Working Towards an AI-Based Clustering of Airports in the Effort of Improving Humanitarian Disaster

Page 1


Intelligent Computing

Proceedings of the 2022 Computing Conference, Volume 1

LectureNotesinNetworksandSystems

Volume506

SeriesEditor

JanuszKacprzyk,SystemsResearchInstitute,PolishAcademyofSciences, Warsaw,Poland

AdvisoryEditors

FernandoGomide,DepartmentofComputerEngineeringandAutomation DCA, SchoolofElectricalandComputerEngineering FEEC,UniversityofCampinas

UNICAMP,SãoPaulo,Brazil

OkyayKaynak,DepartmentofElectricalandElectronicEngineering, BogaziciUniversity,Istanbul,Turkey

DerongLiu,DepartmentofElectricalandComputerEngineering,University ofIllinoisatChicago,Chicago,USA

InstituteofAutomation,ChineseAcademyofSciences,Beijing,China

WitoldPedrycz,DepartmentofElectricalandComputerEngineering,Universityof Alberta,Alberta,Canada

SystemsResearchInstitute,PolishAcademyofSciences,Warsaw,Poland

MariosM.Polycarpou,DepartmentofElectricalandComputerEngineering, KIOSResearchCenterforIntelligentSystemsandNetworks,UniversityofCyprus, Nicosia,Cyprus

ImreJ.Rudas, ÓbudaUniversity,Budapest,Hungary

JunWang,DepartmentofComputerScience,CityUniversityofHongKong, Kowloon,HongKong

Theseries “LectureNotesinNetworksandSystems” publishesthelatest developmentsinNetworksandSystems quickly,informallyandwithhighquality. Originalresearchreportedinproceedingsandpost-proceedingsrepresentsthecore ofLNNS.

VolumespublishedinLNNSembraceallaspectsandsubfieldsof,aswellasnew challengesin,NetworksandSystems.

Theseriescontainsproceedingsandeditedvolumesinsystemsandnetworks, spanningtheareasofCyber-PhysicalSystems,AutonomousSystems,Sensor Networks,ControlSystems,EnergySystems,AutomotiveSystems,Biological Systems,VehicularNetworkingandConnectedVehicles,AerospaceSystems, Automation,Manufacturing,SmartGrids,NonlinearSystems,PowerSystems, Robotics,SocialSystems,EconomicSystemsandother.Ofparticularvaluetoboth thecontributorsandthereadershiparetheshortpublicationtimeframeand theworld-widedistributionandexposurewhichenablebothawideandrapid disseminationofresearchoutput.

Theseriescoversthetheory,applications,andperspectivesonthestateoftheart andfuturedevelopmentsrelevanttosystemsandnetworks,decisionmaking,control, complexprocessesandrelatedareas,asembeddedinthe fi eldsofinterdisciplinary andappliedsciences,engineering,computerscience,physics,economics,social,and lifesciences,aswellastheparadigmsandmethodologiesbehindthem.

IndexedbySCOPUS,INSPEC,WTIFrankfurteG,zbMATH,SCImago.

AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. ForproposalsfromAsiapleasecontactAnindaBose(aninda.bose@springer.com ).

Moreinformationaboutthisseriesat https://link.springer.com/bookseries/15179

SagaUniversity

Saga,Japan

ISSN2367-3370ISSN2367-3389(electronic) LectureNotesinNetworksandSystems

ISBN978-3-031-10460-2ISBN978-3-031-10461-9(eBook) https://doi.org/10.1007/978-3-031-10461-9

© TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicense toSpringerNatureSwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthis bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernorthe authorsortheeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Editor ’sPreface

Thiseditionoftheproceedingsseries, “IntelligentComputing:Proceedingsofthe 2022ComputingConference” containspaperspresentedattheComputing Conference2022,heldvirtuallyonthe14thand15thofJuly2022.Weare delightedtoannouncethatthecompleteconferenceproceedingsweresuccessfully executedthroughthewillandco-operationofallitsorganizers,hosts,participants andallothercontributors.

Theconferenceisheldeveryyearsince2013,withanaimtoprovideanideal platformforresearcherstoexchangeideas,discussonresearchresultsandpresent practicalandtheoreticalapplicationsinareas,suchastechnologytrends,computing,artificialintelligence,machinevision,security,communication,ambient intelligenceande-learning.Theproceedingsof2022conferencehasbeendivided intotwovolumeswhichcoverawiderangeofabovementionedconferencetopics. ThisyearComputingConferencereceivedatotalof498papersfromaroundthe globe,outofwhichonly179paperswereselectedtobepublishedintheproceedingsforthisedition.Allthepublishedpaperspassedthedouble-blindreview processbyaninternationalpanelofatleastthreeinternationalexpertreferees,and thedecisionsweretakenbasedontheresearchquality.Weareverypleasedto reportthatthequalityofthesubmissionsthisyearturnedouttobeveryhigh.

Theconferencebringsasingle-tracksessionscoveringresearchpapers,posters, videosfollowedwithkeynotetalksbyexpertstostimulatesigni ficantcontemplationanddiscussions.Moreover,allauthorshadveryprofessionallypresentedtheir researchpaperswhichwereviewedbyalargeinternationalaudienceonline.Weare confidentthatalltheparticipantsandtheinterestedreadersbenefitscientifi cally fromthisbookandwillhavesignificantimpacttotheresearchcommunityinthe longerterm.

Acknowledgmentgoestothekeynotespeakersforsharingtheirknowledgeand expertisewithus.Abigthankstothesessionchairsandthemembersofthe technicalprogramcommitteefortheirdetailedandconstructivecommentswhich

werevaluablefortheauthorstocontinueimprovingtheirpapers.Wearealso indebtedtotheorganizingcommitteefortheirinvaluableassistancetoensurethe conferencecomesoutinsuchagreatsuccess.

WeexpectthattheComputingConference2023willbeasstimulatingasthis mostrecentonewas.

KoheiArai

EstimationofVelocityFieldinNarrowOpenChannelsbyaHybrid MetaheuristicANFISNetwork 1 HosseinBonakdari,HamedAzimi,IsaEbtehaj,BahramGharabaghi, AliJamali,andSeyedHamedAshrafTalesh

DevelopmentofaLanguageExtensionforCon figuration ofIndustrialAssetCapabilitiesinSelf-organized ProductionSystems ........................................

25 EricBrandt,FelixBrandt,andDirkReichelt

Open-SourceMappingMethodAppliedtoThermalImagery ........

43 André Vong,JoãoP.Matos-Carvalho,DárioPedro,SlavisaTomic, MarkoBeko,FábioAzevedo,SérgioD.Correia,andAndré Mora

ScalableComputingThroughReusability:Encapsulation, Speci fication,andVerificationforaNavigableTreePosition 58 NicodemusM.J.Mbwambo,Yu-ShanSun,JoanKrone, andMuraliSitaraman

GeneralizingUnivariatePredictiveMeanMatchingtoImpute MultipleVariablesSimultaneously 75 MingyangCai,StefvanBuuren,andGerkoVink

TimelineBranchingMethodforSocialSystemsMonitoringand Simulation ............................................... 92 AntonIvaschenko,EvgeniyaDodonova,IrinaDubinina,PavelSitnikov, andOlegGolovnin

WebometricNetworkAnalysisofCybersecurityCooperation ........ 103 EmmanouilKoulas,SyedIftikharHussainShah,andVassiliosPeristeras

SafetyInstrumentedSystemDesignPhilosophyParadigmShiftto AchieveSafeOperationsofInterconnectedOperatingSites 123 SolomanM.AlmadiandPedroMujica

BifurcationRevisitedTowardsInterdisciplinaryApplicability 138 BernhardHeiden,BiancaTonino-Heiden,andVolodymyrAlieksieiev

CuriousPropertiesofLatencyDistributions 146 Michał J.Gajda

MulticloudAPIBindingGenerationfromDocumentation ........... 171 GabrielAraujo,VitorVitaliBarrozzi,andMichał J.Gajda

ReducingWeb-LatencyinCloudOperatingSystemstoSimplifyUser TransitionstotheCloud ..................................... 178 LukeGassmannandAbuAlam

Crescoware:AContainer-BasedGatewayforHPCandAI ApplicationsintheENEAGRIDInfrastructure 196 AngeloMariano,GiulioD’Amato,GiovanniFormisano,GuidoGuarnieri, GiuseppeSantomauro,andSilvioMigliori

Signi ficanceinMarloDiagramsVersusThoroughnessofVenn Diagrams 207 MarcosBautistaLópezAznar,GuillermoCímboraAcosta, andWalterFedericoGadea

AHybridReal-TimeSchedulingMechanismBasedonMultiprocessor forReal-TimeTasksinWeaklyHardSpeci fication ................ 228 HabibahIsmail,DayangN.A.Jawawi,andIsmailAhmedy SimulatingtheArnaoutova-KleinmanModelofTubularFormation atAngiogenesisEventsThroughClassicalElectrodynamics .......... 248 HuberNieto-Chaupis

VirtualCriticalCareUnit(VCCU):APowerfulSimulator fore-Learning 255 FredericBanville,Andree-AnneParent,MyleneTrepanier, andDanielMilhomme

SilenceinDialogue:AProposalandPrototypeforPsychotherapy 266 AlfonsoGarcés-BáezandAurelioLópez-L ópez

AStandardContentforUniversityWebsitesUsingHeuristic Evaluation 278 Mohd.HisyamuddinJainari,AslinaBaharum,FarhanaDianaDeris, NoorsidiAizuddinMatNoor,RozitaIsmail,andNurulHidayahMatZain DevelopmentofaMobileApplicationtoProvideEmployment InformationtoPrivate-SectorWorkersinPeru ................... 293 PaulCcunoCarlos,PabelChuraChambi,José LipaOchoa, andJosé Sulla-Torres

AnalysisofTechnicalFactorsinInteractiveMediaArts,withaFocus onPrixArsElectronicaAwardWinners 304 YeeunJoandUranOh

UsabilityEvaluationofMobileApplicationSoftwareMockups 321 FrayL.Becerra-Suarez,DeysiVillanueva-Ruiz, VíctorA.Tuesta-Monteza,andHeberI.Mejia-Cabrera

EasyChat:AChatApplicationforDeaf/DumbPeople toCommunicatewiththeGeneralCommunity ...................

W.W.G.P.A.Wijenayake,M.D.S.S.Gunathilake,P.M.Gurusinghe, W.A.H.K.Samararathne,andDisniSriyaratna

InfluenceofAugmentedRealityonPurchaseIntention ............. 345 AnaZagorcandAndrijaBernik

EncounteringPinchasGutterinVirtualRealityandasa “Hologram”: ImmersiveTechnologiesandOneSurvivor ’sStoryoftheHolocaust 358 CayoGamber

StridedDMAforMultidimensionalArrayCopyandTranspose 375 MarkGlines,PeterPirgov,LenoreMullin,andRishiKhan

TheMachineLearningPrinciplesBasedattheQuantumMechanics Postulates ................................................

HuberNieto-Chaupis

TheThreatofQuantumComputingtoSMEs ....................

PaulinaSchindlerandJohannesRuhland

QuantumComputationbyMeansofJosephsonJunctionsMade ofCoherentDomainsofLiquidWater 414 LuigiMaxmilianCaligiuri

CustomerResponseModelingUsingEnsembleofBalanced Classi fiers:Signi ficanceofWebMetrics 433 SunčicaRogić andLjiljanaKašćelan

WhatAugmentationsareSensitivetoHyper-ParametersandWhy?

ChMuhammadAwais,ImadEddineIbrahimBekkouch, andAdilMehmoodKhan

Draw-n-Replace:ANovelInteractionTechniqueforRapidHumanCorrectionofAISemanticSegmentation ........................

KevinHuang,Ting-JuChen,ShashankShekhar,andJiEunKim WorkingTowardsanAI-BasedClusteringofAirports,intheEffort ofImprovingHumanitarianDisasterPreparedness ................

MariaBrowarskaandKarlaSaldañaOchoa

WindTurbineSurfaceDefectDetectionAnalysisfromUAVs UsingU-NetArchitecture 499 HassnaaHasanShaheedandRiyaAggarwal

AnomalyDetectionUsingDeepLearningandBigDataAnalytics fortheInsiderThreatPlatform 512 AbuAlamandHarryBarron

NearInfraredSpectraDataAnalysisbyUsingMachineLearning Algorithms ............................................... 532 PerryXiaoandDaqingChen

OnRegretBoundsforContinualSingle-IndexLearning ............ 545 T.TienMai

TexttoImageSynthesisUsingStackedConditionalVariational AutoencodersandConditionalGenerativeAdversarialNetworks 560 HaileleolTibebu,AadinMalik,andVarunaDeSilva

AnalyticalDecision-MakingSystemBasedontheAnalysisofAir PollutionintheCityofNur-Sultan 581 ZhibekSarsenova,AldiyarSalkenov,AsselSmaiyl, andMirolimSaidakhmatov

ALocalGeometryofHyperedgesinHypergraphs,andIts ApplicationstoSocialNetworks ............................... 590 DongQuanNgocNguyenandLinXing

ExtractionofConsumerEmotionUsingDiaryDataonPurchasing Behavior ................................................. 608

YuzukiKitajima,ShuntaNakao,KoheiOtake,andTakashiNamatame Signi ficanceinMachineLearningandDataAnalyticsTechniqueson OceanographyData 620

K.Krzak,O.Abuomar,andD.Fribance

ApplyingLatentDirichletAllocationTechniquetoClassifyTopicson SustainabilityUsingArabicText 630 IslamAlQudah,IbrahimHashem,AbdelazizSoufyane,WeisiChen, andTarekMerabtene

MetricsforSoftwareProcessQualityAssessmentintheLatePhases ofSDLC ................................................. 639 GcinizweDlamini,ShokhistaErgasheva,ZamiraKholmatova, ArtemKruglov,AndreySadovykh,GiancarloSucci,AntonTimchenko, XavierVasquez,andEvgenyZouev

OnlineQuantitativeResearchMethodology:Refl ectionsonGood PracticesandFuturePerspectives 656

PierpaoloLimone,GiusiAntoniaToto,PiergiorgioGuarini, andMarcodiFuria

ApplicationofMachineLearninginPredictingtheImpactofAir PollutiononBacterialFlora .................................. 670

DamjanJovanovski,ElenaMitreskaJovanovska,KatjaPopovska, andAndrejaNaumoski

MarkovChainsforHighFrequencyStockTradingStrategies ........ 681 CesarC.Almiñana

ScalableShapeoidRecognitiononMultivariateDataStreams withApacheBeam 695 AthanasiosTsitsipas,GeorgEisenhart,DanielSeybold,andStefanWesner

DetectionofCreditCardFraudswithMachineLearningSolutions: AnExperimentalApproach 715 CourageMabani,NikolaosChristou,andSergeyKatkov

ALBU:AnApproximateLoopyBeliefMessagePassingAlgorithm forLDAforSmallDataSets 723 RebeccaM.C.TaylorandJohanA.duPreez

RetrospectiveAnalysisofGlobalCarbonDioxideEmissions andEnergyConsumption .................................... 747 RajvirThindandLakshmiBabuSaheer

ApplicationofWeightedCo-expressiveAnalysistoProductivityand Coping .................................................. 762 SipovskayaYanaIvanovna

AnImprovedArchitectureofGroupMethodofDataHandlingfor StabilityEvaluationofCross-sectionalBankonAlluvialThreshold Channels 769 HosseinBonakdari,AzadehGholami,IsaEbtehaj, andBahramGharebaghi

IncreasingImportanceofAnalogDataProcessing 797 ShuichiFukuda

NewTrendsinBigDataPro filing ............................. 808 JúliaColleoniCouto,JulianaDamasio,RafaelBordini,andDuncanRuiz

FindingStructurallySimilarObjectsBasedonData SortingMethods ........................................... 826

AlexeyMyachin

ApplicationoftheProposedThresholdingMethodforRicePaddy FieldDetectionwithRadarsat-2SARImageryData 836 KoheiAraiandKentaAzuma

UnderstandingCOVID-19VaccineReactionThroughComparative AnalysisonTwitter 846 YueshengLuoandMayankKejriwal

ADescriptiveLiteratureReviewandClassi ficationofBusiness IntelligenceandBigDataResearch ............................ 865 AmmarRashidandMuhammadMahboobKhurshid

DataMiningSolutionsforFraudDetectioninCredit CardPayments ............................................ 880 AwaisFarooqandStasSelitskiy

NonexistenceofaUniversalAlgorithmforTravelingSalesman ProblemsinConstructiveMathematics 889 LinglongDai

Addition-BasedAlgorithmtoOvercomeCoverProblemDuring AnonymizationofTransactionalData 896 ApoChimèneMonsan,JoëlChristianAdepo,Edié CamilleN’zi, andBiTraGoore

1 DelftUniversityofTechnology,Delft,TheNetherlands maria.browarska@gmail.com

2 SchoolofArchitecture,CollegeofDesign,ConstructionandPlanning, UniversityofFlorida,Gainesville,USA ksaldanaochoa@ufl.edu

Abstract. Inrecentyears,naturaldisastershaveincreasedinfrequency, causingsignificantdamagetocommunitiesandinfrastructureworldwide. Whenanaturaldisasterstrikes,airportsintheaffectedregionhaveto adaptquicklyfromservingregularpassengerstobecomingahumanitarianhubhandlingamassiveincreaseinpassengersandcargo.Several countriesareparticularlyvulnerableandpronetosuchadevastating event.Althoughexistinginitiativesaimtoraiseawarenessandimprove airportpreparedness,authoritiesareoftenisolatedintheirresilience effortsastheytendtoactindividually,andtheirresponseisoftenbound bylocalexperience.Consequently,thisresearchaimstobroadenthe fieldofviewfromalocaltoaglobalonebycompilingadatabaseof 971airportsworldwidewithcorrespondingsocio-technicalcharacteristicsinvariousdatamodalities.Inaddition,throughadatascienceapproach,atransformationofthedifferentdatamodalitieswasperformedto extractnumericalfeaturevectorssothatinfuturestudiesacorrelation betweenairportscanbefound,tofindsimilarairportsfromwhichdifferentapproachestodisasterpreparednessandresponsecanbelearned.

Keywords: Airportsdatabase · Disasterpreparedness · AI-based Clustering

1Introduction

Whenanaturaldisasterstrikes,thenearestairportbecomesthecriticallinkfor deliveringandorganizingreliefaidwhiletryingtostayefficientinevacuating citizensandreceivingemergencypersonnel[4].However,theexistinginfrastructureoftencannothandlethesuddenspikeinthevolumeofincominggoods[5]. Whenairportsbecomenonoperational,theonlywaytoreceivevaluableaidisvia road,rail,andwater,whichisoftenmuchlessefficientandtime-consuming[17]. Eventhoughdisastersandhumanitarianaidarenotthenewestchallenges, thereisstillmuchroomforimprovement.Airportsareacomplexsocio-technical

c TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 K.Arai(Ed.):SAI2022,LNNS506,pp.483–498,2022. https://doi.org/10.1007/978-3-031-10461-9 33

challenge,astheyaresetinanenvironmentoftechnicalandoperationalchallenges,lawsandregulations,internationalandregionalcooperationofstakeholdersfromvariousfieldsimprovinghumanitarianlogistics.Tocharacterizean airport,weneedtoconsidervariousfeaturesthatdescribetheircomplexity,a) geospatialandairport-specificdata:areasurrounding,reachability,numberof runways,taxiways;b)demographicdata:urbanindexes,andpopulationaround theairport;andc)geographicandurbandata:seaportdataandbuiltenvironmentinformation.Creatingsuchadatabasecanhelpexpertsturnthosedata pointsintovaluableinsights.

Thus,thisresearchexploreshowdatasciencecouldhelpestablishabase forformingcollaborationsbetweenairportsthatmightfacesimilarchallenges indisasterpreparednessefforts.Thegoalistobuildacomprehensivedatabase describingairportsfromtheperspectiveoftheirdisasterpreparednessthatwill helpfutureresearchersfindsimilaritiesbetweenthem,basedontheirintrinsicsocio-technicalfeatures,sothatperhapsanairportinIndonesiacouldbe matchedwithitssiblingairportintheCaribbeans.Theresearchinvolvedseveralprogrammingoperations–startingwithcollectingdatauptodataprocessing. Thedatabasecanbefoundinthefollowingrepository.

https://gitlab.com/maria.browarska/OSM-SOM

Theproposeddatabaseofairportsandtheirnumericalfeaturesarethefirst steptoaprocessthatwillconcludecreatinggroup-specificpolicyadvicefor similarairports.Withthisarticle,wewanttodescribethestepsfromcollection, normalization,andpre-processingofthedatatotransformingthemultimodality ofthegathereddatatoanumericalfeaturevectorthatinfutureresearchcanbe usedforthegroupingofsimilarairportsthroughUnsupervisedMachineLearning algorithmsthatcanclustersimilarairportsbasedonsimilarnumericalfeatures. HavingarelevantscenariotoapplyMLthatbenefitssocietyatlarge.

2KnowledgeGapandResearchGoal

Inordertodefinekeyconcepts,narrowdownthescopeoftheresearchand preciselydefinetheknowledgegap,aliteraturereviewwasconducted,followed by5semi-structuredinterviewswithindustryexperts.

2.1LiteratureReview

Mostofthereviewedarticlesfocusedonacasestudyastheresearchapproach, oftenlookingatindividualairportsandassessinghistoricalevents.Researchers analysedthebehaviourofairportsinspecificdisastrousevents,mainlyfocusing onorganisationalprocessesandstakeholders’cooperation[16, 17, 22].Whileall theconsideredfeatures,withoutadoubt,influencelogisticaloperations,theyare alsouniqueforeachairport.Hence,itischallengingtodrawgeneralconclusions thatcouldapplytootherairportssincetheirorganisationalstructuremaydiffer, duetointernationalandregionalregulations,resourcesandneeds.

Someoftheauthorspointedouttheimportanceofthegeographicallocation ofanairport,structuralfeaturesaswellasreachability[3, 21, 23].Pandeyetal. [14]provedthatutilisinggeo-spacialdataisbeneficialforairporthumanitarian responseplanningandthatairportauthoritiesareinterestedintoolsthatcan helptoplanlogisticalprocedures.ChoiandHanaoka[3]developedamodelthat visualisesalayoutofahumanitarianbasebasedonstructuralfeaturesofan airportandprovesitspotentialapplicabilitywithacasestudy,suggestingthat moreresearchisneededtogeneralisetheirresults.

Whilesomeoftheauthorssuggestedthatcooperationbetweenairportsthat strugglewithsimilarchallengeswouldhaveapositiveoutcome[9, 16],noneof themexploredthepossiblebackboneofsuchcooperation.Thatfinding,combinedwiththeideaofstructuralfeaturesofairportshavinganimpactontheir humanitarianlogisticalprocedures,ledtodefiningtheknowledgegap.

Thespecificmethodsappliedinthisresearchwereusedinthefieldofhumanitarianaid-relatedresearchbefore,butonalocalornationalscale,asshownby Salda˜naOchoa,ComesandChen[2, 12].Theglobalapproachisachallengedue tothelimitedavailabilityofreliabledata,butifsuccessful,itpavestheway formoredetailedresearchonaglobalscale.Thisapproachcouldsignificantly benefitthelessdevelopedcountries,whichoftendonothaveresourcesforlocal advancedresearchandpreparednessstrategies.

Untilnow,thepractitionersinthefield,suchasGetAirportsReadyfor Disaster(GARD),haveusedstraightforwardmethodsforassessingthevulnerabilityofairportsandhadtopreparedifferentstrategiesforeachclient.GARD’s capacityisminimal,andthisresearchcouldleadtonewwaysforauthoritiesto prepare,thankstoestablishingcollaborationsdirectlywithotherairportsfacing similarchallenges.

2.2ResearchGoal

Thegoalofthisresearchisto(1)betterunderstandthechallengesthatairportsfacewhenanaturaldisasterstrikesandtheirpreparednessactivities.This understandingshallthenbe(2)translatedintoalistofsocio-technicalfeatures influencingthelevelofpreparednessandairportcapabilitiesinfacingadisaster.Thefindingofkeyfeaturesisrelevantfor(3)buildingadatabasecontaining valuablehumanitarianaid-relatedinformationaboutseveralairportsworldwide, composedsolelyfrompubliclyavailablesources.Thefocusonpubliclyavailabledataisconditionedbyalargenumberofairportsbeinganalyzed,which makesitimpossibletoconductsurveysandobtaininformationdirectlywithin theresourcesandtimeframeofthisresearch.

3Methodology

Inordertofindspecificqualitiesandfeaturesthatinfluenceairports’preparednessforadisaster,athoroughunderstandingofactivitiesandtheenvironment inwhichtheytakeplaceisneeded.Thisinformationwasderivedfromadesk

studyaccompaniedbysemi-structuredinterviews(Table 3 intheAppendixlists theorganizationcontactedforinterviewing)withexpertsonairports’disaster preparednessandperformance,summarizedinTable 1.Thenextstepwasto translateidentifiedchallengesinfluencingtheperformanceofanairportina post-disasterscenariointosocio-technicalfeaturestoachieveagoodstarting pointforthedataminingprocess.

Table1. Socio-technicalfeatures

Structuralandcapacity features

Runwaysandtheir characteristics

Aircraftparkingandits characteristic

Terminalsandtheir characteristics

Storagefacilitiesboth open-airandcovered warehouses

Accessibilityfeatures

Airportconnection

Geographicalsurroundings

Alternativeairportsandseaports

Organisationalfeatures

Howmuchstaff isavailable

Riskrelatedfeatures

Riskofoccurrenceofa naturaldisaster

Howwellthestaff istrained Regionalcapacityfor handlingdisasters

Whoownstheairport

Whatistheairport’smain Purpose(civil/military)

Whethertheairportwaspart ofanypreparednessprograms

Thedataminingprocesswascomposedoftwomainiterativephases.First, theidentifiedsocio-technicalfeaturesofairportshadtobetranslatedintomeasurabledatapoints–numerical,categorical,ordescriptive.Thesecondphase wasretrievingdatafrompubliclyavailablesources,asdescribedinmoredetail inFig. 2.Whenbuildingadatabasefrompubliclyavailablesources,itiscrucialtohaveastrongunderstandingofwhatwewanttodescribetoallowfor flexibilityandeasyreplacementoradjustmentoforiginallyplannedmeasures. Forfutureresearch,thedataminingprocesscouldbereplacedbyconducting detailedsurveyswithairports.Withsuchsurveys,itwouldbepossibletoobtain theexactmeasurestoaccountforallplannedfeaturesstraightfromthesource, allowingforbetteraccuracyandtrustworthiness.

Tostartbuildingthedatabase,wechoosevulnerablecountriesandairports usingtheINFORMRiskIndexasqualificationcriteriaforchoosing.First,a listofallairportsthatarelocatedwithinthesecountrieswasexported.Next, theairports.csvfilefromOurAirportswasusedtoselectonlyairportscurrently operating,i.e.,havescheduledservices.Anadditionalcriterionwastheairport type-heliports,seaplanebases,andclosedoneswereexcluded,whilesmall, medium,andlargewerechosen.Theseoperationsresultedinformingalistof971 airports,withtheirnames,coordinates,InternationalAirTransportAssociation (IATA)codes,andInternationalCivilAviationOrganization(ICAO)codes.This listwouldformthebaseforallmassqueriesappliedviaAPIstocollectdatafor eachairport.Figure 1 presentsthe971airportsonaWorldmap.

4BuildingtheDatabase

Datausedinthisresearchcamefromamultiplicityofsourcesinvariousdata modalitiesandformats.Inordertotranslatesocio-technicalintocomparable

Fig.1. 971airportschosentobeanalyzed,placedonaworldmap

setsofnumericalfeatures,variouscircumstancesneedtobetakenintoaccount, suchasavailabilityofdata,methodsofmeasuringandquantifyingspecificcharacteristics,theircorrelations,andlevelofimportance.Inordertokeeptrackof changesandmakethedatabaseeasytonavigate,theSQLitedatabasewasbuilt withtheuseofDBBrowsersoftware.TheOSMqueries,theGeoDB-citiesAPI wereconnectedtothedatabasethroughPythonqueries,asseenintheattached GitLabrepository.Toaddrecordsandfeaturestothedatabase,outputsfrom varioussourceswereconvertedintothe.csvformat.ResultsofOpenStreetMap (OSM)andAPIquerieswereautomaticallywrittenintothedatabasedirectly.

4.1DataSources

OSM. InordertoextractdatafromOSM,Overpassturbowasused-awebbaseddataminingtool,designedtorunOSMAPIqueriesandpresentthemon amap.Sincedataneededtobeextractedforover900airports,multiplescripts werewritten,withtheuseoftheOverPyAPI,publishedundertheMITlicense [10].Adetaileddocumentationofthescriptsandqueriescanbefoundinthe attachedGitLabrepository.

OurAirports. OurAirportsisafreeandpublicservicethatmaintainsdata aboutairportsaroundtheworld.SimilarlytoOSM,itisrunbyvolunteersmemberscreaterecordsindividually-butatthesametimemuchoftheinformationcomesfromofficialgovernmentalinstitutionssuchastheU.S.Federal AviationAdministration[13].Inadditionfromexploringanonlineinteractive map-basedtool,userscanalsodownloaddailyupdatedfileswithdatarecordsof allairportsthatarepartoftheservice.Forthisresearch,datasetofallairports andrunwayswasused.

GlobalAirports. Themostcomprehensive,publiclyavailable,datasetaimed atprovidinginformationondisasterlogisticsiscalled Globalairports andwas publishedbytheHumanitarianDataservice[7].Officiallycoordinatedbythe WorldFoodProgramme,basedonopenlyavailabledatafromsourcessuchas OSMandOurAirports,italsocontainsinputsfrompartnersthoughtheLogistics ClusterandLogisticsCapacityAssessments[7].Eventhoughthedatasetis updated,accordingtoaWFPrepresentativeinterviewed,formanyplacesthe datahasnotbeencheckedsincetheoriginaluploadin2013.Furthermore,the datasetcontainsfairlybasicinformationonairports.Datapointspresentedin thetablearenotavailableforeveryairportintheset.

TheLogisticsPerformanceIndex. TheLogisticsPerformanceIndex(LPI) providesinformationonhoweasyordifficultitistotransportgoodsintheanalysedcountries.TheWorldBank,togetherwithvariouslogistics-relatedpartner organisationsconductsthesurveyeverytwoyears[1].Whileaimedatassessingthelogisticalcapacityinthecontextoftradeandmerchandise,someof theindicatorsarerelevantforhumanitarianlogistics,suchastheoneschosen tobeincludedinthisresearch:theassessmentofcustomsproceduresandthe assessmentofgeneralqualityoftradeandtransportrelatedinfrastructure.

TheINFORMRiskIndex. LedbytheEuropeanCommission,INFORM isaglobal,open-sourcedriskindexforhumanitariandisastersandcrises,that describesthreedimensions:hazard&exposure,vulnerabilityandlackofcoping capacities.Inadditiontobeingthequalificationcriteriaforthefinalairport database,partsoftheINFORMRiskindexwerealsousedtocharacterizeairports.

4.2ExtractingData

AirportSurroundings. TwostrategiesinOSMweretestedinordertoasses thesurroundingsofeachairport.First,the“landuse”tagwasexplored-all thenodescontaininginformationonthelandusewithin5kmradiusfromeach airportwereextracted.However,thisledtoinconsistentresults-visualvalidationofmultiplequeryoutputswasconductedanditledtoaconclusionthat buildings-relatednodesarehighlyoverrepresentedascomparedtofieldsorother unusedspaces.Therefore,formanyairports,theresultonlyshowedanumber ofbuildingswithinthatradius,andnoinformationdescribingtheemptyfields thatwerethetruedominantsurrounding.

Thesecondstrategy,whichledtomorerepresentativeresults,wasonebased onpurelythenumberofnodeswiththetag“building”.Theassumptionwasthat ifthebuildingsarewelltaggedinOSM,simplythenumberofthosenodeswithin theradiuswoulddescribehowdenselybuiltthesurroundingoftheairportis. Thelowerthenumberofbuildingsaround-themoreusefulspacefororganising humanitarianaid.Avisualvalidationofmultiplerecordswasconducted,with aspecialfocusontheoutliers-airportswithveryloworveryhighnumberof

buildingsaround.Thesurroundingsofsomeremoteairportswasunderrepresented,resultingin0buildingsreported.Whileitwasnottrue,thenumberof buildingswasverylittleandtheresultwasstilluseful.

AlternativeAirports.

Tofindandalternativeairport,wefocusedonthe surroundingswithina100kmradius.Unlikewithchoosingairportsforthemain database,withalternativeonestherewasnoexclusionofthosethataresmaller ordonothaveanIATAcode.Theassumptionwasthatanykindofairportwithin aclosevicinitytothemainonemightworkasasupportingspace,evenifnotfor landingthesamesizeofairplanes,butperhapsstorageandotherhumanitarian operations.SinceairportsarewelltaggedinOSM,thevalidationofresultswas positive-therewerenooverlookedairportsfound.However,dependingonthe qualityanddensityofroads,anairportwithin100kmradiusmightinfactbe manyhoursaway,whichwouldnotbeauseful alternative.Infutureresearchit isworthconsideringfindingamoreaccuratequalifyingfeaturethantheradius.

AlternativeSeaports.

Similarlytoalternativeairports,alternativeseaports wereinspectedwithinaradiusof100km.Vastmajorityofresultsshowed0 seaportsandthatwasvalidatedthoroughlyandresultedtobetrue.Validation wasalsoconductedforahighnumberofseaportscounted-forsome,thecounted resultswashigherthantheactualnumberofports,becauseofmultipletags withinthesameseaport.Itdidhoweverindicatethesizeoftheseaport-often thenodeswereindicatingmoreseaportterminalsorstoragefacilities.Giventhe smallnumberofrecordsthatindicatedseaportsatall,allresultshigherthan0 werevalidatedandmanuallycorrectedifneeded.

TourismVs.Industry.

Inordertoasseshowwellanairportisequippedto handleasuddeninfluxofcargohandlingandnotonlyagrowthinpassenger turnaround,itwasdecidedthatitcanbeassessedbythesurroundingofan airport.BasedontheinsightsfromtheinterviewwithChrisWeeksofGARD,it wasdeterminedthatairportsthataresituatedinmainlytouristicdestinations arelesslikelytohaveagoodcapacityforhandlingcargo.Therefore,foreach airporttheamountofnodestaggedas“industrial”and“tourismamenities”was calculated.Inordertoaccountforover/underrepresentationofcertainregions, aratiooftourismandindustryrelatedfacilitiesiscalculated-basedonthe assumptionthatiftheregionisunder/overrepresentedinOSM,itwillhappen forbothtypesofamenities.

Runways. Thenumberofrunwayswascalculatedforeachairportbycountingthenumberofnodes/ways/relationswitha“runway”tag.Alloutlierswere manuallyvalidated-thosethatresultedin0runwayswerecorrectedsincea functioningairportcannothave0runways.Thesamewasdoneforallrecords thatshowedmorethantworunwayssinceitisnotverycommonforairportsto havemultiplerunways,especiallyinremoteplaces,whichhappenstobewhere mostoftheairportsfromthedatabaseare.

CitiesandDistances. Inordertoasseshowdistantanairportisfromthe populationitmightbeservingwhenadisasterstrikes,threeclosestcitiesfor eachrecordwerefound,togetherwiththedirectdistance(notbyroad)and populationofeachcity.Forthispurpose,theGeoDB-citiesAPIwasused[11]. Basedonthecoordinatesofeachairportthethreeclosestcitieswithin100km, containingpopulationinformationwerechosen.Validationwasperformedfor anumberofrandomlychosenrecordsandoutliers,andmanuallycorrectedif needed.TheAPIworkswithGeoNamesandWikiData,whichsimilarlytoOSM areconsideredtrustworthysources,thankstotheusercommunityinputand validationscheme.

Population. Datagatheredtodescribesurroundingcitieswasusedtocalculate thegeneralpopulationaroundeachairport-asasummationofpopulationin allthreeclosestcitiesfoundbytheGeoDBcitiesAPI.

AirportArea. Inordertoassessthestoragecapacityaswellastheareaavailableforsettingupahumanitarianhub,theareaofeachairportwascalculated. InOSM,eachairportisnotonlyindicatedbyasinglenode,butbyarelation thatindicatesitsborders.Thisgeodatawasexportedandanalysedwiththe QGISsoftware[18].Thankstobuiltinfeatures,theareaofeachairportwas calculated.Validationwasconductedonarandomsampleofresultsandthe methodprovedtobeeffective.

4.3TheDatabase

Astheplanistocompareairportsbasedonnumericalfeatures,eachdata modalitywasturnedintoan understandable formformathematicalprocessing. Dependingonthemodalityofdata,variouspreprocessingmethodswereapplied, basedonseveralscientificsources[6, 8, 19, 20]andcanbeseeninAppendix2.The finallistofallairportsandcorrespondingfeatureswerebuiltintheDBBrowser andmadeavailablethroughtheGitLabdepository,bothasa.csvfileandan SQLitedatabase.Featuresselectedforeachairport,togetherwiththecorrespondingsource,preprocessingmethods,andadescriptionoftheirrelevancefor assessingdisasterpreparedness,arepresentedinTable 2.

5Limitations

Thequalitydatasourcesusedintheresearchcansometimesbecontested,as thelevelofdetailavailableforvariousairportsandtheirsurroundingswasnot alwaysequal,whichmayleadtoinaccurateresults.Thisisalsoaproblemwith officialsourceswidelyusedbythehumanitariancommunity,suchastheLogisticsCapacityAssessment.Intervieweesmentioned(Appendix1)theimportance ofaccesstodynamicdatathatdescribesthestateofeachairportanditssurroundingsataprecisemomentintime,afteradisasterstrikes,becausethestatic

Table2. Descriptionofthedatabase.

informationgatheredinassessmentsearliercanbeinaccuratethemomentadisasterstrikes.However,intervieweesinvolvedinpreparednessprogramsrather thanimmediateresponseoperationsunderlinedtheimportanceofbuildingcomprehensivedatasetswithstaticinformationtoassessbetterwhatcanbedone aheadofatragicevent.

Anotherchallengingfactoristheaccuracyofassumptionsmade–especially forassessingairportconnectivity.Asprovedbyhistoricaldisasters,theinability todistributehumanitarianrelieffromtheairporttothepopulationinneedcan underminetheairport’soperationsandpreparedness.Amoresophisticatedand accuratewayofquantifyingthelevelofconnectivitycouldbeusedinfuture research.

6DiscussionandConclusion

Thedatabasebuiltinthisresearchisavaluableresourceforfutureclustering analysisorfutureresearchrelatedtoairports’preparednessforhumanitariandisasters.Itcanbefurtheranalyzedinmoredetailedresearch,updatedaccordingly, andusedtoassessairports’venerabilityandpreparedness.Fromthescientific perspective,thisresearchprovesthattherearenowwaysofanalyzingcomplex, specificchallengeswithaglobaloverviewbasedonnumerouspubliclyavailable datasets.Italsoshowsthatscientistsneedtobeverycarefulwhenusingnot preciselyscientificsourcesandthatbuildingaspecific,tailoreddatabaseisa lengthy,challengingprocess.Nevertheless,itcanbeachievednotonlybyIT professionalsbutalsobymultidisciplinaryresearchers.

Thisresearchprovidedavaluableframeworkforapproachingcomplexsociotechnicalenvironmentsofairportsandtheirdisasterpreparedness,through buildingadatabasewithrelevantfeatures,basedoninterviewsandliterature review,usingonlypubliclyavailabledata,followedbyacomprehensivedata selection,collectionandpre-processing.Thechallengesandproblemsencounteredalongtheway,bothsolved,andunsolvedcanformavaluabletoolfor otherprofessionalsandscientistswillingtoconductsimilarresearch,notonly relatedtothedomainofaviationanddisasterpreparedness.

Anadditionalfindingisthatweidentifiedtheneedforacommon,reliable databasewithallrelevantinformationaboutairportsinvulnerablelocations. Theonedesignedduringthisresearchcouldformabaseforaonebuiltwith officialdatasourcesthatareotherwiseunavailabletothepublic.Withthat, however,comesthechallengeofsecurity;sincedetailedinformationaboutairportscanbeviewedassensitivedata,thereforeaccesstosuchadatabaseshould beregulated.

6.1FutureResearch

Theideasforfutureresearchcanbedividedintothreesections-(1)relatedto thedataminingandtheprocessofbuildingthedatabase,(2)datapre-processing andapplyinganunsupervisedclusteringalgorithmand(3)usingtheresultsin variouswaysinordertoimproveairports’disasterpreparedness.

Buildingadatabasesolelyfrompubliclyavailablesourceshassomedrawbacks,asdiscussedinSect. 5,suchaslimitedtrustworthinessandinabilityto retrievetheexacttypesofinformationthatareneededinordertodescribespecificfeatures.Inthefuture,itisworthconsideringbuildingasimilardatabase withdirectinvolvementoftheairportsthatarebeingdescribed–withtheuse ofsurveysandpossibleinvolvementofinternationalhumanitarianandaviation relatedorganisationssuchasACIorOCHA.Thiswouldallowforretrieving morespecificdata,uptodateinformation.Moreover,ifregularlyupdatedand maintained,itcouldbecomeausefulresourceforairportsthatthemselveswould liketoknowmoreaboutcapabilitiesofalternativeportsintheregion–notonly forresearchpurposes,butforoperationsonceadisasterstrikesandhelpfrom neighbouringportsisneeded.Otherscientistscouldalsousesuchadatabasefor variousadditionalanalyses,savingtimeforgatheringthedataandfocusingon whatcanbederivedfromit.

However,thedatabasethatwasbuiltinthisresearchisitselfavaluable resourceforperformingotherresearchrelatedtoairports’preparednessfor humanitariandisasters.Withadditionaliterationsofthedatapre-processing, thereisroomforgatheringinsightfulknowledgeonsimilaritiesbetweenairports,thatwouldformasolidbaseforestablishingcooperations.Inorderto achievethat,futureresearchshouldfocusonidentifyingthedominatingfeatures andadjustingthealgorithmaccordingly.Thiscouldrequiremoresophisticated methodsofdatapre-processingandautomatingtheprocessofanalysingresults, inordertoquicklypickupcombinationsoffeaturesthatcannotoffertrustworthy results.

Buildingpolicyadvicebasedonthedatabasecouldbeachievedbyidentifying airportsthatareespeciallyvulnerable,duetotheirintrinsicfeaturesandcapabilities.Thisprocesswouldhavetobeaccompaniedbyathoroughanalysisof historicaleventsthattookplaceatsimilarairports,andthelessonslearnedcould beusedforimprovingpreparednessofthosethatmightfacesimilarchallenges inthefuture,leadingtoachievingthefullpotentialofthisresearch.

AAppendix1

Fig.2. Processflowofdatamining.

BAppendix2

Table3. Affiliationofinterviewees

Interviewee Organisation

ChrisWeeks GARD

VirginieBohl OCHA,IMPACCTworkinggroup

ThomasRomig ACI

CAppendix3

DDataPre-processing

Inorderforairportstobecomparablefortheunsupervisedmachinelearning algorithms,thefeaturesthataredescribingthemneedtobeturnedintoan understandable formformathematicalprocessing.

Inthissection,thepre-processingoftext,categoricalandnumericalfeatures isdescribed.

D.1Emptyfields

Duetothefactthatvariousdatasourceswereused,therewasanumberof emptyfieldsforsomefeatures.Dependingonthefeature,theseemptyfields werefilledeitherwithzeroesorthemeanvalueofallexistingrecords.Missing fieldsinfeaturesdescribingwhethertherunwayislightedandwhetherthere wasaGARDtrainingconductedbefore,asitwasdecidedthatifthereisno informationavailable,itissafertoassumethenegativeoutcome.Theelevation, lengthoftherunway,widthoftherunwayandmissingINFORMandLPIrisks werereplacedwiththemeanvalues.

D.2Categoricaldata

Anumberoffeaturesinthefinaldatasetdescribeseachairportasamemberofacertaincategory.Forexample,the airporttype featurecategorises airportsinto smallairport,mediumairport,largeairport.Whileitisa clearandunderstandabledistinctionforahumaneye,themathematicalalgorithmsrequireanumericalexpression[15].AsproposedintheoriginalpublicationonSelfOrganisingMaps[20],thecategoricalfeaturewiththreevalueswas transformedintothreebinaryfeatures,withonequalto1,andallothersto0, foreachairport.AnexampleresultcanbeseeninTable 4.Toachievethatfor eachcategoricalfeature,theLabelBinarizerfunctionfromSciKit[15]wasused.

D.3Numericaldata

Itiscommonformanymachinelearningalgorithmstorequirestandardiseddata inputs,inordertoperformwell[15].Thisalsothecasewithunsupervisedlearningalgorithmusedinthisresearch-theSOM.Therearevariousmathematical transformationsthatcanhelptoachieveanormallydistributeddataanditis importanttochooseonethatfitsthetypeofdatathebest.Again,theSciKit documentation,supportedbyvariousscientificsources[6, 8, 19]andexperiments wasusedtochoosetherightapproach.

TheYeo-Johnsontransform[24]wasusedtochangethedistributionof numericaldata,sinceitwasoneofafewtransformationsthatcanbeapplied onnegativeandzerovalues,whichthedatasetcontained.Theeffectofthe transformationcanbeseeninFigs. 3 and 4.Whileitwasnotpossibletosuccessfullytransformallfeatures,especiallytheonesconsistingof0/1values,for mostfeaturestheimprovementisvisible.

Table4. Anexampleofencodingcategoricalfeatures

Fig.3. AnexampleofdatadistributionbeforetheYeo-Johnsontransform.Mostof thedatapointsareconcentratedaroundthelowervalues.ApplyingSOMdirectlyon anon-normallydistributeddatacouldleadtospecificfeaturesbeingoverrepresented, thereforethetransformationisneeded.

Fig.4. ExampleofdatadistributionaftertheYeo-Johnsontransform.Therangeof valueshaschanged,howevertherelationsbetweenspecificvaluesarekeptandthe distributionisnowclosertonormal.

References

1.Arvis,J.-F.,etal.:ConnectingtoCompete2018.Technicalreport,TheWorld Bank(2018)

2.Chen,N.,Chen,L.,Ma,Y.,Chen,A.:Regionaldisasterriskassessmentofchina basedonself-organizingmap:clustering,visualizationandranking.Int.J.Disaster RiskReduct. 33(2018),196–206(2019)

3.Choi,S.,Hanaoka,S.:Diagrammingdevelopmentforabasecampandstagingarea inahumanitarianlogisticsbaseairport.J.Human.Logist.SupplyChainManage. 7,06(2017)

4.DeutschePostDHLGroup:GoHelpProgram-DisasterPreparednessand Response.Technicalreport(2019)

5.DeutschePostDHLGroup.Disasterpreparedness-getairportsreadyfordisaster (2021)

6.Huilgol,P.:FeatureTransformationandScalingTechniquestoBoostYourModel Performance,August2020

7.HumanitarianDataExchange.Globalairports-HumanitarianDataExchange, January2019

8.Kikugawa,G.,Nishimura,Y.,Shimoyama,K.,Ohara,T.,Okabe,T.,Ohuchi,F.S.: Dataanalysisofmulti-dimensionalthermophysicalpropertiesofliquidsubstances basedonclusteringapproachofmachinelearning.Chem.Phys.Lett. 728,109–114 (2019)

9.Kraus,J.,Plos,V.,Vittek,P.:Thenewapproachtoairportemergencyplans.Int. J.Aeros.Mech.Eng. 8(8),2406–2409(2014)

10.MIT.PythonWrappertoaccesstheOverpassAPI,April2021

11.Mogley,M.:GeoDBCitiesAPIDocumentation(2017)

12.SaldanaOchoa,K.,Comes,T.:Amachinelearningapproachforrapiddisaster responsebasedonmulti-modaldata.Thecaseofhousingandshelterneeds(2021)

13.OurAirports.AboutOurAirports(2007)

14.Pandey,B.H.,Ventura,C.,RioFrio,P.,Pummell,J.,Dowling,S.:Development ofresponseplanofairportformegaearthquakesinNepal.In:NCEE2014–10th U.S.NationalConferenceonEarthquakeEngineering:FrontiersofEarthquake Engineering,January2014

15.Pedregosa,F.,etal.:Scikit-learn:machinelearninginPython.J.Mach.Learn. Res. 12,2825–2830(2011)

16.Polater,A.:Managingairportsinnon-aviationrelateddisasters:asystematicliteraturereview.Int.J.DisasterRiskReduct. 31,367–380(2018)

17.Polater,A.:Airports’roleaslogisticscentersinhumanitariansupplychains:asurge capacitymanagementperspective.J.AirTransp.Manage. 83,101765(2020)

18.QGISDevelopmentTeam.QGISGeographicInformationSystem.OpenSource GeospatialFoundation(2009)

19.Qian,J.,etal.:Introducingself-organizedmaps(SOM)asavisualizationtoolfor materialsresearchandeducation.ResultsMater. 4,100020(2019)

20.Ritter,H.,Kohonen,T.:Self-organizingsemanticmaps.Biol.Cybern. 61(4),241–254(1989)

21.Veatch,M.,Goentzel,J.:Feedingthebottleneck:airportcongestionduringrelief operations.J.Human.Logist.SupplyChainManage. 8(4),430–446(2018)

22.Walle,B.,Dugdale,J.:Informationmanagementandhumanitarianreliefcoordination:findingsfromtheHaitiearthquakeresponse.Int.J.Bus.Cont.RiskManage. 3,278–305(2012)

23.Warnier,M.,Alkema,V.,Comes,T.,VandeWalle,B.:Humanitarianaccess,interrupted:dynamicnearreal-timenetworkanalyticsandmappingforreachingcommunitiesindisaster-affectedcountries.ORSpect. 42(3),815–834(2020). https:// doi.org/10.1007/s00291-020-00582-0

24.Weisberg,S.:Yeo-Johnsonpowertransformations.Depart.Appl.Statist.Univ. Minnesota 2,1–4(2001)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.