ASCE - Damping Ahsan Kareem

Page 1

TallBuildingsandDamping:AConcept-Based Data-DrivenModel

Abstract: Moderntallbuildingsarecharacterizedbytheirslendernessandsensitivitytoresonantwindeffects.Thisisespeciallytrueconsideringtheacceleration-basedmotionperceptioncriteriaunderwhichtheymustbedesigned.Inlightofthesignificanceoftheresonant response,dampingplaysanimportantroleinthedesignoftallbuildings.Unfortunately,unlikeothermechanicalcharacteristicsofstructures, dampingisfarmoredifficulttoestimate.Thisisduetotheinherentcomplexityandhighnumberofmechanismsresponsiblefordamping.For thisreason,theexperimentaldeterminationofdampinglevelsfortallbuildingsfromfull-scaledatacollectedduringmonitoringprogramshas obtainedatremendousamountofinterestoverthepastyears.Thispaperfirstlyreviewsthepredictivedampingmodelsthatareavailableinthe literaturehighlightingtheirmeritsandshortcomingsinlightoftheextensiveexperimentaldampingdatacollectedoverthepastfewyears. Anovelamplitude-dependentdata-drivenmodelisthenproposedbasedonafullyprobabilisticdescriptionofthemechanismsthatare hypothesizedtogeneratethemajorityofdampingintallbuildings.Finally,theproposedmodeliscalibratedtoanumberofspecificbuildings demonstratingitsrobustness. DOI: 10.1061/(ASCE)ST.1943-541X.0000890. ©2014AmericanSocietyofCivilEngineers.

Authorkeywords: Damping;Amplitudedependency;Data-drivenmodels;Predictivemodels;Tallbuildingdesign;Dynamiceffects.

Introduction

Theresponseoftallbuildingstoenvironmentalloads,suchaswind andseismicevents,dependsontheirdynamicpropertiessuchas mass,stiffness,anddamping.Althoughcharacteristicslikemass andstiffnessarefairlyeasytoestimate,dampingisconsiderably hardertoestimatewithanysortofcertainty.Beingawarethatthis constitutesadifficultyinthedesignofstructures,itisparticularly significantinthecaseoftallbuildingsduetothestringentlimitationsimposedontheirperformancebyacceleration-basedmotion perceptioncriteriatoguaranteeasatisfactoryhabitability.The difficultyinobtainingaccurateestimatesofdampinglevels incivilstructuresmaybetracedbacktothecomplexnatureof themechanismsthatareattherootofthisphenomenon.Indeed, itiswellknownthatastructurewillbedynamicallydampedby mechanismswithdifferentcharacteristics.Examplesofsuchmechanismsarethecomplexmolecularinteraction(materialdamping), Coulombfrictionbetweenmembersandconnectionsor,froma moreglobalperspective,othermechanismsdependingonthetype ofstructuralsystem,foundationtype,contributionsofinteriorpartitions,exteriorcladding,andothernonstructuralinputs.Damping isingeneraldifficulttomodelmathematicallybecauseeachof theaforementionedsourceswillfollowverydifferentlaws(forinstance,materialdampingmaybemodeledusingviscousmodels, whereasaCoulombmodelmaybeadoptedforfriction)causingthe totaldampingtofollowalawwhichmaybeconsideredunique

1ResearchAssistantProfessor,NatHazModelingLaboratory,Dept.of CivilandEnvironmentalEngineeringandEarthSciences,Univ.ofNotre Dame,NotreDame,IN46556(correspondingauthor).E-mail:sspence@ nd.edu

2RobertM.MoranProfessorofEngineering,NatHazModelingLaboratory,Dept.ofCivilandEnvironmentalEngineeringandEarthSciences, Univ.ofNotreDame,NotreDame,IN46556.

Note.ThismanuscriptwassubmittedonJuly3,2012;approvedon June4,2013;publishedonlineonJune6,2013.Discussionperiodopen untilJuly6,2014;separatediscussionsmustbesubmittedforindividualpapers.Thispaperispartofthe JournalofStructuralEngineering,©ASCE,ISSN0733-9445/04014005(15)/$25.00.

foreachstructure.Havingsaidthissomegeneraltrendscanbe identifiedifparameterssuchasbuildingmaterial,structuralsystem, andfoundationtypeareconsidered.

Inlightoftheimportanceanddifficultiesinmodelingdamping, thepossibility,givenbythedevelopmentofdataacquisitiontechnologiesoverthelastthreedecades,toexperimentallydetermine dampingcharacteristicsfromfull-scalemeasurementshasbeen thoroughlyinvestigated.Thesestudieshavebeenmadepossible byanumberofmonitoringprojectsperformedthroughoutthe worldonwindorseismicallyexcitedtallbuildings(Jeary1986; Ohkumaetal.1991; Çelebiand Şafak1992; LittlerandEllis 1992; Çelebi1993; TamuraandSuganuma1996; Lietal.1998; KijewskiandKareem1999; Lietal.2004b; Lietal.2005; Lietal. 2006; Kijewski-Correaetal.2006; Lietal.2011; Guoetal.2012), includingtheongoingprogramsoftheUniversityofNotreDame concerningthemonitoringofthreetallbuildingsinChicago (Kijewski-Correaetal.2006)andanumberoftallbuildingscurrentlybeingmonitoredinChina(Lietal.1998; Lietal.2003a; Lietal.2004a; Lietal.2008; Lietal.2011; Guoetal.2012). Obviously,thecollectionoffull-scaledataisonlyonepartof theequation.Oncethedatahavebeencollected,appropriatedampingestimationtechniquesmustbeapplied.Becauseoftheconsiderablediversitythatexistsintoday’sbuildings,togetherwiththe practicalconstraintsplacedondataacquisitionsystems(e.g.,limitedinstrumentationpoints,noise,sensoraccuracy),thenumberof methodsthathavebeenproposedfordampingestimationisconsiderable(Kijewski-CorreaandCycon2007).

Overthepastthreedecades,oneofthemostinterestingaspects ofdampingintallbuildingstohaveemergedfromtheanalysisof full-scaledataisitsnonlinearnature.Thenonlinearityisseenas adependencyofdampingontheamplitudeofvibration.This dependency,generallyreportedasanincreaseindampingwith amplitude,hasbeenthesubjectofnumerousstudiesandinvestigationsovertheyears(HartandVasudevian1975; Davenportand Hill-Carroll1986; Jeary1986; Jeary1996; Jeary1997; Fangetal. 1999; Lietal.2000b; Lietal.2008; Lietal.2011; Guoetal.2012). Modelshavebeenproposedforpredictingdampinglevelsinfunctionofvibrationamplitude(DavenportandHill-Carroll1986;

©ASCE04014005-1J.Struct.Eng.

SeymourM.J.Spence 1 andAhsanKareem,A.M.ASCE 2
J. Struct. Eng. 2014.140. Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

Jeary1986; Lagomarsino1993; Jeary1996; Jeary1997; Satake etal.2003).Alltheaforementionedmodelswereproposedthrough theanalysisofdatabasesofdampingvaluescollectedforvarious vibrationamplitudesandbuildings.Indeed,theymaybeconsidered asphenomenologicalmodelsthathavebeengivenacertainphysicalsenseaposteriori.Untilrecentlythisapproachwastheonly realisticpossibility.However,theincreaseofhighqualitydamping estimatesmadeonspecificbuildingsforrelativelylargeamplitude rangeshasmadepossibletheinvestigationofmoreconcept-based dampingmodelsthatwouldhaveabetterchanceofdescribingthe dampingbehavioroftallbuildings,explaining,forinstance,whyin certaincasesdampinghasbeenseentodecreaseafteracertaincriticalamplitude(Tamura2005; SmithandWillford2007; Tamuraand Yoshida2008; AquinoandTamura2012).Anothersystemnonlinearitythathasbeenobservedduringtheextensivemonitoringof tallbuildingsoverthepast12yearsisthetendencyfortheirnatural frequenciestodecreasetoacertainextentwithamplitude(Tamura andSuganuma1996; Lietal.2000a; Kijewski-CorreaandPirnia 2007; Kijewski-Correaetal.2007).Thishasbeenseentogohand inhandwiththegeneralincreaseofdampingwithamplitude.However,althoughthisphenomenonhasbeenobservedandbest-of-fit linesproposedforspecificbuildings,nomodelsortheorieshave beenproposedthatbringthesetwophenomenatogether,asis mostlylikelythecase.

Inlightoftheaforementionedconsiderationsandtheamount ofdatathathasbeencollectedoverthepastfewyearsconcerning tallbuildings,thetimeseemsrighttoinvestigatethepossibilityof definingspecificconcept-baseddata-drivenmodelsthataremore robustandcompletethanthosecurrentlyavailable.Thispaper focusesonthispossibility.

StructuralDamping

Asbrieflymentionedintheintroduction,dampinghasmanysourcesofvaryingcomplexity.Itisthecombinationofvariousphysical phenomenathatcausesdampingtobeparticularlycomplicatedto estimate,comparedtomassorstiffness.Indeed,althoughthestate variablesthatgoverninertialforcesorstiffnessareeasilyidentifiable,inthecaseofdampingthisisnottrue.Traditionallyinthe dynamicresponseanalysisofstructuresdampingismodeledproportionaltovelocity(linearviscousdamping).Inmanycases,however,thischoiceisdictatedmorebyconveniencethanbyanactual physicalmeaningaswiththischoicethesystemwillbegoverned bylinearsecond-orderdifferentialequations.

Broadlyspeaking,dampingaffectingstructuressuchastall buildingsmaybecategorizedintostructuraldampingandnonstructuraldamping.Structuraldampingcomprisesdampingsources suchasintrinsicmaterialdamping,frictionaldamping,andfoundationdampingduetosoil-structureinteraction.Nonstructural dampingreferstoallothersourcessuchasaerodynamicdamping, causedbythevibrationofastructureimmersedinafluid(Kareem andGurley1996),orpossiblenonlinearitiespresentinloadingor structuralsystemthatmaycause,forexample,couplingbetween orthogonalmodeswithequalfrequencies[thisindirectlyaddsto thedampingowingtoanenergytransferbetweenmotiondirections (Kareem1982; KareemandGurley1996)].Althoughforcertain systemsnonstructuraldampingcanbeveryimportant(forexample aerodynamicdampingonflexiblestructures),ingeneral,fortall buildingsitmaybeneglectedforthecurrentgenerationofbuildings(Marukawaetal.1996),butmayhavetobeconsideredfor supertallbuildingsofthefuture.Also,nonlinearitiesduetoother aeroelasticeffectsorparticularmechanicallock-inphenomena, suchasthosecitedbefore,arepresentlyrare,eveniftheymaycome

intoplayinthesupertallbuildingsthatarebeingplanned.This paper,therefore,willfocusonthemodelingandestimationofstructuraldampingthatwillbereferredto,fromthispointon,simplyas damping.

Forlinearviscousdamping,theratio ξ betweenthedamping presentinthesystemandthecriticaldampingmaybeestimated fromtheratiobetweenthedissipatedenergyinonecycleofresonantsteady-stateharmonicoscillationtothemaximumamountof energyaccumulatedinthestructureinthatcycle

Inthecaseofnonresonantharmonicloading,thelinearviscous dampingmodelhasaseriousdrawbackbecausetheratioof Eq.(1)dependsontheexciting/steady-stateresponsefrequency, acharacteristicnotobservedexperimentally.Hence,fornonresonantharmonicloading,otherdampingmodelsareprobablymore appropriate,suchasthehystereticdampingmodel(complexstiffnessdamping)whichisindependentoftheexciting/steady-state responsefrequency(CloughandPenzien2003).Havingsaidthis, Eq.(1)isusefulasageneraldefinitionofthedampingcapacityof astructure.Indeed,independentlyofthedampingmodel,Eq.(1) providesameanstofindwhatiscommonlydefinedastheequivalentviscousdampingratio.

Damping:FromEstimationtoDatabases

Full-ScaleMonitoringPrograms

Thesignificantincreaseinknowledgeconcerningdampingoverthe past30yearsisinparttheconsequenceofthenumerousmonitoring programsthathavebeenperformedonbuildingsallovertheworld. Thisincreasedmonitoringofthebuiltenvironmenthasbeenmade possiblebytherapidadvancementinacquisitiontechnologiesover thepastfewyearsandthegrowthofinterestinstructuralhealth monitoring.Thefirstcasesofsystematicmonitoringofbuildings underenvironmentalloadingoccurredduringthe1970s(Isyumov andBrignall1975; Taokaetal.1975; Isyumovetal.1988; Brown 2003).Thenduringthe1980sprogramssuchastheCalifornia Strong-MotionInstrumentationofStructures(CSMIS)ofthe CaliforniaGeologicalSurveyallowedthecollectionofasignificantquantityofdatarelatedtotheseismicresponseofbuildings (Bongiovannietal.1987; Şafak1989b; Çelebiand Şafak1991; ŞafakandÇelebi1991; Çelebiand Şafak1992; Çelebi1993; Çelebi1996).Thelast20yearshaveseenagrowinginterestinthe monitoringofwind-excitedtallbuildings(Lietal.1998; Xuand Zhan2001; Lietal.2003a; Lietal.2004a; Campbelletal.2005; Lietal.2005; Kijewski-Correaetal.2006; Pirniaetal.2007; Lietal.2007; Kimetal.2008; Lietal.2008; NiandZhou 2010; Guoetal.2012).Thisextensivemonitoringanddataanalysis havebeenespeciallyintenseinthePacificRimwhereanumberof buildingshavebeenmonitored,notonlyinambientwindconditions,butalsoundersevereweatherconditionssuchastyphoons.

TheEstimationofDamping

Thecollectionoffull-scaledataisobviouslyonlythefirststepin theexperimentalestimationofdamping.Oncethedatahasbeen collectedanappropriatedampingestimationtechniquemustbeapplied.Becauseofthecomplexityofdamping,thisisbynomeansa trivialtask.Indeed,intheliteratureavastnumberofmethodscan befound.Oneofthemostimportantfactorsintheselectionofan appropriatemethodiswhethertheinput(excitingfunction)was

ξ ¼ 1 4π energydissipatedpercycle totalavailablepotentialenergy ð1Þ
©ASCE04014005-2J.Struct.Eng. J. Struct. Eng. 2014.140. Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

measuredduringtheevent.Practically,thisonlyhappensinthe caseofseismicexcitation,whereasfordatacollectedduringwind eventsonlytheresponseofthesystemisknown.Thismakesa significantdifferenceintherobustnessofthetechniquesthat maybeapplied.

EstimationunderSeismicExcitation

Inthecaseofknowninput,anappropriateSystemIdentification (SI)techniquemaybeappliedforestimatingthedamping.Thetype ofproblemwillingeneralbedescribedbyanonlinearoptimization problem,withscopetheminimizationofanobjectivefunctiongivingameasureofthedifferencebetweenthemodelandmeasured responses.Themethodsaredistinguishedbythechoiceoftheobjectiveandtheminimizationschemeadopted(Kijewski-Correaand Cycon2007).Oneofthemorepopularschemesisbasedonthe regressivetime-seriesmodelingoftherecordedinputandoutput accelerationsusingtheleastsquaresminimization.Thedynamic propertiesmaythenbeextractedfromthepolesofthetransfer function(Ljung1987; Çelebi1993).Anotherpopularregression schemeistheAutoRegressivemodelwitheXogenousinput(ARX) whichhasbeenappliedfortheSIofanumberofmediumtotall buildingsunderseismicexcitation(Şafak1989b; Çelebi1993; Çelebi1996; Çelebi2006; RodgersandÇelebi2006).Inalternative,anARMAX(AutoRegressiveMovingAveragemodelwith eXogenousinput)modelmaybeusedasillustratedintheidentificationoftheEmbarcaderobuilding(Şafak1989b).Anotherway toperformSIistoviewthestructureasaDiscrete-TimeFilter (DTF)thatmustbedesignedfromtheknowledgeoftheinput andoutput(Şafak1989a; Şafak1991).Thismethodhasbeensuccessfullyappliedonanumberoftallbuildings(Şafak1989b; Şafak 1991; ŞafakandÇelebi1991; ŞafakandÇelebi1992; Şafak1993).

EstimationunderWindExcitation

Asmentioned,thedifference,fromasystemidentificationviewpoint,betweenwindandseismicallyexcitedstructuresisinthe practicalimpossibilitytomeasuretheinputforcesinthecasewind excitation.Also,owingtotherelativelylowamplitudesofthewind responses,dampingestimationmethodsappliedtowindresponse datamustbecapableofdistinguishingbetweensignalnoiseand response.Generallyspeaking,becausethewindforcemaybeconsideredbroadbandcomparedwiththenarrowbandnatureofthe system,theinputistakenashavingawhitenoisespectrumaround thestructuralfrequencies.Also,itiscommontoassumetheinput asstationaryandergodiccoupledwithalinearsystem,therefore yieldingastationaryandergodicresponse.Thisallowstheapplicationofanumberofoutput-onlydampingestimationschemesthat allowforthedampingestimationusingtemporalaveragesinplace ofensambles(Kijewski-CorreaandCycon2007).

Probablythemostconventionaltechniquethatfallsintothis categoryistheHalfPowerBandWidth(HPBW)method(Bendat andPiersol1987).Thedampingratioissimplyestimatedfrom theautopowerspectraldensityoftheresponseathalftheheight.

Somespecificexamplesofitsapplicationcanbefoundin(Dobryn etal.1987; Brown2003; Lietal.2005; Kijewski-Correaetal. 2006; Kijewski-Correaetal.2007; Pirniaetal.2007).Otherfrequencydomain-basedschemesincludespectralcurvefitting methodsandmethodssuchasmaximumlikelihoodestimators (Breukelmanetal.1993; Montpellier1996; Erwinetal.2007) orsimilar(LagomarsinoandPagnini1995).

Dampingestimationinthefrequencydomainhasbeenreplaced tosomeextentbytimedomainproceduresowingprimarilytoconcernsaboutsignalprocessingwhileapplyingthefastFouriertransformswhichhavebeenassociatedwithinflateddampingestimates. Oneofthefirsttimedomain-baseddampingestimationmethods appliedtofull-scalewindexcitedbuildingsisbasedonthedirect

estimationoftheautocorrelationfunction(Taokaetal.1975; IsyumovandHalvorson1984; Dobrynetal.1987; Masciantonio etal.1987).However,ithasbeenseenthatthismethodcangive quiteunreliabledampingestimatesifthereisalackofdata (DavenportandHill-Carroll1986).Theaforementioneddifficulties arepartlyresponsibleforthepopularityoftheRandomDecrement Technique(RDT)(KareemandGurley1996).Notonlyhasit beenshownthatthismethodisrelativelystableinestimating damping,butalsothatitcontinuestobeusableevenwhenmoderatenonlinearitiesandnonstationaritiesarepresent(Tamuraand Suganuma1996).

Discussion

Themethodologiesbrieflypresentedinthissectionfordamping estimationcansignificantlyaffectthevaluesobtained.Forthisreason,wheninvestigatingpossibletrendsindampingdatacoming fromtheapplicationofdifferentestimationtechniques,thepossibilityofvariationowingsimplytotheestimationmethodshould notbeoverlooked.Indeed,recentstudieshavehighlightedtheadvantagesofworkinginthetime-frequencydomainthroughthe HilbertTransform(HT)ortheWaveletTransform(WT)(Kijewski etal.2003; Xuetal.2003; BashorandKareem2007)becausethey havebeenseentobefarlesssensitivetonoisecontaminationcomparedwithtraditionalapproaches.Theymayalsobeadoptedfor dampingestimationusingshortdurationnonstationarydataas shownin(BashorandKareem2007; Kijewski-CorreaandCycon 2007)wheresingle-valuedecompositionisappliedtogether withWTs.

Databases

Thecontinuedmonitoringanddampingestimationhasledtoa numberofdampingdatabasesbeingestablishedovertheyears. Examplesofsuchdatabasescanbefoundin(Davenportand Hill-Carroll1986; LagomarsinoandPagnini1995; Satakeetal. 2003; YoonandJu2004).

Fromtheanalysisofthesedatabases,someimportantcharacteristicsconcerningthedampingofsteelandreinforced-concrete buildingshavebeenfound.Awidelyreportedcharacteristicof dampingestablishedthroughtheanalysisofdatabasesisthegeneralincreaseofdampingwithfrequencyowingtothegreater participationofnonstructuralcomponentstothedampingofthe system(Jeary1986; Lagomarsino1993; Satakeetal.2003).Over theyearsanumberofresearcheshaveproposedpredictiverelationshipsconcerningthisphenomenon.Inparticular,Jeary(1986)proposedarelationbetweendamping(ξ )andfrequencyinHertz(n) expressedthroughthesimpleformula

ξ ¼ 0 01n ð2Þ

whereasTamuraetal.(2000)proposedthefollowingmodification basedontheresultsderivedfromanalysisoftheJapanesedatabase [ArchitecturalInstituteofJapan(AIJ)2000]

AmorecomplicatedrelationshipwasproposedbyLagomarsino (1993)

where β 1 and β 2 areconstantsthatdependontheprincipalbuildingmaterial(Lagomarsino1993).Byplottingmodalfrequency againstthefirstthreemodaldampingratiosinthelateraland

ξ ¼ 0 013n forsteelframes ξ ¼ 0 014n forreinforcedconcrete ð3Þ
ξ ¼ β 1 n þ β 2 n ð4Þ
©ASCE04014005-3J.Struct.Eng. J. Struct. Eng. 2014.140.
04/15/15. Copyright
Downloaded from ascelibrary.org by University of Notre Dame on
ASCE. For personal use only; all rights reserved.

nomotiontakesplace).Fromtheseearlyworksmoresophisticated modelshavebeendeveloped.Thefollowingsectionswillfocuson arguablythemostimportantoftheseproposals.

PowerLawModel

DavenportandHill-Carroll(1986)suggestedthatthemeanor expecteddampingratiointallbuildingsmaybeestimatedthrough apowerlawas

Fig.1. Modalfrequencyagainstmodaldampingratiosinthefirstthree modes:(a)steelframedbuildings;(b)reinforcedconcretebuildings

where A and α areconstants, x isthestandarddeviationofthedisplacement(inmm)whereas H isthebuildingheight(inm).

Theproposedmechanismbehindthemodelisbasedonthe assumptionthatthebulkofdampinginbuiltupstructuresiscaused bythefrictionbetweenjoints,bearingplates,floorsandbeams, interiorpartitions,exteriorcladdingandstructuralsystemetc. Thefactthatthisassumptionleadstoalawproportionaltoamplitudewithconstantexponent α,whichisincontrasttotheinverse dependencyseenforCoulombdamping(KareemandGurley 1996),isdemonstratedthroughtheadoptionofWyatt’sStiction model(Wyatt1977).Inparticular,itwassuggestedthatthenumber ofstick-slipelementsincreasesintermsofthevibrationamplitude withapowerlawofthetype

fromwhichitcanbedemonstratedthatthedampingratiowillbe givenby

Fig.2. Buildingheightagainstmodaldampingratios;thetrendcurves, fittedthroughlinear(L)andnonlinear(NL)regressionanalysis,showinghowdampingisexpectedtoreducewithbuildingheight:(a)steelframedbuildings;(b)reinforced-concretebuildings

torsionaldirectionsforthebuildingsintheJapanesedatabasethe frequencydependencyisclearlyvisibleforbothsteel-framed buildings,Fig. 1(a),andreinforced-concretebuildings,Fig. 1(b) InFig. 1 thepreviouslyintroduceddamping-frequencyrelationships[Eqs.(2)

(4)]arealsoreported.Anothercharacteristicthat hasemergedisthetrendconcerningthegeneralreductionofdampingintallbuildingswithincreasingheight(Satakeetal.2003; SmithandWillford2007),shownfortheJapanesedatabasein Fig. 2.Thistrendhasledtosomeconsideringthepossibilityof usingheightasadesirableparameterforpredictivedampingmodelsoftallbuildings(SmithandWillford2007),althoughthispossibilityisnotsharedbyall(BentzandKijewski-Correa2008).

PredictiveModelingandAmplitudeDependencyof Damping

Theinvestigationanddefinitionofthemechanismsbehinddampingoftypicalmultistorybuildingsowealottothepioneering worksofHartandVasudevian(1975),whowereamongthefirst topresenttheamplitudedependencyofdampinginreinforcedconcreteandsteelmultistorybuildings,andWyatt(1977)whopresentedamechanismforitsdescriptionthroughtheintroduction ofelementstermed Stiction (StictionstandsforaSTuckfrICTION element,inwhich,intheearlystagesofanincreasingappliedload,

where K isthestiffnessofthesystemwhile D and u areconstants. Theconstants A and α maybeestimatedfromexperimentaldata derivedfromtestscarriedoutonvariousbuildingtypes,e.g.,steel buildingsorconcretebuildings,thereforeidentifyingthemost appropriatevaluestobegiventotheconstants(Davenportand Hill-Carroll1986).

PiecewiseLinearModel

Jeary(1986)proposedwhathasbecome,toacertainextent,the baselinefordescribingthemechanismbehinddampinginstructures.Themodelisbasedonsimilarconsiderationsasthosecited forthepowerlawmodel.Asbefore,themodeltakesinitialinspirationfromtheworkofWyatt(1977)byrecognizingthatthedominantcauseofdampingisfriction-relatedandthatthismaybe modeledthroughtheuseoftheconceptofstick-slipelements. However,themodelissomewhatmorecomplexindescribing theoriginsbehindthesourcesofenergydissipation.

Inparticular,themodelisbasedonthedefinitionofthreedistinctregionsthatdefinetheamplitudedependencyofdamping. Namely,theregionsaretheconstantlowamplitudeplateau,the nonlineartransitionzone,andtheconstanthighamplitudeplateau. Theexistenceofeachzoneisexplainedthroughtheconceptof criticalshearstressassociatedwithwhataretermedasimperfections.Theselastareconsideredatamateriallevelasessentially microcracksand,atastructurallevel,asimperfectionstypified bydimensionsintheorderofmeters(Jeary1986; Jeary1996; Jeary1997).Themacroimperfectionsaretheresultofthepresenceofconstructionjoints,interfaceofstructuralelements,etc.

ξ ¼ A x H α ð5Þ
ux ðxÞ¼ uxα ð6Þ
ξ ¼ Duxα K ðα þ 1Þðα þ 2Þ ¼ DuH α K ðα þ 1Þðα þ 2Þ x H α ¼ A x H α ð7Þ
(a)(b)
(a)(b)
©ASCE04014005-4J.Struct.Eng. J. Struct. Eng. 2014.140.
04/15/15.
Downloaded from ascelibrary.org by University of Notre Dame on
Copyright ASCE. For personal use only; all rights reserved.

Theexistenceofalowplateauregionisthenexplainedconsidering theshearenergynecessarytoactivatedissipationmechanismsassociatedwiththemovementofstructuralimperfections.Because thesearecharacterizedbytheirrelativelylargedimensions,they areconsideredtohavealowcriticalshearstressandthereforewill beactivatedalmostimmediately.Beforethematerialimperfections canbeactivated,acertainamplitudemustbereachedowingtothe gapinthedimensionsoftheimperfections.Thiscreatestheconstantlowamplituderegion.Iftheamplitudesarehighenough,the elongationofthematerialimperfectionswillworkasenergysinks causinganincreaseinthedamping.Thehighertheamplitudethe moreoftheseimperfectionswillbeactivatedcausingtheStiction effectofthenonlineardampingregion.Atacertainamplitudeall thematerialimperfectionswillbeactivatedandthedampingwill becomeconstantonceagaindefiningthehighamplitudeplateau. Ingeneraltermsthismodelmaybedescribedbythefollowing piecewiselinearrelationship:

identifyingtheconnectionbetweenamplitude-dependentfrequencyanddamping.

ProposedDampingModel

Theglobalbehavioroftallbuildingscanbemodeledbyanequivalentdynamicsystemconsideringeachfloortohavethreedegrees offreedom(i.e.,twoorthogonaldisplacementsandarotationabout averticalaxis).Underthisassumption,thedynamicresponseofa tallbuildingmaybeestimatedbysolvingthefollowingdynamic equilibriumequation:

where x isthevibrationamplitude(expressedinthesameunits as H ), 0 01n isthelowamplitudefrequency-dependentdamping value(with n expressedinHz), D istheplandimensionofthe building(expressedinm)whereas ξ HA isthehighamplitudedampingvalue.

Modificationsonthepiecewiselinearmodelhavebeenproposedovertheyears.InparticularTamuraetal.(2000)suggested slightmodificationstoEq.(8)totakeintoaccountthemodest differencesseenintheamplitude-dependentdampingcharacteristicsofthebuildingscomprisingtheJapanesedatabase,whereas Lagomarsino(1993)proposedthefollowingmodification:

where M, C and K arethemass,dampingandstiffnessmatrices respectively, z istheLagrangianresponsevectorwhereas fðtÞ isthe vectorofthetimevaryingforcingfunctionsactingatthereference centerofeachfloorandevaluatedasdeemedappropriatebythe analyst(e.g.,ifthewindresponseisofinterest,then fðtÞ could beestimatedbywindtunneltests).Insolvingtheseequations,it iscommontoperformamodalanalysis,truncatedtothefundamentalmodes(firsttwotranslationalmodesandfirsttorsionalmode), andthereforereplacetheprevioussystemwiththefollowingthree uncoupledgeneralizedequationsofmotion:

where λ istheslendernessofthebuildingtakenas H =D and β 3 isa constantwhile

and D areexpressedinconsistentunits.

Discussion

Boththepowerlawandpiecewiselinearmodelswereoriginally calibratedtodatabases.However,ashighqualitydampingdata overrelativelysignificantamplituderangeshasbecomeavailable, attemptshavebeenmadetofitEq.(8)tospecificbuildingresponseswithvaryingdegreesofsuccess(Lietal.2000b; Kijewski etal.2003; Lietal.2003b)whilenospecificattempttofit Eq.(5)hasbeenmade.Atthisjunctureitshouldbenotedthat boththeaforementionedmodelsaretoacertainextentphenomenological.Inparticular,alltheabove-mentionedmodelsconsider dampingasanamplitudeincreasingdynamicpropertyofthe system.However,thereisevidencethat,afterreachingacritical amplitude,insomecasesdampingmayactuallystarttodecrease withamplitude(Tamura2005; SmithandWillford2007; Tamura andYoshida2008; AquinoandTamura2012).Also,togetherwith amplitude-dependentdamping,ithasbeenwidelyreportedthat naturalfrequencywillalsobecomeamplitude-dependentassuming steadilydecreasingvalues(TamuraandSuganuma1996; Lietal. 2000a; Kijewski-CorreaandPirnia2007; Kijewski-Correaetal. 2007).Atpresent,therearenomodelsthatarecapableofdescribinginageneralfashionthesetwophenomena.Theaimofthis paperistheproposalofaprobabilisticconcept-baseddata-driven modelthatiscapablenotonlyofprovidingaphysicalreason whydampingmayattimesdecreasewithamplitude,butalsoof

where ζ j isthegeneralizedviscousdampingratio, qj ðtÞ isthe modaldisplacement, ωj isthe jthcircularfrequencywhereas Qj ðtÞ and mj arethegeneralizedforceandmass,respectively. InderivingEq.(11),classicaldampingisgenerallyassumed. However,ashasbeenextensivelypresented,theassumptionof classicaldampingisnotalwaystruefortheresponseofmostreal buildingswheredampingis,amongotherthings,amplitude-dependent.Also,asalreadymentioned,thenaturalfrequenciesofthe buildingshowatendencytosoftenasthevibrationamplitudeincreases.Thepossibilityofcapturingtheaforementionedresponse characteristicswhilestilldescribingthefundamentaldynamicresponsethroughareducedsystemofequationswouldseemofparticularinterest.Tothisend,thefollowingparagraphswillpresent adampingmodelthatimplicitlyassumesthatthecoupledequations ofmotionofEq.(10)maybereplacedbythreeindependentnonlinearsingledegreeoffreedomdynamicequilibriumequationsof thefollowingform:

where M i istheparticipatingmassofthe ithequation, Ci isthe viscousmaterialdampingcoefficient, xi ðtÞ, xi ðtÞ and xi ðtÞ are the ithacceleration,velocityanddisplacementresponses, K i is thezero-amplitudestiffness, k isthecombinedstiffnesslossresultingfromtheslippingofthesticksurfacesattheenvelopeamplitude of ~ xi , ˆ f i isthetotalfrictionaldampingforceavailabletothe ith equationwhereas pf 0 x0 ð ; Þ isthejointprobabilitydensityfunction betweenthealeatoryfrictionforces f 0 ,generatedbytheslipping surfaces,andtherandomvibrationamplitudes, x0 ,atwhichthese surfacesbecomeactive.ForallintentsandpurposesEq.(12)plays ananalogousroletoEq.(11)indescribingthedynamicresponse ofthebuildingwith,however,someaddedcomplexitythatshould allowthemeaningfulmodelingoftheexperimentallyobserved amplitude-dependentdampingandnaturalfrequency.Froma

Lowamplitudeplateau ⇒ ξ ¼ 0 01n Nonlinearregion ⇒ ξ ¼ 0.01n þ 10 Dp =2 x H Highamplitudeplateau ⇒ ξ ¼ ξ HA ð8Þ
ξ ¼ β 1 n þ β 2 n þ β 3 λ x H ð9Þ
x
H
,
MzðtÞþ CzðtÞþ KzðtÞ¼ fðtÞð10Þ
mj ¨ qj ðtÞþ 2ζ j mj ωj _ qj ðtÞþ mj ω2 j qj ðtÞ¼ Qj ðtÞ j ¼ 1; 2; 3 ð11Þ
M i xi ðtÞþ Ci _ xi ðtÞþ½K i ~ kð ~ xi Þ xi ðtÞ þ ˆ f i Z ∞ 0 Z xi 0 pf 0 x0 ðη 1 ; η 2 Þdη 1 dη 2 ¼ F i ðtÞ i ¼ 1; 2; 3 ð12Þ
J. Struct. Eng. 2014.140.
from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only;
rights reserved.
©ASCE04014005-5J.Struct.Eng.
Downloaded
all

Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

physicalstandpoint,Eq.(12)isbasedonthewidelyaccepted assumptionthatthesourceofamplitude-dependentdampingmay betracedbacktothepresenceofanumberoffrictionsurfacesinthe structureexhibitingstick-slipmechanisms.Inparticular,Eq.(12) definesacombineddampingmodelbecauseitalsoincludesthe contributionoftheviscousmaterialdampingthroughthecoefficient Ci .Thecontributionofthistermisthoughttobesmallcomparedtothefrictionaldamping,butneverthelessimportantat loweramplitudes.WhatmakesEq.(12),andthereforetheproposed dampingmodel,differentfromothermodelsthatcanbefoundin theliteratureisinhowthefrictionaldampingforcesaremodeled. Intheproposedmodel,thesearedescribedbythejointprobability densityfunctionbetweentherandomvariables f 0 and x0 .Although theconceptofrandomlydistributedslipforceshasbeenconsidered previously(DavenportandHill-Carroll1986),themodelingof theamplitudesatwhichtheseforceswillbeinitiatedasarandom variablehasbeenuntilnowoverlooked.Traditionally,theamplitudes, x0 ,aredescribedbyadeterministicfunctionsimilartothat showninEq.(6).Theultimateconsequenceoftheaforementioned assumptionisthatthenumberofslipsurfaceswillcontinuetogrow indefinitelywithamplitude,whichgoesagainstphysicallogicthat wouldsuggestthesaturationofavailableslipsurfacesasthevibrationamplitudesincrease(BashorandKareem2008).Hereinitis proposedtoconsidertheamplitudes x0 probabilisticallydistributed withappropriatelawthatwillingeneraldependonthebuilding underconsideration.Thisprobabilisticmodelingof x0 givesa physicalmeaningtotheamplitudesandallowsthemtocompletely saturateasthevibrationamplitudeincreases.Thephysicalreasoningbehindmodeling x0 aswellas f 0 asrandomvariablesisunderstoodbyconsideringthesourcesoffrictionalforcesinstructural systems,i.e.atboltedjoints,atbearingplates,inbuilt-upelements, betweenfloorandbeams,atin-fillpanelsinframes,betweenframe andcladding,inmicroscopicmaterialimperfectionsetc.Allthese sourcesare,toagreaterorlesserextent,inevitableinbuildings. Theirunengineerednatureobviouslyimpliesthattheywillbe probabilisticallydistributed.Inlightofthis, f 0 and x0 canonlybe coherentlymodeledthroughthejointprobabilitydensityfunction pf 0 x0 ð ; Þ illustrativelyrepresentedinFig. 3.Theultimateresultof thisisthatas ~ xi increasesthenumberoffrictionalsourcesactivated

willincreaseuntil,atsaturation,theyareallactive.Thisiseasily understoodbyrecognizingthatthedoubleintegralofthelast termoftheleft-handsideofEq.(12)issimplythecumulativedistributionfunctionof x0 whichwill,bydefinition,tendto1as xi increases.ThegeneralsettingofEq.(12)isshowninFig. 3

Amplitude-DependentDampingRatio

InthissectionanexpressionfordescribingtheamplitudedependentdampingratioofEq.(12)issearched.Forthesake ofclarity,fortheremainderofthispaperthesubscript i willbe dropped.ToevaluatethedampingratioofEq.(12),theexpression reportedinEq.(1)maybeinvoked.Inparticular,forthecombined systemunderinvestigationthetotaldissipatedenergypercycle, ΔEtot ,maybewrittenas

where ΔEvis istheenergydissipatedduetoviscousdamping whereas ΔEfric istheenergydissipatedowingtofriction.Although thecalculationof ΔEvis ,andbyconsequencetheviscouscontributiontothedampingratio ξ vis ,doesnotpresentanyparticulardifficulty, ΔEfric ,andsothefrictionalcontributiontothedamping ratio ξ fric ,issomewhatmoredifficulttoestimate.Thisparagraph willfocusonestimating ξ fric

ConsideringthesingledegreeoffreedomsystemofEq.(12) underasteady-statevibrationofamplitude x,the jthslipping surfaceofthesystemshowninFig. 3 willdissipatepercyclea quantityofenergygivenby

Thetotalenergydissipatedbytheslippingsurfacesatavibrationamplitude x maythenbewrittenas

where N isthetotalnumberofstick-slipelementsinthesystem. Iftherandomvariables f 0 and x0 areconsideredindependent,then theirjointprobabilitydensityfunctionisgivenby pf 0 x0 ð ; Þ¼ pf 0 ð Þpx0 ð Þ where pf 0 ð Þ istheprobabilitydensityfunctionof f 0 whereas px0 ð Þ istheprobabilitydensityfunctionof x0 .By introducingthissimplificationintoEq.(15)andbythentaking advantageoftheintegrationbypartsrule,Eq.(15)mayfirstbe recastas

where f 0 isthemeanvalueof f 0 .ByinvokingEq.(1)thefrictional componentofthedampingratio ξ fric ofthenonlinearsingledegree offreedomoscillatorofEq.(12)maybewrittenas

Ifthestiffnessoftheslipsurfaces kðxÞ isconsideredsmall,asis expected,comparedtothetotalstiffnessofthestructure K andby

ΔEtot ¼ ΔEvis þ ΔEfric ð13Þ
ΔEfric;j ¼ 4f 0;j ðx x0;j Þ if x > x0;j ΔEfric;j ¼ 0 if ~ x ≤ x0;j ð14Þ
ΔEfric ¼ 4N Z ∞ 0 Z x 0 η 1 ð ~ x η 2 Þpf 0 x0 ðη 1 ; η 2 Þdη 1 dη 2 ð15Þ
ΔEfric ¼ 4N Z x 0 ðx η 2 Þpx0 ðη 2 Þdη 2 Z ∞ 0 η 1 pf 0 ðη 1 Þdη 1 ð16Þ andthenas ΔEfric ¼ 4N f 0 Z x 0 Z η2 0 px0 ðη 1 Þdη 1 dη 2 ð17Þ
ξ fric ðxÞ¼ 4N f 0 R x 0 R η2 0 px0 ðη 1 Þdη 1 dη 2 2π ðK kðxÞÞx2 ð18Þ
©ASCE04014005-6J.Struct.Eng. J. Struct. Eng. 2014.140.
Fig.3. SettingofEq.(12)

Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15.

collectingtheindependenttermstogether,thefollowingexpression canbederivedfortheamplitudedependent-dampingratio

Amplitude-DependentFrequency

where A isaconstanttobedetermined.TofixEq.(19)theprobabilitydensityfunction px0 ð·Þ mustbesetasmusttheconstant A andtheviscousdampingratio ξ vis

Hereitisproposedthat x0 bemodeledasalognormalrandom variable.ThischoiceisparticularlymeaningfulinlightofthestructureofEq.(19).Tobetterunderstandthislaststatementitisconvenienttointroducetheconceptofcriticalamplitude, xcr ,defined astheamplitudeatwhichEq.(19)assumesitsmaximumvalue indicatedwith ξ max .Withthisinmind,Fig. 4(a),andmorespecificallyFig. 4(c),illustratehowtheratiobetweenthecriticalamplitude ~ xcr andthemode mx0 of px0 ð·Þ isconstantasthemode mx0 is variedoncethestandarddeviation σ x0 oftheunderlyingnormal distributionisfixed.Thispropertyisparticularlysignificantasit allowsthemodeoftheslipamplitudedensitytobefixedfrom theknowledgeof xcr and σ x0 .Therelationshipbetween σ x0 andthe aforementionedratio, xcr =mx0 ,isshowninFig. 4(d).Fig. 4(b) illustratestheroleof σ x0 asadimensionlessshapeparameterwithin theproposeddampingmodel.

TheaforementionedpropertyallowsthecalibrationofEq.(19) tobeachievedbyfirstestimatingthecriticalamplitude ~ xcr and shapeparameter σ x0 .Fromtheknowledgeof σ x0 and ~ xcr ,theratio ~ xcr =mx0 maybeestimatedfromFig. 4(d) thereforeidentifing mx0 Theaforementionedprocedurefixes px0 ð Þ leavingonly ξ vis and A tobefound.Afterhavingfixedanappropriatevaluefor ξ vis , A maysimplybeidentifiedbysubstitutingintoEq.(19)thecritical amplitude xcr andthecorrespondingdampingratio ξ max andsolvingfor A

Thepreviousparagraphintroducedaconcept-basedprobabilistic modelfordescribingtheamplitude-dependentdampingratioof Eq.(12).Inthissectionarelationshipissearchedfordescribing theamplitude-dependentstiffnessofEq.(12)withtheaimofmodelinghowthevibrationfrequencyislikelytovarywithamplitude forthesystemschematicallyshowninFig. 3.

Astheamplitudeofvibrationincreases,thenumberofslipsurfacesthatareslippingincreases.Thiscorrespondstoadecreasing numberofslipsurfacesbeingabletoprovidestiffness.Foran infinitesimalchangeinamplitudeofvibration dx andfrictionforce df 0 ,theinfinitesimalchangeinstiffness dk maybewrittenas

where N isthetotalnumberofstick-slipsurfaces.Byintegrating overalltheforcelevelsanduptoagivenamplitude,thefollowing expressionisfoundfortheamplitude-dependentstiffness K ofthe systemofEq.(12)

Byfirstseparatingthevariablesinthedoubleintegralofthe left-handsideofEq.(21)andsimplifying,thefollowingexpression fortheamplitude-dependentstiffnessisobtained:

Eq.(22)allowsthefollowingexpressionfortheamplitudedependentfrequency n tobedefinedwhereitisassumedthat thefrequencyattheamplitude x dependsonthestiffnessatthe sameamplitude

(a)(b)

where B1 ¼ K and B2 ¼ N f 0 areconstantstobeestimated.

Asinthecaseoftheexpressionderivedfortheamplitudedependentdampingratio,Eq.(23)dependsontheprobabilitydensityfunction px0 ð Þ oftheslippingamplitudes.Thedependencyof bothEqs.(19)and(23)on px0 ð Þ isparticularlyinterestingasit bringstheamplitude-dependentdampingandfrequencyproperties togetherintoasinglemodel.

ThecalibrationofEq.(23)dependsfirstlyon px0 ð·Þ,whichmay bederivedfromthecalibrationofEq.(19),andonthechoiceofthe constants B1 and B2 .Although B1 may,intheory,beestimated fromaccuratemodelingofthezeroamplitudestiffness, B2 will ingeneralneedestimatingfromexperimentaldata.

Application1

(c)(d)

Fig.4. StructureofEq.(19)for ξ max ¼ 1 5%:(a)behaviorof px0 ð Þ and ξ ðxÞ for mx0 varyingbetween 10 3 mand1m,andwith σ x0 ¼ 4;

(b)behaviorof px0 ð·Þ and ξ ðxÞ for mx0 ¼ 10 3 mand σ x0 varyingbetween1and6;(c)illustrationoftheconstantnatureoftheratio xcr =mx0 forfixedvaluesof σ x0 ;(d)illustrationoftherelationshipbetween σ x0 and xcr =mx0 ,validforanyvalueof mx0

Inthissectiontheproposeddampingmodelwillbecalibratedtoa selectednumberoftallbuildingsforwhichamplitude-dependent dampingratiosandfrequencieshavebeenexperimentallyestimated throughfull-scalemonitoringprograms.Alltheexperimental dampingdataweredeterminedinthetimedomainusingthe RDT(RandomDecrementTechnique).Tocomparebuildingswith arangeofheights,itisconvenienttointroducethenormalized amplitudeindicatedwith x ¼ðx=H Þ where H istheheightof thebuilding.

ξ ðxÞ¼ ξ vis þ A R x 0 R η 2 0 px0 ðη 1 Þdη 1 dη 2 ~ x2 ð19Þ
dk ¼ N f 0 x pf 0 ðf 0 Þpx0 ðxÞdf 0 dx ð20Þ
K ðxÞ¼ K N Z ∞ 0 Z x 0 η 1 η 2 pf 0 ðη 1 Þpx0 ðη 2 Þdη 1 dη 2 ð21Þ
K ð ~ xÞ¼ K N f 0 Z x 0 px0 ðη 2 Þ η 2 dη 2 ð22Þ
nðxÞ¼ 1 2π B1 B2 R x 0 px0 ðη2 Þ η2 dη 2 M s ð23Þ
©ASCE04014005-7J.Struct.Eng. J. Struct. Eng. 2014.140.
ASCE.
Copyright
For personal use only; all rights reserved.

Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

2263 ≈60 × 60

3443 68 × 68

Note:B=smallestplandimension;CO=coreandoutrigger;D=largestplandimension;RC=reinforcedconcrete;S=steel;SF=steelframe;SRC= steel/reinforcedconcrete.

CaseStudies

ThreebuildingsareconsideredwhosemaincharacteristicsarereportedinTable 1.Thechoiceofthesethreebuildingswasmade becauseoftheavailabilityofhighqualityandwelldocumented amplitude-dependentanddampingandfrequencydata(KijewskiCorreaetal.2006; Kijewski-CorreaandPirnia2007; Pirniaetal. 2007; AquinoandTamura2012)aswellastheirdramaticallyopposingbehaviorasvibrationamplitudeincreases.Indeed,asisdepictedinFig. 5,buildings2and3showtheclassicalincreaseof thedampingratiowithamplitudewhereasbuilding1,afteraninitial increaseindampingwithamplitude,showsadecreasingdamping ratiowithamplitude.Thispeculiarbehaviorcannotbeexplained throughtheadoptionofclassicaldampingmodelssuchasthose reviewedinthesection “PredictiveModelingandAmplitude DependencyofDamping” andhasbeenthefocusofrecentstudies (AquinoandTamura2012).

CalibrationoftheProposedDampingModeltothe CaseStudies

Fig. 6 showstheresultsofthecalibrationofEq.(19).Ascaneasily beseen,themodelshowsverygoodagreementwiththeexperimentaldata.Also,thecapabilityoftheproposedmodelincapturingthe supposedlycontradictingbehaviorbetweenbuilding1andbuildings2and3iseasilyachieved.Withinthesettingoftheproposed model,thedifferenceseenintheamplitude-dependentcharacteristicsmaysimplybeascribedtothesignificantlydifferentdistributionparametersoftheslipamplitudes.Indeed,asshowninFig. 7, buildings2and3havesimilarslipamplitudedistributions,whereas building1hasasignificantlydifferentdistribution.Table 2 reports themodelparametersobtainedfromthefittingofthethreebuildings.Fromthistableitisinterestingtoobservethesimilaritybetweenthemodelparameters,and,inparticular, mx0 and σ x0 ,of buildings2and3astheseareconsideredtwobuildingsthatexhibit aclassicalamplitude-dependentdampingbehavior.Therefore,in therealmoftheproposedmodelitisexpectedthatmostbuildings willhaveslipamplitudedistributionssimilartothoseofbuildings 2and3.

Itisinterestingtoobservehowtheproposeddampingmodel allowsthepredictionofthe ξ max representingthemaximumexpecteddampingratiowithinthevalidityofEq.(12).FromTable 2 itcanbeenseenthattheproposedmodelissuggestingthat building3willexhibit ξ max aroundtwotimesthatofbuilding2.

modeofthecasestudybuildings

Fig.7. Comparisonbetweenthefittedprobabilitydensityfunctions px0 ðx0 Þ oftheslipamplitudesforthecasestudybuildings

Table2. ModelParametersforFittedExperimentalData

H (m) D × B (m)MaterialUseSystemEstimationmethodLocation
Table1. MainCharacteristicsoftheCalibratedBuildings
Building
SMixedSFRDTJapan
1200 50 × 15
RCResidentialCORDTSouthKorea
SOfficeSFRDTUSA
Fig.5. Experimentalamplitude-dependentdampingcharacteristicsfor thefirsttranslationalmodeofthecasestudybuildings Fig.6. Proposedamplitude-dependentdampingmodel[Eq.(19)]fitted totheexperimentaldampingdatacollectedforthefirsttranslational
Building xcr (cm=m) ξ max (%) mx0 (cm=m) σ x0 ξ vis (%) B1 (kN=m) B2 (kN) 10.0031.250.000851.420.11,2280.89 24.31.6160.09619 2 72 × 1010 37.742.81.85.850.113,000 2.80 × 1011 ©ASCE04014005-8J.Struct.Eng. J. Struct. Eng. 2014.140.

Thiswouldseemincontrasttowhatcouldbeexpectedconsidering thefactthatbuilding2hasprimarilyresidentialuseandreinforced concreteasstructuralmaterialcomparedwithbuilding3,which hasprimarilyofficeuseandsteelasstructuralmaterial(Table 1). Apossibleexplanationforthiscouldbethefactthatbuilding3 wouldseemtohavegreatershearrackinginitslateraldeformation mechanismcomparedwithbuilding2.Indeed,ithasbeensuggestedrecentlythattheamountofshearrackingcomparedwith axialdeformation(greateroverallcantileveraction)inthelateral deformationmechanismcouldplayanimportantroleindeterminingtheoveralldampingcapacityoftallbuildings(Bentzand Kijewski-Correa2008; Bentz2012).

Fig. 8 showsthefittingofEq.(23)totheamplitude-dependent frequencydatacollectedforthecasestudybuildings,whereas Table 2 showsthemodelparametervalues.Onceagainthestrong capabilityoftheproposedmodelinreproducingtheexperimental dataisveryencouraging.Indeed,forallthreebuildingstheamplitude-dependentfrequencywouldseemtobeeasilyreproduced bytheproposedmechanismthatattributesthelossofstructural stiffness,astheamplitudeincreases,tothelossofstuckstick-slip surfaces.Closeinspectionofthefrequency-amplitudebehaviorof building1(Fig. 8)givesparticularlystrongevidenceofthevalidity oftheproposedmodel.Indeed,ifthehypothesisthattheslip-stick surfacesareprobabilisticallydistributedistrue,thenasthedampingbeginstosaturatethefrequencylossshouldbegintostabilizeto aconstantvalueasiseffectivelyseenfromthefrequency-amplitude responseofbuilding1.

Application2

Thissectionfocusesonthecalibrationoftheproposedmodeltothe amplitude-dependentdampingdataof12tallbuildingswhosemain characteristicsareshowninTable 3.Ascanbeenseenthebuildings,allofwhicharelocatedinthePacificRim,apartfromB2, B10,andB11,thatarelocatedintheUnitedStates(B11inChicago andB12inBoston),haveagoodspreadofheightsandof principalconstructionmaterial.Theamplitude-dependentdamping estimatesforthesebuildingswereobtainedusingtheRDT,ensuringacertainconsistencybetweentheestimates.

BuildingH(m)MaterialMode xcr (cm=m) ξ max (%) mx0 (cm=m) σ x0 ξ vis (%) R2 B1298SRC114.752.283.444.560.240.86 214.611.753.356.130.000.90 B2344S18.721.912.006.520.000.71 211.701.422.678.420.000.67 B3275S114.691.203.405.200.090.50 220.141.134.704.600.210.32 B4299RC115.761.343.599.010.000.88 211.441.512.627.370.000.86 B5297RC14.552.661.074.150.270.85 21.473.500.353.750.170.91 B6134SRC11.054.240.253.370.430.73 22.224.200.533.840.430.86 B7421SRC13.853.130.904.700.010.28 21.703.230.404.400.010.43 B8100S10.173.560.044.600.110.74 B9197RC12.373.330.545.950.070.93 22.223.460.516.030.050.93 B10303RC13.954.220.915.340.210.76 20.614.100.146.600.000.70 B11443S13.113.200.725.120.050.32 27.903.301.825.680.050.68 B12246S10.883.000.213.600.070.79 (a) (b) (c)
Table3. MainCharacteristicsandFittedModelParametersofthe12TallBuildings
©ASCE04014005-9J.Struct.Eng. J. Struct. Eng. 2014.140.
04/15/15.
ASCE.
Fig.8. Frequency-amplituderelationshipspredictedfromthefittingof Eq.(23)totheexperimentalfrequency-amplitudedataofthecasestudy buildings
Downloaded from ascelibrary.org by University of Notre Dame on
Copyright
For personal use only; all rights reserved.

Fig. 9 showstheproposedmodelfittedthroughanonlinearleast squaresminimizationtothefirsttwoorthogonaltranslational modes(whenavailable)ofthe12buildings.Thefittedmodel parametersforthe12buildingsareshowninTable 3.Ascan beseen,themodelwouldseemeasilycapableofdescribingthe amplitude-dependentdampingcharacteristicsofallthebuildings. Itisinterestingtoobservehowthecriticalamplitude xcr (Table 3)is ingeneralcontainedbetween1and10,indicatingthestabilityof themodeofthedistributionoftheslippingamplitudes mx0 .Inother words,fromthelimitedavailabledata,themodelispredicting thatthemaximumdampingvalueswilloccurinroughlythesame normalizedamplituderange.Thisconditionisobviouslynot satisfiedbybuilding1ofFig. 6.However,itisbelievedthatthe behaviorofbuilding1representsananomalyinthisrespect.As moremonitoringdatacomesavailable,thisaspectwillbefurther investigated.

ThefittedexperimentaldataofbuildingB10isworthcommentingastheextremelydifferentdampinglevelsseenforthesame amplitudesbetweenthetwomodeshasbeenthesourceofanumber ofdiscussions(Kijewski-Correaetal.2007).AsshowninFig. 9, themodelascribesthisdifferencesimplytoadifferenceintheslip amplitudedistributionbetweenthetwoorthogonalswaymodes. Moreover,themodelpredictsthatthemaximumdampinglevelbetweenthetwomodeswillbesimilar.Itisalsointerestingtoobserve howbuildingsB1toB4haveevidentlylower ξ max comparedwith buildingsB5–B12(Fig. 9 andTable 3).Apossibleexplanation forthiscouldbeascribedtothedifferentlateraldeformation

mechanismsbetweenthebuildings.Indeed,itisexpectedthat buildingsB1–B4haveapredominantlycantileveractionduring lateraldeformation,whereasbuildingsB5–B12areexpectedto deformlaterallyfollowingapredominantlyframerackingaction. Asalreadymentioned,recentstudieshavesuggestedthatthis differencecouldpossiblyleadtosignificantlydifferentmaximum dampingvalues(Bentz2012).

Inclosingthissection,itisworthnotingthatthemodelhasbeen fittedtodatacollectedoveralimitedrangeofamplitudeswhich obviouslycreatesacertainamountofvariabilityinthemodelpredictionsforamplitudesoutsidethisrange.Forinstance,thedifferenceseenbetweenthemaximumdampingratiosofthetwolateral translationalmodesofbuildingB5maysimplybeduetoalackof dataathighervibrationamplitudes.Nonetheless,therobustnessof theproposedmodelreportedinthissectionisextremelyencouragingandsuggeststhevalidityofthemodel.

ProposedDampingModelasaPredictorTool

Thissectionfocusesonthepossibilityofusingtheproposeddampingmodelasapredictorandanalysistoolfortheestimationof amplitude-dependentdampingratiosoftallbuildingsofheight above100m.Toinvestigatethispossibility,anappropriatedatabaseofamplitude-dependentdampingvaluesisnecessary.

DatabaseofAmplitude-DependentDampingValues

Thedatabasethatwascompiledforthisstudyconsistsinitially of76buildingsofheightsvaryingbetween100and282mextractedfromtheJapanesedatabase(Satakeetal.2003),therefore ensuringahighqualityofthedampingvaluesandassociated amplitudes,becauseoftheextensivedatapostprocessingthat hasbeencarriedout(AIJ2000; Satakeetal.2003).Togetherwith thesebuildings,thatconsistmainlyofsteel-framedconstruction,an additional19buildings,withheightsrangingfrom100to443m, withgreaterstructuralsystemandconstructionmaterialvariation areincludedinthedatabase.Thedampingdatafortheselasthave beencollectedfromthenumerouspublicationsthatcanbefoundin theliteraturereportingtheresultsoftheextensivemonitoringprogramspresentedinthesection “Full-ScaleMonitoringPrograms” andconcerningsomelandmarkbuildingsintheUnitedStatesas wellasthePacificRimregion.Finally,amplitude-dependentdata ofthreetallbuildingsmonitoredduringtheCSMISprogramofthe CaliforniaGeologicalSurveyarealsoincludedinthedatabase.The datapointsofthesebuildingsconsistofdampingestimatesmadeon notablesteel-framedU.S.WestCoastbuildings,suchastheTransamericaTower(Çelebiand Şafak1991; ŞafakandÇelebi1991), underhighamplitudevibrationduringtheLomaPrietaandSan Fernandoearthquakes(BeckandJennings1980; ŞafakandÇelebi 1991; Çelebi1993).

Eachbuildinginthedatabasehasoneortwoassociateddata pointsindicatingamplitude-dependentdampingestimatesmadefor thefirsttranslationalmodes.Awidevarietyofsystemdamping estimationmethodswereusedunderanumberofnaturallyoccurringandinducedexcitations.Table 4 reportsthebreakdownofexcitationtypesusedforestimatingthedampingratios.Table 4 also reportsthedomaininwhichthedampingwasevaluatedorwhether asystemidentificationmethodwasused.Ascanbeseen,the majorityofthedampingestimatesweremadeinthetimedomain. Inthesecases,theprevalentmethodwastheRDT.Animportant numberofdatapointswereobtainedinsteadthroughfrequency domainestimationtechniques.Inparticular,amixtureofspectral curvefittingmethodsandtheHPBWmethodwereapplied. ConcerningthedatapointsobtainedfromtheapplicationofSI

©ASCE04014005-10J.Struct.Eng. J. Struct. Eng. 2014.140. Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only;
reserved.
Fig.9. Proposedmodelfittedtotheamplitude-dependentexperimental dataof12representativetallbuildings
all rights

Note:IV=inducedvibrations;AV=ambientvibrations;EQ=earthquake; FD=frequencydomain;SI=systemidentification;TD=timedomain.

techniques,thevastmajorityofthedatawasobtainedthroughthe implementationofARMAXandARXschemeswithafewhigh amplitudedatapointscomingfromtheapplicationofaDTF scheme.Therelativelybroadspectrumofdampingestimationtechniquesusedforobtainingthepointsofthedatabasewillallowa preliminaryinvestigationintopossibledifferencesseenindamping levelsresultingsimplyfromdifferentestimationschemes.

ModelCalibrationandDiscussion

Fig. 10 showsaLeastAbsoluteSquares(LAR)fitoftheproposed modeltothedatabaseoftheprevioussection,whereasTable 5 reportsthemodelparametersderivedfromtheLARfitofthemodel tothedatabase.Fig. 10 alsocomparestheproposedmodelwiththe piecewiselinearmodel,themodificationproposedbyTamuraetal. (2000),andthepowerlawmodel.Inplottingthepiecewiselinear modelanditsmodification,themeanvaluesofthedatapointsconcerningthenaturalfrequenciesandplandimension D [Eq.(8)]in thedirectionofvibrationareconsideredleadingtosmoothpredictivecurves.Toillustratetherangeofvaluesthatthesemodelsgive consideringthevariationinnaturalfrequencyandplandimension withinthedatabase,themaximumandminimumlimitsofthe aforementionedmodelsarealsoillustratedinFig. 10.Itshouldbe observedalsothatforthemodelproposedbyTamuraetal.(2000) moderatelydifferentcoefficientswereproposedforreinforcedconcretebuildingscomparedwithsteelbuildings.Inthepresent comparison,onlythepredictivemodelconcerningsteel-frame structuresisplottedbecausethelargemajorityofthedatapoints

inthedatabasecorrespondtothisstructuraltype(Table 4).Also, indefiningtheirmodel,Tamuraetal.(2000)limiteditsrangeof applicabilitytoatopdriftratioofnomorethan 2 × 10 3 cm=mand amaximumbuildingheightof200m.Intherepresentationofthe modelpresentedinFig. 10 thelimitondriftratiohasbeenrespected,althoughitshouldbeobservedthatthedatabasedoescontainanumberofbuildingswithheightgreaterthan200m.

Fromthecomparisonoftheaforementionedpredictivedamping models,itisevidenthowtheproposedmodeliswellcapableof describingtheamplitude-dependentcharacteristicsofthedatabase, whereasthepiecewiselinearmodeldoesnotseemcapableinthis respect.Itisalsointerestingtoobservehowfortopdriftratiosof lessthan 2 × 10 3 cm=m,themodelproposedin(Tamuraetal. 2000; Tamura2012)hastheclosestcorrespondencetotheproposed model,whileforhigheramplitudesthepowerlawmodelseemsto describethedatabasebetterthanthepiecewiselinear.Thesimilarity betweentheproposedmodelandthepowerlawmodelin thehighamplituderangecanbeascribedtotheunderlyingsimilaritiesbetweenthephilosophicalstandpointsofthetwomodels. However,afundamentalandimportantdifferencebetweenthe twomodelsliesinthewayinwhichtheproposedmodelbehaves ashigheramplitudesofvibrationareencountered.Indeed,inthe proposedmodelthesaturationofthedampingmechanismscauses thepredictivecurvetostarttoflattenout,whereasthepowerlaw modelpredictseverincreasingdampingvalues.Fig. 10 alsogives somevalidationoftheproposedmodelinthehighamplituderegion.Indeed,inthecalibrationoftheproposedmodelinsection “ProposedDampingModel” therewasverylittledatatowards highamplitudesofvibration.Thedatabaseofthepresentsection, ontheotherhand,doescontainsomehighamplitudedata(Beck andJennings1980; ŞafakandÇelebi1991; Çelebi1993).ThesimilarvaluesofthemodelparametersreportedinTables 2 and 3

Excitationtype/damping estimationtechniqueSRCSRC IV7124 AV391213 EQ1614 TD82139 FD2628 SI18 4
Table4. Amplitude-DependentDampingDatabase.NumberofData PointsClassifiedbyExcitationTypeorDampingEvaluationDomain/ SystemIdentification Fig.10. Proposedmodelfittedtothedatabase.Comparisonwithotheramplitude-dependentdampingpredictormodels
ParameterCalibratedvalue xcr 5 72 cm=m ξ max 3.23% mx0 1 33 cm=m σ x0 4.99 ξ vis 0.45% Note:Coefficientofdetermination, R2 ¼ 0 48 ©ASCE04014005-11J.Struct.Eng. J. Struct. Eng. 2014.140.
Table5. ParametersfromLARCalibrationoftheProposedModeltothe Databases
04/15/15.
Downloaded from ascelibrary.org by University of Notre Dame on Copyright ASCE. For personal use only; all rights reserved.

(withtheexceptionofbuilding1ofTable 2)comparedwiththose reportedinTable 5 wouldseemencouragingasafirstvalidationof themodelinthehighamplituderegion.

Fig. 11(a) showstheestimatedprobabilitydensityfunctionof theresidualsofthedatapoints.Ascanbeenseen,thesearewell estimatedbyaGaussiandistributionwithzeromean,indicatingthe efficiencyoftheproposedmodelindescribingtheamplitudedependenttrendofthedata.Indeed,thecorrespondinghistogram concerningpowerlawmodel,Fig. 11(b),clearlyshowshowthe residualsofthismodelcannotbefittedbyazeromeanGaussian distribution.

AnalysisoftheResiduals

Theresidualscanbethoughtofaselementsofvariationunexplainedbythefittedmodel,thereforetheiranalysiscanshedlight onfactorsthatmaycauseaparticularbuildingtobeaboveorbelow thedampingvaluepredictedbyamodel.Thissectionwillexplore thispossibilitywiththeaimofexplainingsomeofthespreadseen inthedata.

Frequency,Material,andHeightDependency

Asmentionedearlierinthispaper,variationindampinglevelsbetweendifferentbuildingshasoftenbeenlinkedtothedifferencesin naturalfrequencies.ThistendencycanbeseeninFig. 12(a) where thedifferenceinfrequencybetweenthevariousbuildings(minimum0.13Hzandmaximum0.7Hz)wouldseemtobeweakly correlatedwithresidualstakingonvaluesaboveorbelowthetrend curve.Thiswouldindicatethatforthefirsttwotranslationalmodes

oftallbuildingsthedependencyofdampingonfrequencydoesexists,althoughminimally.Obviously,theweakdependencyonfrequencyofthefirsttwotranslationalmodesmaynotholdforhigher modeswheregreaterfrequencydependencymaywellexist.Asimilarresultisseenconcerningheight[Fig. 12(b)]whereasmallbut discerniblerelationshipbetweenheightanddampingwouldseem evident.Theweaknatureofthesetrendscomparedwithwhatis normallyobserved(Tamuraetal.2000; Satakeetal.2003)ismost likelyresultingfromtherestrictionplacedonheight(H > 100 m) forthebuildingsinthepresentdatabase.Indeed,theresultsreportedheredonotconflictwiththosereportedin(Tamuraetal. 2000; Satakeetal.2003)whereforbuildingswithheightabove 100mtherelationshipbetweendampingratioandheightisweaker thanthatseenforbuildingsofheightlessthan100m.Withthisin mind,itwouldseeminterestingtoinvestigateotherparametersthat couldcomplementheight/naturalfrequencyindeterminingappropriatedampingvaluesforbuildingsofheightgreaterthan100m.

Fig. 13 showstheresidualsintermsofthepredominantconstructionmaterial.Ascanbeseen,mostbuildingsinthedatabase areconstructedfromsteel,howevertherewouldseemtobeindicationthatconcretebuildingstendtohavegreaterdampingvalues (seenaspositiveresiduals)ascomparedwiththeirsteelcounterparts.Therewouldnotseemtobeanyparticulardifferencebetween steelandcompositebuildings.

CantileverversusShearBehavior

Recentlyithasbeensuggestedthatinherentdampinglevelsof tallbuildingscanberelatedtotherelativecontributionofshear deformation(frameracking)versusaxialdeformation(cantilever action)(Kijewski-Correaetal.2006; Erwinetal.2007; Bentz andKijewski-Correa2008; Bentz2012).Intermsoftheresiduals, thisconcepttranslatesintobuildingsthathaveapredominantly cantileveractiontakingonnegativevaluesandthereforebeing underthedampingvaluespredictedbytheproposedmodel.This possibilityisinvestigatedinFig. 14 wherebuildingswithdocumented(HalvorsonandIsyumov1986; BentzandKijewski-Correa 2008; Bentz2012)frameorcantileveractionarehighlightedas wellasbuildingsforwhichthemodeshapesareknownallowing theclassificationtobecarriedoutonthebasisoftheprocedures proposedin(BentzandKijewski-Correa2008; Bentz2012).From thisfigureitwouldseemthatbuildingsexhibitingapredominately cantileverlateraldeformationmechanismdoindeedhaveareduced dampingcapabilitycomparedwithbuildingswithastrongershear rackingframeaction.Itisalsointerestingtoobservehowthedividinglinebetweenthetwobehaviorsisrepresentedbymoreofa transitionzoneratherthanadistinctjumpconfirmingwhatwas reportedin(Bentz2012).

EffectsoftheDampingEvaluationTechnique.Ashighlightedinthesection “TheEstimationofDamping,” thereexists

(a)(b)
(a)(b)
Fig.11. Distributionoftheresiduals:(a)proposedmodelwithfitted zeromeanGaussiandistribution;(b)powerlawmodelwithfittedlognormaldistributionandcomparisontoafittedGaussiandistribution illustratingthenonGaussiannatureoftheresiduals Fig.12. Scatterplotsshowing:(a)residualsversusfrequency; (b)residualsversusheight
©ASCE04014005-12J.Struct.Eng. J. Struct. Eng.
Downloaded from ascelibrary.org by University
Notre Dame on 04/15/15. Copyright ASCE.
Fig.13. Residualsintermsofpredominantconstructionmaterial
2014.140.
of
For personal use only; all rights reserved.

avastnumberofmethodsthathavebeenproposedforestimating dampinginstructures.Thehighestlevelofseparationbetweenthe variousmethodscanbemadeintermsofwhetherdampingisestimatedinthefrequencydomain,timedomainorifinputandoutput areknownallowingasystemidentificationschemetobeused.

Table 6 reportsthemeanvaluesoftheresidualscalculatedon thedampingestimatesmadeundertheaforementionedconditions. Itisinterestingtoobservehowthedampingestimatesmadeinthe frequencydomainwouldseemtobelargerthantheircounterparts madeinthetimedomain.ThisisalsoshowninFig. 15 whereit wouldseemevidentthatthefrequencydomainestimatestend towardsmorepositiveresidualsindicatinghowdampingestimates madeinthisdomainwouldseemtobepronetooverestimate,a concernalsohighlightedinKijewski-CorreaandPirnia(2007).

Table 6 alsoreportsanegativemeanfortheresidualsofdata estimatedusingSImethods.Itishoweverdifficulttodrawanyfirm conclusionsfromthis,astheresidualsareseentotakeonboth positiveandnegativevalues(Fig. 15)indicatingthatthisresult couldsimplybeduetoalackofdatapoints.

AmbientVibration,InducedVibration,andEarthquake Fig. 16(a) showsthedistributionoftheestimateddampingvalues aroundtheproposeddampingmodelintermsoftheexcitationtype, whereasFig. 16(b) showsthedistributionoftheresiduals.Itisinterestingtoobservehowdampingestimatesmadeunderinduced vibrations(IV)andambientvibrations(AV)giveagoodspread ofdatapointsaroundthepredictedvaluesoftheproposedmodel withmeanvaluesoftheresidualsequalto0.11%and 0 01%,respectively.Thisisnotthecasefordampingestimatesmadefrom earthquakerecordswhichhaveameanvalueoftheresidualequalto 0 41%.Thisresultisparticularlyinterestingasitisgenerallyexpectedthatdampingestimatesmadefromseismicrecordswillbe morereliablethanestimatesmadeunderotherexcitationsasSI methodscanbeusedfortheirestimation.Thisresultisinlinewith whatwasreportedintheprevioussection,andcouldbesuggesting anoverestimateofdampingvaluesmadewithoutput-onlyschemes atlowvibrationamplitudes.However,thesmalldimensionofthe datasetmustbekeptinmindwhenmakingsuchanassertion.

Conclusions

Inthispaperanovelconcept-baseddata-drivenprobabilistic dampingmodelwaspresentedfordescribingtheexperimentally observedamplitude-dependentdampingcharacteristicsoftall buildings.Inparticular,themodelmaybeconsideredcombined asittakesintoaccountboththeviscousmaterialdampingaswell asthepredominantfrictionaldampingofbuildings.Themodelwas extendedsoastoalsodescribe,withinasingletheory,thedependencyofnaturalfrequencyonvibrationamplitudethathasbeen widelyreportedintheliteraturetogetherwithamplitude-dependent damping.Expressionswerederivedforestimatingtheamplitudedependentdampingratiosandnaturalfrequenciesoftheproposed model.Initialvalidationofthemodelwascarriedoutonhighfidelityexperimentaldatacollectedonthreetallbuildingswithdramaticallyopposingamplitude-dependentdampingcharacteristicsthat areunexplainablebycurrentmodels.Theproposedmodelwasseen toeasilyfitboththeamplitude-dependentdampingandfrequency data.Thecapabilityofthemodelindescribingthesupposedlycontradictoryexperimentaldatamaybeascribedtoitsconcept-based nature,andinparticulartheideaofeventualsaturationofthedampingsourcesasvibrationamplitudeincreases.Themodelwasfurthervalidatedthroughitscalibrationtotheexperimentaldata derivedon12tallbuildingsfortheirfirsttwoswaymodes.Again themodelwasseentobeexceptionallyrobustandcapableofsheddinglightonsomeseeminglycontradictoryexperimentalresults. Finally,themodelwascalibratedasapredictiveandanalysistool

DampingestimationtechniqueMeanvaluesoftheresiduals TD 0 03 FD0.36 SI 0 42
Table6. EffectsofHowDampingisEvaluated Note:FD = frequencydomain;SI = systemidentification;TD = time domain.
(a)(b)
Fig.15. Comparisonbetweentheresidualsintermsofdifferent dampingevaluationmethods Fig.16. Dampingestimatesintermsofexcitationtype:(a)amplitudedependentestimates;(b)distributionoftheresiduals
©ASCE04014005-13J.Struct.Eng. J.
Fig.14. Dampingvaluesofbuildingswithdocumentedcantileveror frameaction
Struct. Eng. 2014.140. Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

toaspecificallycompileddatabaseofamplitude-dependentdampingdatafortallbuildingswithheightsvaryingbetween100and 450m.Themodelwasusedasanamplitudecorrectortoolfor thedampingdatathereforeallowingadetailedstudyoftheresultingresiduals.Fromthisinvestigation,itwouldseemthatheightis notagoodpredictiveparameterfortallbuildings.Insteaditwould seemasthoughthepredominantlateraldeformationmechanism, andthereforethestructuralsystem,playsanimportantrolein decidingthedampingcapacityoftallbuildings.Finally,thevariationinexperimentallydetermineddampingvaluesduetodifferent estimationtechniqueswasinvestigated,reaffirmingthetendency forfrequencydomainestimatestobehigherthantimedomain estimates.

Acknowledgments

SupportwasinpartprovidedbytheTallBuildingMonitoring ProgramattheUniversityofNotreDamesupportedbytheNSF GrantNo.CMMI06-01143andtheGlobalCenterofExcellence atTokyoPolytechnicUniversity,fundedbyMEXT.

References

Aquino,R.E.R.,andTamura,Y.(2012). “DampingbasedonEPPspring modelsofstick-slipsurfaces.” (CD–ROM), 13thInt.Conf.onWind Eng.,InternationalAssociationforWindEngineering(IAWE),Atsugi, Kanagawa,Japan.

ArchitecturalInstituteofJapan(AIJ).(2000). Dampinginbuildings, Tokyo,Japan.

Bashor,R.,andKareem,A.(2007). “Efficacyoftime-frequencydomain systemidentificationschemeusingtransformedsingularvaluedecomposition.” 12thInt.Conf.onWindEng.,InternationalAssociationfor WindEngineering(IAWE),Atsugi,Kanagawa,Japan,543

550.

Bashor,R.,andKareem,A.(2008). “Uncertaintyindampinganddamping estimates:Anassessmentofdatabaseanddatafromrecentfull-scale measurements.” 2008StructuresCongress,StructuralEngineering Institute(SEI),Reston,VA.

Beck,J.,andJennings,P.(1980). “Structuralidentificationusinglinear modelsandearthquakerecords.” EarthquakeEng.Struct.Dyn.,8(2), 145–160.

Bendat,J.S.,andPiersol,A.G.(1987). Randomdata:Analysisandmeasurementprocedures,Wiley,NewYork.

Bentz,A.(2012). “Dynamicsoftallbuildings:Full-Scalequantification andimpactsonoccupantcomfort.” Ph.D.thesis,Univ.ofNotreDame, NotreDame,IN.

Bentz,A.,andKijewski-Correa,T.(2008). “Predictivemodelsfordamping inbuildings:Theroleofstructuralsystemcharacteristics.” 2008StructuresCongress,18thAnalysisandComputationSpecialtyConf.,StructuralEngineeringInstitute(SEI),Reston,VA.

Bongiovanni,G.,Çelebi,M.,and Şafak,E.(1987). “Seismicrockingresponseofatriangularbuildingfoundedonsand.” EarthquakeSpectra, 3(4),793–810.

Breukelman,B.,Dalgleish,A.,andlsyumov,N.(1993). “Estimatesof dampingandstiffnessfortallbuildings.” 7thU.S.NationalConf.on WindEng.,Univ.ofCalifornia,LosAngeles.

Brown,B.(2003). “Analysisofwindinducedaccelerationandpressure datafromaneighthundredfoottower.” M.S.thesis,Univ.ofNotre Dame,NotreDame,IN.

Campbell,S.,Kwok,K.C.S.,andHitchcock,P.A.(2005). “Dynamiccharacteristicsandwind-inducedresponseoftwohigh-riseresidentialbuildingsduringtyphoons.” J.WindEng.Ind.Aerodyn,93(6),461–482.

Çelebi,M.(1993). “Seismicresponseofeccentricallybracedtall building.” J.Struct.Eng.,10.1061/(ASCE)0733-9445(1993)119:4 (1188),1188–1205

Çelebi,M.(1996). “Comparisonofdampinginbuildingsunderlowamplitudeandstrongmotions.” J.WindEng.Ind.Aerodyn.,59(2–3), 309–323.

Çelebi,M.(2006). “Recordedearthquakeresponsesfromtheintegrated seismicmonitoringnetworkoftheAtwoodbuilding,Anchorage, Alaska.” EarthquakeSpectra,22(4),847–864.

Çelebi,M.,and Şafak,E.(1991). “SeismicresponseofTransamericabuilding.I:Dataandpreliminaryanalysis.” J.Struct.Eng.,10.1061/(ASCE) 0733-9445(1991)117:8(2389),2389–2404

Çelebi,M.,and Şafak,E.(1992). “SeismicresponseofPacificParkPlaza.I: Dataandpreliminaryanalysis.” J.Struct.Eng.,10.1061/(ASCE)07339445(1992)118:6(1547),1547–1565.

Clough,R.,andPenzien,J.(2003). Dynamicsofstructures,Computers& Structures,Berkeley,CA.

Davenport,A.G.,andHill-Carroll,P.(1986). “Dampingintallbuildings: Itsvariabilityandtreatmentindesign.” Buildingmotioninwind, N.IsyumovandT.Tschanz,eds.,ASCE,NewYork,42–57.

Dobryn,C.,Isyumov,N.,andMasciantonio,A.(1987). “Predictionand measurementofwindresponse:Casestoryofawindsensitivebuilding.” StructuresCongress87relatedtoDynamicsofStructures,J.M. Roesset,ed.,Univ.ofTexas,CivilEng.Dept.,Austin,TX.

Erwin,S.,Kijewski-Correa,T.,andYoon,S.W.(2007). “Full-scale verificationofdynamicpropertiesfromshortdurationrecords.” (CD–ROM), 2007StructuresCongress:NewHorizonsandBetter Practices,StructuralEngineeringInstitute(SEI),Reston,VA.

Fang,J.Q.,Li,Q.S.,Jeary,A.P.,andLiu,D.K.(1999). “Dampingoftall buildings:Itsevaluationandprobabilisticcharacteristics.” Struct.Des. TallSpecialBuild.,8(2),145–153.

Guo,Y.L.,Kareem,A.,Ni,Y.Q.,andLiao,W.Y.(2012). “Performance evaluationofCantonTowerunderwindsbasedonfull-scaledata.” J.WindEng.Ind.Aerodyn.,104–106,116–128.

Halvorson,R.,andIsyumov,N.(1986). “Comparisonofpredictedand measureddynamicbehaviorofAlliedBankPlaza.” Buildingmotion inwind,N.IsyumovandT.Tschanz,eds.,ASCE,NewYork,23–41. Hart,G.C.,andVasudevian,R.(1975). “Earthquakedesignofbuildings: Damping.” J.Struct.Div.,101(1),11–30.

Isyumov,N.,andBrignall,J.(1975). “Somefull-scalemeasurementsof wind-inducedresponseoftheCNTower,Toronto.” J.WindEng. Ind.Aerodyn.,1,213–219.

Isyumov,N.,andHalvorson,R.A.(1984). “Dynamicresponseof AlliedBankPlazaduringAlicia.” HurricaneAlicia:Oneyearlater, A.Kareem,ed.,ASCE,Seoul,98–116.

Isyumov,N.,Masciantonio,A.,andDavenport,A.G.(1988). “Measured motionsoftallbuildingsinwindandtheirevaluation.” Proc.ofthe Symp./WorkshoponServiceabilityofBuildings,NationalResearch CouncilCanada,Ottawa,ON,181–199.

Jeary,A.P.(1986). “Dampingintallbuildings,amechanismanda predictor.” EarthquakeEng.Struct.Dyn.,14(5),733–750.

Jeary,A.P.(1996). “Thedescriptionandmeasurementofnonlineardampinginstructures.” J.WindEng.Ind.Aerodyn.,59(2–3),103–114.

Jeary,A.P.(1997). “Dampinginstructures.” J.WindEng.Ind.Aerodyn., 72,345–355.

Kareem,A.(1982). “Acrosswindresponseofbuildings.” J.Struct.Div., 108(4),869–887.

Kareem,A.,andGurley,K.(1996). “Dampinginstructures:Itsevaluation andtreatmentofuncertainty.” J.WindEng.Ind.Aerodyn.,59(2–3), 131–157.

Kijewski,T.,Brown,D.,andKareem,A.(2003). “Identificationofdynamic propertiesofatallbuildingfromfull-scaleresponsemeasurements.” (CD–ROM), 11thInt.Conf.onWindEng.,InternationalAssociation forWindEngineering(IAWE),Atsugi,Kanagawa,Japan.

Kijewski,T.,andKareem,A.(1999). “Analysisoffull-scaledatafromatall buildinginBoston:Dampingestimates.” 10thInt.Conf.onWindEng., InternationalAssociationforWindEngineering(IAWE),Atsugi,Kanagawa,Japan.

Kijewski-Correa,T.,etal.(2006). “Validatingwind-inducedresponse oftallbuildings:SynopsisoftheChicagofullscalemonitoring program.” J.Struct.Eng.,10.1061/(ASCE)0733-9445(2006)132:10 (1509),1509–1523

Kijewski-Correa,T.,etal.(2007). “Full-scaleperformanceevaluation oftallbuildingsunderwinds.” 12thInt.Conf.onWindEng., InternationalAssociationforWindEngineering(IAWE),Atsugi, Kanagawa,Japan,351–358.

©ASCE04014005-14J.Struct.Eng.

Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.
J. Struct. Eng. 2014.140.

Kijewski-Correa,T.,andCycon,J.(2007). “Systemidentificationof constructedbuildings:Currentstate-of-the-artandfuturedirections.” (CD–ROM), 3rdInt.Conf.onStruct.HealthMonitoringofIntelligent Infrastructure,StructuralEngineeringInstitute(SEI),Reston,VA. Kijewski-Correa,T.,andPirnia,J.D.(2007). “Dynamicbehavioroftall buildingsunderwind:Insightsfromfull-scalemonitoring.” Struct. Des.TallSpecialBuild.,16(4),471–486. Kim,J.Y.,Kim,D.Y.,andKim,S.D.(2008). “Evaluationsofthedynamic propertiesforaresidentialtallbuildinginKorea.” CTBUH8thWorld Congress,CouncilonTallBuildingsandUrbanHabitat(CTBUH), Chicago.

Lagomarsino,S.(1993). “Forecastmodelsfordampingandvibration periodsofbuildings.” J.WindEng.Ind.Aerodyn.,48(2–3),221–239. Lagomarsino,S.,andPagnini,L.C.(1995). “Criteriaformodelingand predictingdynamicparametersofbuildings.” Rep.No.ISC-II,Istituto diScienzaDelleCostruzioni,UniversitàdiGenova,Facoltàdi Ingegneria.

Li,Q.,Xiao,Y.Q.,Fu,J.Y.,andLi,Z.N.(2007). “Full-scalemeasurementsofwindeffectsontheJinMaoBuilding.” J.WindEng.Ind. Aerodyn.,95(6),445

466.

Li,Q.S.,etal.(2006). “Windtunnelandfull-scalestudyofwindeffectson China’stallestbuilding.” Eng.Struct.,28(12),1745–1758.

Li,Q.S.,Fang,J.Q.,Jeary,A.P.,andWong,C.K.(1998). “Full-scale measurementofwindeffectsontallbuildings.” J.WindEng.Ind. Aerodyn.,74

76(1),741

750.

Li,Q.S.,Fang,J.Q.,Jeary,A.P.,Wong,C.K.,andLiu,D.K.(2000a).

“Evaluationofwindeffectsonasupertallbuildingbasedonfull-scale measurements.” EarthquakeEng.Struct.Dyn.,29(12),1845–1862.

Li,Q.S.,Liu,D.K.,Fang,J.Q.,Jeary,A.P.,andWong,C.(2000b).

“Dampinginbuildings:ItsneuralnetworkmodelandARmodel.” Eng.Struct.,22(9),1216–1223.

Li,Q.S.,Wu,J.R.,Liang,S.G.,Xiao,Y.Q.,andWong,C.K.(2004a).

“Full-scalemeasurementsandnumericalevaluationofwindinduced vibrationofa63-storyreinforcedconcretetallbuilding.” Eng.Struct., 26(12),1779–1794.

Li,Q.S.,Xiao,Y.Q.,andWong,C.K.(2005). “Full-scalemonitoring oftyphooneffectsonsupertallbuildings.” J.FluidsStruct.,20(5), 697–717.

Li,Q.S.,Xiao,Y.Q.,Wong,C.K.,andJeary,A.P.(2003a). “FieldmeasurementsofwindeffectsonthetallestbuildinginHongKong.” Struct. Des.TallSpecialBuild.,12(1),67–82.

Li,Q.S.,Xiao,Y.Q.,Wong,C.K.,andJeary,A.P.(2004b). “Fieldmeasurementsoftyphooneffectsonasupertallbuilding.” Eng.Struct., 26(2),233–244.

Li,Q.S.,Xiao,Y.Q.,Wu,J.R.,Fu,J.Y.,andLi,Z.N.(2008). “Typhoon effectsonsuper-tallbuildings.” J.SoundVib.,313(3–5),581–602.

Li,Q.S.,Yang,K.,Wong,C.K.,andJeary,A.P.(2003b). “Theeffectof amplitude-dependentdampingonwind-inducedvibrationsofasuper tallbuilding.” J.WindEng.Ind.Aerodyn.,91(9),1175–1198.

Li,Q.S.,Zhi,L.H.,Tuan,A.Y.,Kao,C.S.,Su,S.C.,andWu,C.F. (2011). “DynamicbehaviorofTaipei101tower:Fieldmeasurement andnumericalanalysis.” J.Struct.Eng.,10.1061/(ASCE)ST.1943541X.0000264,143–155

Littler,J.D.,andEllis,B.R.(1992). “Full-scalemeasurementstodetermine theresponseofHumepointtowindloading.” J.WindEng.Ind. Aerodyn.,42(1–3),1085–1096.

Ljung,L.(1987). Systemidentification:Theoryfortheuser,Prentice-Hall, EnglewoodCliffs,NJ.

Marukawa,H.,Kato,N.,Fujii,K.,andTamura,Y.(1996). “Experimental evaluationofaerodynamicdampingoftallbuildings.” J.WindEng.Ind. Aerodyn.,59(2–3),177–190.

Masciantonio,A.,Isyumov,N.,andPetersen,N.R.(1987). “Wind-induced responseofatallbuildingandcomparisonswithwindtunnelpredictions.” StructuresCongress87relatedtoDynamicsofStructures, J.M.Roesset,ed.,Univ.ofTexas,Civ.Eng.Dept.,Austin,TX.

Montpellier,P.R.(1996). “Themaximumlikelihoodmethodofestimating dynamicpropertiesofstructures.” M.S.thesis,Univ.ofWestern Ontario,London,ON,Canada.

Ni,Y.Q.,andZhou,H.F.(2010). “GuangzhounewTVtower:Integrated structuralhealthmonitoringandvibrationcontrol.” StructuresCongress 2010,StructuralEngineeringInstitute(SEI),Reston,VA,3155–3164. Ohkuma,T.,Marukawa,H.,Niihori,Y.,andKato,N.(1991). “Full-scale measurementofwindpressuresandresponseaccelerationsofahighrisebuilding.” J.WindEng.Ind.Aerodyn.,38(2–3),185–196. Pirnia,J.D.,Kijewski,T.,Abdelrazaq,A.,Chung,J.,andKareem,A. (2007). “Full-scalevalidationofwind-inducedresponseoftallbuildings:Investigationofamplitude-dependentdynamicproperties.” 2007StructuresCongress:NewHorizonsandBetterPractices, (CD–ROM),StructuralEngineeringInstitute(SEI),Reston,VA. Rodgers,J.E.,andÇelebi,M.(2006). “Seismicresponseanddamage detectionanalysesofaninstrumentedsteelmoment-framedbuilding.” J.Struct.Eng.,10.1061/(ASCE)0733-9445(2006)132:10(1543), 1543–1552

Şafak,E.(1989a). “Adaptivemodeling,identification,andcontrolof dynamicstructuralsystems.I:Theory.” J.Eng.Mech.,10.1061/ (ASCE)0733-9399(1989)115:11(2386),2386–2405

Şafak,E.(1989b). “Adaptivemodeling,identification,andcontrolof dynamicstructuralsystems.II:applications.” J.Eng.Mech.,10.1061/ (ASCE)0733-9399(1989)115:11(2406),2406–2426

Şafak,E.(1991). “Identificationoflinearstructuresusingdiscrete-time filters.” J.Struct.Eng.,10.1061/(ASCE)0733-9445(1991)117:10(3064), 3064–3085.

Şafak,E.(1993). “Responseofa42-storysteel-framebuildingtothe Ms=7.1LomaPrietaearthquake.” Eng.Struct.,56(6),403–421.

Şafak,E.,andÇelebi,M.(1991). “SeismicresponseofTransamerica Building.II:Systemidentification.” J.Struct.Eng.,10.1061/(ASCE) 0733-9445(1991)117:8(2405),2405–2425

Şafak,E.,andÇelebi,M.(1992a). “RecordedseismicresponseofPacific ParkPlaza.II:Systemidentification.” J.Struct.Eng.,10.1061/(ASCE) 0733-9445(1992)118:6(1566),1566–1589

Satake,N.,Sude,K.,Arakawa,T.,Sasaki,A.,andTamura,Y.(2003). “Dampingevaluationusingfull-scaledataofbuildingsinJapan.” J.Struct.Eng.,10.1061/(ASCE)0733-9445(2003)129:4(470),470–477 Smith,R.J.,andWillford,M.R.(2007). “Thedampedoutriggerconcept fortallbuildings.” Struct.Des.TallSpecialBuild.,16(4),501–517.

Tamura,Y.(2005). “Dampinginbuildingsandestimationtechniques.” 6thAsia-PacificConf.onWindEng.(APCWE-VI),International AssociationforWindEngineering(IAWE),Atsugi,Kanagawa,Japan, 193–213.

Tamura,Y.(2012). “Amplitudedependencyofdampinginbuildingsand criticaltipdriftratio.” Int.J.High-RiseBuild.,1(1),1–13.

Tamura,Y.,Suda,K.,andSasaki,A.(2000). “Dampinginbuildingsfor windresistantdesign.” Int.Symp.onWindandStructuresforthe 21stCentury,Techno-Press,Daejeon,Korea,115–130.

Tamura,Y.,andSuganuma,S.(1996). “Evaluationofamplitude-dependent dampingandnaturalfrequencyofbuildingsduringstrongwinds.” J.WindEng.Ind.Aerodyn.,59(2–3),115–130.

Tamura,Y.,andYoshida,A.(2008). “Amplitudedependencyofdampingin buildings.” (CD–ROM), 2008StructuresCongress:18thAnalysisand Comput.SpecialtyConf.,StructuralEngineeringInstitute(SEI),Reston, VA.

Taoka,G.T.,Scanlan,R.H.,andKhan,F.R.(1975). “Ambientresponse analysisofsometallstructures.” J.Struct.Div.,101(1),49–65.

Wyatt,T.A.(1977). “Mechanismsofdamping.” Symp.onDynamicBehaviourofBridges,TransportandRoadResearchLaboratory,Crowthorne, U.K.,10–21.

Xu,Y.L.,Chen,S.W.,andZhang,R.C.(2003). “Modalidentification ofDiWangbuildingunderTyphoonYorkusingtheHilbert-Huang transformmethod.” Struct.Des.TallSpecialBuild.,12(1),21–47.

Xu,Y.L.,andZhan,S.(2001). “FieldmeasurementsofDiWangTower duringTyphoonYork.” J.WindEng.Ind.Aerodyn.,89(1),73

93.

Yoon,S.W.,andJu,Y.K.(2004). “Dynamicpropertiesoftallbuildingsin Korea.” Proc.ofCTBUH2004,(CD–ROM),CouncilonTallBuildings andUrbanHabitat(CTBUH),Chicago.

©ASCE04014005-15J.Struct.Eng. J. Struct. Eng. 2014.140. Downloaded from ascelibrary.org by University of Notre Dame on 04/15/15. Copyright ASCE. For personal use only; all rights reserved.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.