News from the SSEF (2014)

Page 1

1 Dr. Michael S. Krzemnicki Swiss Gemmological Institute SSEF Photos © M.S. Krzemnicki, SSEF, except where indicated otherwise News from the SSEF laboratory: Research findings, exceptional treasures and gemmological 'oddities' SGC Conference 4th May 2014 © Christie‘s Hong Kong
2
Jadeite from Kazachstan Itmurundy Jadeite.Jade)from Kazachstan A)petrological and petrographical analysis Bachelor)thesis of)Kris;na)Ernst) University)Basel) Jadeite grain with brownish omphacite ongrowth)(Ca metasoma;sm))in)jadeite.jade) from Kazachstan Photo with crossed polarizers.)©)K.)Ernst,)University)Basel)
3
Black)chromite grain with fibrous kosmochlor)(green))and surrounded by fine)granular)) colourless jadeite and greenish)larger)richterite)(amphibole))formed during)retrograde)Ca. supply Photo)©)L.)Franz,)University)Basel) Jadeite rock textures
©
Swiss Gemmological Institute
SSEF©
T. Cheng
4 Gemtrade Nomenclature CIBJO:'' The'World'Jewellery'Confedera5on Jade is)a)general)term)describing)two)different)minerals)(jadeite)and)nephrite))in)their) massive)form,)as)polycrystalline,)quasi.monomineralic)rocks.)The)term)jade)is) usually)used)as)a)suffix)aRer)the)mineral)name.) HOKLAS'''
The Hutton-Mdivani Jadeite necklace
Sotheby‘s)Hong)Kong)April)2014) Sold)for world record)27.4)mio)US$) SSEF)Test)Report)73188)+)Appendix)
5
High)translucency)and)excellent)lustre)(A.Jadeite)Jade)) Treated)Jadeite.Jade)(B)+)C)–type))
6
Dyed opal from Ethiopia © Swiss Gemmological Institute SSEF Dyed opal from Wollo,)Ethiopia Dyed opal from Ethiopia © Swiss Gemmological Institute SSEF
7 © Swiss Gemmological Institute SSEF Treated brown star sapphire (Thailand) Fractures with air bubbles and Pb.glass filling showing air bubbles and)„flash“)effects Brown)ar;ficial resin)in)large) cavity at the backside Smoked Topaz ! Jewellery in the barbecue ??
8 © SSEF Swiss Gemmological Institute A stone from a very distant star... © Swiss Gemmological Institute SSEF
Reversible)colour change
when exposed to sunlight © SSEF Swiss Gemmological Institute ...or rather from a “starlet”...
Photochromatic artificial glass
9 Exceptional colour change garnet 140!ct Member)of the pyrope)–)spessar;ne series with chromium and vanadium traces Exceptional colour change garnet Colour change and)Usambara)effect)!!)
The classical source: Spessartine from Kunene, Namibia 21.13)ct Spessartine from Nigeria 43.22)ct 45.62)ct 46.38)ct Total)weight of collec;on)328)ct
11 Spessartine from Mogok 103.979'ct 34.119'ct Spinel from Mahenge Each Spinel))>)40)ct
12 Epangko spinel mines (near Mahenge) Spinel from Tajikistan (historic Kuh-i-Lal mine) Jahangir Shah Akbar Shah (Jahangir Sahib Qiran-i thani 1043 Shah Jahan 1633 - 4 AD Jahangir Shah Akbar Shah 04 (Jahangir.Dateuncertain Ahmad Shah Durduran 1168 (Ahmad Shah Durrani 1754 - 5 AD Jahangir Shah Akbar Shah 1016 (Jahangir1608-9AD) Alamgir Shahi 1070 (Aurangzeb1659-60AD Jahangir Shah Akbar Shah 1017 (Jahangir1609-10AD Jahangir Shah Akbar Shah (Jahangir Alamgir Shah ibn Shah Jahan (Aurangzeb) Jahangir Shah Akbar Shah Jahangir Sahib Qiran-i thani 1043 Shah Jahan 1633 - 4 AD Jahangir Shah Akbar Shah 04 Jahangir.Dateuncertain Ahmad Shah Durduran 1168 Ahmad Shah Durrani 1754 - 5 AD Jahangir Shah Akbar Shah 1016 (Jahangir1608-9AD) Alamgir Shahi 1070 (Aurangzeb1659-60AD Jahangir Shah Akbar Shah 1017 (Jahangir1609-10AD) Jahangir Shah Akbar Shah (Jahangir Alamgir Shah ibn Shah Jahan (Aurangzeb From)61.50)ct to)202.67)ct Chris;e‘s Geneva Sale,)May)2014) Lot)177) With engravings of ten Mughal Emperors of the)17th)) and beginning)18th)Century)) ©)Chris;e‘s With freshwater cultured pearls

Spinel from Vietnam (Luc Yen)

Spinel from Vietnam (Luc Yen)

Characteris;c

Blue)Co.spinel

of)Carina)Hanser)

greenish

13 41.99)ct
inclusions)in) Vietnamese)spinels
reac;on under)UV)light)
from)Vietnam:) A)spectroscopic study Bachelor)thesis
University)Freiburg)i.)Br.)(Germany))

translucent. Co-spinel 9 is of dark blue colour, whereas Co-spinel 10 is of cyan colour. Compared those two samples, Co spinel 11 is euhedral. It exhibits octahedral crystal faces. However, crystal faces are broken at some points. Here the cubic fracture pattern can be seen. This specimen shows a deep blue colour and is entirely transparent.

Verneuil synth. spinel

Sample)from)SSEF)collec;on

of

exact colours which have been determined with a Standard Color Bo Munsell color system are given in table 1. As can be seen Co spinel 1, 2, 3, 7 and 8 show a colour change.

Sample

light)blue Ni.bearing

Table 1: Colours of Co spinels

spinel 1 tungsten day light spinel 2 tungsten day light equivalent spinel 3 tungsten light day light equivalent spinel 4 tungsten light day light equivalent spinel 5 artifical light day light equivalent spinel 6 tungsten light day light equivalent

14
12
Figure
3: Digital photos
Co spinels
1 11
number Light source Sheet X value Y value
109 Figure 7: UV Vis spectra of Co spinel 9 and 10 The spectrum of Co spinel 11 has got peaks of wavelengths of about 623 nm, 598 nm, 580 nm, 550 nm, 545 nm, 480 nm, 408 and 388 nm (see figure 8).
Produced by Djeva)SA)(Switzerland)) dark blue)Co.bearing synthe;c spinel)(Verneuil))
synthe;c spinel)(Verneuil)) Unheated Cu-bearing tourmaline from Mozambique 40.96)ct ED.XRF)spectrum UV.Vis.NIR)spectra
15 Paraiba-tourmaline intergrown with lepidolite mica Anyolite,!fancy!trade!name!for!zoisite amphiboleBruby!intergrowth.! 728 1065 tourmaline reference 375 bead 16, blue tourmaline lepidolite reference bead 18, purple lepidolite 708 405 262 500 1000 Raman shift (cm-1) counts Raman spectra L" PT!=!Paraiba tourmaline L!=!Lepidolite L" L" L" PT" PT" PT"
16
© Swiss Gemmological Institute SSEF Amber)?) Man-made product of small natural resin pieces in plastic matrix
17
© Swiss Gemmological Institute SSEF Problem solved at SSEF... Diamond testing
18 diamond testing at SSEF Vacheron)Constan;n:)) Diamonds)tested by)SSEF) Imagine how to sort'out' imita.ons,'synthe.c diamonds,'and'HPHT' treated diamonds from these melée diamonds'??' Diamond)grader)and gemmologist)Luc)Phan)@)SSEF) Automated Spectral Diamond Inspection ASDI Check)hsp://www.ssef.ch/asdi
19
Ruby necklace of the Tsar…
20 …and Queen Marguerita’s brooch Emerald!brooch!of!Queen!Marguerita!of! Savoy!(1851B1926),!and!was!given!to!her! by!her!mother!the!Duchess!of!Genoa!at! the!occasion!of!her!marriage!to!Crown! Prince!Umberto!I!in!1868.! This!brooch!is!actually!the!centreBpiece! of!her!emerald!necklace.! What a nice antique emerald parure containing Zambian emeralds
21 Unfortunately
fake ... containing Zambian emeralds Quiz: 109 Emeralds, 6 grossularite garnets and one fluorite.
22 Renaissance Necklace
© Swiss Gemmological Institute SSEF
And what’s up with the Royals... © Swiss Gemmological Institute SSEF
23
© Swiss Gemmological Institute SSEF The Württemberg Parure a historic pink topaz jewellery set Pearl and emerald tiara © Swiss Gemmological Institute
SSEF
24 Beware of hairLstyling'!' (Es;mate:)£80,000'L'120,000 Hammer'Price'£'680,000' Lot:'1903' Woolley'&'Wallis'sale'1st'May'2014' Saltwater)natural)pearl)) 33.15)ct)(132.60)grains)) half.drilled) 16.5)–)17.4)mm)diameter) SSEF)Test)Report)72642)
25 Abalone pearl 306.461)ct))(1225.84)grains)) Length)approx.)83)mm namibianhardwood.co.za 168.78)ct 159.75)ct Pinctada maculata: Pipi pearl oyster

New

There)was)only)a)slight increase)in)yellow seen when comparing the treated samples with the untreated ones submised to)SSEF.)

However,)as we have)not)seen the)original)colour of the treated samples,)we)do)not)know how strongly this treatment has affected their colour

26
pearl treatment: 0" 5000" 10000" 15000" 20000" 25000" 30000" 0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" Counts' Raman'shi-'(cm01)' Raman'und'luminescence'spectra'of'untreated'an'treated'Pinctada'maxima' treated'sample' untreated'sample' Melo pearls
27 Unpolished Melo pearl © Swiss Gemmological Institute SSEF Melo pearl with cavity filled with artifiial resin Air)bubbles and slight)nega;ve)profile of filled cavi;es at the)Melo)surface White)LWUV)reac;on of filled cavi;es

Pearl “chanterelle”

28
©
Swiss
Gemmological Institute
SSEF
All!saltwater natural pearls except the pearl!in!the centre which is a!beadless saltwater cultured pearl of Pinctada maxima Distinguishing natural from cultured pearls:
29 prismatic!calcite! tiny!aragonite!platelets!(nacre)! Internal"structure of""a"natural pearl
Pinctada
radiata Photo)©)H.A.)Hänni,)SSEF) Irregular cavity scrolling Beadless!freshwater!cultured!pearl!from!China!(Unio)! Sample!mxtB1! X3ray Microtomography of"a"beadless"CP"
Photo)©)H.A.)Hänni,)SSEF)
30 Beaded!cultured!pearl!from!Pinctada(maxima( Sample!MXT!14b!(5!microns!resolution)! Cultured pearl with"a"bead Organic!matter!(Conchioline)! Bead carved from!MississippiBfreshwater shell nacre
31 Calcium3oxalate"and"–phosphate aggregates in"human"or animal body Kidney stones as!a!result of injured!/! regenerating epithelium cells!in!the kidneys Asselman!et!al.!2003! Nierensteine! Quelle:!http://swansonhealthcenter.com CalciumOxalateCrystalAdherencetoHyaluronan-, Osteopontin-,andCD44-ExpressingInjured/Regenerating TubularEpithelialCellsinRatKidneys MARINOASSELMAN,*ANJAVERHULST,† MARCE.DEBROE,† and CARLF.VERKOELEN* *DepartmentofUrology,ErasmusMedicalCenterRotterdam,Rotterdam,theNetherlands;and Department ofNephrology-Hypertension,UniversityofAntwerp,Antwerp,Belgium Abstract. Retentionofcrystalsinthekidneyisanessential earlystepinrenalstoneformation.Studieswithrenaltubular cellsincultureindicatethathyaluronan(HA)andosteopontin (OPN)andtheirmutualcellsurfacereceptorCD44playan importantroleincalciumoxalate(CaOx)crystalbindingduringwoundhealing.Thisconceptwasinvestigated invivo by treatingratsfor1,4,and8dwithethyleneglycol(0.5and 0.75%)intheirdrinkingwatertoinducerenaltubularcell damageandCaOxcrystalluria.Tubularinjurywasmorphologicallyscoredonperiodicacid-Schiff–stainedrenaltissuesectionsandtissuerepairassessedbyimmunohistochemicalstainingforproliferatingcellnuclearantigen.CaOxcrystalswere visualizedinperiodicacid-Schiff–stainedsectionsbypolarized lightmicroscopy,andrenalcalciumdepositswerequantified withvonKossastaining.HAwasvisualizedwithHA-binding proteinandOPNandCD44immunohistochemicallywithspecificantibodiesandquantifiedwithanimageanalyzersystem. Alreadyafter1dof treatment,bothconcentrationsofethylene glycolinducedhyperoxaluriaandCaOxcrystalluria.Atthis point,therewasneithertubularinjurynorcrystalretentionin thekidney,andexpressionofHA,OPN,andCD44wascomparabletountreatedcontrols.After4and8dof ethylene glycol,however,intratubularcrystalswerefoundadheredto injured/regenerating(proliferatingcellnuclearantigenpositive)tubularepithelialcells,expressingHA,OPN,andCD44 attheirluminalmembrane.Inconclusion,theexpressionof HA,OPN,andCD44byinjured/regeneratingtubularcells seemstoplayaroleinretentionofcrystalsintheratkidney. JAmSocNephrol14:3155–3166,2003 Tokki"Cultured"pearls Photo!©!H.A.!Hänni,!SSEF!
32 Formation"model for Tokki cultured pearls ;ny ;ssue piece CaCO3 )„spot“) ;ssue „wrapping“) and nacre cover Tokki pearl conchioline.rich layers graRing forma;on)of)) independent)) addi;onal)CP) docking)of)) addi;onal)CP) on)beaded)CP) Two tissues become one ;ny ;ssue piece CaCO3 )„spot“) Addi.onal'' cultured pearl Sample!mxt!37_20!! Loose"additional"cultured pearl"(Tokki)
33 Genetic investigations"on"shells:" TheMiningofPearlFormationGenesinPearlOyster Pinctadafucata bycDNASuppression SubtractiveHybridization NingWang ShigeharuKinoshita NaokoNomura ChihiroRiho KaoruMaeyama KiyohitoNagai ShugoWatabe Received:16April2010/Accepted:29June2011 SpringerScience+BusinessMedia,LLC2011 Abstract Recentresearchesrevealedtheregionalpreferenceofbiomineralizationgenetranscriptioninthepearl oyster Pinctadafucata:ittranscribedmainlythegenes responsiblefornacresecretioninmantlepallial,whereas theonesregulatingcalciteshellsexpressedinmantleedge. Thisstudytookuseofthischaracterandconstructedthe forwardandreversesuppressionsubtractivehybridization (SSH)cDNAlibraries.Atotalof669cDNAcloneswere sequencedand360expressedsequencetags(ESTs)greater than100bpweregenerated.Functionalannotationassociated95ESTswithspecificfunctions,and79amongthem .fucata forwardSSHcDNAlibrary,itrecognizedmassamountof nacreproteingenes,biomineralizationgenesdominantly expressedinthemantlepallial,calcium-ion-bindinggenes, andotherbiomineralization-relatedgenesimportantfor pearlformation.Real-timePCRshowedthatallthe examinedgenesweredistributedinoystermantletissues withaconsistencetotheSSHdesign.Thedetectionoftheir RNAtranscriptsinpearlsacconfirmedthattheidentified geneswerecertainlyinvolvedinpearlformation.Therefore,thedatafromthisworkwillinitiateanewroundof pearlformationgenestudyandshednewinsightsinto Keywords Pinctadafucata Pearlformation Suppression subtractivehybridization Real-timePCR Introduction Pearlformationisadirectconsequenceofcontinuous precipitationofcalciumcarbonateongivennucleus withanenigmaticregulationmediatedbythesecretions frommolluscanmantletissues.Theinterplaybetween theorganicmolluscansecretionsandtheinorganic calciumcarbonateproducedthepearllayerswith uniquemicrostructuralfeatures,marvelousmechanical stiffness,andfantasticopticalproperties(Addadiand Weiner 1997;Addadietal. 2006;Meyersetal. 2008 ).Tounderstandthephenomenonofthe productionofiridescentpearl atebuildingblocks,theidentificationandfunctional characterizationoftheorganiccomponentoftheshellhas beenoccurringformanyyears(Hare 1963;Toweetal. 1966 ZhangandZhang 2006). Almostallthepossiblewhereaboutsofthemantle secretionsinmolluscanspecieswithpearlproductionwere subjectedtointensiveproteomicinvestigations.From extrapallialfluid,nacreshell,andpearlpowder,anumber ofimportantproteinshavebeenisolated(Miyamotoetal. 1996;Sudoetal. 1997;Samataetal. 1999;Huangetal. 2007;Maetal. 2007;Suzukietal. 2009).Functional characterizationprovedtheirnovelactivitiesgoverningthe precipitation,polymorphcontrol,crystalstructuremodifiS.Kinoshita C.Riho S.Watabe(* DepartmentofAquaticBioscience,GraduateSchool ofAgricultureandLifeSciences,TheUniversityofTokyo, Bunkyo,Tokyo113-8657,Japan e-mail:awatabe@mail.ecc.u-tokyo.ac.jp MikimotoPharmaceuticalCO.,LTD, Ise516-8581,Japan K.Nagai PearlResearchInstitute,MikimotoCO.,LTD, Shima517-0403,Japan Fundamential knowledge about biomineralisation RESEARCHOpenAccess Proteomicanalysisoftheorganicmatrixofthe abalone Haliotisasinina calcifiedshell BenjaminMarie ,ArulMarie ,DanielJJackson ,LionelDubost ,BernardMDegnan ,ChristianMilet FrédéricMarin Abstract Background: Theformationofthemolluscanshellisregulatedtoalargeextentbyamatrixofextracellular macromoleculesthataresecretedbytheshellformingtissue,themantle.Thissocalled calcifyingmatrix complexmixtureofproteinsandglycoproteinsthatisassembledandoccludedwithinthemineralphaseduring thecalcificationprocess.Whiletheimportanceofthecalcifyingmatrixtoshellformationhaslongbeen appreciated,mostofitsproteincomponentsremainuncharacterised. Results: Recentexpressedsequencetag(EST)investigationsofthemantletissuefromthetropicalabalone(Haliotis asinina)provideanopportunitytofurthercharacterisetheproteinsintheshellbyaproteomicapproach.Inthis study,wehaveidentifiedatotalof14proteinsfromdistinctcalcifiedlayersoftheshell.Onlytwooftheseproteins havebeenpreviouslycharacterisedfromabaloneshells.Amongthenovelproteinsareseveralglutamine-and methionine-richmotifsandhydrophobicglycine-,alanine-andacidicaspartate-richdomains.Inaddition,twoof thenewproteinscontainedKunitz-likeandWAP(wheyacidicprotein)proteaseinhibitordomains. Conclusion: Thisisoneofthefirstcomprehensiveproteomicstudyofamolluscanshell,andshouldprovidea platformforfurthercharacterizationofmatrixproteinfunctionsandinteractions. Background Thecalcifiedmolluscanshellisanexcellentmodelwith whichtostudytheprocessofbiomineralformation.The widemorphologicaldiversityofshell-bearingmolluscs (bivalves,gastropods,cephalopods,monoplacophorans andscaphopods)alsoextendstoatremendousdiversity ofshellmicro-textures.Despitethisdiversity,molluscan shellsareproducedbyanevolutionarilyhomologous structureknownasthemantle.Thepolymorphof CaCO (primarilyaragoniteorcalcite),alongwithall othernano-scalefeaturesofthebiomineral,arethought tobedeterminedandregulatedbyanextracellular cellfree matrixthatissecretedbythemantle.Thismatrix isincorporatedintoandsurroundsnascentCaCO crystalsduringshellgrowth.Eventhoughitconstitutesonly asmallpartofthetotalshellweight(1-5%),thismatrix isclearlyessentialforinitiatingbiomineralformation andimpartingcriticalphysicalpropertiestotheshell suchasfractureresistance.Thebiochemicalcharacteristicsofthematrix,usuallypurifiedandstudiedfollowing decalcificationoftheshell,indicatethatitiscomprised ofaheterogenoussetofmacromoleculesincluding chitin,hydrophobic framework proteinsandsoluble proteinsandglycoproteins[1].However,relativelyfew matrixproteinshavebeenidentifiedandcharacterised fromabaloneshells,perhapsthebest-studiedgastropod biomineralisationsystem.TodatetheseincludeLustrinA[2],Perlucin[3],Perlustrin[4],AP7,AP24[5],Perlwapin[6]andPerlinhibin[7]. Jacksonetal.[8-10]employedahigh-throughputEST sequencingstrategiesinordertoidentifygeneproducts thatmaybedirectlyinvolvedinshellformationofthe tropicalabalone .Hundredsofconceptuallytranslatedproteinsputativelyrelatedtoshellcalcificationwereidentifiedusingthisapproach,however noneofthesehavebeendirectlycharacterizedfromthe shell.Furthermore,thisapproachcannotaccuratelydiscriminatebetweenproteinsrequiredfornon-mineralising functions,andthosedirectlyinvolvedinshellformation. *Correspondence:benjamin.marie@u-bourgogne.fr;frederic.marin@ubourgogne.fr UMR5561CNRS,Biogéosciences,UniversitédeBourgogne,21000Dijon, http://www.proteomesci.com/content/8/1/54 ©2010Marieetal;licenseeBioMedCentralLtd.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductionin anymedium,providedtheoriginalworkisproperlycited. 1 Recent Advances in Pearl Research Eds., S. Watabe, K. Maeyama and H. Nagasawa, pp. 00–00. © by TERRAPUB, 2013. Characterization of Molecular Processes Involved in the Pearl Formation in Pinctada margaritifera for the Sustainable Development of Pearl Farming Industry in French Polynesia Yannick GUEGUEN1 Caroline MONTAGNANI1 Caroline JOUBERT1 Benjamin MARIE1,3 Corinne BELLIARD Alexandre TAYALE Julie FIEVET Peva LEVY1 David PIQUEMAL2 Frédéric MARIN3, Gilles LE MOULLAC1 Chin-Long KY Pierre GAREN1 Cédrik LO4 and Denis SAULNIER 1Ifremer, UMR 241 EIO, Labex Corail, Centre du Pacifique, BP 7004, 98719 Taravao, Tahiti, Polynésie Française 2Skuldtech, Cap Delta, 1682 rue de la Valsière - 34790 Grabels, France CNRS UMR Biogéosciences, Université de Bourgogne, 21000 Dijon, France Direction des Ressources Marines, Tahiti, Polynésie Française (Received 28 January 2012; accepted 11 August 2012) Abstract—Tahiti’s pearl farming industry plays a major socio-economic role in French Polynesia. In an increasingly competitive market where the production of high quality pearls becomes essential, research can help secure and ensure sustainable production. In that context, Ifremer, in close collaboration with the “direction des resources marines” (French Polynesian government agency) has developed research projects on the “sustainable development of pearl farming”. This program is organized along 3 axes: (1) understanding the animal physiology and initiating a genetically selective breeding program of donor oysters; (2) understanding pearl oyster larvae dispersal and recruitment; (3) understanding the molecular mechanisms underlying biomineralization processes during shell and pearl formation. It is in this frame that we have developed a highthroughput Expressed Sequence Tags pyrosequencing program on the calcifying mantle, combined with proteomic analyses of the shell and pearl. We analyzed 276738 EST sequences, leading to the constitution of a P. margaritifera mantle transcripts catalogue of 82 sequences potentially involved in biomineralization. Our results provided direct evidence that our ESTs data set covers a large number of the matrix proteins of P. margaritifera In addition, our proteomic analysis enabled us to retrieve, in silico, all the sequences from P. margaritifera involved in the biomineralization process already published on databases. Integration of these two methods allowed, for the first time, the global composition of calcifying tissue and calcified structures to be examined in tandem. Keywords: pearl oyster, biomineralization, Pinctada margaritifera INTRODUCTION In French Polynesia, cultured pearls are the product of grafting and rearing of Optimization of pearl farming by genetic methods Gueguen!et!al.!2013! Marie!et!al.!2010! Wang!et!al.!2011! IdentiGication of shell species from the"DNA"of pearls Collaboration between!SSEF!an!the!Institute!for integrative!Biology!(ETH!Zurich)!under supervision of Prof.!Bruce!McDonald! DNAFingerprintingofPearlstoDetermineTheirOrigins JoanaB.Meyer1,2 ,LaurentE.Cartier2,3 ,EricA.Pinto-Figueroa ,MichaelS.Krzemnicki HenryA.Hanni ,BruceA.McDonald DepartmentofEnvironmentalSystemScience,SwissFederalInstituteofTechnology,Zurich,Switzerland, SwissGemmologicalInstituteSSEF,Basel,Switzerland, 3 DepartmentofEnvironmentalSciences,UniversityofBasel,Basel,Switzerland, 4 DepartmentofEcologyandEvolution,UniversityofLausanne,Lausanne,Switzerland, 5 GemExpert,Basel,Switzerland Abstract WereportthefirstsuccessfulextractionofoysterDNAfromapearlanduseittoidentifythesourceoysterspeciesforthe threemajorpearl-producingoysterspecies Pinctadamargaritifera P.maxima and P.radiata.Bothmitochondrialandnuclear genefragmentscouldbePCR-amplifiedandsequenced.Apolymerasechainreaction-restrictionfragmentlength polymorphism(PCR-RFLP)assayintheinternaltranscribedspacer(ITS)regionwasdevelopedandusedtoidentify18pearls ofunknownorigin.Amicro-drillingtechniquewasdevelopedtoobtainsmallamountsofDNAwhilemaintainingthe commercialvalueofthepearls.ThisDNAfingerprintingmethodcouldbeusedtodocumentthesourceofhistoricpearls andwillprovidemoretransparencyfortradersandconsumerswithinthepearlindustry. MeyerJB,CartierLE,Pinto-FigueroaEA,KrzemnickiMS,HanniHA,etal.(2013)DNAFingerprintingofPearlstoDetermineTheirOrigins.PLoSONE8(10): e75606.doi:10.1371/journal.pone.0075606 LudovicOrlando,NaturalHistoryMuseumofDenmark,UniversityofCopenhagen,Denmarkz Accepted August16,2013; Copyright: 2013Meyeretal.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited. Funding: ThisstudywassupportedbytheSwissGemmologicalInstitute(SSEF).Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiont publish,orpreparationofthemanuscript. CompetingInterests: Theauthorshavedeclaredthatnocompetinginterestsexist. *E-mail:joana.meyer82@gmail.com(JBM);gemlab@ssef.ch(LEC) Introduction PearlsproducedbyoystersofthePteriidaefamilyareamongthe mostvaluableandoldestgems.Oystershellsandpearlshavebeen usedforhumanadornmentsinceantiquity[1],[2],[3],[4],[5], [6].Todaypearlsareculturedindomesticatedsaltwateroysters andfreshwatermusselsandhavebecomeabilliondollarindustry [7].Whereasanaturalpearlformswithoutanyhuman interventioninawildoyster,aculturedpearlistheresultofa human-inducedinjury.Thevalueassignedtoapearldepends largelyonitsquality,rarity,andwhetheritoriginatednaturallyor throughculture[8].Thusthereissignificantinterestinbeingable toscientificallydocumenttheprovenanceofbothhistoricnatural pearls[8],[9]andmodernculturedpearls.Thisisrarelypossible forthemostvaluablewhitetoslightlycream-coloredpearlsusing currentmethodssuchasUV-visiblephotospectrometryandmicroRamanspectroscopy[10],[11],[12],[13].Thehighervalueof naturalpearlshasledtomanyfraudulentattemptstopassoff culturedpearlsasnaturalones[14],[15],[16].Todate,the distinctionbetweennaturalandculturedpearlshasbeenbasedon X-rayshadowimages(Fig.1A,Fig.1BandFig.1C)andmore recentlyX-raycomputermicrotomography[15].Otheractsof fraudinvolveusingculturedpearlsfrom Pinctadamaxima and P. margaritifera toresemblenaturalpearlsfrom P.radiata [17]. Althoughallthreetypesofoystershavebeenfishedforcenturies inthequestfornaturalpearls,thosefrom P.radiata fromthe Arabian/PersianGulf(‘‘BasraPearls’’)havetraditionallybeenthe mostcoveted[6]. Marineculturedpearlsareproducedmainlyinthreespeciesof oysters: P.margaritifera P.maxima andtheAkoyapearloyster(P. fucata-imbricata martensii-radiata complex)(Fig.1D).The P.maxima oystersthatproducewhiteandgoldenSouthSeaculturedpearls arefoundinAustralia,Burma,IndonesiaandthePhilippines[6], [7],[18].Pearlsfrom P.margaritifera arecalledblackculturedpearls (orTahitianculturedpearls)andarenowproducedmainlyin FrenchPolynesia,Fiji,CookIslandsandMicronesia[7],[19], [20],[21].AkoyaculturedpearlsareproducedmainlyinChina, JapanandVietnam[6],[7].Pearlsfrom P.radiata arecultured exclusivelyintheArabian/PersianGulf.Themajorityofnatural pearlscomefrom oysters,duetoalonghistoryofpearl fisheriesintheArabian/PersianGulf[22].Althoughtheyplaya smallerroleinthenaturalpearltrade, P.maxima and P.margaritifera oystershaveproducedmanynaturalpearlsofconsiderablesize overthelastcenturies[4],[23],[24].Naturalpearlshaveavery smallnichemarketandremainveryrarebecauseofextremely limitedproductioninrecentdecades[8]. Aculturedpearlconsistsofnacreousaragonite(calcium carbonate,CaCO )tablets(Fig.1E)boundbyanorganicmatrix thatcoversanucleustypicallymadefromfreshwatermusselshell material(Fig.1CandFig.1D)[25],[26].Aculturedpearlresults fromasurgicaloperationthatsubjectstheoystertoahumaninducedinjury.Afteramarinepearloysterhasreachedasuitable size,asmallpieceofexternalmantletissuefromadonoroysteris insertedalongwithanucleus(asphericalpieceofmusselshell,also calledbead)(Fig.1C)intoahostoyster’sgonad.Thegrafted mantlecellsformapearlsacthatisresponsibleforsecretingand envelopingtheimplantedmaterialwitharagonite,ultimately resultinginapearl[27],[28].Thegrowthofaculturedpearl usuallytakes6–24monthsduringwhichtheculturedpearlobtains anacreousovergrowthbetween0.5mmand2mm[7]. Thenacreouspartofapearlconsistsofapproximately92% CaCO ,4%organicmatter(OM),4%waterandminuteamounts ofresidualsubstances[29].TheOM(consistingmostlyof conchiolineandporphyrines),whichisalsosecretedbythepearl PLOSONE|www.plosone.org1October2013|Volume8|Issue10|e75606 Blind!test with!18!pearls from B!Pinctada radiata,! B!Pinctada maxima B!Pinctada margaritifera (mixed!in!the picture)!
34 Findings of the"DNA3Study:" Identigication of shell species is generally possible!(enough organic!material)! DNA!can be analysed even when pearl is dryed!out!after!years of wearing Tiny!sample!from drill!hole!is usually sufgicient P.#maxima P.#radiata# P.#margaritifera Sampling! Sample!material!for!DNABanalyses Outlook:" Population structure and patterns of genetic variation in a pearl oyster (Pinctada radiata) native to the Arabian Gulf Amal Al Saadi School of Earth, Environmental and Biological Sciences Science and Engineering Faculty Queensland University of Technology Brisbane, Australia Amal!AlBSaadi,!2013!(University!of Queensland,!Brisbane,!Australia Geographic distribution of shell populations „Geographic origin“"of pearls from"DNA"analyses

14C age dating of Pearls

Figure 4. Calibrated of ages of two historic pearls ETH-46322 and ETH-46323 that were formed before the bomb peak. Both pearls originate from the Arabian Gulf, and were calibrated using marine calibration curve INTCAL09 (Reimer et al. 2009) and R=190±180 yrs.

Sample ETH-46319, a large pearl from Pinctada maxima (Fig. 3) - although declared being pre-1950 - reveals a historic age of 1623-1781AD (2 sigma probability). From the information of the collector, the measured 14C age is possible, but unfortunately not well documented. However, despite the unknown accuracy of the historic age, the age provided by the radiocarbon age determination allowed us in this specific case, to unambiguously identify the sample as a natural pearl, although previous testing with radiography and X-ray computed µ-tomography was not conclusive. The fact, that cultured pearls from Pinctada maxima of such large size were only produced commercially after the “bomb peak” and the pre-bomb radiocarbon age helped to resolve the problem. For the seven more recent pearls and shell samples, which formed distinctly after the bomb-peak, the calculated and corrected radiocarbon ages are in four cases are quite well matching with the “declared” ages (ETH46324, ETH-46325, ETH-38493, ETH-46326), whereas the cultured pearl from Japan (ETH-46327) with a declared age of 1982 and the two cultured pearls from Indonesia (ETH46320, ETH-46321) from 2009 reveal older ages. This again might indicate some variability in reservoir ages of this region that affects our results. Nevertheless, the pearls detect bomb 14C, which shows the potential of 14C for detection of this time marker.

Conclusions

This study has shown that radiocarbon age determination can provide additional and valuable information when testing pearls. We can distinguish two very different scopes. In the case of antique jewellery and treasures, age determination may support evidence for their historic provenance (e.g. sample ETH-46322). This can be of high importance, especially in the case of pearls of iconic significance in cultural history. A pearl set in a historic jewellery

35
To confirm)a)documented historical provenance of)a) pearl © 2013 by the Arizona Board of Regents on behalf of the University of Arizona Proceedings of the 21st Internat edited by A T Jull & C Hatté RADIOCARBON, Vol 55, Nr 2–3, 2013, p 1801–1809 1801 AGE DETERMINATION OF PEARLS: A NEW APPROACH FOR PEARL TESTING AND IDENTIFICATION Michael S Krzemnicki Swiss Gemmological Institute SSEF, Falknerstrasse 9, 4001 Basel, Switzerland. Email: gemlab@ssef.ch. Irka Hajdas Laboratory of Ion Beam Physics, ETH Zurich, Schafmattstr. 20, 8093 Zurich, jdas@phys.ethz.ch. ABSTRACT. For this radiocarbon study, 7 saltwater pearls and 3 shells from pearl oysters have been analyzed. The declared ages of the samples range from the mid-19th century to very recent formations. The analyzed data show the potential of the bomb peak time marker to provide additional information when testing pearls. The analyzed pearls could be distinctly separated in pearls of pre- and post-bomb peak ages, in agreement with the distinction based on the declared ages. The analyzed data further reveals the potential of this method to provide supporting evidence for the historic provenience of a pearl or as cultured formation of a pearl. INTRODUCTION Due to their beauty, pearls have been used for adornment since prehistoric times and are among the most prized jewels, as they connote not only beauty and rarity, but also status and have thus been used as means of representation in many cultures since ancient times (Kunz 1908). Famous historic jewels and ornaments with pearls are known from the treasures of the royal courts in Europe, Russia, the Middle East, India, and China (Bennett and Mascetti 2007; Scarisbrick 2008). With the development of pearl cultivation in the beginning of the 20th century, pearls have gained a much-increased accessibility and popularity when compared to previous ages. Now the pearl trade is a multibillion share of the worldwide jewelry market. Its products range from low-quality and inexpensive freshwater cultured pearls to rare and highly sought after natural pearls of historic provenance, such as the La Peregrina pearl (Figure 1). This natural pearl was sold in December 2011 for 11 million US dollars at auction (Christie’s 2011), the highest price ever paid so far for any pearl. The price for this pearl is mostly linked to its historic provenance, being documented and depicted in paintings since the 16th century (Hans Eworth 1554, in Cooper 2008; Diego Velazquez 1634, in Lopez-Rey 1996; Finlay 2007). Pearls are calcium carbonate (CaCO3 concretions, formed by biomineralization by both freshwater and saltwater mollusks (Gutmannsbauer and Hänni 1994; Southgate and Lucas 2008). We can distinguish between natural pearls, which form accidentally within a mollusk, and cultured pearls that are the result of a grafting process being cultivated and harvested from a certain shell species (e.g. Pinctada maxima Pinctada margaritifera Pictada fucata Unio (Strack 2006; Müller 2009). As there is commonly a large price gap between natura pearls and cultured pearls, the trade relies on specialized gemmological laboratories to identify pearls and to distinguish natural from cultured pearls. Identification if a pearl grew as natural or cultured pearl is commonly based on radiography, X-ray luminescence, and X-ray computed µ-tomography, combined with X-ray fluorescence (EDXRF), Raman microspectrometry, UV-Vis-NIR reflectometry and meticulous microscopic examinations (Anderson 1931; Elen 2002; Hänni 2006; Barnard and de Waal 2006; Sturman 2009; Krzemnicki et al. 2010). Recently, radiocarbon dating appeared as a new approach in pearl testing (Hänni 2008; Krzemnicki 2010; Hainschwang et al. 2010). It is the aim of this study to establish whether this method could reveal evidence for a pearl’s historic provenance, and if it would distinguish between natural pearls and cultured ones. Krzemnicki & Hajdas, 2013 (Radiocarbon) 14C"Age"dating"of"Pearls:" as"an"additional"test"to"support"distinction"between"natural"and"cultured"pearls" 1900! 1916! Mikimoto beaded saltwater cultured pearls Pinctada fucata Southern! Japan! 1960! beaded! saltwater! cultured! pearls.! Pinctada( maxima( Northern Australia! 1968!! beaded saltwater cultured pearls Pinctada margaritifera French! Polynesia Pre!1900! girst attemps for pearl cultivation (mostly Mabé)!in! Japan,! Australia,! Europe! 1983! Chinese! beadless freshwater cultured pearls Unio 2001!„Keshi“! beadless saltwater cultured pearls enter trade!in!large! quantities Pinctada maxima 2009! saltwater cultured pearls with natural pearl beads Pinctada maxima 2000! Only!natural! pearls!in!the! trade! Cultured!pearls!Market!share!
36 14C"age"dating"of"Pearls:" © Swiss Gemmological Institute SSEF Shell!of Pinctada maxima from the!Philippines,! collected!in!1990!(pers.!comm.!H.A.!Hänni)! Kim!Jong!Boom!??! Bomb"peak ?" Visit at Paspaley in North Australia
37
Peter!Bracher!from the Paspaley family!in!front!of the Paspaley!IV,!the main vessel,!on!which the grafting of!wild!shells is carried!out! Harvesting a natural pearl from Pinctada maxima…

Visit to Mogok: January 2014

38
Jade)market)in)Mandalay)
39
Baw mar sapphire mine „Kanase“)looking for spinels,)rubies and sapphires,)washed from gravels)in)cars;c marbles at)Inn)Chauk
40
Thank you for your attention

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.