Download pdf Advances and trends in artificial intelligence. theory and practices in artificial inte

Page 1


Advances and

Trends

in Artificial Intelligence. Theory and Practices in Artificial Intelligence: 35th International Conference on Industrial Engineering, IEA/AIE 2022 Hamido Fujita

Visit to download the full and correct content document: https://ebookmeta.com/product/advances-and-trends-in-artificial-intelligence-theory-a nd-practices-in-artificial-intelligence-35th-international-conference-on-industrial-engin eering-iea-aie-2022-hamido-fujita/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advances in Artificial Intelligence and Security 8th

International Conference on Artificial Intelligence and Security ICAIS 2022 Qinghai China in Computer and Information Science 1586 Part I Xingming Sun

https://ebookmeta.com/product/advances-in-artificialintelligence-and-security-8th-international-conference-onartificial-intelligence-and-security-icais-2022-qinghai-china-incomputer-and-information-science-1586-part-i-xingming/

Advances in Artificial Intelligence and Security 8th

International Conference on Artificial Intelligence and Security ICAIS 2022 Qinghai China in Computer and Information Science 1587 Part II Xingming Sun (Editor)

https://ebookmeta.com/product/advances-in-artificialintelligence-and-security-8th-international-conference-onartificial-intelligence-and-security-icais-2022-qinghai-china-incomputer-and-information-science-1587-part-ii-xingming/

Artificial Intelligence in Medicine 20th International Conference on Artificial Intelligence in Medicine AIME 2022 Halifax NS Canada June 14 17 Lecture Notes in Computer Science 13263 Martin Michalowski (Editor)

https://ebookmeta.com/product/artificial-intelligence-inmedicine-20th-international-conference-on-artificialintelligence-in-medicine-aime-2022-halifax-ns-canadajune-14-17-lecture-notes-in-computer-science-13263-martinmichalow/ Systems Engineering and Artificial Intelligence

https://ebookmeta.com/product/systems-engineering-and-artificialintelligence/

AIxIA 2021 Advances in Artificial Intelligence 20th

International Conference of the Italian Association for Artificial Intelligence Virtual Event Lecture Notes in Computer Science 13196 Stefania Bandini

https://ebookmeta.com/product/aixia-2021-advances-in-artificialintelligence-20th-international-conference-of-the-italianassociation-for-artificial-intelligence-virtual-event-lecturenotes-in-computer-science-13196-stefania-band/

Advances in Deep Learning, Artificial Intelligence and Robotics: Proceedings of the 2nd International Conference on Deep Learning, Artificial ... 2020 (Lecture Notes in Networks and Systems) Luigi Troiano (Editor) https://ebookmeta.com/product/advances-in-deep-learningartificial-intelligence-and-robotics-proceedings-of-the-2ndinternational-conference-on-deep-learningartificial-2020-lecture-notes-in-networks-and-systems-luigi-tro/

Artificial Intelligence in Medicine 19th International Conference on Artificial Intelligence in Medicine AIME 2021 Virtual Event June 15 18 2021 Lecture Notes in Computer Science 12721 Allan Tucker

https://ebookmeta.com/product/artificial-intelligence-inmedicine-19th-international-conference-on-artificialintelligence-in-medicine-aime-2021-virtual-eventjune-15-18-2021-lecture-notes-in-computer-science-12721-allantucker/

Impact of Artificial Intelligence on Organizational Transformation Artificial Intelligence and Soft Computing for Industrial Transformation 1st Edition S. Balamurugan (Editor)

https://ebookmeta.com/product/impact-of-artificial-intelligenceon-organizational-transformation-artificial-intelligence-andsoft-computing-for-industrial-transformation-1st-edition-sbalamurugan-editor/

Proceedings of 2nd International Conference on Artificial Intelligence Advances and Applications ICAIAA 2021 Algorithms for Intelligent Systems Garima Mathur

https://ebookmeta.com/product/proceedings-of-2nd-internationalconference-on-artificial-intelligence-advances-and-applicationsicaiaa-2021-algorithms-for-intelligent-systems-garima-mathur/

Hamido Fujita

Philippe Fournier-Viger

Moonis Ali

Advances and Trends in Artificial Intelligence

Theory and Practices in Artificial Intelligence

35th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2022

Kitakyushu, Japan, July 19–22, 2022 Proceedings

LectureNotesinArtificialIntelligence13343

SubseriesofLectureNotesinComputerScience

SeriesEditors

RandyGoebel UniversityofAlberta,Edmonton,Canada

WolfgangWahlster DFKI,Berlin,Germany

Zhi-HuaZhou

NanjingUniversity,Nanjing,China

FoundingEditor

JörgSiekmann

DFKIandSaarlandUniversity,Saarbrücken,Germany

Moreinformationaboutthissubseriesat https://link.springer.com/bookseries/1244

HamidoFujita · PhilippeFournier-Viger · MoonisAli ·

AdvancesandTrends inArtificialIntelligence

TheoryandPracticesinArtificialIntelligence

35thInternationalConference onIndustrial,EngineeringandOtherApplications ofAppliedIntelligentSystems,IEA/AIE2022

Kitakyushu,Japan,July19–22,2022

Proceedings

Editors

HamidoFujita i-SOMET,Inc. Morioka-shi,Iwate,Japan

MoonisAli TexasStateUniversity SanMarcos,TX,USA

PhilippeFournier-Viger CollegeofComputerScienceandSoftware Engineering ShenzhenUniversity Shenzhen,Guangdong,China

YinglinWang ShanghaiUniversityofFinance andEconomics Shanghai,China

ISSN0302-9743ISSN1611-3349(electronic)

LectureNotesinArtificialIntelligence

ISBN978-3-031-08529-1ISBN978-3-031-08530-7(eBook) https://doi.org/10.1007/978-3-031-08530-7

LNCSSublibrary:SL7–ArtificialIntelligence

©SpringerNatureSwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Inthelastfewdecades,therehavebeenmajorsocietaltransformationsduetothe ever-increasingusageofcomputingdevices.Impactscanbeobservedinallfields includingscience,governance,healthcare,industry,andthelivesofindividuals. Computerscancalculatefaster,storemoredata,andaresmaller,whilealsobeing cheaper.Improvedandspecializedcomputingarchitectureshavealsobeendeveloped suchasGPUsandFPGAs.Besides,distributedcomputingandstorageplatformshave becomecommontoprocessverylargedatabases.Thankstotechnologicaladvancesand alsoseveraltheoreticalbreakthroughs,researchersandpractitionershavepushedback thelimitsofartificialintelligencetobuildmoreeffectiveintelligentsystemstosolve real-worldcomplexproblems.Moreover,innovativeapplicationsofartificialintelligence arecontinuouslybeingproposed.

Thisvolumecontainstheproceedingsofthe35theditionoftheInternational ConferenceonIndustrial,Engineering,andotherApplicationsofAppliedIntelligent Systems(IEAAIE2022),whichwasduringJuly19–22,2022,inKitakyushu,Japan. IEAAIEisayearlyconferencethatfocusesonapplicationsofappliedintelligent systemstosolvereal-lifeproblemsinallareasincludingbusinessandfinance,science, engineering,industry,cyberspace,bioinformatics,automation,robotics,medicineand biomedicine,andhuman-machineinteractions.IEAAIE2022wasorganizedin cooperationwiththeACMSpecialInterestGrouponArtificialIntelligence(SIGAI). Thisyear,127submissionswerereceived.EachpaperwasevaluatedusingdoubleblindpeerreviewbyatleastthreereviewersfromaninternationalProgramCommittee consistingof74membersfrom23countries.Basedontheevaluation,atotalof67 paperswereselectedasfullpapersand11asshortpapers,whicharepresentedinthis book.Wewouldliketothankallthereviewersforthetimespentonwritingdetailed andconstructivecommentsfortheauthors,andtothelatterfortheproposalofmany high-qualitypapers.

IntheprogramofIEAAIE2022,fivespecialsessionswereorganized:Collective IntelligenceinSocialMedia(CISM2022),IntelligentKnowledgeEngineeringin DecisionMakingSystems(IKEDS2022),IntelligentSystemsande-Applications(ISeA 2022),Multi-AgentSystemsandMetaheuristicsforComplexProblems(MASMCP 2022),andSpatiotemporalBigDataAnalytics(SBDA2022).Inaddition,twokeynote talksweregivenbytwodistinguishedresearchers,onebySebastianVenturafromthe UniversityofCordoba(Spain)andtheotherbyTaoWufromtheShanghaiUniversity ofMedicineandHealthSciences(China).Wewouldliketothankeveryonewhohas

contributedtothesuccessofthisyear’seditionofIEAAIE,thatistheauthors,reviewers, keynotespeakers,ProgramCommitteemembers,andorganizers.

May2021HamidoFujita PhilippeFournier-Viger MoonisAli YinglinWang

Organization

HonoraryChair

TaoWuShanghaiUniversityofMedicineandHealth Sciences,China

GeneralChairs

HamidoFujitaIwatePrefecturalUniversity,Japan

MoonisAliTexasStateUniversity,USA

OrganizingChair

JunSasakii-SOMETInc.,Japan

ProgramCommitteeChairs

PhilippeFournier-VigerShenzhenUniversity,China

YinglinWangShanghaiUniversityofFinanceandEconomics, China

SpecialSessionChairs

AliSelamatUniversitiTeknologiMalaysia,Malaysia XingWuShanghaiUniversity,China

JerryChun-WeiLinWesternNorwayUniversityofAppliedSciences, Norway

NgocThanhNguyenWroclawUniversityofTechnology,Poland

ProgramCommittee

MoulayA.AkhloufiUniversitédeMoncton,Canada

AzriAzmiUniversitiTeknologiMalaysia,Malaysia

HafewaBargaouiInstitutSupérieurdeGestiondeTunis,Tunisia OlfaBelkahlaDrissEcoleSupérieuredeCommercedeTunis,Tunisia LadjelBellatrecheLIAS/ISAE-ENSMA,France

ZalanBodoBabes-BolyaiUniversity,Romania ZakiBrahmiISITCOM,Tunisia FranciscoJ.CabrerizoUniversityofGranada,Spain

AlbertoCanoVirginiaCommonwealthUniversity,USA AndrewTzer-YeuChenUniversityofAuckland,NewZealand Chun-HaoChenNationalTaipeiUniversityofTechnology,Taiwan

Shyi-MingChenNationalTaiwanUniversityofScienceand Technology,Taiwan

TaiDinhJAIST,Japan

YoucefDjenouriSouthernDenmarkUniversity,Denmark AlexanderFerreinAachenUniversityofAppliedScience,Germany PhilippeFournier-VigerShenzhenUniversity,China HamidoFujitaIwatePrefecturalUniversity,Japan

AbdennaceurGhandriHigherInstituteofManagementofGabes,Tunisia SergeiGorlatchMuensterUniversity,Germany DeepakGuptaNITArunachalPradesh,India

Tzung-PeiHongNationalUniversityofKaohsiung,Taiwan

Ko-WeiHuangNationalKaohsiungUniversityofScienceand Technology,Taiwan

MiroslavHudecUniversityofEconomicsinBratislava,Slovakia DosamHwangYeungnamUniversity,SouthKorea MarcinJodłowiecWroclawUniversityofScienceandTechnology, Poland

FadouaKhennouUniversitédeMoncton,Canada YunSingKohUniversityofAuckland,NewZealand AdriannaKozierkiewiczWroclawUniversityofScienceandTechnology, Poland

MarekKrótkiewiczWroclawUniversityofScienceandTechnology, Poland

MasakiKurematsuIwatePrefecturalUniversity,Japan ThomasLacombeUniversityofAuckland,NewZealand ShihHsiungLeeNationalKaohsiungUniversityofApplied Sciences,Taiwan ArkadiuszLiberWroclawUniversityofScienceandTechnology, Poland

JerryChun-WeiLinWesternNorwayUniversityofAppliedSciences, Norway Wen-YangLinNationalUniversityofKaohsiung,Taiwan Yu-ChenLinFengChiaUniversity,Taiwan FrederickMaierUniversityofGeorgia,USA WolfgangMayerUniversityofSouthAustralia,Australia MasurahMohamadUniversitiTeknologiMalaysia,Malaysia M.RashedurRahmanNorthSouthUniversity,Bangladesh YasserMohammedAssiutUniversity,Egypt TauheedKhanMohdAugustanaCollege,USA AnirbanMondalAshokaUniversity,India

M.SaqibNawazHarbinInstituteofTechnology,China DuNguyenNongLamUniversity,Vietnam

DucNguyenVietnamMaritimeUniversity,Vietnam HienNguyenUniversityofInformationTechnology,Vietnam Ngoc-ThanhNguyenWroclawUniversityofTechnology,Poland Tat-Bao-ThienNguyenThuyloiUniversity,Vietnam ThanhBinhNguyenHoChiMinhCityUniversityofTechnology, Vietnam

MouradNouiouaHarbinInstituteofTechnology,China HoussemEddineNouriInstitutSupérieurdeGestiondeGabes,Tunisia AmmarOdehPrincessSumayaUniversityforTechnology, Jordan

SamirOuchaniLINEACT,CESI,France

P.KrishnaReddyIIITHyderabad,India

HauPhamQuangBinhUniversity,Vietnam

MarcinPietranikWroclawUniversityofScienceandTechnology, Poland

UdayRageUniversityofTokyo,Japan

ShafinRahmanNorthSouthUniversity,Bangladesh PenugondaRavikumarUniversityofAizu,Japan AndreasSpeckKielUniversity,Germany

GautamSrivastavaBrandonUniversity,Canada FeiyangTangNorwegianUniversityofScienceofTechnology, Norway

StefaniaTomasielloUniversityofTartu,Estonia HaiTranHoChiMinhUniversityofPedagogy,Vietnam JianjiaWangShanghaiUniversity,China ZhijinWangJimeiUniversity,China

YutakaWatanobeUniversityofAizu,Japan Cheng-WeiWuNationalIlanUniversity,Taiwan TakeruYokoiTokyoMetropolitanCollegeofIndustrial Technology,Japan

NurulhudaZainuddinUniversitiTeknologiMalaysia,Malaysia WeiZhangAdobe,USA HibaZuhairAl-NahrainUniversity,Iraq

Contents

IndustrialApplications

ComparativeStudyofMethodsfortheReal-TimeDetectionofDynamic BottlenecksinSerialProductionLines....................................3 NikolaiWest,JörnSchwenken,andJochenDeuse

Ultra-short-TermLoadForecastingModelBasedonVMDandTGCN-GRU...15 MeirongDing,HangZhang,BiqingZeng,GaoyanCai,YuanChai, andWenshengGan

LearningtoMatchProductCodes........................................29 YingExcellandSebastianLink

ResUnet:AFullyConvolutionalNetworkforSpeechEnhancement inIndustrialRobots....................................................42 YangyiPuandHongyangYu

SurfaceDefectDetectionandClassificationBasedonFusingMultiple ComputerVisionTechniques............................................51 MinZhu,BingqingShen,YanSun,ChongyuWang,GuoxinHou, ZhijieYan,andHongmingCai

DevelopmentofaMultiagentBasedOrderPickingSimulator forOptimizingOperationsinaLogisticsWarehouse........................63 TakutoSakuma,MinamiWatanabe,KoyaIhara,andShoheiKato

HealthInformatics

PredictingInfectionAreaofDengueFeverforNextWeekThrough MultipleFactors.......................................................77 Cong-HanZheng,Ping-YuHsu,Ming-ShienCheng,NiXu, andYu-ChunChen

HospitalReadmissionPredictionviaPersonalizedFeatureLearning andEmbedding:ANovelDeepLearningFramework.......................89 YuxiLiuandShaowenQin

IntelligentMedicalInteractiveEducationalSystemforCardiovascular Disease..............................................................101 Sheng-ShanChen,Hou-TsanLee,Tun-WenPai,andChao-HungWang

EvolutionaryOptimizationforCNNCompressionUsingThoracicX-Ray ImageClassification...................................................112

HassenLouati,SlimBechikh,AliLouati,AbdulazizAldaej, andLamjedBenSaid

AnOrientedAttentionModelforInfectiousDiseaseCasesPrediction.........124 PeisongZhang,ZhijinWang,GuoqingChao,YaohuiHuang, andJingwenYan

TheDifferentialGeneDetectingMethodforIdentifyingLeukemiaPatients....137 MingzhaoWang,WeiliangJiang,andJuanyingXie

EpidemicModelingoftheSpatiotemporalSpreadofCOVID-19 overanIntercityPopulationMobilityNetwork.............................147 YuxiLiu,ShaowenQin,andZhenhaoZhang

SkinCancerClassificationUsingDifferentBackbonesofConvolutional NeuralNetworks......................................................160

AnhT.Huynh,Van-DungHoang,SangVu,TrongT.Le, andHienD.Nguyen

CardiovascularDiseaseDetectiononX-RayImageswithTransferLearning...173 NguyenVan-BinhandNguyenThai-Nghe

CausalReasoningMethodsinMedicalDomain:AReview..................184 XingWu,JingwenLi,QuanQian,YueLiu,andYikeGuo

Optimization

EnhancingaMulti-populationOptimisationApproachwithaDynamic TransformationScheme................................................199 ShengqiDai,VincentW.L.Tam,ZhenglongLi,andL.K.Yeung

AModelDrivenApproachtoTransformBusinessVision-Oriented Decision-MakingRequirementintoSolution-OrientedOptimizationModel....211 LiwenZhang,HervéPingaud,ElyesLamine,FranckFontanili, ChristopheBortolaso,andMustaphaDerras

AHybridApproachBasedonGeneticAlgorithmwithRanking AggregationforFeatureSelection........................................226 BuiQuocTrung,LeMinhDuc,andBuiThiMaiAnh

ANovelType-BasedGeneticAlgorithmforExtractiveSummarization........240 BuiThiMaiAnh,NguyenThiThuTrang,andTranThiDinh

DragonflyAlgorithmforMulti-targetSearchProbleminSwarmRobotic withDynamicEnvironmentSize.........................................253

MohdGhazaliMohdHamamiandZoolH.Ismail

VideoandImageProcessing

ImprovedProcessingofUltrasoundTongueVideosbyCombining ConvLSTMand3DConvolutionalNetworks..............................265 AminHonarmandiShandizandLászlóTóth

ImprovementofTextImageSuper-ResolutionBenefitingMulti-task Learning.............................................................275 KosukeHonda,HamidoFujita,andMasakiKurematsu

QuestionDifficultyEstimationwithDirectionalModalityAssociation inVideoQuestionAnswering...........................................287 Bong-MinKimandSeong-BaePark

NaturalLanguageProcessing

ImprovingNeuralMachineTranslationbyEfficientlyIncorporating SyntacticTemplates....................................................303

PhuongNguyen,TungLe,Thanh-LeHa,ThaiDang,KhanhTran, KimAnhNguyen,andNguyenLeMinh

ForensicAnalysisofTextandMessagesinSmartphonesbyaUnification RosettaStoneProcedure................................................315 ClaudioTomazzoli,SimoneScannapieco,andMatteoCristani

Relation-LevelVectorRepresentationforRelationExtraction andClassificationonSpecializedData....................................327 CamilleGosset,MokhtarBoumedyenBillami,MathieuLafourcade, ChristopheBortolaso,andMustaphaDerras

SAKE:AGraph-BasedKeyphraseExtractionMethodUsingSelf-attention....339 PingZhu,ChuanyangGong,andZhihuaWei

SynonymPredictionforVietnameseOccupationalSkills....................351 Hai-NamCao,Duc-ThaiDo,Viet-TrungTran,Tuan-DungCao, andYoung-InSong

ASurveyofPretrainedEmbeddingsforJapaneseLegalRepresentation.......363 Ha-ThanhNguyen,Le-MinhNguyen,andKenSatoh

MachineReadingComprehensionModelforLow-ResourceLanguages andExperimentingonVietnamese.......................................370

BachHoangTienNguyen,DungManhNguyen, andTrangThiThuNguyen

InducingaMalayLexiconfromanUnlabelledDatasetUsingWord Embeddings..........................................................382

IanH.J.Ho,Hui-NgoGoh,andYi-FeiTan

AgentandGroup-BasedSystems

Agent-BasedIntermodalBehaviorforUrbanToll..........................397 AziseOumarDiallo,GuillaumeLozenguez,ArnaudDoniec, andRenéMandiau

EntropyBasedApproachtoMeasuringConsensusinGroup Decision-MakingProblems.............................................409

J.M.Tapia,F.Chiclana,M.J.delMoral,andE.Herrera–Viedma

AdaptationofHMIsAccordingtoUsers’FeelingsBasedonMulti-agent Systems..............................................................416

AliaMaaloul,HoussemEddineNouri,ZiedTrifa,andOlfaBelkahlaDriss

PatternRecognition

AGeneralizedInvertedDirichletPredictiveModelforActivity RecognitionUsingSmallTrainingData...................................431

JiaxunGuo,ManarAmayri,WentaoFan,andNizarBouguila

DeepfakeDetectionUsingCNNTrainedonEyeRegion....................443 DavidJohnson,TonyGwyn,LetuQingge,andKaushikRoy

FaceAuthenticationfromMaskedFaceImagesUsingDeepLearning onPeriocularBiometrics...............................................452

JeffreyJ.HernandezV.,RodneyDejournett,UdayasriNannuri, TonyGwyn,XiaohongYuan,andKaushikRoy

AnOptimizationAlgorithmforExtractiveMulti-documentSummarization BasedonAssociationofSentences.......................................460

Chun-HaoChen,Yi-ChenYang,andJerryChun-WeiLin

ASpatiotemporalImageFusionMethodforPredictingHigh-Resolution SatelliteImages.......................................................470

VipulChhabra,R.UdayKiran,JuanXiao,P.KrishnaReddy, andRamAvtar

Security

WHTE:WeightedHoeffdingTreeEnsembleforNetworkAttackDetection atFog-IoMT..........................................................485 ShilanS.Hameed,AliSelamat,LizaAbdulLatiff,ShukorA.Razak, andOndrejKrejcar

AnImprovedEnsembleDeepLearningModelBasedonCNN forMaliciousWebsiteDetection.........................................497 NguyetQuangDo,AliSelamat,KokChengLim,andOndrejKrejcar

Intrusion-BasedAttackDetectionUsingMachineLearningTechniques forConnectedAutonomousVehicle......................................505 MansiBhavsar,KaushikRoy,ZhipengLiu,JohnKelly, andBalakrishnaGokaraju

DetectionofAnti-forensicsandMalwareApplicationsinVolatileMemory Acquisition...........................................................516 ChandlorRatcliffe,BiodoumoyeGeorgeBokolo,DamilolaOladimeji, andBingZhou

MalwareClassificationBasedonGraphConvolutionalNeuralNetworks andStaticCallGraphFeatures..........................................528 AttilaMesterandZalánBodó

ModellingandDiagnosis

The Java2CSP DebuggingToolUtilizingConstraintSolving andModel-BasedDiagnosisPrinciples...................................543 FranzWotawaandVladAndreiDumitru

FormalModellingandSecurityAnalysisofInter-OperableSystems..........555 AbdelhakimBaouya,SamirOuchani,andSaddekBensalem

SocialNetworkAnalysis

Content-Context-BasedGraphConvolutionalNetworkforFakeNews Detection.............................................................571 HuyenTrangPhan,NgocThanhNguyen,andDosamHwang

Multi-classSentimentClassificationforCustomers’Reviews................583 CuongT.V.Nguyen,AnhM.Tran,ThaoNguyen,TrungT.Nguyen, andBinhT.Nguyen

xviContents

TransportationandUrbanApplications

MM-AQI:ANovelFrameworktoUnderstandtheAssociationsBetween UrbanTraffic,VisualPollution,andAirPollution..........................597 KazukiTejima,Minh-SonDao,andKojiZettsu

Two-StageTrafficClusteringBasedonHNSW............................609 XuZhang,XinzhengNiu,PhilippeFournier-Viger,andBingWang

ExplainableOnlineLaneChangePredictionsonaDigitalTwin withaLayerNormalizedLSTMandLayer-wiseRelevancePropagation.......621 ChristophWehner,FrancisPowlesland,BasharAltakrouri, andUteSchmid

AnAgendaontheEmploymentofAITechnologiesinPortAreas: TheTEBETSProject..................................................633 AdorniEmanuele,RozhokAnastasiia,RevetriaRoberto, andSuchevSergey

ModellingandSolvingtheGreenShare-a-RideProblem....................648 ElhemElkoutandOlfaBelkahlaDriss

MachineLearningTechniquestoPredictRealTimeThermalComfort, Preference,Acceptability,andSensationforAutomationofHVAC Temperature..........................................................659 YaaT.Acquaah,BalakrishnaGokaraju,RaymondC.TesieroIII, andKaushikRoy

NeuralNetworks

SeriallyDisentangledLearningforMulti-LayeredNeuralNetworks..........669 RyotaroKamimuraandRyozoKitajima

DetectingUseCaseScenariosinRequirementsArtifacts:ADeepLearning Approach............................................................682 MunimaJahan,ZahraShakeriHosseinAbad,andBehrouzFar

HybridDeepNeuralNetworksforIndustrialTextScoring...................695 SidharrthNagappan,Hui-NgoGoh,andAmyHui-LanLim

BenchmarkingTrainingMethodologiesforDenseNeuralNetworks..........707 IsaacTonkin,GeoffHarris,andVolodymyrNovykov

ProposingNovelHigh-PerformanceCompoundsbyNestedVAEsTrained IndependentlyonDifferentDatasets......................................714

YoshihiroOsakabeandAkinoriAsahara

Clustering

MonotonicConstrainedClustering:AFirstApproach.......................725 GermánGonzález-Almagro,PabloSánchezBermejo,JuanLuisSuarez, José-RamónCano,andSalvadorGarcía

ExtractiveTextSummarizationonLarge-scaleDatasetUsingK-Means Clustering............................................................737 Ti-HonNguyenandThanh-NghiDo

Multi-GranularLargeScaleGroupDecision-MakingMethodwithaNew ConsensusMeasureBasedonClusteringofAlternativesinModifiable Scenarios.............................................................747

JoséRamónTrillo,IgnacioJavierPérez,EnriqueHerrera-Viedma, JuanAntonioMorente-Molinera,andFranciscoJavierCabrerizo

OptimalUserCategorizationfromaHierarchicalClusteringTree forRecommendation...................................................759

WeiSongandSiqiLiu

Classification

APreliminaryApproachforusingMetricLearninginMonotonic Classification.........................................................773

JuanLuisSuárez,GermánGonzález-Almagro,SalvadorGarcía, andFranciscoHerrera

DeepLearningArchitecturesExtendedfromTransferLearning forClassificationofRiceLeafDiseases...................................785 HaiThanhNguyen,QuyenThucQuach,ChiLeHoangTran, andHuongHoangLuong

HeightEstimationforAbrasiveGrainofSyntheticDiamonds onMicroscopeImagesbyConditionalAdversarialNetworks................797 JoeBrinton,ShotaOki,XinYang,andMaikoShigeno

PatternMiningandTsetlinMachines

FastWeightedSequentialPatternMining.................................807 ZhenqiangYe,ZiyangLi,WeibinGuo,WenshengGan,ShichengWan, andJiahuiChen

ParallelHighUtilityItemsetMining.....................................819 GaojuanFan,HuaiyuanXiao,ChongshengZhang,GeorgeAlmpanidis, PhilippeFournier-Viger,andHamidoFujita

TowardsEfficientDiscoveryofStablePeriodicPatternsinBigColumnar TemporalDatabases...................................................831

HongN.Dao,PenugondaRavikumar,P.Likitha, BathalaVenusVikranthRaj,R.UdayKiran,YutakaWatanobe, andIncheonPaik

CyclostationaryRandomNumberSequencesfortheTsetlinMachine.........844 SveinAndersTunheim,RohanKumarYadav,LeiJiao,RishadShafik, andOle-ChristofferGranmo

LogicsandOntologies

EvolutionofPrioritized EL Ontologies...................................859 RimMohamed,ZiedLoukil,FaiezGargouri,andZiedBouraoui

AComparisonofResourceDataFrameworkandInductiveLogic ProgramingforOntologyDevelopment...................................871 DurgeshNandini

MDNCaching:AStrategytoGenerateQualityNegativesforKnowledge GraphEmbedding.....................................................877 TiroshanMadushankaandRyutaroIchise

Robotics,GamesandConsumerApplications

ApplicationofaLimitTheoremtotheConstructionofJapaneseCrossword Puzzles..............................................................891 VolodymyrNovykov,GeoffHarris,andIsaacTonkin

NonImmersiveVirtualLaboratoryAppliedtoRoboticsArms................898 DanielaA.Bastidas,LuisF.Recalde,PatriciaN.Constante, VictorH.Andaluz,DayanaE.Gallegos,andJoséVarela-Aldás

AnImprovedSubject-IndependentStressDetectionModelApplied toConsumer-gradeWearableDevices....................................907 Van-TuNinh,Manh-DuyNguyen,SinéadSmyth,Minh-TrietTran, GrahamHealy,BinhT.Nguyen,andCathalGurrin

WDTourism:APersonalizedTourismRecommendationSystemBased onSemanticWeb......................................................920

AuthorIndex .........................................................935

IndustrialApplications

ComparativeStudyofMethods fortheReal-TimeDetectionofDynamic BottlenecksinSerialProductionLines

NikolaiWest1(B) ,JörnSchwenken1 ,andJochenDeuse1,2

1 InstituteofProductionSystems,TechnicalUniversityDortmund,Leonhard-Euler-Str.5, 44227Dortmund,Germany nikolai.west@tu-dortmund.de

2 CentreforAdvancedManufacturing,UniversityofTechnologySydney,11Broadway,Ultimo, NSW2007,Australia

Abstract. Capacity-limitingbottlenecksinmanufacturingsystemsformtheideal startingpointformeasuresofimprovement.However,theinherentvariability ofmodernsystemsleadstodynamicbottleneckbehavior,causingthemtoshift betweenstations.Numerousmethodsforthedetectionofshiftingbottlenecksexist inliterature.Inthispaper,wepresentandcomparethreemethods:BottleneckWalk (BNW),ActivePeriodMethod(APM),andanadaptationofInterdepartureTime Variances(ITV).Thecomparativestudydeploysthemethodsinaserialproduction linewithsevenstationsandeightbuffers.Wevarytheindividuallocationsofthe bottlenecksbyaddingmoreprocesstime.Tocomparethemethods,wedetermine theoverallaverageratioofagreementbetweenthethreedetectionmethods.APM andITVhavethehighestagreementatanaverageof80.10%.PairingswithBNW achievesignificantlylowerratesofagreement,with56.33%forITV,and62.03%% whencomparedtotheAPM.

Keywords: Bottleneckanalysis · Bottleneckdetection · Materialflowsimulation

1Introduction

Accordingtothe TheoryofConstraints (TOC),theperformanceofamaterialflowsystem oramanufacturingsystemisinevitablylimitedbyjustonestation,whichtheTOCcallsa bottleneck [1].Liketheweakestlinkinachain,suchabottlenecklimitstheoutputofthe entiresystem.Focusingallimprovementeffortsontheselinksofthechainconstitutes themostefficientapproachtoincreasingtheoverallperformanceofthesystem[2]. Sinceoptimizationmeasuresofnon-bottleneckstationshavenoimpactonthesystemic output,onlyimprovementsatthebottleneckleadtoaquantifiableenhancement.Despite ‘bottleneck’beingacommonlyusedtermingenerallinguistics,thereisnoaccepted definitioninscientificliterature[3].Thecomparativestudyinthispapershowsthat differentmetricsforbottleneckidentificationalsoledtovaryingbottleneckdefinitions adoptedbytherespectiveauthors.Therefore,wefollowametric-independentdefinition andrefertoabottleneckinageneralfashionas“theresourcethatrestrictsasystemic outputuptoaspecificlimitation”[4, 5].

©SpringerNatureSwitzerlandAG2022

H.Fujitaetal.(Eds.):IEA/AIE2022,LNAI13343,pp.3–14,2022. https://doi.org/10.1007/978-3-031-08530-7 1

1.1OntheDynamicNatureofBottlenecks

Asmentionedbefore,abottleneck’slocationcanchangeovertimeduetovariability. Variabilityreferstoafluctuationofproductandprocessvariablesandaffectsallrealworldmanufacturingsystems.Thus,literatureclassifiesabottleneckaccordingtoits behaviorinbeing static or dynamic [5–7].Staticbottleneckshaveafixedpositioninthe valuestream.Theyonlyaffectonestationduringtheentireobservationperiod.Their occurrencecanoftenbetracedbacktodesignflawswhichcauseasingularrestrictionof thematerialflow.Incontrast,theplaceofoccurrenceofdynamicbottlenecksisvariable. Suchshiftsoccureitherduetorandomeventsorduetograduallychangingconditions inthemanufacturingsystem[8].

Despitethisdistinction,inpracticeoftenonestationisreferredtoasmainbottleneck. However,staticassumptionsonlyapplytoverysimplesystemsandarerarelyobserved inpractice[7].Inthispaper,wethereforeexaminemethodsforidentifyingdynamic bottlenecks.Still,themethodsarealsosuitedtodetectstaticbottlenecks.

1.2TheNeedforReal-TimeBottleneckDetection

Insteadofpointwisemeasurementswithmanualefforts,dynamicbehaviorrequires continuousrecordingandevaluationtoallowtargetedmeasuresofoptimization[6].The primarygoalistodetectthebottleneckthatiscurrentlyaffectingthesystem.Similarto thewaybottleneckscanbedifferentiatedaccordingtotheirbehavior,detectionmethods canbedividedintothetwogroupsof AverageValueMethods (AVM)and Momentary ValueMethods (MVM)[4, 9].AVMusedefinedperiodsasbasisfortheanalysis.They determinebottlenecksusingtheaveragevaluesofdifferentproductionmetrics.AVMfor bottleneckdetectionarebasedonavarietyofmetrics,suchasthe OverallThroughput Effectiveness [10],the degreeofUtilization [11],or InterdepartureTimesVariances [12].Thesemethodsarelesssuitabletohandledynamicsystemsandtendtoachieve relativelylowdetectionconfidence.Incontrast,MVMuseasingularobservation.They enableanidentificationofshiftingbottlenecksindynamicsystems[13].Examplesfor MVMmethodsarethe ArrowMethod [14, 15],the ActivePeriodMethod [7],orthe TurningPointMethod [16, 17].Thisselectiondoesnotclaimtobecomprehensive,asa multitudeofmethodsandmethodvariantsexists.Wereferto[4, 12, 18]foranextensive reviewofsuchmethods.

Insummary, BottleneckDetection,asthefirstphaseofaholisticbottleneckanalysis [4],aimstodetectshiftingbottlenecks.Therefore,itisessentialtofirstdetectthemomentarybottleneckbeforecalculatingaveragesoftheoverallsystemicimpact.Anymethod thatusesaveragestodetectthebottlenecksislikelytointroduceerrorsinthedetection ofshiftingbottlenecks[13].ForthestudyinSec. 4,weusetwoMVMapproachesand adaptanAVMapproachformomentarybottleneckdetection. Theremainderofthispaperisdividedintofourparts.First,webrieflydescribea selectionofthreemethodsforreal-timebottleneckdetectionthatusedifferentmetrics. Next,weintroducethedesignofthecasestudy,followedbyanoverviewoftheresults foraserialproductionline.Finally,wediscussandcomparetheresultsofthestudy,and lastlyprovideabriefoutlookwithrecommendationsforfutureresearch.

2RelatedWorkonBottleneckDetection

AccordingtotheTOC,anymeasureofimprovementfirstrequiresadeterminationof thepositionofthebottleneck.Asmentionedbefore,thereisalargenumberofpotential methodsfordetectingbottlenecks.Wedonotaimforacomparisonofallavailable methods,butagainrefertotherespectiveliteratureinstead[4, 12, 13, 18, 19].

Throughourselectionofthefollowingthreedetectionmethods,wepromotethe utilizationofdifferentkeyfiguresfromthemanufacturingsystem.TheBottleneckWalk isfocussesprimarilyonexaminingthelevelsoftheproductionbuffers.TheActive Periodmethodusesmachinestatestoidentifybottlenecks.Lastly,InterdepartureTime Variancedetectionevaluatesoftheprocesstimesoftheworkstations[4].

2.1DetectionUsingBottleneckWalkwithBufferLevels

The BottleneckWalk (BNW)isamethodfortheidentificationofdynamicbottlenecksin seriallineswithfinitebuffers[20].BNWiscloselyrelatedtothe ArrowMethod [14].It servesasahands-onmethodforbottleneckdetectionthatrequirespractitionerstotakea tourthroughthemanufacturingline.Whilewalkingalongtheline,saidobserverwrites downinventorylevelsandprocessstatesofthelineintoadefineddatasheet.These statesarerecordedaccordingtotheobservations,whiledistinguishingthethreestates processing, breakdown and waiting.Forwaiting,BNWrequiresasecondsubdivision: eitherastationcanbeblockedduetoafullsubsequentbuffer,oritcanbestarvingdue toanemptyprecedingbuffer.Inaddition,BNWconsidersthelevelofthebuffers,where aclearlydefinedbuffercanbefilledbetween0%and100%withregardtoitsmaximum capacity.Ifthecurrentlyobservedbufferlevelislowerthanonethirdofthemaximum capacity,thebottleneckislocatedupstream.Ifthelevelishigherthantwothirdsofthe capacity,theBNWpinpointsthestationdownstream.BNWusesanarrow-basedsystem todetermineabottleneckstation.Astationwitharrowspointingtoitfrombothsides representsthebottleneck[20].

Inthisusagemode,BNWrequiresamanualcheckofthesystemstatetobeperformed severaltimesaday.Foradata-drivenapplicationinflexiblemanufacturingsystems,the methodologywasthereforeadaptedforreal-timemonitoring[5].Focusingonvirtual bufferlevelsandneglectingthestationstates,allowsmakingequivalentstatementsabout thebottleneckstation.Givenasufficientavailabilityofdata,thisadoptionoftheBNW allowsdeterminingabottleneckatanytime.

2.2DetectionUsingActivePeriodMethodwithMachineStates

Accordingtothe ActivePeriodMethod (APM),abottleneckisthestationwithinthe materialflowsystemthathasbeenworkingthelongestwithoutanyinterruptions.APM reliesonasimilarunderstandingofmachinestatesasBNW.Workstationsareconsidered active whentheyareprocessingproductsasdefinedbytheirproductionprogram,orwhen theyareotherwisebusydueto repair , setup or maintenance operations.Incontrast,a stationiscalled inactive ifitiswaitingduetobuffer-relatedstarvationorblockage[6, 7].APMconsidersastation blocked ifthedownstreambufferisfilledtothemaximum. Thenitisunabletotransferanotherparttothefollowingstations.Fortheoppositecase,

iftheupstreambufferisemptyanditcannotsupplyanotherparttothenextstation, thestationisconsidered starved [14].Whilewesimplyrefertostationstatesinthis paper,APMallowsagroupingofstatesfordifferententitiesofaproductionsystem.For example,foraprocessingmachine,thestates‘working’,‘inrepair’,‘changingtools’ or‘beingserviced’areallconsideredactivestates.Forafactoryworker,‘working’or ‘beingonscheduledbreak’areactivestates,while‘plannedorunplannedwaiting’are consideredinactivestates.Regardlessoftheobservedentity,thelongestactiveoperating periodthenmarksthebottleneck[7].

APMalsoincludestheshiftingstateofabottleneckbydeterminingwhetherastationisthesolebottleneckorashiftingbottleneck.Shiftingstatesoccurattheoverlapof thecurrentandthesubsequentbottleneckperiods.Anaccuratedistinctionbetweensole bottleneckandshiftingbottleneckrequiresaretrospectiveviewofthestates.Several activestationsatanobservationtimesimplyleadtoanidentificationofshiftingbottlenecks.Despitethisdisputablelimitation,APMallowsnearreal-timedeterminationof bottleneckstationsbasedoncurrentconditionsofsaidstations.

2.3DetectionUsingInterdepartureTimeVariancewithProcessTimes

Thethirdmethodutilizes InterdepartureTimeVariances (ITV)todetectdynamicbottlenecks.Asamethod,ITVisbasedontheassumptionthatthebottleneckofamanufacturingsystemhasthelowestvarianceintheinterdeparturetimesofallproducts, i.e.thelowestITV[12].Themethodreliesonachainofconsiderations:Ifamachine inthemanufacturingsystemrequiresalonger effectiveprocessingtime tocomplete products,thismachinetendstobemoreutilized.Higherutilizationisassociatedwith ahigherutilizationrate,whichleadstoalongerqueueinfrontofthemachine,i.e.a higherbufferlevel.Analogously,thiscanleadtoalesshighlyfilledbufferbehindthe consideredmachine.Thisbufferbehaviorleadstolessfrequent starvation or blocking ofthemachine,andtheproportionofidlestatesiscorrespondinglylower.Similarly, theproportionofactivemachinestatesissignificantlyhigher,whichinturnleadsto othermachinesstarvingdownstreamandblockingupstream.Duetotheserecurring interruptions,thevarianceofthetimesbetweenthecompletionofproducts,i.e.theITV, increasesfortheothermachines.Abottleneckcanthenbeunambiguouslydetermined asthemachinethatachievesthelowestITVoftheentiresystem[12].Inadditiontothis logical-argumentativereasoning,theassumptioncanalsobedescribedinmathematical termsusingthe linkingequation,inaccordancewith[11].Thecalculationsarefurther elaboratedby[12]withreferenceto[11].

ForITVcalculation,theprocesstimemustbedeterminedasthedifferencetothetime stampofthenextproduct,startingfromastation-specifictimestampperstation.The varianceofthesedistancesisthencalculatedforanaggregationinterval.Whenselecting theintervallength,itisimportanttoselectasufficientlylargeandrepresentativesetof observationtimes.Atthesametime,alossofinformationduetoexcessiveaggregation mustbeprevented.Toenablereal-timedetectionlikeaMVM,thevariancecanalsobe determinedatanytime,usingaslidingwindowwithadefinedlength.Thisallowsa bottleneckdetectionthatutilizesthecurrentsystemstate.

3DesignoftheComparativeStudyforBottleneckDetection

Tocomparetheselectedbottleneckdetectionmethods,webuildaserialproductionline withsevenworkstations Mi andeightbuffers Bi asshowninFig. 1.Allstationsare connectedthroughabuffer,withthefirstbuffer B0 andthelastbuffer B7 formingthe systemboundaries.Fortheboundaries,weassumeinfinitesupplyanddemand.Weset amaximumcapacityofallbuffers BCBi to5units.Eachstationhasadefinedprocess time ptMi ,althoughweintroducevariabilityintothesystembymeansofanappropriate distributionfunction.Thedistributionfunctionusedtodeterminetheindividualprocess timesisshowninFig. 2.Theright-skeweddistributioncorrespondstoamanufacturing systemwithoccasionalequipmentdowntimes.

Fig.1. Layoutoftheserialproductionlinewithexemplary20%-bottlenecksatM3andM6

Sinceweneedtoapplythedetectionmethodsinsystemswithdynamicbottlenecks, weintentionallyinducebottleneckstatesbyapplyingapercentagefactortotheprocess timesoftwoselectedstations.Figure 1,forexample,showsasystemconfigurationin whichstations M3 and M6 have20%higherprocesstimes.Weshowthecorresponding distributionofprocesstimesinredinFig. 2.Forunchangedstationswithaninitial processtimeof10,theaverageprocesstimeaftervariabilityadjustmentis 17.94 units. Similarly,formodifiedstationswithaninitialprocesstimeof12,theaveragetime aftervariabilitypenaltyis 21.53.Duetounlimitedboundaries, M1 doesnotstarvewhile M7 isneverblocked.Tocomparedifferentbottlenecksituations,weuseallbottleneck combinations,for M2 to M6 ,includingsingularbottleneckstateswithjustoneaffected station.Thisresultsin15uniquecombinationsand25intotal.

Forabetterunderstandingofthestudiesresult,weshowasingleexampleofour simulationresultsinFig. 3,where M3 and M6 areagainsetto20%-bottlenecks.Inall followingvisualizations,thedashedlinemarksthebottleneckstationsofthescenario. Werunallsimulationsfor20,000units,precededby5,000unitsforinitialsettlingofthe system.TheY-axisshowsthebottleneckstationidentifiedbytherespectivedetection method,withthedetectionshownusingthebluemarkers.InFig. 3,forexample,a shiftingbottleneckoccursafterabout9,500units,thebottleneckat M3 shiftsto M6 Moreover,sinceadetectionismadeforeachpointintime,unambiguousvisualization isnotalwayspossible.Intheexample,after14,500timeunits,thebottleneckrepeatedly alternatesbetweenstation M3 and M6 foranintervalofapprox.1,000units.

Right-skewed distribution of process times

Fig.2. Distributionofprocesstimesfor bottleneckandnone-bottleneckstations

Visualization of detected bottleneck stations

Fig.3. Exemplarystructureofthedetection resultsfora20%-BNat M3 and M6

4DetectionResultsusingBNW,APMandITV

AllvisualizationsinSec. 4 usea20%factorforthebottleneckstations.Thelocationofthe suchstationsisvariedbetween M3 and M6 ,leadingto25combinationsforeachdetection method.Tocomparetheresults,weusematrixplotsthatcontainall25combinations. Thediagonalofthematrixshowssimulationswithjustonebottleneck.Allotherfields showsimulationswithtwobottlenecks.Sinceweusethesamerandomseedtodetermine theprocesstimevariability,theresultmatrixissymmetrical.Assuch,thesameresult isobtainedfora M2 -M4 systemasfora M4 -M2 system.Thevisualizationlogicofeach tileinthematrixfollowstheformatpresentedinFig. 3

4.1BottleneckDetectionwithBottleneckWalk

Figure 4 showstheresultsofbottleneckdetectionusingtheBNW.Asdescribedabove, thematrixissymmetrical.Inthecasesonthediagonal,inwhichonlyonestationhas anincreasedprocesstime,theBNWidentifiesthisstationasabottleneckinmostcases. Intheothercases,thestationsmarkedwithdashedlines,whicharethestationswith anincreasedprocesstime,arealternatinglyidentifiedasbottlenecks.Inadditionto theapparentlycorrectlyidentifiedbottlenecksituations,allplotsshowascatteringof selectivelyidentifiedbottlenecksatallstations,rangingfrom M1 to M7 .

4.2BottleneckDetectionUsingtheActivePeriodMethod

Next,weidentifiedbottlenecksusingtheAPM.Forthesakeofclarity,welimitthe useoftheAPMtoanidentificationofsolebottlenecks.Insituationswithashifting bottleneck,werefertothestationwiththelongestactiveperiodasbottleneck.Only afteraninterruptionofthisstation,theothershiftingbottlenecktakesoverthelabel ofsolebottleneck.TheresultsofthisinvestigationareshowninFig. 5.Again,clearly identifiedbottlenecksareevidentinthefivescenariosinthediagonalofthematrix. Intheremainingscenarios,changingbottlenecksbetweentheexpectedstationscanbe

Study results for bottleneck detection using the Bottleneck Walk with 20%-BN BN(M4)BN(M5)BN(M6)

BN(M6)BN(M5) BN(M4)BN(M3)BN(M2)

BN(M2)BN(M3)

Fig.4. Matrixplotofallbottleneckcombinations(20%),usingtheBottleneckWalk

Study results for bottleneck detection using the Act. Period Method with 20%-BN BN(M4)BN(M5)BN(M6)

BN(M4)BN(M3)BN(M2)

BN(M6)BN(M5)

BN(M2)BN(M3)

Fig.5. Matrixplotofallbottleneckcombinations(20%),usingtheActivePeriodMethod identified.Itisnoticeablethatshiftsinthebottleneckstationsoccurmorefrequentlyif thestationsarelocateddirectlyafteroneanotherorareonlyashortdistanceapartinthe

valuestream.Althoughtherearealsoisolatedpointwiseidentifiedbottleneckstations, theseoccurmuchlessfrequentlythanpreviouslyforBNW.Overall,theresultsshowa clearimageoftheexpectedsystembehaviorinallscenarios.

4.3BottleneckDetectionUsingInterdepartureTimeVariances

Figure 6 showsthebottleneckstationsdeterminedusingITV.SinceITVintheoriginal proposalisanAVM,weadaptedthemethodformomentarybottleneckdetection.As alreadymentionedinSec. 3,weuseaslidingwindowtocalculatetime-dependent variancesforeachpointoftimeinthesimulations.Weuse5,000asthelengthofthe varianceinterval,whichcorrespondstotheperiodoftheinitialsettlingofthesystem. Then,foreachpointoftime,theITVwithinthisslidingwindowisused,whilethelowest ITVmarkstherespectivebottleneckstation.Onceagain,theindividualbottlenecksare reliablyidentified,withonlyaminoranomalyintheM5-M5scenario.Intheother scenarios,theinfluencedstationsareagainidentifiedasthemainbottlenecks,with shiftingstatesoccurringhereaswell.Additionally,itisnoticeablethatthefrequency oftheshiftingisnotasstronglyinfluencedbythedistancesbetweenthestationsinthe valuestreamasseenfortheAPMdetection.Thenumberofindividualidentificationsis slightlyhigherthanitwasforAPM,butsignificantlylowerthanforBNW.Insummary, theresultsoftheITVmethodshowaslightlylessclearresultthantheAPM,butare considerablymoreuniformthanthedetectionofBNW.

Study results for bottleneck detection using the Int. Time Variance with 20%-BN BN(M4)BN(M5)BN(M6)

BN(M2)BN(M3)

Fig.6. Matrixplotofallbottleneckcombinations(20%),usingInterdepartureTimeVariances

5Comparison

Wefirstaddressthecomparisonwiththe20%bottlenecksasshownbefore.Sincethe processtimeincreasehasasignificanteffectonthesystembehavior,wealsocompare theresultsfor10%to100%increases,focusingontheagreementofthemethods.

5.1Comparisonof20%-BottleneckResults

WiththehelpoftheBNW,itisrelativelysimpletorecognizebottlenecksituationsinthe systemandtodetectbottlenecksaccordingly.However,alternatingbottlenecks,between twostationswithincreasedprocesstimes,occurmuchmorefrequently,whencompared toAPMandITV.Furthermore,onlythevisualizationoftheBNWshowsanextensive scatteringofselectivelyidentifiedbottlenecks.Thesevariationsoccurredmostlikelydue totheratioofaverageprocesstimeandmaximumbuffercapacity.Withacapacitylimit of5unitsassumedinthecasestudy,thelowerandupperdecisionlimitsareclosetoeach other.Onthisscale,onethirdrespectivelytwothird,areunreliablecapacitylimitsdueto therule-of-thumbsassumptions.ItispossiblethatBNWismoresuitableforbottleneck detectioninsystemsofadifferentnaturewithachangeinthisratio.However,inthe setupwitha20%increaseinprocesstimeatbottleneckstations,theBNWperformsthe worst.

APMhasproventobeamorerobustmethodforbottleneckdetection.Itshowsalmost nopunctualdeviationsanddesignatesmainlytheinfluencedstationsasbottlenecks. However,thisobservationhastobequantifiedtosomedegree.Byfocusingoncontinuous activeperiods,itisinthenatureofAPMthatlongerperiodsofutilizedstationslead toacontinuousbottleneckidentification.Themethodisthuspartiallyprotectedfrom short-termandvariability-induceddeviations.ItmayevenbearguedthatAPMisa memory-basedmethodduetothisimplicituseofpastsystems,effectivelybecominga hybridofAVMandMVM.Regardingthedecreasingfrequenciesofbottleneckshifting formorewidelyseparatedstationsinthevaluestream,thisislikelyduetotheincreasing overallworkloadbetweenstations.Withonlytwostationswithhigherprocesstimes, thestationsinbetweenactlikeasharedbuffer,makingstarvationorblockingconditions lesslikelytooccur.Summarizing,theAPMisprovingeffectiveinidentifyingshifting bottlenecks.

LiketheAPM,themodifiedITVhasalsobeenshowntobewellsuitedforbottleneck detection.TheadvantageofusingITVisthatbottleneckscanbeidentifiedselectively, especiallyinlongervaluestreams.Thephenomenonofasplitbufferathighworkloads betweentwostationsislesslikely.Adisadvantageisthatimmediatebottlenecksare subjecttoaslightlyhigherdelayduetotheaverage-baseddeterminationofthevariance. Inaddition,thelengthoftheselectedvarianceintervalhasasignificantimpacton thequalityofthedetection.Thedeterminationofasuitableintervallengthishighly application-dependent.Inordernottoexceedthescopeofthiswork,wehadtorefrain fromanadditionalvariationofthisparameter.

Weprovidethesimulationmodel,thegenerateddataandallvariationsofbottleneck processtimehere:github.com/nikolaiwest/2021-bottleneck-detection-ieaaie.

5.2ResultsforVaryingBottleneckProcessTimes(10%to100%)

Todeterminethecorrectnessofadetectedbottleneck,awaytoidentifyitaccording toasinglesourceoftruthisrequired.Suchatruthcanthenbeusedtocrosscheckthe degreeofcorrectidentification.However,sincesuchmeasuresalwaysdependonthe selectedbottleneckdetectionmethod,wehavenowaytodetermineanabsolutetruth regardingthebottleneckstation.Instead,wehavetocomparethestatementsofthethree previouslyusedmethodsBNW,APMandITV.Allagreementratiosthereforeconsistof pairingsofmethods.Ineachcase,wedeterminetheaverageratioofagreementfromthe 25scenarios.Thiscalculationisperformedforbottleneckstationsofvaryingincrease ofprocesstimes.Wecompareanextraof10to100%ofthebasicprocesstime.Table 1 summarizestheresults.

Table1. Averageratioofagreementbetweentwodetectionmethodsfordifferentadditionstothe stations’bottleneckprocesstimes

Theratiosofagreementaregivenaspercentages,with100%correspondingtoa fullagreementand0%tonoagreement.BNWandITVhavethelowestdegreeof agreementat39.26%withabottleneckincreaseof10%,andanaverageof56.33%, APMandITVhavethehighestagreementat90.55%witha90%bottleneckincrease, whilereachinganaverageof80.10%.Throughthisrepresentation,aclearrankingofthe methodpairsbecomesapparent.ITVandAPMalwayshaveahigheragreementratio thanBNWandAPM,whereastheratioforBNWandAPMisalwaysaboveBNWand ITV.ThesedeviationsareprobablyduetothesporadicdeviationsoftheBNW.Although themethodrecognizestheinfluencedstationsasbottlenecksinmanycases,itisalso frequentlywrongduetothesporadicallyrecognizedbottlenecks.

Furthermore,allpairingsshowatendencyofanincreasedratioofagreementwith moreadditionalprocesstimeforbottlenecks.Thisincreasecanbeattributedtoatendencytowardsstaticbottlenecksinthefrontsectionsofthevaluestream.Duetothe increasingdifferencesinprocesstimesonbottlenecks,thedurationandfrequencyof earlybottlenecksincreases.Consequently,thedetectionofsuchbottlenecksbecomes easierforallthreemethods,leadingtoanincreasingtherateofagreement.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.