PDF Solutions Manual for Algebra and Trigonometry 5th Edition by Stewart

Page 1


CHAPTER PPREREQUISITES1

P.1 ModelingtheRealWorldwithAlgebra1

P.2 RealNumbers2

P.3 IntegerExponentsandScientificNotation7

P.4 RationalExponentsandRadicals12

P.5 AlgebraicExpressions16

P.6 Factoring19

P.7 RationalExpressions24

P.8 SolvingBasicEquations31

P.9 ModelingwithEquations36 ChapterPReview42 ChapterPTest48

¥ FOCUSONMODELING: MakingOptimalDecisions51

PREREQUISITES

P.1

MODELINGTHEREALWORLDWITHALGEBRA

1. Usingthismodel,wefindthat15carshave W  4 15  60wheels.Tofindthenumberofcarsthathaveatotalof W wheels,wewrite W  4 X  X  W 4 .Ifthecarsinaparkinglothaveatotalof124wheels,wefindthatthereare X  124 4  31carsinthelot.

2. Ifeachgallonofgascosts$350,then x gallonsofgascosts$35 x .Thus, C  35 x .Wefindthat12gallonsofgaswould cost C  3 5 12  $42.

3. If x  $120and T  0 06 x ,then T  0 06 120  7 2.Thesalestaxis$7 20.

4. If x  62,000and T  0 005 x ,then T  0 005 62,000  310.Thewagetaxis$310.

5. If   70, t  3 5,and d   t ,then d  70  3 5  245.Thecarhastraveled245miles.

6. V  r 2 h   32  5  45  141 4in3

7.(a) M  N G  240 8  30miles/gallon (b) 25  175 G  G  175 25  7gallons 8.(a) T  70 0

11.(a)

12.(a)

(b) Weknowthat P  30andwewanttofind d ,sowesolvethe equation30  14 7 

45  340.Thus,ifthepressureis30lb/in2 ,thedepth is34ft.

(b) Wesolvetheequation40 x  120,000  x  120,000 40  3000.Thus,thepopulationisabout3000.

13. Thenumber N ofcentsin q quartersis N  25q

14. Theaverage A

15. Thecost C ofpurchasing x gallonsofgasat$3 50agallonis C  3 5 x

16. Theamount T ofa15%tiponarestaurantbillof x dollarsis T  0 15 x

17. Thedistance d inmilesthatacartravelsin t hoursat60mi/his d  60t

18. Thespeed r ofaboatthattravels d milesin3hoursis r  d 3

19.(a) $12  3

$1  $12  $3  $15

(b) Thecost C ,indollars,ofapizzawith n toppingsis C  12  n

(c) Usingthemodel C  12  n with C  16,weget16  12  n  n  4.Sothepizzahasfourtoppings.

20.(a) 3

30

$118

(b) Thecostis  daily rental    days rented  

cost permile

miles driven

(c) Wehave C  140and n  3.Substituting,weget140 

m  500.Sotherentalwasdriven500miles.

21.(a)(i) Foranall­electriccar,theenergycostofdriving x milesis C e  0 04 x (ii) Foranaveragegasolinepoweredcar,theenergycostofdriving x milesis C g  0 12 x (b)(i) Thecostofdriving10,000mileswithanall­electriccaris C

(ii) Thecostofdriving10,000mileswithagasolinepoweredcaris

22.(a) Ifthewidthis20,thenthelengthis40,sothevolumeis20 20 40  16,000in3 (b) Intermsofwidth, V  x

23.(a) TheGPAis

(b) Using a  2 3  6, b  4, c  3 3  9,and

P.2 THEREALNUMBERS

1.(a) Thenaturalnumbersare 1

2

3

(b) Thenumbers 

f  0intheformulafrompart(a),wefindtheGPAtobe

areintegersbutnotnaturalnumbers.

(c) Anyirreduciblefraction p q with q  1isrationalbutisnotaninteger.Examples: 3 2 , 5 12 , 1729 23

(d) Anynumberwhichcannotbeexpressedasaratio p q oftwointegersisirrational.Examplesare 2, 3,  ,and e

2.(a) ab  ba ;CommutativePropertyofMultiplication

(b) a  b  c   a  b   c ;AssociativePropertyofAddition

(c) a b  c   ab  ac;DistributiveProperty

3.(a) Inset­buildernotation: x 3  x  5

(b) Inintervalnotation:  3 5

(c) Asagraph: _35

4. Thesymbol  x  standsforthe absolutevalue ofthenumber x .If x isnot0,thenthesignof  x  isalways positive

5. Thedistancebetween a and b onthereallineis d a

b a

.Sothedistancebetween 5and2is

6.(a) If a  b ,thenanyintervalbetween a and b (whetherornotitcontainseitherendpoint)containsinfinitelymany numbers—including,forexample a  b a 2n foreverypositive n .(Ifanintervalextendstoinfinityineitherorboth directions,thenitobviouslycontainsinfinitelymanynumbers.)

(b) No,because 5 6 doesnotinclude5.

7.(a) No: a b  b a   b a ingeneral.

(b) No;bytheDistributiveProperty, 2 a

8.(a) Yes,absolutevalues(suchasthedistancebetweentwodifferentnumbers) arealwayspositive.

(b) Yes, b a   a b

9.(a) Naturalnumber:100

(b) Integers:0,100, 8

(c) Rationalnumbers: 1 5,0, 5 2 ,2 71,3 14,100, 8

(d) Irrationalnumbers: 7, 

11. CommutativePropertyofaddition

Naturalnumbers:2, 9  3,10

(b) Integers:2, 100 2 50, 

(c) Rationalnumbers:4

(d) Irrationalnumbers: 2, 3 14

CommutativePropertyofmultiplication 13. AssociativePropertyofaddition

DistributiveProperty

CommutativePropertyofmultiplication

83.(a) a isnegativebecause a ispositive.

(b) bc ispositivebecausetheproductoftwonegativenumbersispositive.

(c) a ba   b  ispositivebecauseitisthesumoftwopositivenumbers.

(d) ab  ac isnegative:eachsummandistheproductofapositivenumberandanegative number,andthesumoftwo negativenumbersisnegative.

84.(a) b ispositivebecause b isnegative.

(b) a  bc ispositivebecauseitisthesumoftwopositivenumbers.

(c) c a  c   a  isnegativebecause c and a arebothnegative.

(d) ab2 ispositivebecauseboth a and b 2 arepositive.

85. DistributiveProperty

86.(a) When L  60, x  8,and y  6,wehave L 

60  28  88.Because88  108the postofficewillacceptthispackage. When L  48, x  24,and y  24,wehave

48  96  144,andsince 144  108,thepostofficewill not acceptthispackage. (b) If x  y  9,then

72.Sothelengthcanbeaslongas72in.  6ft.

87. Let x  m 1 n 1 and y  m 2 n 2 berationalnumbers.Then

,and

.Thisshowsthatthesum,difference,andproduct oftworationalnumbersareagainrationalnumbers.Howevertheproductof twoirrationalnumbersisnotnecessarily irrational;forexample, 2 2  2,whichisrational.Also,thesumoftwoirrationalnumbersisnotnecessarilyirrational; forexample, 2   2  0whichisrational.

88. 1 2  2isirrational.Ifitwererational,thenbyExercise6(a),thesum  1 2

2wouldberational,but thisisnotthecase.

Similarly, 1 2 2isirrational.

(a) Followingthehint,supposethat r  t  q ,arationalnumber.ThenbyExercise6(a),thesumofthetworational numbers r  t and r isrational.But r  t    r   t ,whichweknowtobeirrational.Thisisacontradiction,and henceouroriginalpremise—that r  t isrational—wasfalse.

(b) r isanonzerorationalnumber,so r  a b forsomenonzerointegers a and b .Letusassumethat rt  q ,arational number.Thenbydefinition, q  c d forsomeintegers c and d .Butthen rt  q  a b t  c d ,whence t  bc ad ,implying that t isrational.Onceagainwehavearrivedatacontradiction,andweconclude thattheproductofarationalnumber andanirrationalnumberisirrational.

89.

As x getslarge,thefraction1 x getssmall.Mathematically,wesaythat1 x goestozero.

As x getssmall,thefraction1 x getslarge.Mathematically,wesaythat1 x goestoinfinity.

90. Wecanconstructthenumber 2onthenumberlineby transferringthelengthofthe hypotenuseofarighttriangle withlegsoflength1and1. Similarly,tolocate 5,weconstructarighttrianglewithlegs oflength1and2.BythePythagoreanTheorem,thelength ofthehypotenuseis 12  22  5.Thentransferthe lengthofthehypotenusetothenumberline. Thesquarerootofanyrationalnumbercanbelocatedona numberlineinthisfashion.

Thecircleinthesecondfigureinthetexthascircumference  ,soifwerollitalonganumberlineonefullrotation,wehave found  onthenumberline.Similarly,anyrationalmultipleof  canbefoundthisway.

91.(a) Supposethat a  b ,somax

Ontheotherhand,if b

If a  b ,then

(b) If a  b ,thenmin

Similarly,if b  a ,then

92. Answerswillvary.

0andtheresultistrivial.

and

,theresultistrivial.

93.(a) Subtractionisnotcommutative.Forexample,5 1  1 5.

(b) Divisionisnotcommutative.Forexample,5  1  1  5.

(c) Puttingonyoursocksandputtingonyourshoesarenotcommutative.Ifyouputonyoursocksfirst,thenyourshoes, theresultisnotthesameasifyouproceedtheotherwayaround.

(d) Puttingonyourhatandputtingonyourcoatarecommutative.Theycanbedoneineitherorder,withthesameresult.

(e) Washinglaundryanddryingitarenotcommutative.

94.(a) If x  2and y  3,then  x

If x 2and y 3,then

If x 2and y  3,then

Ineachcase,  x  y

y  andtheTriangleInequalityissatisfied.

(b) Case0: Ifeither x or y is0,theresultisequality,trivially.

Case1: If x and y havethesamesign,then

x  y

y if x and y arepositive

if x and y arenegative

Case2: If x and y haveoppositesigns,thensupposewithoutlossofgeneralitythat x  0and y  0.Then

P.3 INTEGEREXPONENTSANDSCIENTIFICNOTATION

1. Usingexponentialnotationwecanwritetheproduct5

2. Yes,thereisadifference:

3. Intheexpression34 ,thenumber3iscalledthe base andthenumber4iscalledthe exponent 4.(a) Whenwemultiplytwopowerswiththesamebase,we add theexponents.So34  35  39 (b) Whenwedividetwopowerswiththesamebase,we subtract theexponents.So 35 32  33

5. Whenweraiseapowertoanewpower,we multiply theexponents.So

6.(a) 2

38

7. Tomoveanumberraisedtoapowerfromnumeratortodenominatororfromdenominatortonumeratorchangethesignof the

8. Scientistsexpressverylargeorverysmallnumbersusing scientific notation.Inscientificnotation,8,300,000is8 3  106 and0 0000327is3 27  10 5

b

(c) 2 y 10 y 11 2 y 10

21.(a) x 5 x 3  x 53  x 2  1 x 2 (b)  2 

32.(a) 5 xy 2 x 1 y 3  5

33.(a) 69,300,000  6 93  107 (b) 7,200,000,000,000  7 2  1012

(c) 0 000028536  2 8536  10 5

(d) 0 0001213  1 213  10 4

35.(a) 319  105  319,000 (b) 2721  108  272,100,000

(c) 2670  10 8  000000002670

(d) 9 999  10 9  0 000000009999

37.(a) 5,900,000,000,000mi 5 9  1012 mi

34.(a) 129,540,000  1 2954  108 (b) 7,259,000,000  7 259  109

(c) 0 0000000014  1 4  10 9 (d) 0 0007029  7 029  10 4

36.(a) 71  1014  710,000,000,000,000 (b) 6  1012  6,000,000,000,000

(c) 855  10 3  000855 (d) 6 257  10 10  0 0000000006257

(b)

38.(a) 93,000,000mi

(b)

39.

40.

10100 isto10101

46.(a) b 5 isnegativesinceanegativenumberraisedtoanoddpowerisnegative.

(b) b 10 ispositivesinceanegativenumberraisedtoanevenpowerispositive.

(c) ab2 c3 wehave positive

(d) Since b a isnegative, b a 3  negative3 whichisnegative.

(e) Since b a isnegative, b a 4  negative4 whichispositive.

(f) a 3 c3 b

47. Sinceonelightyearis5 9  1012 miles,Centauriisabout4

50. Eachperson’sshareisequalto

51. First,weestimatethetotalmassofthestarsintheobservableuniverse:

whichisnegative.

Thus,thenumberofhydrogenatomsintheobservableuniverseis

Totalstarmass

Massofasinglehydrogenatom  531  1053 1 67  10 27  318  1080

52.(a)

(b) Answerswillvary.

Patient Weight Height BMI  703 W H 2 Result

A 295lb 5ft10in.  70in. 42 32 obese

B 105lb 5ft6in.  66in. 16 95 underweight

C 220lb 6ft4in.  76in. 26 78 overweight

D 110lb 5ft2in.  62in. 20 12 normal

53. I  15,000 1 0037512n 1

54. Since106  103 103 itwouldtake1000days  2 74yearstospendthemilliondollars.

Since109  103 106 itwouldtake106  1,000,000days  273972yearstospendthebilliondollars.

56.(a)

.Because m  n ,wecancancel n factorsof a fromnumeratoranddenominatorandareleftwith

RATIONALEXPONENTSANDRADICALS

1.(a) Usingexponentialnotationwecanwrite 3 5as513

(b) Usingradicalswecanwrite512 as 5.

(c) No. 

2.

3. Becausethedenominatorisoftheform

4.

5. No.If

6. No.Forexample,if

(b) 4 64 y 6  4 24 y 4  4 y 2  2  y  4 4 y 2 18.(a) 4  x 2 z 5 

22.(a)

46.

63.(a)

(b) Wefindacommonroot:

3 5  3.

73. Firstconvert1135feettomiles.Thisgives1135ft

74.(a) Using f  0 4andsubstituting d  65,weobtain s  30

65  28mi/h. (b) Using f  05andsubstituting s  50,wefind d .Thisgives

2500  15d  d  500 3  167feet.

75. Since1day  86,400s,365 25days  31,557,600s.Substituting,weobtain d 

76.(a) Substitutingthegivenvaluesweget

(b) Sincethevolumeoftheflowis V A ,thecanaldischargeis17

77.(a)

Sowhen n getslarge,21 n decreasesto1.

(b)

Sowhen n getslarge,  1 2 1 n increasesto1.

P.5 ALGEBRAICEXPRESSIONS

1.(a) 2 x 3 1 2 x  3isapolynomial.(Theconstanttermis notaninteger,butallexponentsareintegers.)

(b) x 2 1 2 3 x  x 2 1 2 3 x 12 isnotapolynomialbecausetheexponent 1 2 isnotaninteger.

(c) 1 x 2  4 x  7 isnotapolynomial.(Itisthereciprocalofthepolynomial x 2  4 x  7.)

(d) x 5  7 x 2 x  100isapolynomial.

(e) 3 8 x 6 5 x 3  7 x 3isnotapolynomial.(Itisthecuberootofthepolynomial8 x 6 5 x 3  7 x 3.)

(f) 3 x 4  5 x 2 15 x isapolynomial.(Somecoefficientsarenotintegers,butallexponentsare integers.)

2. Toaddpolynomialsweadd like terms.So

3 x 2

3. Tosubtractpolynomialswesubtract like terms.So

4. WeuseFOILtomultiplytwopolynomials:

5. TheSpecialProductFormulaforthe“squareofasum”is

6. TheSpecialProductFormulaforthe“productofthesumanddifferenceofterms”is

6  x 6 x  

7.(a) No;

Yes;

8.(a) Yes;byaSpecialProductFormula,

(b) No,  x 

 x 2 a 2 ,byaSpecialProductFormula.

9. Type:binomial.Terms:5 x 3 and6.Degree:3.

10. Type:trinomial.Terms: 2 x 2 ,5 x ,and 3.Degree:2.

11. Type:monomial.Term: 8.Degree:0.

12. Type:monomial.Terms: 1 2 x 7 .Degree:7.

13. Type:quadrinomial.Terms: x , x 2 , x 3 ,and x 4 .Degree:4.

14. Type:binomial.Terms: 2 x and 3.Degree:1.

15.

SoLHS  RHS,thatis,

85.(a) Theheightoftheboxis x ,itswidthis6 2 x ,anditslengthis10 2 x .SinceVolume  height  width  length,we have V  x 6 2 x

10 2 x  (b) V  x 60 32 x

(c) When x  1,thevolumeis V

32,andwhen x  2,thevolumeis

86.(a) Thewidthisthewidthofthelotminusthesetbacksof10feeteach.Thuswidth  x 20andlength  y 20.Since Area  width  length,weget A

(b) A   x 20 y 20

(c) Forthe100  400lot,thebuildingenvelopehas

30,400.Forthe200  200, lotthebuildingenvelopehas A

 200lothasalarger buildingenvelope.

87.(a) A  4000

(b) Rememberthat%meansdivideby100,so2%

88.(a) When

(b)

89.(a) Thedegreeoftheproductisthesumofthedegreesoftheoriginalpolynomials.

(b) Thedegreeofthesumcouldbelowerthaneitherofthedegreesoftheoriginalpolynomials,butisatmostthelargestof thedegreesoftheoriginalpolynomials.

(c) Product:

P.6 FACTORING

1.(a) Thepolynomial2 x 3  3 x 2  10 x hasthreeterms:2 x 3 ,3 x 2 ,and10 x

(b) Thefactor x iscommontoeachterm,so2 x 3  3 x 2

2. Thegreatestcommonfactorintheexpression18 x 3  30 x is6 x ,andtheexpressionfactorsas6 x 3

3. Tofactorthetrinomial x 2  8 x  12welookfortwointegerswhoseproductis12andwhosesumis8.Theseintegersare6 and2,sothetrinomialfactorsas

4. TheSpecialFactoringFormulaforthe“differenceofsquares”is

5. TheSpecialFactoringFormulafora“perfectsquare”is

6. Thegreatestcommonfactorintheexpression4

Startbyfactoringoutthepowerof

56. Startbyfactoringoutthepowerof x withthesmallestexponent,thatis, x 13

Thus, x 53

57. Startbyfactoringoutthepowerof x 2  1withthesmallestexponent,thatis,

Startbyfactoringoutthepowerof

(differenceofsquares)

114.(a) Mowedportion  field habitat (b) Usingthedifferenceofsquares,weget

115. Thevolumeoftheshellisthedifferencebetweenthevolumesoftheoutside cylinder(withradius R )andtheinsidecylinder (withradius r ).Thus V

averageradiusis R

2 and2 R

2 istheaveragecircumference(lengthoftherectangularbox), h istheheight,and R r isthethicknessoftherectangularbox.Thus

(b) Basedonthepatterninpart(a),wesuspectthat

P.7

RATIONALEXPRESSIONS

1. Arationalexpressionhastheform P  x  Q  x  ,where P and Q arepolynomials.

(a) 3 x x 2 1 isarationalexpression.

(b)  x  1 2 x  3 isnotarationalexpression.Arationalexpressionmustbeapolynomialdividedbyapolynomial,andthe numeratoroftheexpressionis  x  1,whichisnotapolynomial.

(c) x  x 2 1 x  3  x 3 x x  3 isarationalexpression.

2. Tosimplifyarationalexpressionwecancelfactorsthatarecommontothe numerator and denominator.So,theexpression

x  1 x  2

x  3

3. Tomultiplytworationalexpressionswemultiplytheir numerators togetherandmultiplytheir denominators together.So 2 x  1 

4.(a)

hasthreeterms.

(b) Theleastcommondenominatorofallthetermsis

5.(a) Yes.Cancelling x  1,wehave

(b) No; 

6.(a) Yes, 3  a 3  3 3

(b) No.Wecannot“separate”thedenominatorinthisway;onlythenumerator,asinpart(a).(SeealsoExercise101.)

7. Thedomainof4 x 2 10 x  3isallrealnumbers. 8. Thedomainof x 4  x 3  9 x isallrealnumbers. 9. Since x 3  0wehave x  3.Domain: x

11. Since x  3  0, x 3.Domain;

x 2 x 2

39.

40. x y  z  x  y z  x 1 z y  xz y 41.

42.

43.

numeratoranddenominatorbythecommondenominatorofboththenumerator anddenominator,inthiscase x 2 y 2 :

76. Incalculusitisnecessarytoeliminatethe h inthedenominator,andwedothisbyrationalizingthenumerator:

99.(a) R 

(b) Substituting R1  10ohmsand R2

100.(a) Theaveragecost A 

(b)

101.

Fromthetable,weseethattheexpression x 2 9 x 3 approaches6as x approaches3.Wesimplifytheexpression: x 2

3.Clearlyas x approaches3, x  3approaches6.Thisexplainstheresultinthe table.

102. No,squaring 2  x changesitsvaluebyafactorof 2  x .

103. Answerswillvary.

AlgebraicError Counterexample

104.(a) 5  a 5  5 5  a 5  1  a 5 ,sothestatementistrue.

(b) Thisstatementisfalse.Forexample,take x  5and y  2.ThenLHS 

RHS  x y  5 2 ,and2  5 2

(c) Thisstatementisfalse.Forexample,take x  0and y  1.ThenLHS  x x  y  0 0

1  0,while RHS  1 1  y  1 1  1  1 2 ,and0  1 2 .

(d) Thisstatementisfalse.Forexample,take x  1and y  1.ThenLHS

RHS  2a 2b  2 2  1,and2  1.

(e) Thisstatementistrue:

(f) Thisstatementistrue:

Itappearsthatthesmallestpossiblevalueof

(b) Because x  0,wecanmultiplybothsidesby x andpreservetheinequality:

x 1

2

0.Thelaststatementistrueforall x  0,andbecauseeachstepis reversible,wehaveshownthat x  1 x  2forall x  0.

P.8 SOLVINGBASICEQUATIONS

1. Substituting x  3intheequation4 x 2  10makestheequationtrue,sothenumber3isa solution oftheequation.

2. Subtracting4frombothsidesofthegivenequation,3x  4  10,weobtain3 x  4 4  10 4  3 x  6.Multiplying by 1 3 ,wehave 1 3 3 x   1 3 6  x  2,sothesolutionis x  2.

3.(a) x 2  2 x  10isequivalentto 5 2 x 10  0,soitisalinearequation.

(b) 2 x 2 x  1isnotlinearbecauseitcontainstheterm 2 x ,amultipleofthereciprocalofthevariable.

(c) x  7  5 3 x  4 x 2  0,soitislinear.

4.(a) x  x  1  6  x 2  x  6isnotlinearbecauseitcontainsthesquareofthevariable.

(b)  x  2  x isnotlinearbecauseitcontainsthesquarerootof x  2.

(c) 3 x 2 2 x 1  0isnotlinearbecauseitcontainsamultipleofthesquare ofthevariable.

5.(a) Thisistrue:If a  b ,then a  x  b  x

(b) Thisisfalse,becausethenumbercouldbezero.However,itistruethatmultiplyingeachsideofanequationbya nonzero numberalwaysgivesanequivalentequation.

(c) Thisisfalse.Forexample, 5  5isfalse,but  52  52 istrue.

6. Tosolvetheequation x 3  125wetakethe cube rootofeachside.Sothesolutionis x  3 125  5.

7.(a) When x 2,LHS  4  2  7 

18 3 21.SinceLHS  RHS, x 2isnotasolution.

(b) When x  2,LHS  4 2  7  8  7  15andRHS  9 2 3  18 3  15.SinceLHS  RHS, x  2isa solution.

8.(a) When x 1,LHS  2 5  1  2  5  7andRHS

(b) When x  1,LHS  2 5 1  2 5 3andRHS  8

9.(a) When x  2,LHS  1 [2

7.SinceLHS  RHS, x 1isasolution.

1  9.SinceLHS  RHS, x  1isnotasolution.

8 8

0.Since LHS  RHS, x  2isasolution.

(b) When x  4LHS  1

 16 10  6. SinceLHS  RHS, x  4isnotasolution.

10.(a) When x  2,LHS 

1andRHS  1.SinceLHS  RHS, x  2isasolution.

(b) When x  4theexpression 1 4 4 isnotdefined,so x  4isnotasolution.

11.(a) When x 

(b) When x  8LHS 

12.(a) When x  4,LHS 

(b) When x  8,LHS 

5.SinceLHS  1, x 1isnotasolution.

RHS.So x  8isasolution.

4.SinceLHS  RHS, x  4isasolution.

8isnota solution.

13.(a) When x  0,LHS  0

(b) When x

14.(a) When

(b) When

RHS.So x  b 2 isasolution.

Butsubstituting x  2intotheoriginalequationdoesnotwork,sincewecannotdivideby0.Thus thereisnosolution.

53. 3 x  4  1 x  6 x  12 x 2  4 x  3

4 x  16  x 4.Butsubstituting x 4intotheoriginalequationdoesnotwork,sincewecannotdivideby0.Thus,thereis nosolution.

54. 1 x 2 2 x

1.Thisisanidentityfor x  0and x  1 2 ,sothesolutionsare allrealnumbersexcept0and 1 2 .

55. x 2  25  x 5

56. 3 x 2  48  x 2  16  x 4

57. 5 x 2  15  x 2  3  x 3

58. x 2  1000  x 1000 1010

59. 8 x 2 64 

60. 5 x 2 125  0  5  x 2 25  0  x 2  25  x 5

61. x 2  16  0  x 2 16whichhasnorealsolution.

62.

63.

101.(a) Theshrinkagefactorwhen

00055  12

(b) Substituting

102. Substituting C  3600weget3600 

manufacture840toytrucks.

103.(a) Solvingfor  when P  10,000weget10,000

Solvingfor

104. Substituting F

Thatis, x

107. Whenwemultipliedby x ,weintroduced x  0asasolution.Whenwedividedby x 1,wearereallydividingby0,since x  1  x 1  0.

P.9

MODELINGWITHEQUATIONS

1. Anequationmodelingareal­worldsituationcanbeusedtohelpusunderstandareal­worldproblemusingmathematical methods.Wetranslatereal­worldideasintothelanguageofalgebratoconstructourmodel,andtranslateourmathematical resultsbackintoreal­worldideasinordertointerpretourfindings.

2. Intheformula I  Prt forsimpleinterest, P standsfor principal, r for interestrate,and t for time(inyears)

3.(a) Asquareofside x hasarea A  x 2

(b) Arectangleoflength l andwidth  hasarea A  l  .

(c) Acircleofradius r hasarea A  r 2

4. Balsamicvinegarcontains5%aceticacid,soa32ouncebottleofbalsamicvinegarcontains32 5%  32 5 100  1 6ounces ofaceticacid.

5. Apainterpaintsawallin x hours,sothefractionofthewallshepaintsinonehouris 1wall x hours  1 x

6. Solving d  rt for r ,wefind d t  rt t  r  d t .Solving d  rt for t ,wefind d r  rt r  t  d r

7. If n isthefirstinteger,then n  1isthemiddleinteger,and n  2isthethirdinteger.Sothesumofthethreeconsecutive integersis n  n  1  n

8. If n isthemiddleinteger,then n 1isthefirstinteger,and n  1isthethirdinteger.Sothesumofthethreeconsecutive integersis 

9. If n isthefirsteveninteger,then n  2isthesecondevenintegerand n  4isthethird.Sothesumofthreeconsecutive evenintegersis n

10. If n isthefirstinteger,thenthenextintegeris n  1.Thesumoftheirsquaresis

11. If s isthethirdtestscore,thensincetheothertestscoresare78and82,theaverageofthethreetestscoresis 78  82  s 3

12. If q isthefourthquizscore,thensincetheotherquizscoresare8,8,and8,the averageofthefourquizscoresis 8  8  8  q 4 

13. If x dollarsareinvestedat2 1 2 %simpleinterest,thenthefirstyearyouwillreceive0025 x dollarsininterest.

14. If n isthenumberofmonthstheapartmentisrented,andeachmonththerentis$945,thenthetotalrentpaidis945n .

15. Since  isthewidthoftherectangle,thelengthisthreetimesthewidth,or4 .Then area  length  width

16. Since  isthewidthoftherectangle,thelengthis   6.Theperimeteris

17. If d isthegivendistance,inmiles,anddistance  rate  time,wehavetime  distance rate  d 55 .

18. Sincedistance  rate timewehavedistance  s  45min 1h 60min  3 4 s mi.

19. If x isthequantityofpurewateradded,themixturewillcontain25ozofsaltand3  x gallonsofwater.Thusthe concentrationis 25 3  x

20. If p isthenumberofpenniesinthepurse,thenthenumberofnickelsis2 p ,thenumberofdimesis4  2 p ,and thenumberofquartersis 

4.Thusthevalue(incents)ofthechangeinthepurseis

21. If d isthenumberofdaysand m thenumberofmiles,thenthecostofarentalis C 

3and C

283,sowesolvefor

truckwasdriven220miles.

22. Thecostofspeakingfor m minutesonthisplanis C 

and C  120 50,sowesolve100

m  250  82  332.Therefore,thetouristused332minutesoftalkinthemonthofJune.

23. If x isthestudent’sscoreontheirfinalexam,thenbecausethefinalcountstwiceasmuchaseachmidterm,theaverage scoreis

x

.Fortheaveragetobe80%,wemusthave

86.Sothestudentscored86%ontheirfinalexam.

24. Sixstudentsscored100andthreestudentsscored60.Let x betheaveragescoreoftheremaining25 6 3  16students.

Becausetheoverallaverageis84%  0 84,wehave

825.Thus,theremaining16students’averagescorewas825%.

25. Let m betheamountinvestedat2 1 2 %.Then12,000 m istheamountinvestedat3%.

Sincethetotalinterestisequaltotheinterestearnedat2 5%plustheinterestearnedat3%,wehave

$8400isinvestedat2 1 2 %and12,000 8400  $3600isinvestedat3%.

26. Let m betheamountinvestedat5%.Then8000  m isthetotalamountinvested.Thus 4%ofthetotalinvestment  interestearnedat3 1 2 %  interestearnedat5%

4000.Thus,$4000mustbe investedat5%.

27. Usingtheformula I  Prt andsolvingfor r ,weget262 50  3500 r 1  r  262 5 3500  0 075or7 5%.

28. If$3000isinvestedataninterestrate a %,then$5000isinvestedat a  1 2  %,so,rememberingthat a isexpressedasa percentage,thetotalinterestis I  3000 a

a

25.Sincethetotalinterest is$265,wehave265  80a  25  80a  240  a  3.Thus,$3000isinvestedat3%interest.

29. Let x bethemonthlysalary.Sinceannualsalary  12  monthlysalary  Christmasbonus,wehave 180,100  12 x  7300  172,800  12 x  x  14,400.Themonthlysalaryis$14,400.

30. Let s betheassistant’sannualsalary.Thentheforeman’sannualsalaryis1 15s .Theirtotalincomeisthesumoftheir salaries,so s  115s  113,305  215s  113,305  s  52,700.Thus,theassistant’sannualsalaryis$52,700.

31. Let x betheovertimehoursworked.Sincegrosspay  regularsalary  overtimepay,weobtaintheequation 814

x  x  16650 2775  6.Thus,thelab technicianworked6hoursofovertime.

32. Let x bethenumberofhoursworkedbytheplumber.Thenthecabinetmakerworksfor9 x hours.Thetotallaborchargeis thesumoftheircharges,so2610  150 x  80 9 x   2610  150 x  720 x  x  2610 870  3.Thus,theplumberworks for3hoursandthecabinetmakerworksfor3 9  27hours.

33. Allagesareintermsofthedaughter’sage7yearsago.Let y beageofthedaughter7yearsago.Then11 y istheageofthe moviestar7yearsago.Today,thedaughteris y  7,andthemoviestaris11 y  7.Butthemoviestarisalso4timeshis daughter’sagetoday.So4

3.Thus,todaythemoviestaris 11 3  7  40yearsold.

34. Let h benumberofhomerunsBabeRuthhit.Then h  41isthenumberofhomerunsthatHankAaronhit.So 1469  h  h  41  1428  2h  h  714.ThusBabeRuthhit714homeruns.

35. Let n bethenumberofnickels.Thentherearealso n dimesand n quarters.Thetotalvalueofthecoinsinthepurseisthe sumofthevaluesofnickels,dimes,andquarters,so2 80 

pursecontains7nickels,7dimes,and7quarters.

36. Let q bethenumberofquarters.Then2q isthenumberofdimes,and2q  5isthenumberofnickels.Thus3 00  value ofnickels valueofdimes valueofquarters,so 3

Thusyouhave5quarters,2

5

 10dimes,and2

5

5  15nickels.

37. Let l bethelengthofthegarden.Sincearea  width length,weobtaintheequation1125

45ft.So thegardenis45feetlong.

38. Let  bethewidthofthepasture.Thenthelengthofthepastureis3 .Sincearea  length  widthwehave 132,300

210.Thusthewidthofthepastureis210feet.

39. Let  bethewidthofthebuildinglot.Thenthelengthofthebuildinglotis5 .Sinceahalf­acreis 1 2 43,560  21,780 andareaislengthtimeswidth,wehave21,780

 66.Thusthewidthofthe buildinglotis66feetandthelengthofthebuildinglotis5 66  330feet.

40. Let x bethelengthofasideofthesquareplot.Asshowninthefigure, areaoftheplot  areaofthebuilding  areaoftheparkinglot.Thus, x 2  60 40  12,000  2,400  12,000  14,400  x 120.Sotheplotof landmeasures120feetby120feet. x x

41. Theshadedareaisthesumoftheareaofasquareandtheareaofatriangle.So A  y 2 

.Wearegiven thattheareais120in2 ,so120 

42. Firstwewriteaformulafortheareaofthefigureintermsof x .Region A has dimensions10cmand x cmandregion B hasdimensions6cmand x cm.Sothe shadedregionhasarea 10  x   6  x   16 x cm2 .Wearegiventhatthisisequal to144cm2 ,so144  16 x  x  144 16  9cm.

43. Let x bethewidthofthestrip.Thenthelengthofthematis20  2 x ,andthewidthofthematis15  2 x .Nowthe perimeteristwicethelengthplustwicethewidth,so102  2 20  2 x   2 15

102  70  8 x  32  8 x  x  4.Thusthestripofmatis4incheswide.

44. Let x bethewidthofthestrip.Thenthewidthoftheposteris100  2 x anditslengthis140  2 x .Theperimeterofthe printedareais2 100  2 140  480,andtheperimeteroftheposteris2 100 

.Nowweusethe factthattheperimeteroftheposteris1 1 2 timestheperimeteroftheprintedarea:2 

480  8 x  720  8 x  240  x  30.Theblankstripisthus30cmwide.

45. Let x bethelengthoftheperson’sshadow,inmeters.Usingsimilartriangles, 10  x 6  x 2  20  2 x  6 x  4 x  20  x  5.Thustheperson’sshadowis5meterslong.

46. Let x betheheightofthetalltree.Hereweusethepropertythatcorresponding sidesinsimilartrianglesareproportional.Thebaseofthesimilartrianglesstartsat eyelevelofthewoodcutter,5feet.Thusweobtaintheproportion x 5 15 

treeis95feettall.

47. Let x betheamount(inmL)of60%acidsolutiontobeused.Then300 x mLof30%solutionwouldhavetobeusedto yieldatotalof300mLofsolution.

Thusthetotalamountofpureacidusedis0

So200mLof60%acidsolutionmustbemixedwith100mLof30%solutiontoget300mLof50%acidsolution.

48. Theamountofpureacidintheoriginalsolutionis300 50%  150.Let x bethenumberofmLofpureacidadded.Then thefinalvolumeofsolutionis300  x .Becauseitsconcentrationistobe60%,wemusthave

49. Let x bethenumberofgramsofsilveradded.Theweightoftheringsis5  18g

mustbeaddedtogettherequiredmixture.

50. Let x bethenumberoflitersofwatertobeboiledoff.Theresultwillcontain6 x liters.

51. Let x bethenumberoflitersofcoolantremovedandreplacedbywater.

mustberemovedandreplacedbywater.

52. Let x bethenumberofgallonsof2%bleachremovedfromthetank.Thisisalsothenumberofgallonsofpurebleach addedtomakethe5%mixture.

06gallonsneedtoremoved andreplacedwithpurebleach.

53. Let c betheconcentrationoffruitjuiceinthecheaperbrand.Thenewmixtureconsistsof650mLoftheoriginalfruitpunch and100mLofthecheaperfruitpunch. OriginalFruitPunch CheaperFruitPunch Mixture

35%fruitjuice.

54. Let x bethenumberofouncesof$300ozteaThen80 x isthenumberofouncesof$2

75oztea.

48.Themixtureuses 48ouncesof$3 00ozteaand80 48

32ouncesof$2

55. Let t bethetimeinminutesitwouldtaketowashthecarifthefriendsworkedtogether.Friend1washes 1 25 ofthecarper minute,whileFriend2washes 1 35 ofthecarperminute.Thesumofthese fractionsisequaltothefractionofthejobthey candoworkingtogether,sowehave

t  14 35 60 minutes,or14minutes35seconds

56. Let t bethetime,inminutes,ittakesthelandscapertomowthelawn.Sincetheassistantishalfasfast,itwouldtakethem 2t minutestomowthelawnalone.Thus,

15.Thus,itwouldthe assistant2 15  30minutestomowthelawnalone.

57. Let t bethenumberofhoursitwouldtakeyourfriendtopaintahousealone.Thenworkingtogether,ittakes 2 3 t hours.

Becauseittakesyou7hours,wehave

wouldtakeyourfriend3 5htopaintahousealone.

58. Let h bethetime,inhours,tofilltheswimmingpoolusingthesmallerhosealone. Sincethelargerhosetakes20%less time,ittakes0 8h tofillthepoolalone.Thus16

59. Let t bethetimeinhoursthatthecommuterspentonthetrain.Then 11 2 t isthetimeinhoursthatcommuterspentonthe bus.Weconstructatable:

Thetotaldistancetraveledisthesumofthedistancestraveledbybusandbytrain,so300

60. Let r bethespeedoftheslowercyclist,inmi/h.Thenthespeedofthefastercyclistis2r

Whentheymeet,theywillhavetraveledacombinedtotalof90miles,so2

15.Thespeed oftheslowercyclistis15mi/h,whilethespeedofthefastercyclistis2 15

61. Let r bethespeedoftheplanefromMontrealtoLosAngeles.Then r 

30mi/h.

 1 20r isthespeedoftheplanefromLos AngelestoMontreal.

Thetotaltimeisthesumofthetimeseachway,so9

ataspeedof500mi/honthetripfromMontrealtoLosAngeles.

62. Let x bethespeedofthecarinmi/h.Sinceamilecontains5280ftandanhourcontains3600s,1mi/h 

22 15 ft/s. Thetruckistravelingat50 22 15  220 3 ft/s.Soin6seconds,thetrucktravels6 220 3  440feet.Thusthebackend ofthecarmusttravelthelengthofthecar,thelengthofthetruck,andthe440feetin6seconds,soitsspeedmustbe 1430440 6  242 3 ft/s.Convertingtomi/h,wehavethatthespeedofthecaris 242 3 15 22  55mi/h.

63. Let x bethedistancefromthefulcrumtowherethe125­poundfriendsits.Thensubstitutingtheknownvaluesintothe formulagiven,wehave100 8  125 x  800  125 x  x  64.Sothe125­poundfriendshouldsit64feetfromthe fulcrum.

64. Let  bethelargestweightthatcanbehung.Inthisexercise,theedgeofthebuildingactsasthefulcrum,sothe240lb manissitting25feetfromthefulcrum.Thensubstitutingtheknownvalues intotheformulagiveninExercise63,wehave 240

25

1200.Therefore,1200poundsisthelargestweightthatcanbehung.

65. Let l bethelengthofthelotinfeet.Thenthelengthofthediagonalis l  10.We applythePythagoreanTheoremwith thehypotenuseasthediagonal.So

Thusthelengthofthelotis120feet.

66. Let r betheradiusoftherunningtrack.Therunningtrackconsistsoftwosemicirclesandtwostraightsections110yards long,sowegettheequation2

03.Thustheradiusofthesemicircleis about35yards.

67. Let h betheheightinfeetofthestructure.Thestructureiscomposedofarightcylinderwithradius10andheight 2 3 h anda conewithbaseradius10andheight 1 3 h .Usingtheformulasforthevolumeofacylinderandthatofacone,weobtain the equation1400

(multiplybothsides by 9 100 )  126  7

18.Thustheheightofthestructureis18feet.

68. Let h betheheightofthebreak,infeet.Thentheportionofthebambooabovethe breakis10 h .ApplyingthePythagoreanTheorem,weobtain

h  91 20  4 55.Thusthebreakis4 55ftabovetheground.

69. Answerswillvary.

CHAPTERPREVIEW

1.(a) Sincethereareinitially250tabletsandthepatienttakes2tabletsperday,thenumberoftablets T thatareleftinthe bottleafter x daysis T  250 2 x

(b) After30days,thereare250 2 30  190tabletsleft.

(c) Weset T  0andsolve: T 

 x  125.Thepatientwillrunoutafter125days.

2.(a) Thetotalcostis$11percalzoneplusthe$7deliverycharge,so C  11 x  7.

(b) Fourcalzoneswouldcost11 4  7  $51.

(c) Wesolve C  11 x  7  40  11 x  33  x  3.Youcanorderthreecalzones.

3.(a) 16isrational.Itisaninteger,andmoreprecisely,anaturalnumber.

(b) 16isrational.Itisaninteger,butbecauseitisnegative,itisnotanaturalnumber.

(c) 16  4isrational.Itisaninteger,andmoreprecisely,anaturalnumber.

(d) 2isirrational.

(e) 8 3 isrational,butisneitheranaturalnumbernoraninteger.

(f) 8 2 4isrational.Itisaninteger,butbecauseitisnegative,itisnotanaturalnumber.

4.(a) 5isrational.Itisaninteger,butnotanaturalnumber.

(b) 25 6 isrational,butisneitheranintegernoranaturalnumber.

(c) 25  5isrational,anaturalnumber,andaninteger.

(d) 3 isirrational.

(e) 24 16  3 2 isrational,butisneitheranaturalnumbernoraninteger. (f) 1020 isrational,anaturalnumber,andaninteger.

5. CommutativePropertyforaddition. 6. CommutativePropertyformultiplication.

7. DistributiveProperty. 8. DistributiveProperty.

35.(a)

37.(a)

43. 78,250,000,000  7 825  1010

44.

45. ab c

 165 

46.

x 

92. 2 x x 2 9 isdefinedwhenever x 2 9  0  x 2  9  x 3,soitsdomainis x  x 3and x  3

93.  x x 2 3 x 4 isdefinedwhenever x  0(sothat  x isdefined)and x 2 3 x 4   x  1 x 4  0  x 1and x  4.Thus,itsdomainis x  x  0and x  4.

94.  x 3 x 2 4 x  4 isdefinedwhenever x 3  0  x

95. Thisstatementisfalse.Forexample,take

RHS  x 3  y 3  13  13  1  1 

98. Thisstatementisfalse.Forexample,take

99. Thisstatementisfalse.Forexample,take

lastequationisnevertrue,thereisnorealsolutiontotheoriginalequation.

127. Let x bethenumberofpoundsofraisins.Thenthenumberofpoundsofnutsis50 x Raisins

128. Let t bethenumberofhoursthatthedistrictsupervisordrives.Thenthestoremanagerdrivesfor t 1 4 hours.

Whentheypasseachother,theywillhavetraveledatotalof160miles.So45

2.Sincethesupervisorleavesat2:00 P M .andtravelsfor2hours,theypasseachotherat4:00 P M

129. Let x betheamountinvestedintheaccountearning1 5%interest.Thentheamountinvestedintheaccountearning2 5%is 7000 x

 x  5475.Thus,$5475isinvestedintheaccountearning1 5%interestand$1525isinvestedintheaccountearning 25%interest.

130. Theamountofinterestcurrentlyearnedis6000 0 03

 $180peryear.Ifatotalof$300isdesired,another$120ininterest mustbeearnedatarateof125%peryear.Iftheadditionalamountinvestedis x ,wehave00125 x  120  x  9600. Thus,anadditional$9600mustbeinvestedat1 25%simpleinteresttoearnatotalof$300interestperyear.

131. Let t bethetimeitwouldtaketheinteriordecoratortopaintalivingroomiftheyworkalone.Itwouldtaketheassistant 2t hoursalone,anditwouldtaketheapprentice3t hoursalone.Thus,thedecoratordoes 1 t ofthejobperhour,theassistant does 1 2t ofthejobperhour,andtheapprenticedoes 1 3t ofthejobperhour.So

6t  11  t  11 6 .Thus,itwouldtakethedecorator1hour50minutestopaintthelivingroom alone.

132. Let  bewidthofthepool.Thenthelengthofthepoolis2 ,anditsvolumeis8  

 2  529   23.Since  0,werejectthenegativevalue.Thepoolis23feetwide,2 23  46feetlong,and 8feetdeep.

CHAPTERPTEST

1.(a) Thecostis C  9  1 5 x

(b) Therearefourextratoppings,so x  4and C  9  1 5 4  $15.

(c) Wehave C  19 5  9  1 5 x  1 5 x  10 5  x  7.Thus,a$19 50pizzahas7toppings.

2.(a) 5isrational.Itisaninteger,andmoreprecisely,anaturalnumber.

(b) 5isirrational.

(c) 9 3 3isrational,anditisaninteger.

(d) 1,000,000isrational,anditisaninteger.

3.(a) A  B  0 1 5

(b) A  B   2 0 1 2  1 3 5 7

4.(a)

5.(a)

6.(a)

7.(a)

8.(a)

.(Wetakethepositiverootbecause c representsthespeedoflight,whichispositive.)

15. Let t bethetime(inhours)ittookthetruckertodrivefromAmitytoBelleville. Then44 t isthetimeittookthetrucker todrivefromBellevilletoAmity.SincethedistancefromAmitytoBellevilleequalsthedistancefromBellevilletoAmity, wehave50

120mi.

FOCUSONMODELINGMakingOptimalDecisions

1.(a) Thetotalcostis

(b) Inthiscasethecostis

(d) Thecostisthesamewhen C 1  C 2 areequal.So5800  265n  575n

2.(a) ThecostofPlan1is3

ThecostofPlan2is3 

daily cost

daily cost

costper mile

(b) When x  400,Plan1costs195  0 15 400  $255andPlan2costs$270,soPlan1ischeaper.When x  800, Plan1costs195  0 15 800  $315andPlan2costs$270,soPlan2ischeaper.

(c) Thecostisthesamewhen195  0 15 x  270  0 15  75 x  x  500.Sobothplanscost$270whenyoudrive 500miles.

3.(a) Thetotalcostis   setup cost 

(b) Therevenueis 

priceper tire

costper tire

number oftires

number oftires

.So R  49 x

.So C  8000  22 x

(c) Profit  Revenue Cost.So P  R C  49 x 8000  22 x   27 x 8000.

(d) Breakeveniswhenprofitiszero.Thus27 x 8000  0  27 x  8000  x  296 3.Sotheyneedtosellatleast 297tirestobreakeven.

4.(a) Option1: Inthisoptionthewidthisconstantat100.Let x betheincreaseinlength.Thentheadditionalareais

width 

increase inlength

 100 x .Thecostisthesumofthecostsofmovingtheoldfence,andofinstallingthe

newone.Thecostofmovingis$6 100  $600andthecostofinstallationis2 10 x  20 x ,sothetotalcostis

C  20 x  600.Solvingfor x ,weget C  20 x  600  20 x  C 600  x  C 600 20 .Substitutinginthearea

A

Option2: Inthisoptionthelengthisconstantat180.Let y betheincreaseinthewidth.Thentheadditionalareais

length 

(b)

increase inwidth

 180 y .Thecostofmovingtheoldfenceis6 180  $1080andthecostofinstallingthenew

oneis2 10 y  20 x ,sothetotalcostis C  20 y  1080.Solvingfor y ,weget C  20 y  1080  20 y  C 1080

 y  C 1080 20 .Substitutingintheareawehave A 2  180  C 1080 20   9 C 1080  9C 9,720.

Cost C Areagain A1 fromOption1 Areagain A2 fromOption2

$1100 2,500ft2 180ft2

$1200 3,000ft2 1,080ft2

$1500 4,500ft2 3,780ft2

$2000 7,000ft2 8,280ft2

(c) Ifthefarmerhasonly$1200,Option1givesthegreatestgain.Ifthefarmer hasonly$2000,Option2givesthegreatest gain.

5.(a) Design1isasquareandtheperimeterofasquareisfourtimesthelengthofa side.24  4 x ,soeachsideis x  6feet long.Thustheareais62  36ft2

Design2isacirclewithperimeter2r andarea r 2 .Thuswemustsolve2r  24  r  12  .Thus,theareais

12  2  144   458ft2 .Design2givesthelargestarea.

(b) InDesign1,thecostis$3timestheperimeter p ,so120  3 p andtheperimeteris40feet.Bypart(a),eachsideisthen 40 4  10feetlong.Sotheareais102  100ft2

InDesign2,thecostis$4timestheperimeter p .Becausetheperimeteris2r ,weget120  4 2r  so r  120 8  15  .Theareais r 2    15  2  225   716ft2 .Design1givesthelargestarea.

6.(a) Plan1:Tomatoeseveryyear.Profit  acres  Revenue cost  100 1600 300  130,000.Thenfor n yearsthe profitis P1  130,000n

(b) Plan2:Soybeansfollowedbytomatoes.TheprofitfortwoyearsisProfit  acres 

soybean revenue   

tomato revenue

 100 1200  1600  280,000.Rememberthatnofertilizeris neededinthisplan.Thenfor2k years,theprofitis P2  280,000k

(c) When n  10, P1  130,000 10  1,300,000.Since2k  10when k  5, P2  280,000 5  1,400,000.SoPlanB ismoreprofitable.

60  12 1

 $72.

If3 7GBareused,PlanAcosts25 

60  27 1  $87.

If4 9GBareused,PlanAcosts25

60  39 1  $99.

$103,PlanBcosts40

50,andPlanCcosts

(d)(i) Weset C A  C B  20 x  5  15 x  25  5 x  20  x  4.PlansAandBcostthesamewhen4GBareused.

(ii) Weset

4 5.PlansAandCcostthesamewhen4 5GBare used.

(iii) Weset

 5.PlansBandCcostthesamewhen5GBare used.

8.(a) Inthisplan,CompanyAgets$3 2millionandCompanyBgets$3 2million.CompanyA’sinvestmentis$1 4million, sotheymakeaprofitof32 14  $18million.CompanyB’sinvestmentis$26million,sotheymakeaprofitof 3 2 2 6  $0 6million.SoCompanyAmakesthreetimestheprofitthatCompanyBdoes,whichisnotfair.

(b) Theoriginalinvestmentis1 4  2 6  $4million.Soaftergivingtheoriginalinvestmentback,theythensharethe profitof$24million.Soeachgetsanadditional$12million.SoCompanyAgetsatotalof14  12  $26million andCompanyBgets2 6  1 2  $3 8million.SoeventhoughCompanyBinvestsmore,theymakethesameprofitas CompanyA,whichisnotfair.

(c) Theoriginalinvestmentis$4million,soCompanyAgets 1 4 4 6 4  $2 24millionandCompanyBgets

2 6 4  6 4  $4 16million.Thisseemsthefairest.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.