Since f isinverselyproportionalto L ,wehave f k L ,where k isapositiveconstant.
(b) Ifwereplace L by2 L wehave k 2 L 1 2 k L 1 2 f .Sothefrequencyofthevibrationiscutinhalf.
53. Wesubstitute e 0 2kWhkmand 100km/hintothesecondgivenequation:0 2
Now,becausetherangeis R 500kmforthesevaluesof e and ,wecanusethefirstequationtocalculatethevalueof C :
500 C 02 C 100,soafullchargeforthisvehicleis100kWh.
Substituting e k 2 intothefirstgivenequation,wehave R C k 2
Soat130kmh,itsrangeis R
55. Using B k L d 2 with k 0080,
Thestar’sapparentbrightnessisabout3
2 296km;andat80km
57. Examplesincluderadioactivedecayandexponentialgrowthinbiology.
CHAPTER1REVIEW
1. CommutativePropertyforaddition. 3. DistributiveProperty.
19.(a)
solutiontotheoriginalequation.
2makestheexpressionundefined,werejectthissolution.Hencetheonly solutionis x
83. Let x bethenumberofkilogramsofraisins.Thenthenumberofkilogramsofnutsis50 x Raisins Nuts Mixture
20.Thusthemixtureuses 20kilogramsofraisinsand50 20 30kilogramsofnuts.
85. Let r betheathlete’srunningspeed,inmi/h.Thentheycycleat
8km/h.
Sincethetotaltimeoftheworkoutis1hour,wehave
speedis
87. Let t bethetimeitwouldtaketheinteriordecoratortopaintalivingroomiftheyworkalone.Itwouldtaketheassistant 2t hoursalone,anditwouldtaketheapprentice3t hoursalone.Thus,thedecoratordoes 1 t ofthejobperhour,theassistant does 1 2t ofthejobperhour,andtheapprenticedoes 1 3t ofthejobperhour.So
6t 11 t 11 6 .Thus,itwouldtakethedecorator1hour50minutestopaintthelivingroom alone.
89. 3 x 2 11
Interval:
Graph: -3
91. x 2 7 x 8
x 8
0.Theexpressionontheleftoftheinequalitychangessignwhere x 8andwhere x 1.Thuswemustchecktheintervalsinthefollowingtable.
Interval:
Graph: _18
93. x 4 x 2 4 0 x 4 x 2
0.Theexpressionontheleftoftheinequalitychangessignwhere x
2,where x 2, andwhere x 4.Thuswemustchecktheintervalsinthefollowingtable.
Signof x 4
Signof x 2
Signof x 4
Sincetheexpressionisnotdefinedwhen
Graph: _224
x 5
Interval:[2 8]
Graph: 28
weexcludethesevaluesandthesolutionis
97.(a) y
Q
(d) Thelinehasslope
Thecenteris
(b) Thedistancefrom P to Q is
(c) Themidpointis
(e) Theradiusofthiscirclewasfoundinpart(b).Itis
x
4,anequationofacircle. (b) Thecirclehascenter
and radius2. 1 1 y x
Sincetheleftsideofthisequationmustbegreaterthanorequaltozero,thisequationhasnograph.
x 16 y 2 (a) x axissymmetry:replacing y by y gives x 16 y 2 16 y 2 ,whichisthesameastheoriginalequation,so thegraphissymmetricaboutthe x axis. y axissymmetry:replacing x by x gives x 16 y 2 x y 2 16,whichisnotthesameastheoriginal equation,sothegraphisnotsymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by y gives x 16 y 2 x 16 y 2 ,whichisnotthesameas theoriginalequation,sothegraphisnotsymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor x : x 16 02 16,sothe x interceptis16.
Tofind y intercepts,weset x 0andsolvefor y :0 16 y 2 y 4,sothe y interceptare4and 4.
117. x 2 9 y 9
(a) x axissymmetry:replacing y by
9,sothegraphisnotsymmetricaboutthe x axis.
y axissymmetry:replacing x by x gives
Originsymmetry:replacing x by x and y by
9,sothegraphissymmetricaboutthe y axis.
9 y
9,sothegraphisnot symmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor
Tofind y intercepts,weset x 0andsolvefor
119. x 2 4 xy y 2 1
(a) x axissymmetry:replacing y by
gives
3,sothe x interceptsare3and 3.
1,sothe y interceptis 1.
1,whichisdifferentfromtheoriginalequation,so thegraphisnotsymmetricaboutthe x axis. y axissymmetry:replacing x by x gives
1,whichisdifferentfromtheoriginalequation, sothegraphisnotsymmetricaboutthe y axis.
Originsymmetry:replacing x by x and y by y gives
thegraphissymmetricabouttheorigin.
(b) Tofind x intercepts,weset y 0andsolvefor
x interceptsare 1and1.
Tofind y intercepts,weset x 0andsolvefor y
1,sothe y interceptsare 1and1.
121.(a) Wegraph y x 2 6 x intheviewingrectangle [ 10 10] by [ 10 10] 10 5 5 10 10 10
(b) Fromthegraph,weseethatthe x interceptsare0 and6andthe y interceptis0.
123.(a) Wegraph y x 3 4 x 2 5 x intheviewing rectangle [
(b) Fromthegraph,weseethatthe x interceptsare 1, 0,and5andthe y interceptis0.
125.(a) Thelinethathasslope2and y intercept6hastheslopeinterceptequation y 2 x 6.
(b) Anequationofthelineingeneralformis2x y 6 0. (c) y 1x
127.(a) Thelinethatpassesthroughthepoints
3 2 ,so,usingthesecondpointforconvenience,an
129.(a) Theverticallinethatpassesthroughthepoint
131.(a) Thelinecontaining
and
4,andthelinepassingthroughtheoriginwith thisslopehasequation y 4
(b) y 4 x 4 x y 0.
y 1x 1
133.(a) Theslope,0 3,representstheincreaseinlengthofthespringforeachunitincreasein weight .The s interceptisthe restingornaturallengthofthespring. (b) When 5, s 0 3
4 0centimeters.
135. Fromthegraph,weseethatthegraphsof y x 2 4 x and y x 6intersectat x 1and x 6,sothesearethe solutionsoftheequation x 2 4 x x 6.
137. Fromthegraph,weseethatthegraphof y x 2 4 x liesbelowthegraphof y x 6for 1 x 6,sotheinequality x 2 4 x x 6issatisfiedontheinterval [ 1 6].
139. Fromthegraph,weseethatthegraphof y x 2 4 x liesabovethe x axisfor x 0andfor x 4,sotheinequality x 2 4 x 0issatisfiedontheintervals 0] and [4
141. x 2 4 x 2 x 7.Wegraphtheequations y1 x 2 4 x and y2 2 x 7intheviewingrectangle[ 10 10]by [ 5 25].Usingazoomortracefunction,wegetthe solutions x 1and x 7.
143. x 4 9 x 2 x 9.Wegraphtheequations y1 x 4 9 x 2 and y2 x 9intheviewingrectangle[ 5 5]by [ 25 10].Usingazoomortracefunction,wegetthe solutions x 2 72, x 1 15, x 1 00,and x 2 87.
145. x 2 12 4 x .Wegraphtheequations y1 x 2 and y2 12 4 x intheviewingrectangle [ 8 4] by [0 40].
Usingazoomortracefunction,wefindthepointsof intersectionareat x 6and x 2.Sincewewant x 2 12 4 x ,thesolutionistheunionofintervals
6
2
147. x 4 4 x 2 1 2 x 1.Wegraphtheequations y1 x 4 4 x 2 and y2 1 2 x 1intheviewingrectangle [ 5 5] by [ 5 5].Wefindthepointsofintersectionare at x 1 85, x 0 60, x 0 45,and x 2 00.Since wewant
149. Herethecenterisat 0 0,andthecirclepassesthroughthepoint 5 12,sotheradiusis r
13.Theequationofthecircleis x 2 y 2 132 x 2 y 2 169.Thelineshownisthetangentthatpassesthroughthepoint 5 12,soitisperpendiculartotheline throughthepoints 0 0 and 5 12.Thislinehasslope m 1 12 0 5
12 5 .Theslopeofthelineweseekis m 2 1 m 1 1 125 5 12 .Thus,anequationofthetangentlineis y 12 5 12 x 5 y 12 5 12 x 25 12 y 5 12 x 169 12 5 x 12 y 169 0.
151. Since M variesdirectlyas z wehave M kz .Substituting M 120when z 15,wefind120 k 15 k 8. Therefore, M 8z
153.(a) Theintensity I variesinverselyasthesquareofthedistance d ,so I k d 2 (b) Substituting I 1000when d 8,weget1000 k 82 k 64,000.
(c) Fromparts(a)and(b),wehave I 64,000 d 2 .Substituting d 20,weget I 64,000 202 160candles.
155. Note:Inthefirstprintingofthetext,theanswergivenforthisexerciseis incorrect. Let betheterminalvelocityoftheparachutistinkm/hand betheirweightinkilograms.Sincetheterminalvelocityis directlyproportionaltothesquarerootoftheweight,wehave k .Substituting 14when 70,wesolve for k .Thisgives14
673 .When 105,theterminalvelocityis 1 673105 17km/h.
157. Thespeed isinverselyproportionaltothesquarerootofthedensity d ,so
k d .Infreshwaterwithdensity d1 1gcm3 ,thespeedis
1480.Thus,inseawaterwithdensity10273gcm3 ,we have 1480 10273
159. Wesolvethefirstequationfor
ByHubble’sLaw,
CHAPTER1TEST
1.(a)
3.(a)
5.(Notethatthisisimpossible,sotherecanbenosolution.) Squaringbothsidesagain,weget1
4.Butthisdoesnotsatisfytheoriginalequation,sothereisno solution.(Youmustalwayscheckyourfinalanswersifyouhavesquaredboth sideswhensolvinganequation,since extraneousanswersmaybeintroduced,ashere.) (f) x
11. UsingtheQuadraticFormula,2
13. Let bethewidthoftheparcelofland.Then 70isthelengthoftheparcelofland.Then
15. 5 5
41 Fand50 F.
17.(a) y 1x 1
S Thereareseveralwaystodeterminethecoordinatesof S .Thediagonalsofa squarehaveequallengthandareperpendicular.Thediagonal PR ishorizontal andhaslengthis6units,sothediagonal QS isverticalandalsohaslength6. Thus,thecoordinatesof S are
(b) Thelengthof PQ is 0
2.Sotheareaof
19.(a) y 1x P1 Q
(b) Thedistancebetween P and Q is
(c) Themidpointis
(d) Thecenterofthecircleisthemidpoint,
,andthelengthoftheradiusis
PQ is
21. 2 x 3 y 15 3 y 2 x 15 y 2 3 x 5.Theslopeis 2 3 andthe y interceptis 5. y 1x 1
23.(a) When x 100wehave T 0 08
4 8 4 4,sothe temperatureatonemeteris4 C.
(c) Thesloperepresentstheraiseintemperatureasthedepthincrease. The T interceptisthesurfacetemperatureofthesoilandthe x interceptrepresentsthedepthofthe“frostline”,wherethesoil belowisnotfrozen.
(b) T 20x 6080100120 _5 5 40
25. Note:Inthefirstprintingofthetext,theanswersgivenforparts(b)and(c)ofthisexerciseareincorrect.
(a) M k h 2 L
(b) Substituting 10, h 15, L 30,and M 21,000,wehave21,000
(c) Nowif L
FOCUSONMODELINGFittingLinestoData
1.(a) Usingagraphingcalculator,weobtaintheregression
(b) Using x 58intheequation y 1 8807 x 82 65, weget y 1
3. Note:Inthefirstprintingofthetext,theanswergivenforpart(a)ofthisexerciseisincorrect.
(a) Usingagraphingcalculator,weobtaintheregression line y 2 579 x 0 1783.
(b) Using x 45intheequation y 2 579 x 0 1783, weget y 2 579 45 0 1783 116years.
5.(a) Usingagraphingcalculator,weobtaintheregression line y 0 13198 x 7 2514 Years since 1994 y x 2 4 6 8 01020
7.(a) Usingagraphingcalculator,weobtain
(b) Using x 25intheregressionlineequation,weget y 0 13198 25 7 2514 3 95millionkm2 Thisisroughly10%lessthantheactualfigureof 4 4millionkm2
(c) Despitefluctuationsoverbriefperiods,themodel seemsfairlyaccurate.Ifexternalcircumstances change(reducedorincreasedCO2 emissions,for example),itmaybecomelessreliable.Itisunlikely tobeaccuratefarintothefuture.
9. Resultswilldependonstudentsurveysineachclass.
(b) Thecorrelationcoefficientis r 0 98,solinear modelisappropriatefor x between80dBand 104dB.
(c) Substituting x 94intotheregressionequation,we get y 3 9018 94 419 7 53.Sothe intelligibilityisabout53%.
1 ERRATAinExercisesandAnswersinFirstPrinting
Page1231.11.56Displayedequationshouldread y 2 4 x x 1000 2
Page1231.11.56(a) Graphtheequationfor0 x 160.
PageA21.5.129(Answer) 424s
PageA21.5.137(Answer) 344 000km
PageA31.7.21(Answer) 220km
PageA31.7.39(Answer) 31 6mby158m
PageA31.7.77(Answer) 1 6mfromthefulcrum
PageA41.8.119(Answer) Morethan100km
PageA41.8.127(Answer)(a) Accelerationgreaterthan8 04ms2
PageA71.10.93(Answer)(a) t 1 8 n 6 (b) 25 C
PageA71.10.95(Answer)(a) P 9 97d 103,where P is pressureinkPaand d isdepthinmeters (c) Thesloperepresentsanincreaseof9 97kPainpressure foreachonemeterincreaseindepth,andthe d interceptis theairpressureatthesurface. (d) 59m (b) y x
PageA71.12.39(Answer) 69kmh
PageA71.12.41(Answer) 9 03kmh
PageA71.12.49(Answer)(b) 1 928 234 931
PageA81.Review.155(Answer) 17kmh
PageA91.Test.12(Answer) 192km
PageA91.Test.25(Answer)(b) 280 (c) 52,500N
PageA101.Focus.3(Answer)(a) y 2 579 x 0 1783