ISO-S Material Guide

Page 1

ISO-S MATERIALS

SOLID SOLUTIONS FOR CHALLENGING APPLICATIONS


2


SOLID SUPPORT IN S-MATERIALS Seco dedicates extensive research and development to creating the solutions manufacturers need to effectively machine challenging ISO-S materials. We work closely with cooperative partners in industries such as aerospace, energy and medical to monitor trends, identify challenges and develop the tools needed to maximise productivity and performance in heat-resistant superalloys and titanium-based alloys. With 5,000 team members in over 75 countries, we offer a globally networked resource dedicated to solving your challenges and supporting your operations. When you work with Seco, you experience a true partnership based on trust, respect and communication. Our solutions extend well beyond the tools you rely on within your applications, as we work closely with your team to address and improve upon every aspect of your production. For over 80 years, Seco has developed the tools, processes and services that leading manufacturers have come to depend on for maximum performance. Whatever superalloy and titanium alloy challenges you encounter, our team is always nearby to help you overcome them through extensive expertise and high-quality products. Seco customers can also access the latest information regarding new prod­ ucts, machining data, manufacturing techniques and other developments for composite materials by visiting our website at WWW.SECOTOOLS.COM.

GENERAL

Exceptional machining ......... 39

Seco’s Business Services .......... 4 S-materials in more detail ....... 5

MARKET SEGMENTS

TOOL OFFERING HPM solutions ....................... 10 Jabro®-Solid2 solutions........... 16 HSM solutions ........................ 32 HFM solutions ....................... 34 HSS-CO solutions .................. 36

Orthopaedic solutions - Knee replacement components ...... 40 Femoral part........................... 40 Titanium tibial tray................ 42 Dental solutions - Implant components............................. 45 Crowns & bridges .................. 45

Aerospace solutions - Engine components ............................ 48 Mechanised Edge Profiling ................................. 48 Power generation solutions turbine power components.... 50 Rotor shafts............................. 50 Blades & impellers ................. 53

3


SECO’S BUSINESS SERVICES R&D

TESTING/ OPTIMISATION

TRAINING & EDUCATION

Seco’s research and development team incorporates the latest technologies into standard and special solid endmills to fulfill the needs of today’s manufacturers. S-materials form a key focus area for our R&D efforts.

With locations spanning the globe, Seco’s test centres, provide additional testing services for optimising customer processes. Each centre performs application simulations and houses advanced CNC machines for extensive testing. Seco collaborates closely with universities and research institutions to learn from each other and keep up with the latest technologies.

Available at our global technical centres or on-site at your own facility, Seco STEP provides training courses on every aspect of cutting for every level of expertise. Whether instructing apprentices on the basics of cutting processes or helping experts stay abreast of the latest technological innovations, Seco STEP is an invaluable re­source in maximising workforce knowledge.

4


S-MATERIALS IN MORE DETAIL Within the metal cutting industry, some of the most challenging workpiece materials to machine are heat resistant superalloys (HRSAs) and titanium alloys. Classified as ISO-S materials or simply S-materials, these alloys are mainly used for components that need high corrosion and creep resistance, as well as to perform with high strength at extreme temperatures. A high strength-to-weight ratio is another important feature that causes titanium to be selected instead of traditional metals. Components with these characteristics are required in products such as landing gear, jet engines, engine mounts, steam turbines, oil and gas parts and implants with biocompatibility requirements, such as knee, hip and dental replacements. As such, Seco’s solid milling department focuses strongly on aerospace, energy and medical applications, so as to support customers machining these challenging materials in the most effective and efficient way. Seco classifies the machinability of materials based on 5 important pro­p ­ erties: abrasiveness, ductility, strain hardening, thermal conductivity and hardness.

ABRASIVENESS is defined as variations in hardness caused by alloying elements that are able to form hard carbide, oxide and intermetallic particles. This results in excessive wear on the cutting edges. Some examples of highly abrasive materials are Ni- alloys and carbon fibre reinforced plastics. DUCTILITY, which results in adhesion and built-up edge, refers to a high elongation at fracture for a material. This is one of the key difficulties in machin­ ing aluminiums and titanium alloys. STRAIN HARDENING occurs when cutting hardens a surface in comparison to the bulk material. This is a well-known challenge to overcome when machining Ni-based alloys. THERMAL CONDUCTIVITY refers to heat conduction of the material. The lower the

thermal conductivity of a workpiece material, the more the heat will concentrate on the cutting edge, which results in excessive cutting edge temperatures.

HARDNESS is a material’s resistance to deformation. The higher the hardness, the greater the force needed to deform the material. High hardness results in high heat generation as well.

5


When all of these characteristics are considered together, a polar diagram can be created to provide an immediate view of the machinability of a workpiece material. As compared to a relatively easy-to-machine steel, both titanium and Inconel 718 have significant adhesiveness, lower thermal conductivity and greater strain hardening. These properties are displayed in the diagrams above, and they serve as challenges during cutting processes. Using ISO classification as a starting point, Seco begins with nine material groups which are further split into 54 subgroups to provide the best cutting data advice in the industry. One of these groups is called S-materials and consists of S1, S2, S3, S11, S12 & S13. The table below further explains these classifications. Super alloys & titaniums

Type

Reference material

S1

Iron-based superalloys

Discaloy

S2

Cobalt-based superalloys

Stellite 21

S3

Nickel-based alloys

Inconel 718

S11

Titanium, low-alloyed (α)

Ti

S12

Titanium, medium-alloyed (α+ß)

TiAl6V4

S13

Titanium, high-alloyed (near ß and ß)

Ti10V2Fe3Al

HRSA Within the group of superalloys, the key alloying elements are: • Nickel (Ni): Alloys based in this element have excellent high temperature properties. • Cobalt (Co), molybdenum (Mo) and wolfram (W) result in higher strength at higher temperatures. • Chromium (Cr), aluminium (Al) and silicon (Si) improve the oxidation strength. • Carbon (C): This element increases the creep strength.

6


S1 IN MORE DETAIL (FE ALLOYS) Iron-based alloys are evolved from austenitic stainless steels (Discaloy). Stainless steels should have at least 10% chromium content to achieve high resistance to corrosion and oxidation. Iron-based alloys can have up to 2025% chromium and/or nickel as an alloying element. These have the lowest hot strength properties of materials in Seco’s S-materials group. Machinabil­ ity of these materials is close to that of stainless steels. Some iron alloys can be highly ductile, while others can be precipitation hardened. Some can be better machined in the solution-treated condition, especially when com­ pared to a high tensile strength after the precipitation treatment. Others are easier to machine after precipitation treatment as they are less ductile in this state.

S2 IN MORE DETAIL (CO ALLOYS) Cobalt-based superalloys are chosen for their excellent corrosion resistance, which exceeds that of nickel-based alloys due to their high chromium content (Stellite 21). Combined with their biocompatibility, this resistance makes them a common choice for knee replacement and dental components. Their hot corrosion resistance allows them to be used in the hottest parts of aerospace engines and within the nuclear energy industry. Machin­ ability of cobalt-based superalloys is low and most of them are used in the solution-treated condition or even as cast.

S3 IN MORE DETAIL (NI ALLOYS) Nickel-based alloys are the most common of the superalloys (Inconel 718). They are difficult to machine due to low thermal conductivity, high hot strength and a tendency to strain harden. Most of these materials are precipitation hardened, resulting in good creep strength properties that makes them especially appropriate for gas turbines, jet engines, spacecraft and nuclear reactors. Nickel-based alloys can be heat treated in a variety of ways and therefore will vary widely in machinability. Different structures create different degrees of abrasiveness, resulting in variance in the tendency to cause built-up edge. The most common nickel-based superalloy is Inconel 718. HRSAs such as the nickel-based Inconel 738 and cobalt-based SFX414 were engineered to operate in temperatures ranging from 850 degrees to 1200 degrees Celsius. Some of the latest HRSAs, such as GTD 262 and Rene 108, are intended to perform at even higher gas temperatures. These new alloys present proportionately greater machining challenges, requiring cutting speeds to be significantly reduced.

TO BE ADVISED: 1. Use relatively large depths of cut with a reduced cutting distance or use constantly varying depths of cut to minimise notch wear caused by strain hardening. 2. Use positive geometries with PVD coatings, as this reduces pressure and breakage. 3. Relatively low cutting speeds with a relatively large feed per tooth to reduce heat generation and lower temperatures on the cutting edge. 4. Use high-pressure emulsion to control the temperature even more.

S11, S12 & S13 IN MORE DETAIL (TITANIUM) Titanium and titanium alloys are used extensively in the aerospace industry due to their high level of strength in relation to density. They are also commonly used for medical implants as they have an excellent biocompatibility. These materials can be classified in three groups: low-alloyed titaniums also known as α-alloys, medium-alloyed titaniums also known as α + β alloys and high-alloyed titaniums also known as near α + β alloys. The machinability decreases as one moves from α-alloys to near α + β alloys.

7


S11 IN MORE DETAIL The low-alloyed titanium materials group includes commercially pure (CP) titanium. Aluminium and vanadium in particular are used as alloying elements in this group, and these materials are used in applications requiring high creep strength. CP titaniums are also known as grades 1 - 4, 7 and 11. Grade 1 is the most ductile. Grade 4 has the highest tensile strength. Grade 7 is close to grade 2, and grade 11 is close to grade 1. The remaining grades are alloyed ones that were created to meet specific requirements in the areas of ductility, strength, hardness, electrical resistance, creep resistance and resistance to corrosion.

S12 IN MORE DETAIL The medium-alloyed titanium materials group includes Ti6Al4V, which is the most well-known alloy in the group and represents approximately half of all titanium alloys in terms of quantity produced. This group includes grade 5 and grade 23. Grade 23 is primarily used in aerospace and medical applications due to the superior damage tolerance it provides, and it is a high purity version of grade 5. Damage tolerance refers to a part‘s ability to sustain defects safely until repair can be effected. Some of these titanium alloys can be precipitation hardened.

S13 IN MORE DETAIL The high-alloyed titanium materials group includes alloys containing the elements vanadium (V), molybdenum (Mo) and niobium (Nb). These alloys are ideal for manufacturing forged parts for aerospace structural components. The more alloying elements included in the material, the lower its machinability. These materials can also be precipitation hardened to a higher tensile strength, making them even more difficult to machine. Developed in 2005, titanium 5553 provides an example of a near Ă&#x; alloy. Its name refers to its alloying elements, which include 5% aluminium, 5% molybdenum, 5% vanadium and 3% chromium. Titanium 5553 provides a high tensile strength of 1160 MPa, compared to 910 MPa for the reference material of Ti6Al4V. This higher tensile strength limits cutting speeds to levels 50% lower than those applied with Ti6Al4V.

TO BE ADVISED: 1. Due to the extreme low thermal conductivity, the use of high-pressure emulsion is advised. Oil mist is also very suitable, but not common due to safety concerns. 2. Cutting speeds are dependent on strategy, but are typically relatively low and vary from 50 m/min (conventional) to 150 m/min (high-speed or advanced roughing). 3. Due to the ductility combined with high chemical reactivity, positive geometries with tough cutting edges are recommended. AlTiN and AlCrN PVD coatings are both suitable for titanium applications and have proven success in this area.

8


JABRO® MACHINING STRATEGIES Machining Characteristics:

General Machining

Range:

Advanced Roughing

High-Speed Machining

JABRO-SOLID²

JABRO-SOLID²

JABRO-DIAMOND JABRO-TORNADO

ae = Dc ap = 1* Dc

ae ≤ 0,15*Dc ap = 2-4*Dc

ae < Dc ap = Dc

High-Performance Machining

High-Feed Machining

High-Speed Steel

Micro Machining

JABRO-HPM

JABRO-HFM

JABRO-HSS-Co

JABRO-MINI

ae = Dc ap = 1,5*Dc

ae = 0,5*Dc ap < rε1

ae = Dc ap = 1*Dc

ae ≤ Dc ap < Dc

vf (feed rate) N (RPM) Q (volume) F (cutting force) P (kW) ae * ap

Tool design

Features

Holder system

• Double-core designs for more stability • High helix angles for light cutting motion • Reinforced tips • Differential pitch for vibration-free cutting • Defined edge hone with PVD coatings

All

• Chip thinning geometry for optimised feed speeds • Neck reductions • Forces in axial plane, ideal for long overhang

• Double and conical core for additional stability and strength • Differential pitch for vibration-free cutting • Chip splitters for small and light chips, which aids with chip removal • Open frontal teeth design for controlled helical interpolation ramping

• Short cutting length • Non-cutting back end radii • Large core diameter • Neck reductions • Corner radii • PVD coatings • Diamond coated range for graphite applications

• Defined flutes for higher fz • Roughing profiles for reduced cutting forces • Differential pitch for vibration-free cutting • Curved helix for vibration-free cutting • Defined edge hone with polished PVD coatings

Weldon / Highprecision collet chucks

Shrinkfit / Highprecision collet chucks

Shrinkfit / HighWeldon/Safe-Lock™ precision collet chucks

• Variable face profile for vibration-free cuts • Polished flutes for optimised chip removal • Large diameter and lengths for high metal removal

Weldon

• Standard cutters from Dc 0.1 to 2 mm • Specific geometries for hard and soft materials, universal and graphite • Additional strength due to tapered neck designs • Thin coatings for maintaining sharp cutting edge conditions • Diamond-coated tools for abrasive resistance in graphite applications

Shrinkfit / Highprecision collet chucks

9


10


HIGH PERFORMANCE MACHINING

HIGH PERFORMANCE MACHINING OF Ti-ALLOYS JHP770

HIGH PERFORMANCE MACHINING OF Ni-ALLOYS JHP780

FEATURES:

FEATURES:

• Differential tooth pitch • Optimised helix and rake angle • Internal coolant channel • zn = 4 or 5 from Ø 16 • Reinforced frontal teeth with aero radii • Radial relief with edge hone • Defined flute cavity shape • Neck reductions • SIRA coating (Titanium free) preventing chemical inter ference (AlCrN polished) • Cylindrical, Weldon and Safelock available

• Optimised helix and rake angle • Double core design • MEGA-64 coating (AlTiN polished) • Reinforced frontal teeth with aero radii • Defined tooth pitch • Defined flute cavity shape • Steep angular relief with edge hone for friction-free cuts • Neck reduction

11


JHP770

Tolerances: dmm=h5 Dc=-e7 re1=+/-0,02 mm

E

CASE STUDY JABRO JHP770 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium Hermle C30U Emulsion Slotting HSK-63/ Weldon JHP770100E2R40.3Z4A-SIRA

Cutting data

N

vc

fz

Metric

1019 rpm

70 m/min

0.03 mm

zn

ap

ae

vf

4 20 mm 10 mm 3819 mm/min Results: No vibrations, nice sound. Excellent chip evacuation.

CASE STUDY JABRO JHP770 TITANIUM MACHINING Material: Machine: Lubrication: Operation:

Ti6Al4V Hermle C42V Internal emulsion Slotting/ (side-roughing) helical interpolation

Holder: Tool:

HSK-63/ Weldon JHP770100E2R050.3Z4A-SIRA

Cutting data

N

vc

fz

Metric

2550 rpm

80 m/min

0,05 mm

zn

ap

ae

vf

4 16 mm 10 mm 510 mm/min Results: Reliable profile slotting without breakage. Ramp angles applicable up to 30 degrees with internal coolant.

CASE STUDY JABRO JHP770 TITANIUM MACHINING (HOUSING FLANGED BALL VALVE) Material: Machine: Lubrication: Operation: Tool:

Ti6AIV4 (SMG22) DMG NLX1500 (lathe spindle motor) Emulsion (external) Side milling roughing & finishing JHP770060E2R030.0Z4A-SIRA

Cutting data

N

vc

fz

Metric

3200 rpm

60 m/min

0.024 mm

zn

ap

ae

vf

4 9 mm 0.3 mm 300 mm/min Results: Compared to old process, 300 pcs were machined in 1 min 20 sec, whereas old process with competitor tools only created 100 pcs in 5 min 30 sec.

12


JABRO – JHP770 – CUTTING DATA JHP770 SLOTTING (METRIC) SMG

fz ap x Dc

Vc

6

8

10

12

14

16

20

25

1,0

0,030

0,040

0,050

0,060

0,065

0,075

0,085

0,095

110 (95-120)

S11

E

S12

E

1,0

0,030

0,040

0,050

0,060

0,065

0,075

0,085

0,095

85 (75-95)

S13

E

0,85

0,026

0,036

0,044

0,050

0,060

0,065

0,075

0,085

65 (60-75)

JHP770 SLOTTING zn=5 (METRIC) SMG

fz ap x Dc

Vc

16

20

25

1,0

0,075

0,085

0,095

100 (85-110)

S11

E

S12

E

1,0

0,075

0,085

0,095

75 (65-85)

S13

E

0,85

0,065

0,075

0,085

60 (55-70)

JHP770 SLOTTING zn=5 INTERNAL COOLANT (METRIC) SMG

fz ap x Dc

6

8

10

12

14

16

20

25

Vc

S11

E

1,6

0,030

0,040

0,050

0,060

0,065

0,075

0,085

0,095

110 (85-110)

S12

E

1,6

0,030

0,040

0,050

0,060

0,065

0,075

0,085

0,095

75 (65-85)

S13

E

1,4

0,026

0,036

0,044

0,050

0,060

0,065

0,075

0,085

60 (55-70)

JHP770 SIDE MILLING ae /Dc=0,4 (METRIC) SMG

fz ap x Dc

6

8

10

12

14

16

20

25

Vc

S11

E

1,8

0,030

0,040

0,050

0,060

0,070

0,075

0,085

0,10

135 (115-150)

S12

E

1,8

0,030

0,040

0,050

0,060

0,070

0,075

0,085

0,10

100 (90-115)

S13

E

1,8

0,026

0,036

0,044

0,055

0,060

0,065

0,075

0,085

80 (70-90)

JHP770 SIDE MILLING zn=5 (METRIC) SMG

fz ap x Dc

16

20

25

Vc

S11

E

1,8

0,075

0,085

0,10

120 (105-135)

S12

E

1,8

0,075

0,085

0,10

95 (80-105)

S13

E

1,8

0,065

0,075

0,085

75 (65-85)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

13


JHP780

Tolerances: dmm=h5 Dc=-e7 re1=+/-0,02 mm

CASE STUDY JABRO JHP780 NI-ALLOY EXAMPLE Material:

Inconel 625

Machine: Lubrication: Operation: Holder: Tool:

SAMU External Side milling finishing HSK-63/ Weldon JHP780160E2R040.Z4-MEGA64

Cutting data

N

vc

fz

Metric

3183 rpm

60 m/min

0,024 mm

zn

ap

ae

vf

4 9 mm 0,3 mm 300 mm/min Results: Tool life = 50 min with 25% more productivity compared to former competitor tool.

CASE STUDY JABRO JHP780 INCONEL MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Inconel 718 aged Modig 7200 Cimcool cimperial 821 7% Side milling finishing Fahrion collet chuck JS554100R050Z4.0-SIRON-A

Cutting data

JHP780

N

vc

fz

Metric

1273 rpm

40 m/min

0,06 mm

zn

ap

ae

vf

4 6 mm 1 mm 305 mm/min Results: Tool wear = JHP780 after 50 min (left image), JS554 after 25 min. (right image).

CASE STUDY JABRO JHP780 NI-ALLOY EXAMPLE Material: Machine: Lubrication: Operation: Holder: Tool:

Inconel 625 SAMU External Side milling finishing HSK-63/ Weldon JHP780160E2R040.Z4-MEGA64

Cutting data

N

vc

fz

Metric

3200 rpm

60 m/min

0,024 mm

zn

ap

ae

vf

4 9 mm 0,3 mm 300 mm/min Results: Superior finish quality with surface roughness value of (Ra < 0,5 Âľm)

14

JS554


JABRO – JHP780 – CUTTING DATA JHP780 SLOTTING (METRIC) SMG

fz ap x Dc

6

8

10

12

14

16

20

25

Vc

S1

E

0,80

0,018

0,024

0,030

0,036

0,040

0,044

0,050

0,055

38 (35-42)

S2

E

0,80

0,018

0,024

0,030

0,036

0,040

0,044

0,050

0,055

31 (28-34)

S3

E

0,60

0,018

0,024

0,030

0,036

0,040

0,044

0,050

0,055

25 (28-22)

JHP780 SIDE MILLING ae /Dc=0,3 (METRIC) SMG

fz ap x Dc

6

8

10

12

14

16

20

25

Vc

S1

E

1,0

0,020

0,026

0,032

0,038

0,044

0,048

0,055

0,065

50 (46-55)

S2

E

1,0

0,020

0,026

0,032

0,038

0,044

0,048

0,055

0,065

41 (37-45)

S3

E

0,8

0,020

0,026

0,032

0,038

0,044

0,048

0,055

0,065

32 (36-28)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

15


JABRO-SOLID2

GENERAL MACHINING JS553 & JS554 FEATURES: • Neck reductions • Double core • Differential pitch • Reinforced frontal teeth design • Sharp corner/ chamfer and aero radi • Polished coating SIRA/ SIRON-A (AlCRN) • Radial relief with edge preparation

ADVANCED MACHINING JS554-2C & 3C CHIPSPLITTER CUTTER COMMON FEATURES: • Chipsplitter for small and light chips • Open frontal teeth design for controlled helical interpolation ramping

FEATURES JS554-2C: • Cutting depths applicable up to 2,5 * Dc • Conical core for additional stability and strength • 4-degree front teeth back taper for improved performance in helical interpolation ramping

FEATURES JS554-3C: • Cutting depths applicable in between 3 * Dc to 4 * Dc • Double core for additional stability and strength

16


GENERAL MACHINING MULTIFLUTE JS520

SINGLE CUT HIGH WALL FINISHING JS522

DEBURRING & CHAMFERING JS506 & JS509

FEATURES:

FEATURES:

FEATURES:

• Unique NXT coating (AITiN) • Smooth cuts with 45-degree helix • Differential pitch • Reinforced frontal teeth design & chamfer • 5-8 flutes • Radial relief with edge preparation • Choice of number of flutes per diameter Dc

• 40-degree helix with 2 flutes for reduced forces and smooth cuts • Up to 5 * Dc depth of cut • MEGA-64 polished coating (AlTiN) • Guiding land for vibration- free cutting • Predefined taper for wall perpendicularity (tolerance 5 µm)

• Differential pitch for higher speeds • Open-tip design for optimum chip evacuation • High quality grade & SIRA polished coating (AlCrN)

17


Tolerances: dmm = h5

JS553

JS553 Dc= e7 re1 = Âą0.02 mm

CASE STUDY JABRO JS553 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool: Cutting data

Ti6AI4V Hermle C30 3 axis No Slot milling HSK-A Shrinkfit JS553100Z3.3-SIRON-A N vc Metric 1910 rpm 60 m/min

fz 0.05 mm

ap ae vf zn 4 10 mm 10 mm 382 mm/min Results: Tool stopped after 2 layers = 12,8 m: 33 min 30 sec. Reliable performance in slotting machining method with good chip flow.

CASE STUDY JABRO JS553 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool: Cutting data

Ti6AI4V Hermle C30 3 axis No Side milling HSK-A Shrinkfit JS553100Z3.3-SIRON-A N vc Metric 1910 rpm 60 m/min

fz 0.05 mm

ap ae vf zn 4 10 mm 3 mm 382 mm/min Results: Tool stopped after 2 layers = 12,8 m: 33 min 30 sec. Reliable performance in side roughing with good chip flow.

18


JABRO – JS553 – CUTTING DATA JS553 SLOTTING (METRIC) SMG

fz ap x Dc

2

3

4

5

6

8

10

12

14

16

20

25

Vc

S1

E

0,40

0,0065

0,0095

0,013

0,016

0,019

0,026

0,032

0,038

0,044

0,048

0,055

0,060

40 (30-50)

S2

E

0,40

0,0065

0,0095

0,013

0,016

0,019

0,026

0,032

0,038

0,044

0,048

0,055

0,060

40 (30-50)

S3

E

0,40

0,0060

0,0090

0,012

0,015

0,018

0,024

0,030

0,036

0,040

0,044

0,050

0,055

25 (15-35)

S11

E

1,0

0,012

0,018

0,024

0,030

0,036

0,048

0,060

0,070

0,080

0,090

0,10

0,11

85 (60-110)

S12

E

1,0

0,012

0,018

0,024

0,030

0,036

0,048

0,060

0,070

0,080

0,090

0,10

0,11

65 (45-85)

S13

E

0,85

0,011

0,016

0,022

0,026

0,032

0,042

0,055

0,060

0,070

0,075

0,090

0,10

55 (38-70)

JS553 SIDE MILLING ae /Dc=0,4 (METRIC) SMG

fz ap x Dc

S11

E

1,0

Vc

2

3

4

5

6

8

10

12

14

16

20

25

0,012

0,018

0,024

0,030

0,036

0,050

0,060

0,070

0,080

0,090

0,10

0,12

110 (80-140)

S12

E

1,0

0,012

0,018

0,024

0,030

0,036

0,050

0,060

0,070

0,080

0,090

0,10

0,12

85 (60-110)

S13

E

0,85

0,011

0,016

0,022

0,026

0,032

0,042

0,055

0,065

0,070

0,080

0,090

0,10

65 (47-85)

JS553 SIDE MILLING ae /Dc=0,2 (METRIC) SMG

fz ap x Dc

2

3

4

5

6

8

10

12

14

16

20

25

Vc

S1

E

0,60

0,0080

0,012

0,016

0,020

0,024

0,032

0,040

0,048

0,055

0,060

0,070

0,075

55 (41-70)

S2

E

0,60

0,0080

0,012

0,016

0,020

0,024

0,032

0,040

0,048

0,055

0,060

0,070

0,075

55 (41-70)

S3

E

0,60

0,0075

0,011

0,015

0,019

0,022

0,030

0,038

0,044

0,050

0,055

0,065

0,070

35 (21-48)

JS553 SLOTTING (INCH) SMG

fz ap /Dc

Vc

1/8

3/16

1/4

5/16

3/8

1/2

5/8

3/4

1

0.0010

0.0012

0.0016

0.0019

0.0022

0.0024

130 (100-165)

S1

E

0.36

0.00040

0.00060

0.00080

S2

E

0.36

0.00040

0.00060

0.00080

0.0010

0.0012

0.0016

0.0019

0.0022

0.0024

130 (100-165

S3

E

0.36

0.00038

0.00055

0.00075

0.00095

0.0011

0.0015

0.0017

0.0020

0.0024

85 (50-115)

S11

E

0.95

0.00075

0.0011

0.0015

0.0019

0.0022

0.0030

0.0036

0.0040

0.0048

290 (210-375)

S12

E

0.95

0.00075

0.0011

0.0015

0.0019

0.0022

0.0030

0.0036

0.0040

0.0048

225 (160-290)

S13

E

0.95

0.00065

0.0010

0.0013

0.0017

0,0020

0.0026

0.0030

0.0034

0.0040

180 (125-230)

JS553 SIDE MILLING ae /Dc=0.4 (INCH) SMG

fz ap / Dc

1/8

3/16

1/4

5/16

3/8

1/2

5/8

3/4

1

Vc

S11

E

0.95

0.00075

0.0012

0.0015

0.0019

0.0024

0.0030

0.0036

0.0040

0.0048

360 (255-460)

S12

E

0.95

0.00075

0.0012

0.0015

0.0019

0.0024

0.0030

0.0036

0.0040

0.0048

275 (195-355)

S13

E

0.75

0.00065

0.0010

0.0013

0.0017

0.0020

0.0026

0.0032

0.0036

0.0040

225 (160-285)

3/4

1

JS553 SIDE MILLING ae /Dc=0.2 (INCH) SMG

fz ap / Dc

1/8

3/16

1/4

5/16

3/8

1/2

5/8

Vc

S1

E

0.36

0.00050

0.00075

0.0010

0.0013

0.0015

0.0020

0.0024

0.0026

0.0032

185 (140-230)

S2

E

0.36

0.00050

0.00075

0.0010

0.0013

0.0015

0.0020

0.0024

0.0026

0.0032

185 (140-230)

S3

E

0.36

0.00048

0.00070

0.00095

0.0012

0.0014

0.0018

0.0022

0.0024

0.0030

115 (70-160)

SMG = Seco Material Group Coolant: A = air

D = dry E = emulsion M = mist spray

vc = m/min fz = mm ap (mm) /Dc (mm) = factor

ae (mm)/Dc (mm) = factor All cuting data are target values

19


Tolerances: dmm = h5

JS554

JS554 Dc= e7 re1 = Âą0.02 mm

CASE STUDY JABRO JS554 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium 31 (R53532) HAAS Emulsion Pocketing BT40/ Weldon JS554080R050z4.3-SIRON-A

Cutting data

N

vc

fz

Metric

3382 rpm

85 m/min

0.05 mm

zn

ap

ae

vf

4 4 mm 0,8 mm 500 mm/min Results: 8.2 min time in cut, tool life = 2 hrs 25 min.

CASE STUDY JABRO JS554 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium 31 (R53532) HAAS Emulsion Profile slotting BT40/ Weldon JS554080R050z4.3-SIRON-A

Cutting data

N

vc

fz

Metric

2700 rpm

68 m/min

0.06 mm

zn

ap

ae

vf

4 4 mm 8 mm 351 mm/min Results: 6.3 min time in cut, tool life = 2 hrs 25 min.

20


JABRO – JS554 – CUTTING DATA JS554 SLOTTING (METRIC) SMG

fz ap x Dc

3

4

5

6

8

10

12

16

20

25

Vc

S1

E

0,40

0,0095

0,013

0,016

0,019

0,026

0,032

0,038

0,048

0,055

0,060

40 (30-50)

S2

E

0,40

0,0095

0,013

0,016

0,019

0,026

0,032

0,038

0,048

0,055

0,060

40 (30-50)

S3

E

0,40

0,0090

0,012

0,015

0,018

0,024

0,030

0,036

0,044

0,050

0,055

25 (15-35)

S11

E

1,0

0,018

0,024

0,030

0,036

0,048

0,060

0,070

0,090

0,10

0,11

85 (60-110)

S12

E

1,0

0,018

0,024

0,030

0,036

0,048

0,060

0,070

0,090

0,10

0,11

65 (55-75)

S13

E

0,85

0,016

0,022

0,026

0,032

0,042

0,055

0,060

0,075

0,090

0,10

50 (44-60)

JS554 SIDE MILLING ROUGHING ae /Dc=0,4 (METRIC) SMG

fz ap x Dc

Vc

3

4

5

6

8

10

12

16

20

25

1,0

0,018

0,024

0,030

0,036

0,050

0,060

0,070

0,090

0,10

0,12

105 (90-120)

S11

E

S12

E

1,0

0,018

0,024

0,030

0,036

0,050

0,060

0,070

0,090

0,10

0,12

80 (70-90)

S13

E

0,85

0,016

0,022

0,026

0,032

0,042

0,055

0,065

0,080

0,090

0,10

65 (55-75)

JS554 SLOTTING (INCH) SMG

fz ap /Dc

S1

E

0.36

Vc

1/4

5/16

3/8

1/2

5/8

3/4

1

0.00080

0.0010

0.0012

0.0016

0.0019

0.0022

0.0024

125 (95-155)

S2

E

0.36

0.00080

0.0010

0.0012

0.0016

0.0019

0.0022

0.0024

125 (95-155

S3

E

0.36

0.00075

0.00095

0.0011

0.0015

0.0017

0.0020

0.0024

80 (47-110)

S11

E

0.95

0.0015

0.0019

0.0022

0.0030

0.0036

0.0040

0.0048

260 (225-295)

S12

E

0.95

0.0015

0.0019

0.0022

0.0030

0.0036

0.0040

0.0048

200 (170-230)

S13

E

0.80

0.0013

0.0017

0,0020

0.0026

0.0030

0.0034

0.0040

160 (140-185)

JS554 SIDE MILLING ROUGHING ae /Dc=0.4 (INCH) SMG ap / Dc

1/4

5/16

3/8

1/2

5/8

3/4

1

Vc

S11

E

0.95

0.0015

0.0019

0.0024

0.0030

0.0036

0.0040

0.0048

325 (280-375)

S12

E

0.95

0.0015

0.0019

0.0024

0.0030

0.0036

0.0040

0.0048

250 (215-285)

S13

E

0.80

0.0013

0.0017

0.0020

0.0026

0.0032

0.0036

0.0040

200 (175-230)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

21


Tolerances: dmm = h5

JS554-2C Dc= e7 re1 = ±0.02 mm

D

F

CASE STUDY JABRO JS554-2C TITANIUM EXAMPLE Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AI4V Mori Seiki Emulsion Helical interpolation 2° ramp BT40/ Weldon JS554080D2C.3Z4C-SIRA

Cutting data

N

vc

fz

Metric

4775 rpm

120 m/min

0.65 mm

zn

ap

ae

vf

4 0,5 mm 7 mm 1241 mm/min Results: Test ran file with no issues, good sound and nice chips. No wear, but tool did have 1 chip at 15% ae.

CASE STUDY JABRO JS554-2C TITANIUM EXAMPLE Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AI4V Mori Seiki Emulsion Side roughing BT40/ Weldon JS554080D2C.3Z4C-SIRA

Cutting data

N

vc

fz

Metric

5970 rpm

150 m/min

0.08 mm

zn

ap

ae

vf

4 16 mm 0,8 mm 1910 mm/min Results: Max ae 15% with good performance and chip flow.

22


JABRO – JS554-2C– CUTTING DATA JS554-2C SIRA ADVANCED ROUGHING ae /Dc=0,05 (METRIC) SMG

fz ap x Dc

4

5

6

8

10

12

16

20

Vc

S1

E

2,0

0,030

0,038

0,046

0,060

0,075

0,090

0,11

0,13

85 (70-95)

S2

E

2,0

0,030

0,038

0,046

0,060

0,075

0,090

0,11

0,13

65 (60-75)

S3

E

2,0

0,028

0,036

0,042

0,055

0,070

0,085

0,10

0,12

49 (44-60)

JS554-2C SIRA ADVANCED ROUGHING ae /Dc=0,10 (METRIC) SMG

fz ap x Dc

4

5

6

8

10

12

16

20

Vc

S11

E

2,0

0,030

0,036

0,036

0,044

0,060

0,085

0,11

0,12

85 (80-105)

S12

E

2,0

0,030

0,030

0,036

0,044

0,060

0,085

0,11

0,12

125 (100-150)

S13

E

2,0

0,026

0,026

0,032

0,038

0,050

0,075

0,095

0,11

100 (80-115)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

23


Tolerances: dmm = h5

JS554-3C Dc= e7 re1 = Âą0.02 mm

CASE STUDY JABRO JS554-3C TITANIUM EXAMPLE Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AI4V Mori Seiki VMC SVD 503 Emulsion Advanced roughing BT40 Shrinkfit JS554080D3C.0Z4C-SIRA

Cutting data

N

vc

fz

Metric

5968 rpm

150 m/min

0.05 mm

zn

ap

ae

vf

4 19 mm 0,8 mm 1194 mm/min Results: Reliable roughing of complex workshapes with long tool life.

24


JABRO – JS554-3C– CUTTING DATA JS554-3C ADVANCED ROUGHING ae /Dc=0,05 (METRIC) SMG

fz ap x Dc

6

8

10

12

16

20

25

Vc

S1

E

3,5

0,046

0,060

0,075

0,090

0,11

0,13

0,15

48 (40-70)

S2

E

3,5

0,046

0,060

0,075

0,090

0,11

0,13

0,15

48 (40-70)

S3

E

3,5

0,042

0,055

0,070

0,085

0,11

0,12

0,14

24 (20-36)

S11

E

3,5

0,036

0,046

0,060

0,070

0,085

0,10

0,11

190 (160-285)

S12

E

3,5

0,036

0,046

0,060

0,070

0,085

0,10

0,11

145 (125-220)

S13

E

3,5

0,030

0,040

0,050

0,060

0,075

0,085

0,10

115 (100-175)

JS554-3C ADVANCED ROUGHING ae /Dc=0.05 (INCH) SMG

fz ap /Dc

1/4

5/16

3/8

1/2

5/8

3/4

1

Vc

S1

E

3.5

0.0022

0.0032

0.0044

0.0016

0.0050

0.0055

0.0065

160 (135-240)

S2

E

3.5

0.0022

0.0032

0.0044

0.0016

0.0050

0.0055

0.0065

160 (135-240

S3

E

3.5

0.0020

0.0030

0.0040

0.0015

0.0048

0.0050

0.0060

80 (70-120)

S11

E

3.5

0.0017

0.0024

0.0032

0.0030

0.0038

0.0044

0.0050

650 (550-970)

S12

E

3.5

0.0017

0.0024

0.0032

0.0030

0.0038

0.0044

0.0050

500 (420-750)

S13

E

3.5

0.0014

0.0022

0,0020

0.0028

0.0034

0.0038

0.0044

395 (330-590)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

25


Tolerances: dmm = h5

JS520 Dc= e7

CASE STUDY JABRO JS520 WASPALOY CASING MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Waspaloy casing (machining scallops) Okuma Emulsion Side milling roughing BT-50/ Weldon JS520140D2C.3Z6-NXT

Cutting data

N

vc

fz

Metric

796 rpm

35 m/min

0.085 mm

zn

ap

ae

vf

6 8.5 & 9.5 mm varying 405,96 mm/min Results: Toollife: one cutter used for bottom and upper flange. Two areas of the cutting edge are applied. One cutter used to finish complete component.

CASE STUDY JABRO JS520 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium Mori Seiki VMD SVD503 Emulsion Advanced roughing (EDGECAM Waveform) EPB5600 (reinforced Shrinkfit) JS520050F3C.0Z5-NXT

Cutting data

N

vc

fz

Metric

9549 rpm

150 m/min

0.04 mm

zn

ap

ae

vf

5 19 mm 0,5 mm 1909 mm/min Results: Controlled roughing of titanium alloys with cutting depth of > 3.5 * Dc.

26


JABRO – JS520 – CUTTING DATA JS520 SIDE MILLING FINISHING (METRIC) SMG

fz ap x Dc

4

5

6

8

10

12

14

16

20

25

Vc

S1

E/M/A

2,0

0,048

0,060

0,070

0,095

0,12

0,14

0,16

0,18

0,20

0,22

65 (55-75)

S2

E/M/A

2,0

0,048

0,060

0,070

0,095

0,12

0,14

0,16

0,18

0,20

0,22

65 (55-75)

S3

E/M/A

2,0

0,044

0,055

0,065

0,090

0,11

0,13

0,15

0,16

0,19

0,22

44 (33-55)

S11

E/M/A

2,0

0,055

0,070

0,085

0,11

0,14

0,17

0,19

0,20

0,24

0,28

135 (115-150)

S12

E/M/A

2,0

0,055

0,070

0,085

0,11

0,14

0,17

0,19

0,20

0,24

0,28

100 (90-115)

S13

E/M/A

2,0

0,050

0,060

0,075

0,10

0,12

0,15

0,17

0,18

0,20

0,24

80 (70-90)

JS520 SIDE MILLING ROUGHING ae /Dc=0,1 (METRIC) SMG

fz ap x Dc

Vc

4

5

6

8

10

12

14

16

20

25

0,10

0,12

0,13

55 (48-65)

S1

E/M/A

0,11

0,028

0,034

0,042

0,055

0,070

0,080

0,090

S2

E/M/A

0,11

0,028

0,034

0,042

0,055

0,070

0,080

0,090

0,10

0,12

0,13

55 (48-65)

S3

E/M/A

0,11

0,026

0,032

0,038

0,050

0,065

0,075

0,085

0,095

0,11

0,12

39 (29-48)

S11

E/M/A

0,44

0,032

0,040

0,048

0,065

0,050

0,095

0,11

0,12

0,14

0,16

115 (100-130)

S12

E/M/A

0,44

0,032

0,040

0,048

0,065

0,065

0,095

0,11

0,12

0,14

0,16

90 (80-100)

S13

E/M/A

0,38

0,028

0,036

0,042

0,055

0,065

0,085

0,095

0,10

0,12

0,14

70 (60-80)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

27


JS522

Tolerances: Run-out< Ă˜6, 8 <0,01, 10,12 <0,015, 16-32 <0,02 dmm=h5 Dc=-0,02/-0,04 mm re1=0.1+0,1 re1=0,5+/-0,03 re1=3,1+/-0,05 re1=4+/-0,05

CASE STUDY JABRO JS522 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium Mitsui Seiki Emulsion Side milling finishing BT50 Collet JS522250R050Z2.0-MEGA-64

Cutting data

N

vc

fz

Metric

1019 rpm

80 m/min

0.35 mm

zn

ap

ae

vf

2 85-90 mm 0,3 mm 713 mm/min Results: Tool life = 60 min, cutting speed = 80 m/min.

CASE STUDY JABRO JS522 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium 17 Mitsui Seiki Emulsion Side milling finishing BT50 Collet JS522320R050Z2.0-MEGA-64

Cutting data

N

vc

fz

Metric

348 rpm

35 m/min

0.5 mm

zn

ap

ae

vf

2 130-150 mm 0,3 mm 348 mm/min Results: Jabro cutter saved 67 hrs of machine time. Improved surface finish due to vibration-free cut. Tool life = 38 parts.

28


JABRO – JS522 – CUTTING DATA JS522 SIDE MILLING FINISHING ae /Dc=0,02 (METRIC) SMG

fz ap x Dc

6

8

10

12

16

20

25

32

Vc

S1

E/M/A

4,0

0,030

0,040

0,050

0,060

0,080

0,10

0,12

0,16

55 (43-65)

S2

E/M/A

4,0

0,030

0,040

0,050

0,060

0,080

0,10

0,12

0,16

55 (43-65)

S3

E/M/A

4,0

0,030

0,040

0,050

0,060

0,080

0,10

0,12

0,16

43 (32-43)

S11

E/M/A

4,0

0,050

0,070

0,085

0,10

0,13

0,15

0,17

0,19

150 (120-180)

S12

E/M/A

4,0

0,050

0,070

0,085

0,10

0,13

0,15

0,17

0,19

115 (95-140)

S13

E/M/A

4,0

0,046

0,060

0,075

0,090

0,11

0,13

0,14

0,16

90 (75-110)

JS522 SIDE MILLING SEMI FINISHING ae /Dc=0,05 (METRIC) SMG

fz ap x Dc

6

8

10

12

16

20

25

32

Vc

S11

E/M/A

4,0

0,032

0,044

0,055

0,065

0,080

0,095

0,10

0,12

135 (110-160)

S12

E/M/A

4,0

0,032

0,044

0,055

0,065

0,080

0,095

0,10

0,12

105 (85-125)

S13

E/M/A

4,0

0,028

0,038

0,048

0,055

0,070

0,080

0,090

0,10

80 (65-100)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

29


Tolerances: dmm = h5

JS506

JS509

SIG= ± 0,5°

CASE STUDY JABRO JS506 TITANIUM MACHINING Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V 60˚ chamfering JS506060N2CZ4.0-SIRA 1,0 min N Metric 6000 rev/ rpm fz 0,02 mm/ rev Average tool life = 120 pcs (120 min)

vc 113 m/min vf 120 mm/min

CASE STUDY JABRO JS509 TITANIUM MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Titanium 6Al4V Mori Seiki VMC SVD 503 Emulsion Chamfering logo profile E34145600012130 JS509120N2CZ4.0-SIRA

Cutting data

N

vc

fz

Metric

2652 rpm

100 m/min

0.10 mm

zn

ap

ae

vf

4 0,5 mm 0,5 mm 1061 mm/min Results: Burr-free edge profiling with high cutting speed.

30


JABRO – JS506 AND JS509 – CUTTING DATA JS506 CHAMFERING ae /Dc=0,1 (METRIC) SMG

fz ap x Dc

3

4

6

8

10

12

Vc

S1

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

50 (42-75)

S2

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

50 (42-75)

S3

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

30 (25-45)

S11

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

105 (90-155)

S12

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

80 (70-120)

S13

E

0,26

0,022

0,028

0,044

0,060

0,070

0,085

65 (55-95)

JS509 CHAMFERING ae /Dc=0,1 (METRIC) SMG

fz ap x Dc

3

4

6

8

10

12

Vc

S1

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

50 (42-75)

S2

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

50 (42-75)

S3

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

30 (25-45)

S11

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

105 (90-155)

S12

E

0,30

0,024

0,032

0,048

0,065

0,080

0,095

80 (70-120)

S13

E

0,26

0,022

0,028

0,044

0,060

0,070

0,085

65 (55-95)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

31


HIGH SPEED MACHINING

HIGH-SPEED MACHINING WITH COPY MILLING JH720-TRIBON FEATURES: • Open design for optimal chip removal • Positive geometry, 14-degree rake with 40-degree helix for smooth cuts with low forces • Thin tribon coating for optimal finish performance

32


JH720

Tolerances: dmm=h6 Dc= 0,02/-0,04 mm Radius= ± 0,01 mm

CASE STUDY JABRO JH720-TRIBON IRON-BASED MACHINING Material: Machine: Lubrication: Operation: Holder: Tool:

Fe-alloy @ 48 HRc Makino A Emulsion Side milling finishing ER collet JH720080-TRIBON

Cutting data

N

vc

fz

Metric

2188 rpm

55 m/min

0,5 mm

zn

ap

ae

vf

3 0,24 mm 0,1 mm 3333 mm/min Results: Part finished in 1,5 hrs, reflecting a cycle time reduction of 25%. With the 3-flute JH720, 2-3 parts could be cut per tool.

JABRO – JH720 – CUTTING DATA JH720 SIDE ROUGH MILLING ae /Dc=0,02 (METRIC) SMG

fz ap x Dc

2

2,5

3

3,5

4

5

6

8

10

12

16

Vc

S1

E/M/A

0,030

0,055

0,065

0,080

0,095

0,11

0,14

0,16

0,22

0,28

0,32

0,40

90 (75-110)

S2

E/M/A

0,030

0,055

0,065

0,080

0,095

0,11

0,14

0,16

0,22

0,28

0,32

0,40

90 (75-110)

S3

E/M/A

0,030

0,055

0,065

0,080

0,095

0,11

0,14

0,16

0,22

0,28

0,32

0,40

55 (36-70)

S11

E/M/A

0,040

0,055

0,065

0,080

0,095

0,11

0,14

0,16

0,22

0,28

0,32

0,40

225 (190-255)

S12

E/M/A

0,040

0,055

0,065

0,080

0,095

0,11

0,14

0,16

0,22

0,28

0,32

0,40

175 (150-195)

S13

E/M/A

0,040

0,048

0,060

0,070

0,080

0,095

0,12

0,14

0,19

0,24

0,28

0,34

135 (115-155)

JH720 COPY ROUGH MILLING ae /Dc=0,01 (METRIC) SMG

fz ap x Dc

2

2,5

3

3,5

4

5

6

8

10

12

16

Vc

S1

E/M/A

0,030

0,036

0,044

0,055

0,060

0,070

0,085

0,11

0,14

0,18

0,20

0,26

85 (65-100)

S2

E/M/A

0,030

0,036

0,044

0,055

0,060

0,070

0,085

0,11

0,14

0,18

0,20

0,26

85 (65-100)

S3

E/M/A

0,030

0,036

0,044

0,055

0,060

0,070

0,085

0,11

0,14

0,18

0,20

0,26

49 (32-65)

S11

E/M/A

0,040

0,036

0,044

0,055

0,060

0,070

0,085

0,11

0,14

0,18

0,20

0,26

205 (175-235)

S12

E/M/A

0,040

0,036

0,044

0,055

0,060

0,070

0,085

0,11

0,14

0,18

0,20

0,26

160 (135-180)

S13

E/M/A

0,040

0,032

0,040

0,046

0,055

0,060

0,075

0,090

0,13

0,16

0,19

0,24

120 (105-140)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray

vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

33


HIGH FEED MACHINING

HIGH-FEED MACHINING JHF980-MEGA FEATURES: • High-feed design tip shape for maximum feed rates and stability with large overhangs • TiAIN Coating • Neck lengths up to 7 * Dc • 2 and 3 flute options

34


Tolerances: dmm=h5 ß = 0,5 re1=+/-0,05 mm UTCN=Uncut thickness

JHF980

CASE STUDY JABRO JHF980 TITANIUM MACHINING (AERO WING) Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AL4V Starrag 4-spindle Emulsion Side milling finishing Shrinkfit JHF980040-MEGA

Cutting data

N

vc

fz

Metric

7961 rpm

100 m/min

0,16 mm

zn

ap

ae

vf

2 0,1 mm 2 mm 2548 mm/min Results: Vibration-free controlled process in machining of deep cavity.

JABRO – JHF980 – CUTTING DATA JHF980 SLOTTING (METRIC) SMG

fz ap x Dc

0,5

0,75

1

1,5

2

2,5

3

4

5

6

Vc

S1

E

0,40

0,020

0,030

0,040

0,060

0,080

0,10

0,12

0,16

0,20

0,24

55 (44-65)

S2

E

0,40

0,020

0,030

0,040

0,060

0,080

0,10

0,12

0,16

0,20

0,24

55 (44-65)

S3

E

0,40

0,018

0,028

0,036

0,055

0,070

0,090

0,11

0,14

0,18

0,22

33 (22-44)

S11

E

0,40

0,018

0,028

0,036

0.055

0,070

0,090

0,11

0,14

0,18

0,22

165 (145-185)

S12

E

0,40

0,018

0,028

0,036

0,055

0,070

0,090

0,11

0,14

0,18

0,22

125 (110-145)

S13

E

0,40

0,016

0,024

0,032

0,048

0,065

0,080

0,095

0,13

0,16

0,19

100 (85-115)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

35


HSS-CO MACHINING

LOW SPEEDS & HIGH VOLUMES HSS JC0710 FEATURES: • High-speed steel with high cobalt content for optimal fracture toughness and chip- ping resistance • Variable flute profile for chatter-free roughing • Polished flutes for optimal chip removal • 4 flutes for slotting • 6 flutes for side roughing • 2 * Dc & 4 * Dc cutting length

36


JCO710

Tolerances: dmm=h6 Dc= k10 re1=+/-0,05 mm

CASE STUDY JABRO JCO710 TITANIUM MACHINING (AEROSPACE SEGMENT) Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AL4V Starrag 4-spindle Emulsion Side milling finishing Weldon JCO710320D2R100.3Z6

Cutting data

N

vc

fz

Metric

220 rpm

22 m/min

0,098 mm

zn

ap

ae

vf

6 10-14 mm 6-18 mm 130 mm/min Results: Same performance level as competitor with lower net price. Picture on the right shows tool condition after 65 min of machining.

CASE STUDY JABRO JCO710 TITANIUM MACHINING (AEROSPACE SEGMENT) Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6AL4V Starrag 4-spindle Emulsion Profiling Weldon JCO710 special 1.25''

Cutting data

N

vc

fz

Metric

180 rpm

18 m/min

0,2 mm

zn

ap

ae

vf

6 50 mm 3 mm 140 mm/min Results: Vibration-free cutting with 400 min tool life

37


JABRO – JCO710 – CUTTING DATA JC710 SLOTTING (METRIC) SMG

fz ap x Dc

16

20

25

32

40

50

Vc

S11

E

0,75

0,048

0,060

0,075

0,095

0,11

0,13

10 (8-15)

S12

E

0,75

0,048

0,060

0,075

0,095

0,11

0,13

8 (6-12)

S13

E

0,65

0,042

0,050

0,065

0,080

0,095

0,11

6 (5-10)

JC710 SIDE MILLING ae/Dc=0,5 FOR LENGTH INDEX 2 (METRIC) SMG

fz ap x Dc

20

25

32

40

50

0,11

0,13

12 (9-18)

S11

E

0,75

0,048

0,060

0,075

0,095

S12

E

0,75

0,048

0,060

0,075

0,095

0,11

0,13

9 (7-14)

S13

E

0,65

0,042

0,050

0,065

0,080

0,095

0,11

8 (6-11)

SMG = Seco Material Group Coolant: A = air D = dry E = emulsion M = mist spray vc = m/min fz = mm ap (mm) /Dc (mm) = factor ae (mm)/Dc (mm) = factor All cuting data are target values

38

Vc

16


EXCEPTIONAL MACHINING

EXCEPTIONAL SOLUTIONS JH141, JHF180, JH111, JHP992 & JHP750 FEATURES: • JH141 suitable for titanium machining and short-chipping cobalt alloys • JHF180 suitable for aged nickel alloys • JH111 copy roughing and slotting in nickel alloys • JHP992 profile as special (old standard product) • JHP750 finishing in S-materi als; standard available in Dc of 2, 3, 4 & 5 mm.

39


ORTHOPAEDIC SOLUTIONS KNEE REPLACEMENT COMPONENTS

FEMORAL PART CHALLENGES • Achieving a superior condyle finish for minimal polishing • Maximising machining productivity • Producing a burr-free profile • Maintaining reliable tool performance • Minimising deformation of the part caused by grinding process

OUR SOLUTIONS • Bespoke multi-flute ballnose, multi-flute end mill & tapered ballnose tools

YOUR BENEFITS • Same productivity with 100% yield, eliminating scrap parts • Reducing costs in finishing operations (polishing)

40


CASE STUDY

MACHINING A FEMORAL PART Material: Machine: Lubrication: Operation: Holder: Tool:

CoCr Haas grind mill combination Emulsion Copy milling Hydraulic Special ball nose end mill (zn=6, Ø 10) MEGA-64

Cutting data

Metric

N

vc

fz

5000 rpm

157 m/min

0,1 mm

ap

ae

vf

< 0,5 mm 0,5 mm 3000 mm/min Results: Average tool life = 20-25 pieces (> 2 hrs). 100% yield.

Material: Machine: Lubrication: Operation: Holder: Tool:

CoCr Haas grind mill combination Emulsion Box roughing and periphery machining Hydraulic Special multi-flute corner radius 1 mm (zn=6, Ø 8) MEGA-64

Cutting data

Metric

N

vc

fz

3000 rpm

75 m/min

0,04 mm

ap

ae

vf

max 8 mm 0,5 mm 720 mm/min Results: Box roughing: Average tool life = 60 pieces (appr. 1 hr). Periphery machining: Average tool life = 60 pieces (appr. 100 min).

Material: Machine: Lubrication: Operation: Holder: Tool: Cutting

CoCr Haas grind mill combination Emulsion Box and cam finishing Hydraulic Special tapered ballnose radius 1 mm (zn=4, Ø 10) MEGA-64 fz N vc

data

Metric

9000 rpm ap

57-140 m/min 0,0006-0,06 mm ae

vf

variable 0,2 mm 216-2160 mm/min Results: Box finishing: Average tool life = 60 pieces (appr. 40 min.) Cam finishing: Average tool life = 60 pieces (appr. 3 hrs).

41


ORTHOPAEDIC SOLUTIONS KNEE REPLACEMENT COMPONENTS

TITANIUM TIBIAL TRAY CHALLENGES • Producing superior surface finish with minimal manual intervention • Machining the locking details without leaving burrs • Creating the best combination of productivity, cost and quality • Producing all features without coolant

OUR SOLUTIONS • Using a standard JHP992 combined with conventional air blast provides very reliable tool life when roughing from a solid state. • The incorporation of wiper technology on the front of the cutter achieves an almost polished surface on the base of the tray. • Specially designed T-slot end mills provide burr-free edges and high quality surfaces. • Simultaneously machining the chamfer and the inner wall provides the perfect balance of productivity, cost and quality.

YOUR BENEFITS • Throughput time of less than 10 minutes • Reliable process without coolant, which reduces costs by minimising cleaning processes

42


CASE STUDY

DRY MACHINING A TITANIUM TIBIAL TRAY TOTAL TIME IN CUT < 10 MIN Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V Roughing (solid) JHP992080.0-SIRON-A 4,5 min N Metric 1560 rev/ rpm fz 0,14 mm/ rev Average tool life = 60 pcs (270 min)

Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V Base finishing Special wiper end mill 2,8 min N Metric 1950 rev/ rpm fz 0,12 mm/ rev Average tool life = 120 pcs (336 min)

Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V Wall finish + chamfer Special combined end mill 0,23 min N Metric 7430 rev/ rpm fz 0,2 mm/ rev Average tool life = 120 pcs (28 min)

vc 39 m/min vf 220 mm/min

vc 49 m/min vf 235 mm/min

vc 140 m/min vf 1486 mm/min

43


CASE STUDY

Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V 60Ëš chamfering JS506060N2CZ4.0-SIRA 1,0 min N Metric 6000 rev/ rpm fz 0,02 mm/ rev Average tool life = 120 pcs (120 min)

Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V Undercut machining Special T-slot end mill 0,57 min N Metric 2230 rev/ rpm fz 0,13 mm/ rev Average tool life = 240 pcs (137 min)

Material: Operation: Tool: In-cut time: Cutting data

Ti6AI4V Produce form Special form end mill 1,0 min N Metric 1592 rev/ rpm fz 0,16 mm/ rev Average tool life = 120 pcs (120 min)

44

vc 113 m/min vf 120 mm/min

vc 67 m/min vf 281 mm/min

vc 44 m/min vf 255 mm/min


DENTAL SOLUTIONS IMPLANT COMPONENTS

CROWNS & BRIDGES CHALLENGES • Producing a high quality connection surface (prepline) • Establishing a secure process to prevent tool failure (tool breakage) • Maximising productivity by using a single tool for one disk

OUR SOLUTIONS MATERIAL

ROUGHING

FINISHING

Dc

2, 3 & 6 mm

0,5, 1 & 2 mm

Titanium

JHF980, JS532, JH141

JM915, JM925, JS532

CoCr

JHF180, JS532

JH111, JM113, JS532

YOUR BENEFITS • High quality products and expertise for 24/7 production concepts

45


CASE STUDY

MACHINING A CROWN/ BRIDGE Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V Paventa Super 300 Emulsion Roughing HSK-25/Shrinkfit JHF980030-MEGA

Cutting data

N Metric 11000 rpm zn

ap

vc

fz

105 m/min

0,1 mm

ae

2 0,1 mm 3 mm Results: Average tool life = 5-6 hrs

Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V Paventa Super 300 Coolant air and oil Roughing HSK-25/Shrinkfit JHF980ML020-MEGA

Cutting data

N Metric 17000 rpm zn

ap

vc

fz

105 m/min

0,1 mm

ae

2 0,06 mm 2 mm Results: Average tool life = 5-6 hrs

Material: Machine: Lubrication: Operation: Holder: Tool:

N Metric 20000 rpm zn

ap

2 0,08 mm Results: Machining 45 parts

46

vf 2100 mm/min

Ti6Al4V Paventa Super 300 Coolant air and oil Finishing HSK-25/Shrinkfit JM915L020-MEGA-T

Cutting data

vf 2100 mm/min

vc

fz

125 m/min

0,04 mm

ae

vf

0,08 mm

1600 mm/min


Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V Paventa Super 300 Coolant air and oil Finishing HSK-25/Shrinkfit JM925SL010-MEGA-T

Cutting data

N Metric 40000 rpm zn

125 m/min

0,02 mm

ae

vf

0,03 mm

1600 mm/min

TiNb DMG Ultrasonic 20 linear Coolant air and oil Roughing HSK-32/Shrinkfit JHF980030-MEGA

Cutting data

fz

ap

2 0,03 mm Results: Tool life = 8-9 hrs

Material: Machine: Lubrication: Operation: Holder: Tool:

vc

N Metric 14000 rpm zn

ap

vc

fz

132 m/min

0,1 mm

ae

2 0,125 mm 2 mm Results: Average tool life = 250 min

Material: Machine: Lubrication: Operation: Holder: Tool:

CoCrMo Co=50-70% Cr=19-32% Mo=0-7% W-0-11% DMG Ultrasonic 20 linear Coolant air and oil Roughing HSK-32/Shrinkfit JHF180030R075Z4-MEGA-64

Cutting data

vf 3000 mm/min

N

vc

fz

Metric

9550 rpm

90 m/min

0,14 mm

zn

ap

ae

4 0,2 mm 2 mm Results: Average tool life = 175 min

vf 5348 mm/min

47


AEROSPACE SOLUTIONS ENGINE COMPONENTS

MECHANISED EDGE PROFILING (MEP) CHALLENGES • Maintaining precise edge tolerances on critical fast rotating engine parts • Preventing secondary burrs on component • Using accurate programming information to prevent quality failures

OUR SOLUTIONS • MEP tools with defined profiles, including lead-in and lead-out angles • Ballnose & lollypop end mills • Combinations of radii, chamfers and angles can be applied • Applicable for all aerospace materials • Top-, bottom- and combined-edge profile tools depending on your needs • Right helix for top edges, left helix for bottom ones • Dimensions to quadrants defined on drawings

YOUR BENEFITS • Improvements to product quality and consistency • Shorter production time • Reduced number of set ups • Tools are supplied with Certificate Of Conformance (COC)

48


CASE STUDY

MEP FLANGE OF ENGINE CASING Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V Mikron HPM 600U Emulsion Profiling HSK-63/Shrinkfit A022147 MEP Tool Top Edge

Cutting data

N

vc

fz

Metric

2547 rpm

204 m/min

0,052 mm

zn

ap

ae

vf

4 0,2 - 1,5 mm 0,2 - 1,5 mm 535 mm/min Results: Total distance - 11.212 m. Equivalent to 6.54 components

Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V Mikron HPM 600U Emulsion Profiling HSK-63/Shrinkfit A025138 MEP Tool Bottom Edge

Cutting data

N

vc

fz

Metric

1222 rpm

62 m/min

0,02 mm

zn

ap

ae

vf

4 0,2 - 1,5 mm 0,2 - 1,5 mm 98 mm/min Results: Total distance - 11.212 m. Equivalent to 6.54 components

49


POWER GENERATION SOLUTIONS TURBINE POWER COMPONENTS

ROTOR SHAFTS CHALLENGES • Prioritising repeatability and reliability due to expensive parts • Incorporating machining strategies to overcome material challenges • Using internal coolant designs to deliver highly critical coolant • Maintain precise tolerances despite higher operational temperatures and pressure

OUR SOLUTIONS • Square shoulder end mills (JHP770 & JHP780) • Conical roughers bespoke tools • Form roughers bespoke tools • Form finishers bespoke tools

YOUR BENEFITS • Productive method of machining • Solution is applicable on more machine tools

50


STRATEGIES

FEATURES • External coolant channels • Internal coolant channels • 2+4 flute design • Smooth cutting edge with straight relief

EXAMPLE 1

1ST OPERATION: Open the slot with a tapered cutter (straight frontal part)

2ND OPERATION: Semi-finish the upper part of the slot (0,250,3 mm offset from profile)

3RD OPERATION: Rough out the lowest bulb (0,25-0,3 mm offset from profile)

4TH OPERATION: Finish the slot (in one pass or box-cycle)

2ND OPERATION: Rough out the bottom part with a standard cutter

3RD OPERATION: Semi-finish the slot (0,25-0,3 mm offset from profile)

4TH OPERATION: Finish the slot (in one pass or box-cycle)

EXAMPLE 2

1ST OPERATION: Open the slot with a tapered cutter (straight frontal part)

51


STRATEGIES

EXAMPLE 3

1ST OPERATION: Open the slot with a tapered cutter (straight frontal part)

2ND OPERATION: Semi-finish the slot (0,25-0,3 mm offset from profile)

3RD OPERATION: Finish the slot (in one pass or box-cycle)

BENEFITS 1. EXTERNAL COOLANT CHANNELS

2. INTERNAL COOLANT CHANNELS

• High flow volume

• High pressure • Direct coolant flow to the cutting edge

52

3. 2+4 FLUTE DESIGN

4. SMOOTH CUTTING EDGE WITH STRAIGHT RELIEF • More chip room in small tips • Good surface finish • Better dynamic properties on • Light cutting some machines (HSK) • 4 flutes on the larger diameter


POWER GENERATION SOLUTIONS TURBINE POWER COMPONENTS

BLADES & IMPELLERS CHALLENGES FOR IMPELLERS • Maintaining surface quality • Maintaining machining stability despite complex shape of component • Achieving adequate chip evacuation and vibration-free machining

CHALLENGES FOR BLADES • Maintaining surface quality • Optimising productivity • Machining complex cavity shapes

OUR SOLUTIONS • Tapered ballnose cutter (roughing, semi-finishing) • Multi-flute tapered tools • Tooling with internal coolant channels

YOUR BENEFITS • Stability due to tapered shape (TBN) • Stability due to strong design specs (MFT) • Reconditoning to maintain the same tool shape • High productivity in blade finishing due to cutter with large number of flutes (up to zn=15) • Reliable process due to optimal coolant and chip evacuation

53


CASE STUDY

MACHINING A BLADE FOOT Material: Machine: Lubrication: Operation: Holder: Tool:

Ti6Al4V 4-axis horizontal milling machine Emulsion Profile finishing Accu-Fit Fir Tree multi-flute shell mill Dc=48-120 mm zn=8

Cutting data

Metric

N

vc

fz

155 rpm

23-58 m/min

0,065 mm

ap

ae

vf

110 mm 0,5 mm 80 mm/min Results: 100 blades machined; after ~100 metres, tool life has still not been depleted.

MACHINING AN IMPELLER Material: Machine: Lubrication: Operation: Holder:

Ti6Al4V Starrag Heckert Emulsion Slotting/ side milling Shrinkfit

Tool: Tapered ball nose end mill with roughing profile zn=3, rÎľ1=1,5 mm Cutting Data Metric Slotting Side

N

vc

fz

1910 rpm 2865 rpm ap

30 m/min 45 m/min ae

0,018 mm 0,052 mm vf

Slotting 5 mm 5 mm 140 mm/min Side 12 mm 2,5 mm 600 mm/min Results: Tool life to machine half of impeller with a single tool with stable machining conditions.

54


CASE STUDY

Material: Machine: Lubrication: Operation: Holder:

Ti6Al4V Starrag Heckert Emulsion Lower blades bottom roughing (slot/ side) Shrinkfit

Tool: Tapered ball nose end mill with roughing profile zn=3, rε1=1,5 mm Cutting Data Metric N vc fz Slotting Side

3180 rpm 4775 rpm ap

30 m/min 45 m/min ae

0,015 mm 0,038 mm vf

Slotting 2,5 mm 3 mm 140 mm/min Side 5 mm 2 mm 550 mm/min Results: Tool life to machine two impellers with a single tool with stable machining conditions.

Material: Machine: Lubrication: Operation: Holder:

Ti6Al4V Starrag Heckert Emulsion Semi-finishing/ copy-milling Shrinkfit

Tool: Tapered ball nose end mill zn=4, rε=2 mm Cutting Data Metric N vc 3980 rpm ap

50 m/min ae

fz

0,063 mm vf

1 mm 0,5 mm 1000 mm/min Results: Tool life to machine an impeller with a single tool with stable machining conditions.

Material: Machine: Lubrication: Operation: Holder:

Ti6Al4V Starrag Heckert Emulsion Copy/ finishing Shrinkfit

Tool: Tapered ball nose end mill zn=4, rε=2 mm Cutting Data Metric N vc Bottom Blade

5090 rpm 5090 rpm ap

64 m/min 64 m/min ae

fz

0,079 mm 0,059 mm vf

Bottom 0,25 mm 0,5 mm 1600 mm/min Blade variable 0,3 mm 1200 mm/min Results: Tool life to machine two impellers with a single tool with stable machining conditions.

55


WWW.SECOTOOLS.COM 03043104, ST20156530 GB, © SECO TOOLS AB, 2015. All rights reserved. Technical specifications are subject to change without notice.

This work is published with the understanding that Seco Tools and its editors are supplying information aimed to present a general orientation and direction of metal cutting and related sciences. If professional services are required for specific applications, the assistance of an appropriate professional should be acquired. The information is provided “as is”; Seco Tools and its editors disclaim all representations and warranties, express or implied, of any kind, including, without limitations, any warranties of merchantability, fitness for a particular purpose, title, or non-infringement.

In no event will Seco Tools or its editors be liable to any party for any direct, indirect, special or other consequential damages for any use of the information, even if Seco Tools or its editors are advised of the possibility of such damage. The information provided herein is for reference purposes only. Actual prices, specifications, and product descriptions are finalised at the time of sale and may vary by location. The information provided herein is subject to change without prior notice.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.