Page 1

Basic Information on Oil Shale

Benefits and Applications of Nanotechnology in Oil Industries - Egypt ‫النفــط الصـخري ومســتقبل الطــاقة العاملـــي‬


we cover from head to toe

safety & security sector. mechanical tools co.

37086263

Available in each sector all range with it s different models and sizes. Hand Tools, Power Tools, Electric Chain Hoist, Manual Chain Block, Generators, Welding Machine, Welding Equipment, Measuring Equipment, PPE-Safety Equipments, and Fire Fighting.

62, Gomhuria St., Cairo - Egypt Tel. : (+2) 25915955 (+2) 25919971 Fax : (+2) 25919934 Mob. : (+2) 01003449872 E-mail : mtsheid@link.net E-mail : info@mechanicaltoolsco.com E-mail : safety @mechanicaltoolsco.com

www.mechanicaltoolsco.com


Save the date! Atlas Copco Egypt offers in its campaign: • Two Compressed airline filters Free Of Charge on each purchase order for a new VSD+unit. • One week Free Of Charge audit for monitoring the customer›s actual compressed air consumption via the Measurement Box



35

Years Serving Petroleum Sector as major engineering and EPC main contractor

Enppi

Engineering for the Petroleum & Process Industries was established on January 15th, 1978 and is currently working under Egyptian Investment Law 8 for 1997, with a paid capital of 220 MM US$. The Egyptian General Petroleum Corporation (EGPC) is the principal shareholder owning 97% of the total shares of Enppi.

37086263

Enppi provides fully integrated engineering, procurement, construction supervision, and project management services for the petroleum, petrochemicals, power, and other related industries in Egypt, MENA region and worldwide. Enppi is recognized as an international engineering, EPC main contractor, and management contractor, with a proven record of accomplishments for both onshore and offshore projects. To date, more than 850 projects with over 27 million Man-Hours of professional services were completed for oil and gas, refining, petrochemical and general industry projects.

w w w.enppi.co m


EXOTHERMIC CONNECTIONS

EARTHING & SURGE ARRESTERS

OBSTRUCTION LIGHTS

YOUR LIGHTNING PROTECTION

CATHODIC PROTECTIION

Neutral Earthing Resistors(NERs) Egyptian Industrial Systems PROTECTION DIVISION

‫خبراء فى تصميم وتوريد وتركيب‬ ‫أنظمة األرضي وشبكات الحماية من الصواعق والحماية الكاثودية‬ INFINITE PROTECTION SOLUTIONS

Our range of products and services include EIS Deign and Consulltancy Services EIS Earthing Systems EIS Structural Lighting Protection Equipment EIS Static Electricity Control EIS Supply and Installation Service

37086263

EIS Inspection, Testing and Maintenance Service

56, Rabaa Bldgs., Nozha St., Nasr City. Cairo, Egypt Tel. : +202 26907047 - 26902871 Fax : +202 24181299 E-mail: eis@eisegypt.com

www.eisegypt.com

‫ شارع النزهة‬- ‫ عمارات رابعة االستثمارى‬56 ‫ مدينة نصر‬- ‫بجوار دار الدفاع الجوى‬ +202 26902871 - 26907047:‫تليفــون‬ +202 24181299 :‫فاكـــس‬ +2 01001533544: ‫محمول‬




contents

‫أخبــــــار وتقـــــارير‬ ‫شركة «بي بي» تكتشف الغاز في بئر‬ ‫«سالمات» بمصر‬

3

‫اكتشاف نفطي جديد لكويت إنرجي في‬ ‫مصر‬

3

‫ ابار‬3 ‫ مليون دوالر لحفر‬270 ‫دانة تستثمر‬ ‫جديدة‬

4

‫بريتيش جاز تضخ استثمارات إضافية‬ ‫في مشروعاتها بمصر‬

5

‫ مليون‬75 ‫ حقل مدين سينتج‬:‫أرامكو‬ ‫قدم مكعبة من الغاز يوميًا‬

6

http://www.facebook.com/PetroleumTodayMagazine

‫معــارض‬ ‫ باحث‬1200‫ شركة عالمية ومحلية و‬30 ‫ بمشاركة‬8 ‫بتروليـم تـوداي راعى اعالمى لمعرض شمال‬ » NATC « ‫أفريقيا‬

)1(‫النفط الصخري ومستقبل الطاقة العالمى جـ‬

10

9

21

Basic information on oil shale, oil shale resources, and recovery of oil from oil shale.

The Future of The International Energy Industry

SCIENTIFIC

28

Benefits and Applications of Nanotechnology in Oil Industries: Upstream and Downstream Operations - Egypt

42

Novel Design and Implementation of Kuwait’s First Smart Multilateral ...part (01)

52

Deepwater Activities and the Necessary of Being Prepared for Emergency Response Mechanism

News

10 Egypt News 12 Arab & International News 16 Corporatiom News 54 Industry At A Glance

18 NEW PRODUCTS



Petroleum Today Chairman Mohamed Bendary

The Future of The International Energy Industry

Vice-Chairman Mohamed Hamdy Executive Editor-in-Chief Magdy Bendary General Manager Hany Ibrahim

S

Article Scientific Adviser Consultant /Ahmed Shehab

hale Oil ..... a new password for the energy industry in the world, which revolved lots of discussions and debate in the corridors of the Energy Sector on the phenomenon of global ( Shale Oil ) and the impact of this oil boom - as they are called - on the future of Energy in the world and the position of the OPEC and Gulf Countries, including some of the reports mentioned the possibility of that United States of America reach Self-sufficiency of Oil through the development of its Shale Oil fields within a short time. But despite the increase in cost production and environment caveats surrounding producing Shale Oil, but the low reserves of conventional Oil and higher prices and increased demand prompted many Oil Companies to intensify their investments in the production of Shale Oil in conjunction with the investment fields of heavy oil and bitumen in the presence of not bad reserves of this type of fuel, despite all this discussions and controversy and related figures the precautions and barriers which revolves around Shale Oil it became a reality and will play a major role in changing the future of Energy. A variation is clear in the positions of countries in the world about Shale Oil production, United States of America gives clear indications that it will become the largest producer of Shale Oil in the world with the achievement of self-sufficiency and the tendency to export, while we see that European Countries unresolved hurry after there is a battle between supporters and opponents of the Shale Oil and Gas production is going to be a long and complex, especially since supporters of the Environment Organizations has become electorally influential figure in European Countries. After a year of reduce the value of Shale Oil, Organization of Petroleum Exporting Countries (OPEC) to face the reality and the investigation itself in its potential with skepticism in the information available which established a special committee to study the effects of Shale Oil on Energy Markets, Saudi Arabia plans to start soon conduct «Shale Oil» exploration and ARAMCO will soon lay tenders for exploration of « Shale Oil «for the first time in the Kingdom that the excavation will take place in three regions of the Kingdom, including the» Empty Quarter «that prevails in believing that it has a large stockpile of Oil wealth. As for other Developing Countries, including non-Oil Arab Countries, despite the availability of Shale Oil and Gas in its territory most of them do not have the necessary funds to invest in this area, despite the rising demand for energy, which means that production of Shale Oil and Gas will be limited at the present time at least in the rich Countries which has the capacity of financing, including some emerging Countries such as China, India, Brazil and South Korea, which does not constitute supporters environment where the compression strength impressive as is the case in Europe and the United States which will facilitate the expansion of the production process. So the World is standing on the threshold of an exciting development in the production of Energy, thanks to Technological Development, if Developed Countries are able to resolve their positions with Environment defenders Organizations, the effects in Energy Industry will be significant and in case these Organizations managed to obstruct the process of expansions productivity, these effects would be inferior.

Petroleum Today

Scientific Secretary Ali Ibrahim Editing Staff Shaimaa Eid Hany Khaled Mohamed Mousa Marketing Magdy Ahmed Mohamed Moussa Mohamed Attia Financial Management Omnia Alaa Distribution Mahmoud Mabrouk Art Direction Mohamed Bendary Production Mohamed Salah Scientific Staff Dr. Attia M. Attia Dr. Ahmed Z. Nouh Dr. Ismail Aiad Dr. Gamal Gouda Eng. Mahmoud A. Gobran Eng. Mohamed nada Eng. Taher Abd El Rahim Eng. Mohamed Bydoun Eng.Samir Abady Dr. Lubna Abbas Saleh Special thanks to all the Society of Petroleum Engineers (SPE) Mr. Hany Hafez Eng. Mohamed Abdel Sattar Eng. Osama Elmeselhy Publisher The Egyptian Company For Marketing 8Th Kafafi Nasr St., Agouza Giza - Egypt Tel: +202 42191195 01006596350 - 01116251134 01221412260 E-mail: petroleum.mag@gmail.com E-mail:info@ petroleum-today.com www.petroleum-today.com Copyright Reserved Design and Print by:

Tel. : +202 37086263 my_mydesign@yahoo.com


Egypt News Petroleum: Increase the budget of Research and Exploration Plans for $8.5 Billion Minister of Petroleum Engineer Sherif Ismail said that despite the existence of dues for partners foreigners, but the foreign companies operating in Egypt is still committed to the plans and programs of research and exploration and development of discovered fields which have been adopted to increase investments in the investment budget for the year 20132014/ to more than $8.5 billion. This is in addition to its participation in the international biddings put forward by the Petroleum Authority and the Holding Gas Company and South Valley Holding Petroleum Company especially in light of the current competition between the countries of the region to attract international companies for research and exploration, which has proven results interest continue to work in Egypt for many years, where Petroleum Bidding Authority resulted for award of 11 sectors on 6 international companies with investments of $282 million, in addition to the result bidding Holding Gas Company, which resulted in 7 global companies with 8 sectors investments minimal $2.1 billion, in addition to awarding 4 areas on international companies with investments of $60 million for South Valley Holding Petroleum Company as well as received 8 bids from international companies to bid recently for the search for oil and gas.

EGAS defines another new bidding areas this year Engineer Mahfouz Al-Boony, Vice Chairman of the Holding Company for gas «EGAS» said that technical data is being prepared to determine the final areas that will be put up for gas exploration, after reviewing the military. He said in a press statement that it has not yet determine the deadline for the introduction of new bid to explore for gas, but is expected to put forward during the last quarter of this year. Al-Boony pointed out that drilling an exploratory well in deep water in the

10 Petroleum Today

- September 2013

Mediterranean Sea at an investment cost of about $200 million, and is awaiting the announcement of drilling results within two weeks. He said he will begin to drill another well in the same area during the coming period at an investment cost of $200 million as well, and announce the results of exploration during the month and a half. Vice President of «EGAS» assured that foreign partners are stuck to work in the Oil Sector in Egypt and not affected by

current events in the country, so as to after their work sites on the ongoing clashes and the presence of the followup and secure the well by the concerned authorities.


TOTAL TOTAL agreed agreed to buy to buy CHEVRON›s CHEVRON›s work work in Egypt in Egypt TOTAL TOTAL Egypt Egypt Company Company subsidiary subsidiary to TOTAL to TOTAL French French OilOil andand GasGas Company Company saidsaid thatthat it had it had agreed agreed andand its its Egyptian Egyptian partner partner BELTONE BELTONE forfor direct direct investment investment on on thethe purchase purchase of the of the U.S. U.S. OilOil Company Company CHEVRON CHEVRON in in thethe field field of fuel of fuel trade trade in Egypt. in Egypt. CHEVRON CHEVRON operates operates in in Egypt Egypt andand other other countries countries under under thethe brand brand «CALTEX». «CALTEX». TOTAL TOTAL saidsaid in ainpress a press statement statement thatthat it would it would acquire acquire after after thethe completion completion of the of the deal, deal, which which hashas notnot yetyet received received thethe approval approval of the of the Egyptian Egyptian authorities authorities on on 66 66 gasgas station station andand oil oil storage storage warehouses. warehouses. As As TOTAL TOTAL willwill have have contracts contracts forfor supplying supplying of Aircraft of Aircraft refueling refueling at Airports at Airports in Cairo in Cairo andand Marsa Marsa Alam Alam from from CHEVRON, CHEVRON, which which sells sells 1.41.4 million million tonstons of fuel of fuel perper year year in the in the country. country. Statement Statement diddid notnot include include details details about about thethe value value of the of the deal. deal. As As it was it was notnot possible possible forfor REUTERS REUTERS to contact to contact officials officials of TOTAL of TOTAL Egypt Egypt to comment. to comment. Hazem Hazem Barakat, Barakat, Chairman Chairman of BELTONE of BELTONE saidsaid direct direct investment investment in the in the press press release release thatthat thethe dealdeal «a clear «a clear signal signal thatthat Egypt Egypt is still is still an attractive an attractive investment investment destination destination andand wewe areare stillstill committed committed to supporting to supporting thethe Egyptian Egyptian Economy». Economy». Momar Momar Naguire Naguirefirstfirst deputy deputy head head of of TOTAL TOTAL Marketing Marketing Services Services to Africa to Africa andand thethe Middle Middle East East Company, Company, saidsaid thatthat thethe dealdeal shows shows how how TOTAL›s TOTAL›s commitment commitment to expanding to expanding in Egypt in Egypt «We «We areare now now thethe second second largest largest marketer marketer of petroleum of petroleum products products in Egypt». in Egypt».

American American Apache: Apache:WeWe will will continue continue prospecting prospecting forfor oiloil in in Egypt.. Egypt.. Not Not influenced influenced byby events events American American APACHE APACHE Company Company working working in the in the field field of Petroleum of Petroleum announced announced its intention its intention to continue to continue its its work work in Egypt, in Egypt, stressing stressing thatthat thethe exploration exploration andand production production operations operations thatthat areare concentrated concentrated in areas in areas uninhabited, uninhabited, in the in the desert desert region region west west of Egypt, of Egypt, areare notnot affected affected by by political political events events in the in the region. region. TheThe company company said, said, in ain statement, a statement, thatthat thethe report report published published by by thethe ‹Reuters› ‹Reuters› News News Agency Agency thatthat thethe company company on on a sale a sale of part of part of its of assets its assets in Egypt in Egypt because because of the of the unrest unrest in in which which security security is not is not truetrue at all. at all. It added It added thatthat its deal its deal with with «CNOOC» «CNOOC» Chinese Chinese Company, Company, include include thatthat thethe Chinese Chinese Company Company willwill purchase purchase 33% 33% of APACHE of APACHE shares, shares, compared compared to to $3.1 $3.1 billion, billion, pointing pointing outout thatthat such such a move a move would would be be thethe firstfirst in ainstrategic a strategic partnership, partnership, which which waswas concluded concluded between between thethe twotwo groups, groups, to continue to continue thethe projects projects thethe exploitation exploitation of oil of oil andand gasgas joint. joint.

«Dana «Dana Gas» Gas» in talks in talks with with thethe government government to settle to settle their their dues dues to the to the Petroleum Petroleum Authority Authority Dana Dana GasGas saidsaid it it is is in in talks talks with with thethe Egyptian Egyptian Authorities Authorities concerned concerned regarding regarding thethe settlement settlementof ofdues duesarrears arrears with with thethe General General Authority Authority forfor Petroleum, Petroleum, andand future future plans plans forfor investment, investment, at at thethe same same time time welcoming welcomingthethegovernment›s government›s plans plans to boost to boost production production levels levels of of hydrocarbon hydrocarbon derivatives, derivatives, in in order order to to meet meet thethe growing growing domestic domestic demand. demand. Dr.Dr. Patrick Patrick Allman-Ward, Allman-Ward, General General Manager Manager of of Dana Dana GasGas Egypt Egypt andand thethe newnew Executive Executive Director: Director: «sought «sought thethe company company to toincrease increaseproduction productionlevels levels to toreach reach50 50thousand thousandbarrels barrels of of oil oil equivalent equivalent perper dayday in the in the coming coming period, period, which which requires requires more more investment investment in in thethe fields,» fields,» stressing stressing thethe need need to to reach reach a a quick quick solution solution on on thethe settlement settlement Company Company dues dues arrears arrears on on thethe Egyptian Egyptian government, government, including including in in turnturn willwill contribute contribute to to thethe acceleration acceleration wewe took took thethe decision decision on on thethe implementation implementation of capital of capital investments investments in Egypt. in Egypt. TheThe general general director director of of Dana Dana GasGasEgypt EgyptsaidsaidthatthatEgypt Egypt willwillremain remainan anintegral integralpartpart of of ourour long-term, long-term, andand wewe willwill remain remain committed committed to enhancing to enhancing productivity productivitylevels levelsandandthethe development development of of ourour operations operations forfor thethe benefit benefit of Egypt, of Egypt, andand thethe company company at at thethe same same time, time, he he said, said, adding adding thatthat wewe have have over over thethepastpastsixsixmonths monthsdigging digging andand testing testing thethe development development of of three three wells wells successfully, successfully, andand thethe volume volume of production of production to 41,500 to 41,500 barrels barrels of oil of oil equivalent equivalent perper day,day, which which is the is the highest highest production production level level since since August August 2011. 2011.

201320131111 Petroleum Petroleum Today Today - September - September


Arab News Iraq lays contracts worth $348 million to drill wells in Mysan fields Iraq contracts laid on three international companies for the oil services for the drilling of 39 production wells in the Mysan complex which has reserves of 2.5 billion barrels and evolution of the Chinese CNOOC Company and the Turkish Petroleum Corporation. The statement said U.S. Oil Services Company Weatherford got the two wells of $94.98 million and $82.39 million respectively. And the Chinese DUHAY got contract worth $96.66 million. C.O.S.L. won. a unit specializing in the oil services subsidiary of CNOOC on a contract worth $73.82 million. It was not clear from the statement number of wells will be drilled by each company. Iraq signed in 2010 an agreement with CNOOC Company and Turkish Petroleum Corporation governmental organizations to develop the Mysan complex, which includes several small fields in order to reach production to 450 thousand barrels per day by 2016.

Iran and Oman signed a contract to export Natural Gas worth $60 billion Iran and Oman signed a contract to export Gas worth $60 billion, as reported by Iranian media, and according to Iranian Oil Minister Bijan Zanganeh said that Iran will start supplying natural gas during the next two years, with a 25-year duration of the contract. Oman was thirsty to Energy and agreed to buy gas from Iran in 2005 and included a draft agreement signed in 2007 after plans for the establishment of Oman addressing the Iranian gas for export in the form of liquefied natural gas. But the parties did not agree on the final terms, according to the U.S. embassy cables leaked by WikiLeaks that the United States pressed on Oman to buy fuel from other sources such as Qatar.

12 Petroleum Today

- September 2013

Kuwait Oil continues to establish an international center for research by 2015 Kuwait Oil Company revealed for pressing ahead with the establishment of an international center for Petroleum Research and is scheduled for completion by 2015, indicating that among the functions of the Centre for research and strategic studies in cooperation with the subsidiaries of Kuwait Petroleum Corporation. The company explained that the center will work to make the most of technology partnerships with existing local and international to be the center first choice for technology innovation strategic to the business of the Corporation and the competing centers of research and development at the international level, noting that it has developed a research and development to work according to this concept. She added that the attention of the senior management of the company in this position is consistent with their efforts to achieve its strategic goal of increasing oil production to 4 million barrels per day by 2020 and to maintain this rate until 2030. They pointed out that the Research and Development group has the required fee plans and the composition of the special committees and identify the resources required for the project is expected to serve the sectors of production, refining and petrochemicals in Kuwait through the research that will be conducted in collaboration with the prestigious international research centers.


International News Argentina prohibits four British Oil Companiesprogram in Iraq Argentina banned four British oil companies from working in the country, after the acting oil exploration near the Falkland Islands disputed between the two countries. Argentine government said that the four companies would be banned for twenty years because of its exploration operations in the shadows near the Falkland Islands. The four companies are «Borders and Southern Petroleum» and «Desire Petroleum» and «Argus Resources» and «Falkland Oil». This is demanding Argentina Britain for negotiations over the ownership of these islands, while Britain insists on not to negotiate unless the islanders themselves wish to do so. These islands located, which Argentina calls the Malvinas Name the South Atlantic Ocean at a distance of 1,523 kilometers from the Argentine coast and 12.723 kilometers from Britain. Some British citizens occupied the islands in 1833.

French court acquits «Total» of corruption charges related to the oil-for-food program in IraqCompaniesprogram in Iraq A French court acquitted the company «Total» oil and CEO and a former minister and more than a dozen other people from corruption charges related to the oil-for-food program in Iraq. The court ruled that the company is not involved in any kind of corruption or abuse the exercise of influence or misuse of assets in the program which is worth $ 64 billion. The company faced a «Total», and its chief executive Christophe de Margerie and former French Interior Minister Charles Pasqua and more than a dozen former managers and retired diplomats graft charges. The company refused and the other defendants charges attributed to them 68.

China›s spending on oil imports will reach $ 500 billion in 2020 Wood Mackenzie Energy Consulting Firm said in a report that China will need to spend $500 billion annually on imports of crude oil by 2020 as Beijing is likely to exceed the United States to become the largest importer of oil in 2017. The company predicted rise of China›s total imports to 9.2 million barrels per day by 2020 from 2.5 million barrels per day in 2005 and lower U.S. imports of 10.1 million barrels per day to 6.8 million barrels per day. William Durbin, head of global markets at Wood Mackenzie said «By 2020, imports will meet 70% of the total Chinese demand for oil. On the other hand, will drop the needs of the United States imports oil production due to the arbitrator». Durbin added that this trend means that many of the traditional suppliers to the United States from the Organization of the Petroleum Exporting Countries (OPEC) will be forced to turn their attention to China.

Petroleum Today

- September 2013

13


Corporation News ARAMCO: Madyan field will produce 75 million cubic feet of Gas per day Saudi ARAMCO Chief Executive said that the project is expected to produce indebted to the gas field in the Red Sea 75 million cubic feet of gas per day, which will help to meet the growing domestic demand. Saudi Arabia , the largest oil exporter in the world is trying to enhance Gas production quickly to meet domestic demand for electricity, which is growing rapidly and feed the booming petrochemical industry. Khalid Al-Faleh said in a statement

on the website of the Giant National Energy that owes field development go ahead as planned. He added that the Gas extracted from the field owes inject to Debaa province to feed new power plants intends to set up the Saudi Electricity Company and Saudi ARAMCO. He estimated field production, equivalent to 2.12 million cubic meters per day. It is expected to produce a debtor who discovered the field in the eighties about 4,500 barrels per day of condensate.

QARUN Petroleum contract on a drill equipment valued at $30 million QARUN Petroleum Company started implementation of an intensive program of exploration and development of its concession area to compensate for attrition in the oilproducing wells concession areas and the Company contracted on a new drill for oil. Engineer Mohammed Moanes, president of the company that the device will begin in a number of drilling exploratory wells in Beni Suef area from October, explaining that the contract on the device extends until September of next year worth $30 million. He pointed out that the device will begin to work in parallel with another device is currently working with the consent of American APACHE Company to hire it earlier this year to hold a similar work to increase the company›s production of oil to pace the previous which amounted to 59 thousand and 600 barrels mid last year dropped now to 46 thousand barrels per day a result of the decline in natural wells while maintaining a reserve of 281 million barrels.

14 Petroleum Today

- September 2013


British Inquest buys Japanese partner stake in an Oil field in Egypt An official source in the Egyptian General Petroleum Corporation, said that British Inquest Company, would buy Japanese partner›s share in the oil field in the Gulf of Suez, eastern Egypt. He added that the transaction is related to share Japanese Arabian Oil Company Holdings, in a field northwest of October in the Gulf of Suez. He said that the British company for the Japanese company will pay $30 million (210 million pounds) for the concession area, with an estimated share owned by the Japanese Arabian Oil Company in the franchise by about 50%, while the Egyptian General Petroleum Corporation owns the remaining stake. According to the General Authority for Petroleum, up reserves concession area by about 5 million barrels, and was scheduled to start production in 2012, but economic conditions related company Arabian Oil Japanese prevented the implementation of the agreement, and conducted international companies producing oil in Egypt review and assessment of their activities against the backdrop of instability Political security of the country. According to information published on the website of the Ministry of Petroleum and Mineral Resources of Egypt, the number of agreements Petroleum, which was signed or have been modified since 1981, and until 2011 was 346 agreement to search for oil and gas, while the total spent by companies in the field of research and exploration and development of about 38.5 billion dollars.

New Oil Discovery for Kuwait Energy in Egypt Kuwait Energy is specialized in exploration for oil and gas, said that it made a new oil discovery in the Western Desert of Egypt can be pumped 3530 barrels per day. It explained in a statement that the location of the new discovery in

Salmiya-2 well which is located in the concession area which the company operates, including in Abu Sanan Western Desert. Kuwait Energy as the main operator in the franchise Abu Sanan as a share of operating license franchise 50%. The remaining percentage back to British Petroleum Company increased by 22%, and Dover Investments Company by 28%. And the Egyptian General Petroleum is the main partner of the donor to a franchise license.

New Unit starts work to increase production of «Butane» and «Gasoline 92» Ministry of Petroleum announced the running and processing unit «NAFTA» for by hydrogen related to Alexandria National Refining and Petrochemical Company (ANRPC) on the first of September which increases the production of butane and gasoline 92. A statement of the ministry said that the project is working capacity of 400 thousand tons per year of naphtha to produce high-quality products, including 210 thousand tons per year of gasoline 92 and 11 thousand tons of butane and 175 thousand tons per year of naphtha heavy investments of 407 million pounds and is financed entirely local, contributing with the company «ANRPC «The number of national banks.

«British Gas» Pumps additional Investments in its projects in Egypt Taher Abd Al-Raheem President of the Egyptian Holding Company for Natural Gas «EGAS», announced that British Gas Company sent two letters to Al-Borulus Company to claim tender to hire a new digger to expedite the completion of the implementation of the project development wells stage «The Ninth - A» to produce about 450 million cubic feet of gas daily during the summer. Abd Al- Raheem added that the company also demanded the tender for the purchase of equipment for the long-term phase «The Ninth-B» $300 million, for the completion of the project scheduled to start production by 2015 to produce 400 million cubic feet of gas per day.

He pointed out that he had received confirmation from the Chairman of British Gas in Egypt, Arshad Sophie, stating that the company continues to pump investments and implementation of development projects wells in the region, and that the company›s production of gas at the highest levels amounts to about 1.5 billion cubic feet of gas per day, representing 30 % of Egypt›s total production of Natural Gas.

Petroleum Today

- September 2013

15




New Products Conical-Diamond- Element Technology

Fig. (1) Smith Bits’ Stinger conical-diamond element is centrally positioned in aPDC-drill-bit cutting structure. Smith Bits, a Schlumberger company, has introduced its Stinger conical-diamond technology. The polycrystalline-diamond element enables high point loading, to fracture rock more efficiently during drilling to increase the rate of penetration (ROP) and durability. Developed with proprietary synthetic - diamond-manufacturing technology, the conical-diamond element has anultra-thick polycrystalline -diamond layer that is significantly thicker than that of conventional polycrystallinediamond - compact (PDC) cutters. The element’s shape is optimized for strength in axial compression. When centrally positioned in a PDC-drill-bit cutting structure (Fig. 1), the new element improves performance by crushing the formation core at the borehole center, increasing drilling speed. Using the company’s IDEAS integrated-drillbit-design platform, extensive simulationswere conducted showing ROP increasesin several rock types, including shale,limestone, and sandstone. The virtualdrilling environment demonstrated thatcentral placement of this element wouldyield an ROP increase of at least 18%.In the Williston basin, an 8¾-in. PDCbit typically is used to drill the verticalhole before the curve and the lateralsection in the Bakken oil-bearing sands. In field tests, centrally placed conicaldiamond- element technology was added to the baseline vertical-section-drill-bit design. Average ROP was increased by more than 46% compared with the nextbest performance in offset wells, with a record ROP increase of 77%. For additional information, visit www.slb.com/stinger

18 Petroleum Today

- September 2013


Reducing Reducing CrudeCrudeTransmission Transmission Viscosity Viscosity STWA’s STWA’s AOT AOT 2.02.0 (Fig. (Fig. 2) Midstream 2) Midstream product product is an is add-on an add-on system system component component forfor pipeline pipeline pump pump stations. stations. It isIt designed is designed to reduce to reduce thethe frictional-pressure frictional-pressure lossloss of the of the pipeline pipeline as the as the crude crude oil oil moves moves between between pump pump stations stations along along thethe pipeline. pipeline. ByBy reducing reducing thethe frictionalfrictionalpressure pressure lossloss in in thethe pipeline, pipeline, pumppumpstation station operation operation requires requires lessless pressure pressure to overcome to overcome thethe pipeline’s pipeline’s friction friction perper mile, mile, leading leading to greater to greater energy energy efficiency efficiency andand higher higher maximum maximum flow flow rates rates achievable achievable within within thethe pipeline’s pipeline’s pressure pressure limits. limits. This This turnkey turnkey product product uses uses an an ultralow-amperage ultralow-amperage electric electric bath bath to toencourage encourageparticulate-matter particulate-matteraggregationof aggregationofthetheparaffin paraffinor orasphalt asphalt contentof contentof thethe crude crude oil oil being being transported,to transported,to reduce reduce thethe viscosity viscosity of of thethe crude crude oil oil quickly quickly andand easily. easily. TheThe system system hashas been been tested tested by by several several entities, entities, including including thethe USUS Department Department of Energy, of Energy, which which reported reported viscosity viscosity reduction reduction as great as great as 56%. as 56%. Each Each unitunit hashas a maximum a maximum flow flow raterate of 5,000 of 5,000 gal/min gal/min andand is designed is designed forfor installation installation as parallel as parallel units units to any to any pipeline pipeline flow flow rate, rate, with with a a minimum minimum of components of components andand with with negligible negligible maintenance maintenance required. required. ForFor additional additional information, information, visit visit www.stwa.com. www.stwa.com. Fig.Fig. (2) (2) STWA’s STWA’s AOT AOT 2.0 2.0 Midstream Midstream units. units.

BOP BOP Hydrostatic Hydrostatic Testing Testing Clover CloverTool Tooloffers offersblowout-preventer blowout-preventer (BOP) (BOP)hydrostatic-test hydrostatic-testunits unitsforforBOP, BOP, hose, hose, manifold-valve-system, manifold-valve-system, andand riserlinehydrostatic riserlinehydrostatictesting. testing.These Theseall-allelectric electric testtest units units have have a small a small footprint, footprint, areare explosion explosion proof, proof, andand areare easy easy to to customize, customize, maintain, maintain, andand operate. operate. Model Model CTU-20P-D24CTU-20P-D24(Fig. (Fig. 3) 3) is aisdual a dual unitunitthatthatoffers offerstriple-hydrostatic-test triple-hydrostatic-test capabilities capabilitiesup upto to30,000 30,000psi.psi.During During critical critical operations, operations, oneone sideside cancan be be used used as an as an immediate immediate backup. backup. When When operating operating in tandem in tandem as aassingle a single station, station, it can it can reduce reduce BOP-fill/-test BOP-fill/-testtime timeby byhalf. half.Operating Operating independently, independently,integral integraltwin twinrecorders recorders allow allow separate separate tests tests at different at different pressures pressures simultaneously. simultaneously. TheThe unitunit hashas redundant redundant Fig.Fig. (3)(3) Clover Clover Tool’s Tool’s Model Model CTU-20P-D24CTU-20P-D24BOP BOP testtest unit. unit. high-pressure high-pressure valving, valving, providing providing washout washout andandleakage leakageprotection. protection.AnAnauxiliary auxiliary fluid-supply fluid-supply connection connection provides provides a direct a directoperationcontrols operationcontrols areare accessible accessible from from either either sideside (the(the chest-high chest-high console console quick-fill quick-fill portport (5,000 (5,000 psi). psi). Valving Valving andandis mounted is mounted forfor easy easy operator operator view). view). Filter Filter elements elements areare available available in various in various gauges gauges cancan be be set set forfor different different operational operationalmicron micron values values to to accommodate accommodate customer customer requirements. requirements. ForFor less-critical less-critical modes modesandandareareswitchable switchablewithout withoutoperations, operations, a 15,000-psi a 15,000-psi single-test single-test unit, unit, Model Model CTU-15P-S1, CTU-15P-S1, is available. is available. opening opening safetyinterlockdoors. safetyinterlockdoors. Individual Individual ForFor additional additional information, information, visit visit www.clovertool.com www.clovertool.com

201320131919 Petroleum Petroleum Today Today - September - September


HP/HT Liner-Top Packer

With standard service ratings up to 15,000 psi and 400°F, Weatherford’s SwageSet liner-top packer (Fig.4) meets International Organization for Standardization 14310 standards and is V0 qualified, demonstrating its capability to withstand combined loading conditions while maintaining seal integrity. In high-pressure/ high-temperature (HP/HT) environments, this packer increases reliability with a patentpending seal assembly that is swaged to the host casing. Fig. (4)Weatherford’s SwageSet liner-top packer. Run as part of a liner-hanger assembly, the packer element forms a permanent, antiextrusion seal between the liner outside wall and host-casing inside wall. The seal is formed by transferring set-down weight through the polished- bore receptacle and into the integral swage, firmly sealing the packer element against the host-casing inside wall. Setting force is permanently locked into the element with integral bodylock rings. The packer’s seal system consists of ridge-shaped elastomers bonded to an expandable-metal ring and is less susceptible to swabbing off than conventional, all-elastomer elements when running in the hole or circulating at high flow rates during well-cleanup or cementing operations. The packer serves as a positivehigh-performance barrier at the linertop, preventing gas migration and isolatingannular pressures. For additional information, visit www.Weatherford.com/linersystems

Oilfield-Data Management

Senergy Software has released Version 3.8 of its Oilfield Data Manager (ODM) software suite, with significant changes, particularly in the user interface. This version includes Analysis Sticks features and enhancements to the reservoirperformance- module 3D Viewer. The geological tools enable storing, integrating, interpreting, and presenting many kinds of well-based data. The software enables incorporating and visualizing many forms of data, with the objective of using all available information to make an informed interpretation of the subsurface. The reservoir-performance module 3D Viewer makes time-based data viewable in 3D and allows the

Formation - Damage Removal

user to roll time back and forth to examine dynamic behavior. A new method for handling core shifts, which can be associated with discrete and curve data, enables the core shift to be applied automatically wherever these data are displayed such as within charts, maps, and crossplots. A new Heatmaps chart item can be used to display any numeric data, such as discrete sample data or log-curve data. A color gradient is used to represent numerical variation across selected data types for a particular well. A new Dictionary Summary provides a powerful tool for managing dictionaries within the suite. For additional information, visit www.senergyworld.com.

Peak Well Systems added the SIM FloWell(Fig. 5) to its SIM System well-remediation and flow-control tools. The new tool is a slick line-set remedial technology that is capable of Fig.(5)Peak Well Systems’ removing formation damage within selected downhole zones to improve SIM FloWell tool. productivity. This system improves well productivity by removing certain types of formation damage (e.g., crushed zones in perforation tunnels and tenacious filter cake and scale) in oil and gas wells that were wire line perforated. The condition of the nearwellbore region is critical in producing hydrocarbons, and the perforating process is a major contributor to skin damage. The severe compressive force of perforating can reduce the permeability of the surrounding rock, which in turn reduces productivity. Used in conjunction with the company’s SIM Plug System to provide selective isolation of the zone to be treated, the treating tool induces a sudden pressure drawdown in the wellbore, causing a surge of fluid inflow from the reservoir to reduce the skin damage. Because the tool is run, set, and retrieved on slick line it offers a low-risk intervention to clean up wellbore damage while conducting routine slickline operations. For additional information, visit www.peakwellsystems.com

20 Petroleum Today

- September 2013


Basic information on oil shale, oil shale resources, and recovery of oil from oil shale.

Petroleum Today

- September 2013

21


What Is Oil Shale? The term oil shale generally refers to any sedimentary rock that contains solid bituminous materials (called kerogen) that are released as petroleum-like liquids when the rock is heated in the chemical process of pyrolysis. Oil shale was formed millions of years ago by deposition of silt and organic debris on lake beds and sea bottoms. Over long periods of time, heat and pressure transformed the materials into oil shale in a process similar to the process that forms oil; however, the heat and pressure were not as great. Oil shale generally contains enough oil that it will burn without any additional processing, and it is known as ÂŤthe rock that burnsÂť. Oil shale can be mined and processed to generate oil similar to oil pumped from conventional oil wells; however, extracting oil from oil shale is more complex than conventional oil recovery and currently is more expensive. The oil substances in oil shale are solid and cannot be pumped directly out of the ground. The oil shale must first be mined and then heated to a high temperature (a process called retorting); the resultant liquid must then be separated and collected. An alternative but currently experimental process referred to as in situ retorting involves heating the oil shale while it is still underground, and then pumping the resulting liquid to the surface.

22 Petroleum Today

- September 2013


Oil Shale Resources Location of the Green River Formation Oil Shale and Its Main Basins While oil shale is found in many places worldwide, by far the largest deposits in the world are found in the United States in the Green River Formation, which covers portions of Colorado, Utah, and Wyoming. Estimates of the oil resource in place within the Green River Formation range from 1.2 to 1.8 trillion barrels. Not all resources in place are recoverable; however, even a moderate estimate of 800 billion barrels of recoverable oil from oil shale in the Green River Formation is three times greater than the proven oil reserves of Saudi Arabia. Present U.S. demand for petroleum products is about 20 million barrels per day. If oil shale could be used to meet a quarter of that demand, the estimated 800 billion barrels of recoverable oil from the Green River Formation would last for more than 400 years1. More than 70% of the total oil shale acreage in the Green River Formation, including the richest and thickest oil shale deposits, is under federally owned and managed lands. Thus, the federal government directly controls access to the most commercially attractive portions of the oil shale resource base.

The Oil Shale Industry While oil shale has been used as fuel and as a source of oil in small quantities for many years, few countries currently produce oil from oil shale on a significant commercial level. Many countries do not have significant oil shale resources, but in those countries that do have significant oil shale resources, the oil shale industry has not developed because historically, the cost of oil derived from oil shale has been significantly higher than conventional pumped oil. The lack of commercial viability of oil shale-derived oil has in turn inhibited the development of better technologies that might reduce its cost. Relatively high prices for conventional oil in the 1970s and 1980s stimulated interest and some development of better oil shale technology, but oil prices eventually fell, and major research and development activities largely ceased. More recently, prices for crude oil have again risen to levels that may make oil shale-based oil production commercially viable, and both governments and industry are interested in pursuing the development of oil shale as an alternative to conventional oil.

Petroleum Today

- September 2013

23


Oil Shale Mining and Processing Oil shale can be mined using one of two methods: underground mining using the Major Process Steps in Mining and Surface Retorting room-and-pillar method or surface mining. After mining, the oil shale is transported to a Mining and Oil Oil to Retorting facility for retorting, a heating process that crushing upgrading refinery separates the oil fractions of oil shale from the mineral fraction.. The vessel in which retorting takes place is known as a retort. Spent shale After retorting, the oil must be upgraded disposal Reclamation by further processing before it can be sent on - site to a refinery, and the spent shale must be disposed of. Spent shale may be disposed of in surface impoundments, or as fill in graded areas; it may also be disposed of in previously mined areas. Eventually, the mined land is reclaimed. Both mining and processing of oil shale involve a variety of environmental impacts, such as global warming and greenhouse gas emissions, disturbance of mined land, disposal of spent shale, use of water resources, and impacts on air and water quality. The development of a commercial oil shale industry in the United States would also have significant social and economic impacts on local communities. Other impediments to development of the oil shale industry in the United States include the relatively high cost of producing oil from oil shale (currently greater than $60 per barrel), and the lack of regulations to lease oil shale.

Surface Retorting While current technologies are adequate for oil shale mining, the technology for surface retorting has not been successfully applied at a commercially viable level in the United States, although technical viability has been demonstrated. Further development and testing of surface retorting technology is needed before the method is likely to succeed on a commercial scale.

Stuart Oil Shale Facility, Queensland, Australia

24 Petroleum Today

- September 2013

Surface Retort


In Situ Retorting Shell Oil is currently developing an in situ conversion process (ICP). The process involves heating underground oil shale, using electric heaters placed in deep vertical holes drilled through a section of oil shale. The volume of oil shale is heated over a period of two to three years, until it reaches 650–700 °F, at which point oil is released from the shale. The released product is gathered in collection wells positioned within the heated zone.

Major Process Steps in Thermally Conductive In-Situ Conversion

Drilling and site preparation

Heating and production

Oil to refinery

Postproduction clean-up

Shells current plan involves use of ground-freezing technology to establish an underground barrier called a «freeze wall» around the perimeter of the extraction zone. The freeze wall is created by pumping refrigerated fluid through a series of wells drilled around the extraction zone. The freeze wall prevents groundwater from entering the extraction zone, and keeps hydrocarbons and other products generated by the in-situ retorting from leaving the project perimeter. Shell’s process is currently unproven at a commercial scale, but is regarded by the U.S. Department of Energy as a very promising technology. Confirmation of the technical feasibility of the concept, however, hinges on the resolution of two major technical issues: controlling groundwater during production and preventing subsurface environmental problems, including groundwater impacts.1 Both mining and processing of oil shale involve a variety of environmental impacts, such as global warming and greenhouse gas emissions, disturbance of mined land; impacts on wildlife and air and water quality. The development of a commercial oil shale industry in the U.S. would also have significant social and economic impacts on local communities. Of special concern in the relatively arid western United States is the large amount of water required for oil shale processing; currently, The Shell In-Situ Coversion Process oil shale extraction and processing require several barrels of water for each barrel of oil produced, though some of the water can be recycled.

1 RAND Corporation Oil Shale Development in the United States Prospects and Policy Issues. J. T. Bartis, T. LaTourrette, L. Dixon, D.J. Peterson, and G. Cecchine, MG-414-NETL

Petroleum Today

- September 2013

25




Benefits and Applications of Nanotechnology in Oil Industries: Upstream and Downstream Operations - Egypt By

Adel M. Salem Ragab, Ph. D., American University in Cairo (AUC) and Suez University, Egypt Abdelrahman Ibrahim El-Diasty, RA, American University in Cairo (AUC) and Suez University, Egypt

A

bstract

Nanotechnology

has become the buzz word of the decade! The precise manipulation and control of matter at dimensions of (1-100) nanometers have revolutionized many industries including the Oil and Gas industry. Its broad impact on more than one discipline is making it of increasing interest to concerned parties. The Nanotechnology applications have pierced through different Petroleum disciplines from Exploration, to Reservoir, Drilling, Completion, Production and Processing & Refinery. For instance, Nano-sensors have been developed rapidly to enhance the resolution of the subsurface imaging leading to advanced field characterization techniques. Nanotechnology also strikes the stage of production enormously to enhance the oil recovery via molecular modification and manipulate the interfacial characteristics. Moreover, in a very similar fashion,

28 Petroleum Today

it provides novel approaches to improved post production processes. Only very few publications were able to report the latest accomplishments in different Petroleum Engineering domains. This paper provides an overview of the latest Nano-technological solutions in the O&G industry and covers the recent research developments that have been carried out around the world and paves the way for many researchers and organizations who are interested in the integration of these technological advancements, to discover the challenges and the revolution that Nanotechnology is about to bring to O&G Industry in Egypt. Egypt’s domestic demand for oil is increasing rapidly. Oil consumption has grown by more than 30% in the past ten years. Also, the hydrocarbon reserves in Egypt have witnessed an average increase of 5%/year over the past seven years, while the average recovery factor is still stuck at the 35%. Nanotechnology holds the key solution to this local production challenge as

- September 2013

it helps increase the recovered oil and decreases the cost of production by eliminating problems that occur throughout the field development operations. Introduction Nanotechnology is the use of very small pieces of material, at dimensions between approximately 1 and 100 nanometers, by themselves or their manipulation to create new large scale materials, where unique phenomena enable novel applications. In simple terms, Nanotechnology is science, engineering, and technology conducted at the Nanoscale. Nanotechnology draws its name from the prefix “nano�. A nanometer is one-billionth of a meter- a distance equal to two to twenty atoms (depending on what type of atom) laid down next to each other. Nanotechnology refers to manipulating the structure of matter on a length scale of some small number of nanometers, interpreted by different people at different times as meaning anything from 0.1 nm (controlling the


arrangement arrangement of of individual individual atoms) atoms) to to at least formation of of imaging imaging contrast contrast agents agents at least oneone additive additive with with particle particle sizesize formation in the in the range range of 1-100 of 1-100 nanometers. nanometers. 100100 nmnm or more. or more. (Krishnamoori, (Krishnamoori, 2006). 2006). Hyperpolarized Hyperpolarized silicon silicon nanoparticles nanoparticles provide provide a novel a novel Richard RichardFeynman Feynmanwaswasthethefirstfirst Fullerenes Fullerenes andand Carbon Carbon Nanotubes: Nanotubes: tooltool forfor measuring measuring andand imaging imaging in oil in oil scientist scientistto tosuggest suggest(in(in1959) 1959)thatthat exploration exploration (Song (Song and and Marcus, Marcus, 2007). 2007). A Afullerene fullereneis isanyanymolecule molecule devices devices andand materials materials could could someday someday be be fabricated fabricated to atomic to atomic specifications. specifications. “The “The principles principles of of physics, physics, as as farfar as as I can I can see,see, do do notnot speak speak against against thethe possibility possibilityof ofmaneuvering maneuveringthings things atom atomby byatom”. atom”.This Thisconcept conceptwaswas expanded expandedandandpopularized popularizedin ina a 1986 1986book book‘Engines ‘Enginesof ofCreation’ Creation’ by by K K Eric Eric Drexler, Drexler, who who applied applied thethe term termnanotechnology nanotechnologyto toFeynman’s Feynman’s vision. vision. AsAs shown shown in Figure in Figure 1, it 1, isit ais a comparison comparisonbetween betweendifferent differentscale scale things things referenced referenced to the to the nanometer. nanometer.

composed composed entirely entirely of of carbon carbon in in thethe form form of of a hollow a hollow sphere, sphere, ellipsoid ellipsoid or ortube. tube.Spherical Sphericalfullerenes fullerenesareare alsoalsocalled calledbuckyballs. buckyballs.Cylindrical Cylindrical ones ones areare called called carbon carbon nanotubes nanotubes or or buckytubes. buckytubes.

There Therearearenow nowseveral severalactive active andand promising promising programmes programmes to to develop develop nanosensors nanosensors compatible compatible with with temperature temperature andand pressure pressure ratings ratingsin indeep deepwells wellsandandhostile hostile environments. environments. Nanosensors Nanosensors areare deployed deployed in in thethe pore pore space space by by means means of of“nanodust” “nanodust”to toprovide providedata dataon on reservoir reservoircharacterization, characterization, fluid-flow fluid-flow monitoring, monitoring, andand fluid-type fluid-type recognition recognition (Esmaeili, (Esmaeili, 2009). 2009).

Carbon Carbonnanotubes nanotubes(CNTs) (CNTs)areare allotropes allotropes of carbon of carbon with with a cylindrical a cylindrical nanostructure. nanostructure. Nanotubes Nanotubes have have been beenconstructed constructedwith withlength-tolength-todiameter diameter ratio ratio of up of up to 132,000,000:1. to 132,000,000:1. Nanotubes Nanotubes areare categorized categorized as as singlesingleThere Therearearemany manynew newmaterial material walled walled nanotubes nanotubes (SWNTs) (SWNTs) (Figure (Figure Nano-Computerized Nano-ComputerizedTomography Tomography terminologies terminologies used used in in thisthis trend trend of of 3.a)3.a)andandmulti-walled multi-wallednanotubes nanotubes (CT) (CT) cancan image image tight tight gasgas sands, sands, tight tight technology. technology. To To give give a short a short overview overview (MWNTs) (MWNTs) (Figure (Figure 3.b). 3.b). shales, shales, andand tight tight carbonates carbonates in in which which of ofsome someof ofthethedifferent differenttypes typesof of thethe pore pore structure structure is below is below what what micromicroCarbon Carbon Nanotubes Nanotubes show show a unique a unique nanomaterials, nanomaterials, types types of of interest interest in Oil in Oil CTCT cancan detect. detect. combination combinationof ofstiffness, stiffness,strength, strength, andand GasGas Industry Industry cancan be be mentioned. mentioned. andand tenacity tenacity compared compared to to other other fiber fiber In In addition, addition, nanotechnology nanotechnology Engineered Engineered Nano Nano Materials Materials materials materials which which usually usually lack lack oneone or or hashasthethepotential potentialto tohelp helpdevelop develop more moreof ofthese theseproperties. properties.Thermal Thermal geothermal geothermal resources resources by by enhancing enhancing Nanoparticles: Nanoparticles: Nanoparticles Nanoparticles areare andand electrical electrical conductivity conductivity areare alsoalso thermal thermal conductivity, conductivity, andand nano-based nano-based thethe simplest simplest form form of of structures structures with with very very high, high, andand comparable comparable to to other other materials materials could could be be used used for for geothermal geothermal sizes sizes in the in the nmnm range. range. In principle, In principle, anyany conductive conductive materials. materials. production. production. Nanoscale Nanoscale metals metals have have collection collection of of atoms atoms bonded bonded together together already already been been used used to to delineate delineate ore ore with with a structural a structural radius radius of of < 100 < 100 nmnm OilOil andand Gas Gas Industry Industry deposits deposits for for geochemical geochemical exploration exploration cancan be be considered considered a nanoparticle. a nanoparticle. (Kong andand Ohadi, Ohadi, 2010) 2010) Authors Authors tried tried to search to search andand collect collect (Kong TheThe tinytiny nature nature of of nanoparticles nanoparticles all all published published andand ongoing ongoing researches researches 2. Drilling 2. Drilling andand Completion Completion results results in in some some useful useful characteristics, characteristics, in in an an attempt attempt to to provide provide an an overall overall such suchas asan anincreased increasedsurface surfacearea area view view of of all all thethe current current andand future future 2.1.2.1. Drilling Drilling Fluids Fluids (Figure (Figure 2.) 2.) to to which which other other materials materials applications applications of of Nanotechnology Nanotechnology in all in all cancan bond bond in ways in ways thatthat make make forfor stronger stronger OilOil andand GasGas disciplines. disciplines. In addition In addition to to Fluid Fluid Loss Loss Control Control andand Wellbore Wellbore or or more more lightweight lightweight materials. materials. At At thethe mentioning mentioning thethe future future challenges challenges thatthat Stability: Stability: There There areare several several researchers researchers nanoscale, nanoscale, sizesize does does matter matter when when it it willwill meet meet Nanotechnology Nanotechnology andand how how working workingon onusing usingnanoparticles nanoparticlesas as comes comes to how to how molecules molecules react react to and to and arearecurrent currentresearches researchesworking workingon on drilling drilling fluid fluid additives additives to to reduce reduce thethe bond bond with with each each other. other. these these challenges. challenges. fluid fluid lossloss andand enhance enhance thethe wellbore wellbore stability. stability.TheThefilter filtercake cakedeveloped developed Suspensions Suspensions of of nanoparticles nanoparticles areare 1. Exploration 1. Exploration during during thethe Nanoparticles-based Nanoparticles-based drilling drilling possible possiblebecause becausethetheinteraction interactionof of fluid fluidfiltration filtrationis isvery verythin, thin,which which Nanosensors, Nanosensors, ranging ranging from from 1-100 1-100 thethe particle particle surface surface with with thethe solvent solvent is is implies implies high high potential potential forfor reducing reducing thethe have have captured captured thethe attention attention andand strong strong enough enough to overcome to overcome differences differences nm,nm, differential differential pressure pressure sticking sticking problem problem imagination of of petroleum petroleum geologists geologists in in density, density, which which usually usually result result in in a a imagination andand formation formation damage damage while while drilling. drilling. (Pitkethly, 2004). 2004). material material either either sinking sinking or floating or floating in ain a (Pitkethly, In shale In shale formations formations with with nanodarcy nanodarcy liquid liquid forming forming ‘Nanofluid’. ‘Nanofluid’. Nanoparticles Nanoparticles with with noticeable noticeable (nd) (nd) permeability, permeability, thethe nanometer-sized nanometer-sized alterations in in optical, optical, magnetic, magnetic, andand pores pores prevent prevent thethe formation formation of of thethe Nanofluid: Nanofluid: Nanofluids Nanofluids forfor oil oil andand alterations electrical properties properties compared compared to their to their filter filter cake cake thatthat is responsible is responsible forfor fluid fluid gasgas field field applications applications areare defined defined as as electrical bulk counterparts counterparts areare excellent excellent tools tools lossloss reduction. reduction. Nanoparticles Nanoparticles cancan be be anyany fluids fluids used used in the in the exploration exploration andand bulk added to the to the drilling drilling fluid fluid to minimize to minimize thethe development development of sensors of sensors andand thethe added exploitation exploitation of oil of oil andand gasgas thatthat contain contain forfor 201320132929 Petroleum Petroleum Today Today - September - September


shale permeability through physically plugging the nanometer-sized pores and shut off water loss. Hence, Nanoparticles can provide potential solution for environmentally sensitive areas where Oil-based muds used as a solution to shale instability problems (Price et al., 2012). Bit Balling: According to (Amanullah and Al-Tahini, 2009), Nanomaterialbased drilling mud with hydrophobic film forming capability on the bit and stabilizer surfaces is expected to eliminate the bit and stabilizer balling totally. Due to high surface area to volume ratio and very low concentration requirement compared to macro and micromaterial-based fluids, nano-based fluid could be the fluid of choice for drilling in shale which is very reactive, highly pliable, and tenacious and thus can stick easily to the bit, stabilizers, tool joints, etc. as it prevents the reduction in ROP and in total operating cost. Torque and Drag: Due to fine and very thin film forming capability of nanomaterials, nano-based fluids can provide a significant reduction of the frictional resistance between the pipe and the borehole wall due to the formation of a continuous and thin lubricating film in the wall-pipe interface. Moreover, the tiny spherical nanoparticles may create an ultrathin bed of ball bearing type surface between the pipe and the borehole wall and thus can allow easy sliding of the drill string along the nano-based ballbearing surface. This highlights the extraordinary role of nano-based smart fluid in reducing the torque and drags problems of horizontal, extended reach, multilateral and coiled tubing drilling (Amanullah and Al-Tahini, 2009). Removal of Toxic Gases: Hydrogen sulfide is a very dangerous, toxic and corrosive gas. It can diffuse into drilling fluid from formations during drilling of gas and oil wells. Hydrogen sul-

30 Petroleum Today

fide should be removed from the mud to reduce the environmental pollution, protect the health of drilling workers and prevent corrosion of pipelines and equipment. Sayyadnejad et al., 2008, used 1425 nm zinc oxide particles size and 44-56 m2/g specific surface area to remove hydrogen sulfide from waterbased drilling fluid according to the following chemical reaction (ZnO + H2S → ZnS + H2O) The efficiency of these nanoparticles in the removal of hydrogen sulfide from drilling mud was evaluated and compared with that of bulk zinc oxide. Their results demonstrated that synthesized zinc oxide nanoparticles are completely able to remove hydrogen sulfide from water based drilling mud in about 15 min., whereas bulk zinc oxide is able to remove 2.5% of hydrogen sulfide in as long as 90 min. under the same operating conditions. High Temperature and High Pressure (HTHP) Challenges: In high temperature and high pressure drilling (HTHP) operations, usual drilling fluid systems have relatively poor heat transfer coefficient. The cooling efficiency of the traditional drilling fluids decreases due to slow dissipation of heat from the surfaces of down hole tools and equipment. Hence, there is a higher scope of equipment failure due to thermal degradation effect of high temperature. The extremely high surface area to volume ratio of nanoparticles enhances the thermal conductivity of Nanobased drilling fluids which provides efficient cooling of drill bit leading to a significant increase in operating life cycle of a drill bit. Due to the presence of an astronomical high number of extremely tiny particles with huge surface area, high heat tolerance, high thermal conductivity, high mobility,

- September 2013

effective interaction with external and internal rock surfaces, nano-based drilling mud systems are expected to play a pivotal role in current and future HTHP drilling operations, complex drilling conditions, deep water drilling operations, etc. (Amanullah et. al., 2011) Increase down hole tools life: The down hole tools and equipment are always exposed to abrasive forces due to high kinetic energy associated with the particles present naturally in the subsurface formations and the drill solids added to the drilling fluid system for specific functions. These forces cause the wear and the tear for most of the down hole equipment, especially in deviated and horizontal wells where the tools are more exposed to these abrasive forces. Because of their extremely small size, nanoparticles are preferred to be used in drilling fluid design as their abrasive forces are negligible with less kinetic energy impact. In addition to all advantages of using nanoparticle in mud design, it is safer than conventional mud from the point of environmental view. The nanoparticles are added to mud in small amount, with low concentration about 1%. So, Nano-based drilling fluids could be the fluid of choice in conducting drilling operations in sensitive environments to protect other natural resources (Amanullah et. al., 2011). 2.2. Drilling Bits Nanodiamond PDC Technology: Carbon nanomaterials are extremely interesting because of their unique combination of mechanical, structural, electrical and thermal properties. In case of challenging drilling operations, harsher conditions are met and the need for effective drilling bits increases. Nanodiamond particles have been functionalized for polycrystalline diamond applications such as polycrystalline diamond compact


(PDC) cutters for drill bits. They give PDC cutters unique surface characteristics that allow them to integrate homogeneously into PDC synthesis. Chakraborty et al., 2012, studied the functionalization of nanodiamond, integration into the PDC matrix and subsequent property enhancement in comparison to the base PDC matrix. The performance of PDC cutters produced, the behaviors and proposed mechanisms are still an area of interest.

controlled by nanoscale coatings within the composite grain structure. The nanomatrix of the material is high strength and has unique chemical properties that conventional materials do not. Salinas et al., 2012, explained the chemistry and layering of the nanoscale coating within the grain structure, the unique material properties, and lab testing data of this truly interventionless nanostructured material technology.

2.3. Down Hole Tools

2.4. Cement

High Strength Nanostructured Materials: Flow control and Completion devices such as fracturing balls, discs, and plugs are used for sleeve actuation or stimulation diversion during fracturing. Traditional light weight material for ball or plug applications are prone to early yielding or shape changes. The yield strength of conventional aluminum alloys is usually less than 400 MPa.

Cement spacer: Nano-emulsions are emulsions where the droplet size of the internal phase is in the nanoscale (<500 nm). Due to their small dimensions they have a high surface area and show very different properties. Maserati et al., 2010 proposed that solvent in water nano-emulsions used as cement spacer formulation could allow optimizing the cleaning of the casing during the cement job with a high improvement of the performances of the spacers currently in use.

Nanotechnology can be effectively employed to enhance the mechanical properties and other desirable properties through engineering the material microstructure (Zhang et al., 2012). Current polymer material must be milled away, flowed back or otherwise removed before production. Severe deformation of currently used materials that prevent flow back have been reported, leading to potential restrictions in the tubing which requires costly intervention operations to either remove or replace the tools and resulting in higher operational inefficiency. Using controlled electrolytic metallic (CEM) nanostructured material that is lighter than aluminum and stronger than some mild steels, but disintegrates when it is exposed to the appropriate fluid. The disintegration process works through electrochemical reactions that are

Maserati et al., 2010, studied the formulation of direct nano-emulsions (O/W), with a selected solvent as internal phase, in order to improve the casing – open hole cleaning and reverse the surfaces wettability to allow better adhesion of slurry between casing and hole. Using this methodology, based on high efficiency system with reduced chemical dosage, can also result in a considerable optimization of product cost of effective cement operation. Enhancing Cement Properties: Due to the very high surface area of nanomaterials, they can also be used in oil well cementing to accelerate the cement hydration process, increase compressive strength, help control fluid loss, reduce probability of casing collapse and prevent the gas migration which is one of the cementing prob-

lems in gas wells. Moreover, they are often required in small quantities. Santra et al., 2012, managed to investigate several types of nanomaterials to be used in the oil well cementing industry: (1) nanosilica and nanoalumina as potential accelerators; (2) nanomaterials including carbon nanotubes (CNTs) with high aspect ratio to enhance mechanical properties; (3) nanomaterials to reduce permeability/porosity; and (4) nanomaterials to increase thermal and/ or electrical conductivity. Currently, the most active research areas dealing with cement and concrete are: understanding of the hydration of cement particles and the use of Nanosize ingredients such as alumina and Nano carbon tubes particles. CNT are expected to have several distinct advantages as a reinforcing material for cements as compared to more traditional fibers (Rahimirad et al., 2012). 2.5. Well Logging Logging-while-drilling (LWD): Currently, almost all available neutron porosity logging-while-drilling (LWD) tools use He-3 detectors to detect neutrons down hole due to their mechanical robustness and the absence of the limitations to operate at high temperatures. Unfortunately, the lack of sufficient quantities of the He-3 isotope caused by the depletion of its stockpile accumulated during the Cold War makes this material unavailable to well logging industry for the next 3 to 5 years. Among all other available neutron detection technologies, only Li-6 scintillation detectors do not have limitations on neutron detection efficiency that would prevent them from consideration for LWD applications (Nikitin and Korjik, 2012). The key component of Li-6 scintillation detector is the scintillation

Petroleum Today

- September 2013

31


material containing Li-6 isotope. To be used as detectors for neutron porosity LWD tools based on pulsed neutron generators (PNG), such material should be able to operate at high temperature and enable large neutron detector constructions. Nikitin and Korjik, 2012, presented new Li-6 scintillation nanostructured glass-ceramics that perform substantially better than all available Li-6 scintillation materials. It is this performance improvement provided by nanostructured nature of obtained material which enables its use in the neutron detectors of PNGbased neutron porosity LWD tools. 3. Production: 3.1. Recovery of Hydrates: Gas Hydrate is an ice-like crystalline solid formed from a mixture of water and natural gas, usually methane. Hydrates can produce 160 times their volume of methane which is an infinite source of energy waiting to be tapped. Bhatia and Chacko, 2011, mentioned that the recovery of gas from hydrates requires the dissociation of gas hydrates which can be accomplished in at least three ways: thermal recovery, depressurization or by chemical inhibition. But, the problems associated are:  Most chemical additives (salt, methanol, and glycol) cause pipe and equipment corrosion, ecological problems.  Preheated gas or liquid transportation down to hydrate zone is accompanied by extensive heat loss.  Microwave or electromagnetic method also requires vast energy transfer to decomposition zone and is inefficient. Bhatia and Chacko, 2011, suggested the injection of air-suspended selfheating Ni-Fe nanoparticles (50 nm)

32 Petroleum Today

in the hydrate formation through horizontal well. These particles will penetrate deep into the class I, II and H hydrate reservoir by passing through the cavities (86-95 nm). The selfheating of Ni-Fe particles in a magnetic field is caused by hysteresis loss and relaxation losses. These particles cause a temperature rise up to 42 0C in formation leading to disturbance in thermodynamic equilibrium and causing the water cage to decompose and release methane. In this technique, the pressure of the fluids in contact with hydrate is lowered, pushing the hydrate out of its stability region and leading to its decomposition. Bhatia and Chacko, 2011, discovered that the less expensive, readily available Eggwhite (Ovalbumin) can catalyze the reaction which results in large scale formation of these nanoparticles. The main advantage of this technique is the very low dosage requirements (small quantity required for 1m3 of Hydrate decomposition). Moreover, the nanoparticles used are non-poisonous, environment friendly. 3.2. Stimulation Viscoelastic Surfactant (VES) Stimulation Fluid: High-molecular-weight cross-linked polymer fluids have been used to stimulate oil and gas wells for decades. These fluids exhibit exceptional viscosity, thermal stability, proppant transportability, and fluid leak-off control. However, a major drawback of cross-linked polymer fluids is the amount of polymer residue they leave behind. Polymer residue has been shown to significantly damage formation permeability and fracture conductivity. Recently, viscoelastic surfactant (VES) fluids composed of lowmolecular-weight surfactants have been used as hydraulic fracturing and frac-packing fluids. The surfactants structurally arrange in brine to form rod-like micelles that exhibit viscoelastic fluid behavior. VES fluids,

- September 2013

once broken, leave very little residue or production damage. However, excessive fluid leak-off and poor thermal stability has significantly limited their use (Crews and Huang, 2008). Huang et al., 2007, investigated the nanometer-scale particles and displayed unusual surface morphologies and have high surface reactivity. These nanometer-scale particles, through chemisorption and surface charge attraction, associate with VES micelles to: 1) stabilize fluid viscosity at high temperatures; and 2) produce a pseudo filter cake of viscous VES fluid that significantly reduces the rate of fluid loss and improves fluid efficiency. When internal breakers are used to break the VES micelles, the fluid will dramatically lose its viscosity and the pseudo-filter cake will then break into nanometer-sized particles. Since the particles are small enough to pass through the pore throat of producing formations, they will be flowed back with the producing fluids, and no damage will be generated. The results of rheology leak-off and core flow tests will be presented for the VES fluid systems at temperatures 150°F and 250°F as illustrated in Figure 4. 3.3. Scale Inhibition: Kazemi et al., 2012, recommended preventing adhesion of Scale on Rock by Nanoscale Modification of the Surface. They showed in their work that organosilane has some potential to prevent scale deposition directly – i.e. Even in the absence of scale inhibitors. Creation of self-assembled organosilane films from solutions of different concentrations showed differences in film density/thickness and in scale deposition onto the films. This suggests that there are different film structures present, with different propensities to inhibit scale, and this in turn suggests that there is potential to optimize such films for the purpose of inhibiting scale deposition. Kumar et al., 2012 provided new idea


that can potentially inhibit the formation of scales inside the production tubing by Creating a super hydrophobic surface with multi-scale nano structures on the inside of the production tubing can greatly reduce the chances of scale deposition. This surface is created on epoxy paint surfaces using a feasible dip coating process. Microstructures are created on this surface using sandblast. Then nano structures are introduced on to the micro surface by anchoring 50-100 micro-meter SiO2 particles and finally completed by dip coating with nano SiO2/epoxy adhesive solution as shown in Figure 5. The hydrophobicity is further enhanced by another dip coating of a low surface energy polymer, aminopropyl. The super hydrophobic surface shows a contact angle of 167.8 degrees (Cui et al. 2009) for water, and has high stability in basic and common organic solvents (Kumar et al., 2012). 4. Reservoir Management and EOR 4.1. Enhanced Oil Recovery Nanoparticles are small enough to pass through pore throats in typical reservoirs, but they nevertheless can be retained by the rock. Rodriguez et al., 2009, injected concentrated (up to ~20 wt. %) aqueous suspensions of surface-treated silica nanoparticles (D = 5 nm and 20 nm) into sedimentary rocks of different lithologies and permeabilities. The particles generally undergo little ultimate retention, nearly all being eluted by a lengthy post flush. The Nanoparticles in an aqueous dispersion will assemble themselves into structural arrays at a discontinuous phase such as oil, gas, paraffin, or polymer. The particles that are present in this three-phase contact region tend to form a wedge-like structure and force themselves between the discontinuous phase and the substrate as illustrated in Figure 6.

Particles present in the bulk fluid exert pressure forcing the particles in the confined region forward, imparting the disjoining pressure force. The energies that drive this mechanism are Brownian motion, and electrostatic repulsion between the particles (Kirtiprakash et al., 2012). The force imparted by a single particle is extremely weak, but when large amounts of small particles are present, referred to as the particle volume fraction, the force can be upwards of 50,000 Pa at the vertex as shown in Figure 7. When this force is confined to the vertex of the discontinuous phases, displacement occurs in an attempt to regain equilibrium. Ogolo et al., 2012, used nanoparticles oxides of Aluminum, Zinc, Magnesium, Iron, Zirconium, Nickel, Tin and Silicon. It was imperative to find out the effect of these nanoparticle oxides on oil recovery since this is the primary objective of the oil industry. 4.2. Nanosensors for Hydrocarbon Detection in Oil-Field Rocks: Nanoparticles that show minimal retention can be employed as sensingcapability carrier to detect fluid and rock properties of the producing zone. For example, paramagnetic nanoparticles delivered to the target formation could evaluate fluids saturations there, with application of magnetic field and measurement of response (Zhang et al., 2011). In other words, Sequestering a hydrophobic compound in a Nanoparticle (NP) composed of an oxidized carbon core and a polymer shell can be extended to efficiently transport hydrophobic compounds through oil-field rocks and selectively release them when the rock contains oil. These readily-prepared NPs bearing cargo could be injected into the subsurface and then recovered and analyzed for the presence of the cargo;

release of the cargo would indicate the presence of oil. When used in this manner, the NPs can be described as nanoreporters as shown in Figure 8. (Berlin et al., 2011). In Figure 8, (a) NPs (grey circle with blue lines radiating) carrying hydrophobic cargo (red rectangles) are injected into the subsurface. (b) While flowing through the subsurface, the nanoreporters encounter oil and release their hydrophobic cargo into the oil. (c) The nanoreporters are recovered and analyzed for the presence of the cargo; the extent of its absence indicates the extent of subsurface oil. (Berlin et al., 2011).

4.3. Oil-Microbe Detection Tool Using Nano Optical Fibers: Nano Optical Fibers are used for transmission of laser light, penetrating the formation, to the required destination in the porous rock matrix and receive the reflected light.

Jahagirdar, 2008, proposed the ‘Oil-Microbe Detection Tool’, using Nano optical fibers as a part of the tool, to detect he bypassed oil or the oil left behind after waterflooding, which has followed a cycle of Microbial Enhanced Oil Recovery (MEOR). This methodology makes the planning of EOR operation, after knowing the precise regions where bypassed oil resides, easier and efficient. 5. Refining and Processing The oil refining and petrochemical industry is the first area to which Nanotechnology has contributed with lots of applications and potential solution to its challenges. Nanoparticle catalysts have been used for almost 100 years in the refinery industry. During the last two decades, nanotechnology has made substantial contributions to refining and converting fossil fuels. The development of

Petroleum Today

- September 2013

33


mesoporous catalyst materials such as MCM-41 has significantly changed downstream refining. Nano-filters and particles have the ability to remove harmful toxic substances such as nitrogen oxides, sulfur oxides, and related acids and acid anhydrides from vapor, and mercury from soil and water, with exact precision. Nanotechnology further provides solutions for carbon capture and long-term storage. Emerging nanotechnology has opened the door to the development of a new generation of nanomembranes for enhanced separation of gas streams and removal of impurities from oil (Kong and Ohadi, 2010). Upgrading of bitumen and heavy crude oil has been another important challenge. Because of their high density and viscosity, it is difficult to handle and transport these chemicals to locations where they can be converted into valuable products. Nano-catalysts may offer a solution for on-site upgrading of bitumen and heavy crude oil (Ying and Sun, 1997). Significant resources and intense research activities have been devoted to develop processes and specifically designed nanocatalysts for on-site field upgrading combined with hydrogen/ methane production (Esmaeili, 2009). Future Challenges in Egypt Egypt’s domestic demand for oil is increasing rapidly. Oil consumption has grown by more than 30% in the past ten years. Also, the hydrocarbon reserves in Egypt have witnessed an average increase of 5% / year over the past seven years, while the average recovery factor is still stuck at the 35%. Field development operations are considered as one of the effective solutions to meet the soaring energy demand. Nanotechnology holds the key solution to this local production challenge as it helps increase the recovered oil and decreases the cost of production by eliminating problems

34 Petroleum Today

that occur throughout development operations.

the

field

For increasing the production, Egypt has large resources of heavy oil have not been well managed yet. Moreover, up till now, Unconventional Resources have not been explored. Present updates technologies have to be applied to explore more fields and improve the development operations. Advanced methods of exploration, remote sensing and seismic with improved resolution could change the future of Oil and Gas. Nanosensors and imaging method can improve the success of the exploration by improving data gathering, recognizing shallow hazards, and avoiding dry holes. For decreasing production costs, many solutions have been mentioned above for almost all massive problems occurring within development operations from drilling through cementing, logging and completion to production. Nanotechnology may be one of the magic solution to lots of challenges in Egypt and worldwide, but being still under research, at least it is a must to encourage the research work on this trend and give it more interest trying to keep updated with latest technologies worldwide. There are numerous areas of the petroleum industry where nanotechnology can contribute to more efficient, less expensive, and more environmentally technologies than those that are readily available. The future possibilities for nanotechnology in the petroleum industry are identified as follows (Mokhatab et al., 2006; Esmaeili, 2009; Jackson, 2005; Kong and Ohadi, 2010): 1)Improved success of exploration by improving data gathering, recognizing shallow hazards, and avoiding dry holes. 2)Nanotechnology-enhanced materi-

- September 2013

als that provide strength and endurance to increase performance and reliability in drilling, tubular goods, and rotating parts. 3)Improved elastomers, critical to deep drilling and drilling in hightemperature/high-pressure environments. 4)Production assurance in diagnostics, monitoring surveillance, and management strategies. 5)Corrosion management for surface, subsurface, and facilities applications. 6)Lightweight, rugged materials that reduce weight requirements on offshore platforms, and more reliable and more energy-efficient transportation vessels. 7)Selective filtration and waste management for water and carbon nanotube applications. 8)Enhanced oil and gas recovery through reservoir property modification, facility retrofitting, gas property modification, and water injection. 9)Refining and petrochemicals technologies.

Conclusions This paper has provided a review on the latest research progress in Nanotechnology applications of interest and showed that Nanotechnology offers real potentials of changing the way we look at oil and gas industry. It presented most recent laboratory work and showed the promising future of Nanotechnology applications in the forms of structural nanomaterials, smart nanofluids, advanced nanosensors and nanomembranes.


Dr. Adel Moh. Salem Ragab is currently an Asst. Prof. of Petroleum Engineering at American University in Cairo (AUC), Petroleum and Energy Department. Dr. Adel got his Ph.D. from Leoben University 2008, Austria, and got both of his BSc and MSc from Suez Canal University, Egypt, all in Petroleum Engineering. After receiving his Ph. D., he worked as an Asst. prof. of Petroleum Engineering at Department of Petroleum Engineering – Suez Canal University (SCU). In 19951996, he worked as a field Petroleum Production Engineer at Qarun Petroleum Company Western Desert – Egypt. His research areas include; simulation of multiphase flow under steady and transient conditions, characterization of formation damage fluids, Enhanced Oil recovery, and Nanotechnology applications in upstream and downstream in oil field industry, Oil shale, and Well Testing. During his studies Dr. Adel gained international experience at Bologna University, Italy on the advances use of NMR, and at Leoben University on simulation.

Abdelrahman Ibrahim El-Diasty - Research Assistant at Department of Petroleum & Energy Engineering , School of Sciences & Engineering (SSE), The American University in Cairo (AUC), Cairo, Egypt - Junior Student (3rd year) at Petroleum Eng. Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt - 1ST Place, SPE North Africa Sub-regional Student paper Contest presented a paper titled ‘Nanotechnology and its implications for EOR in Egypt’ Dec., 2012 - Gave an online presentation titled ‘The Revolution that Nanotechnology is about to Bring to the Oil & Gas Industry’ at ‘Actual Problems of Science and Technologies’ conference organized by USPTU_SPE, Russia NOV., 2012 - SPE 2012 Star Academic Scholarship recipient for Middle East Region, May, 2012

References 1. Abdelrahman I. El-Diasty and Adel Salem; Future Contributions of Nanotechnology to EOR in Egypt, Offshore Middle East (OME), Conference & Exhibition, Doha, Qatar, 2123- Jan., 2013. 2. Abdelrahman I. El-Diasty; The Revolution that Nanotechnology is about to Bring to the Oil & Gas Industry, Actual Problems of Science and Technologies, Online Conference organized by USPTU_SPE, Russia, and 16- Nov., 2012. 3. Anton Nikitin and Mikhail Korjik; An Impact of Nanotechnology on the Next Generation of Neutron Porosity LWD Tools, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 157024. 4. Ashok Santra, SPE, Peter J. Boul, and Xueyu Pang; Influence of Nanomaterials in Oil well Cement Hydration and Mechanical Properties, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 156937. 5. Bobby J. Salinas, ZhiyueXu, GauravAgrawal, and Bennett Richard; Controlled Electrolytic Metallics - An Interventionless Nanostructured Platform, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 153428. 6. Cui, Z., Yin, L., Wang, Q., Ding, J., Chen, Q.; A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films, Journal of Colloid and Interface Science. 337, 2, 2009. 7. Deepak Kumar, Sadaf S. Chishti, AbhishekRai and Samarth

8.

9. 10.

11. 12.

13.

D. Patwardhan; Scale Inhibition using Nano-silica Particles, SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition held in Abu Dhabi, UAE, 2–4 April 2012, SPE 149321. Elena Rodriguez, Matthew R. Roberts, Haiyang Yu, Chun Huh and Steven L. Bryant; Enhanced Migration of Surface-Treated Nanoparticles in Sedimentary Rocks, SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 4–7 October 2009, SPE 124418. Esmaeili, Abdollah; Applications of Nanotechnology in Oil and Gas Industry, Presented at Petrotech 2009 Conference held in New Delhi, India, 1115- Jan., 2009. G. Maserati, E. Daturi, A. Belloni, L. Del Gaudio, S. Bolzoni, W. Lazzari, and G. Leo; Nano-emulsions as Cement Spacer Improve the Cleaning of Casing Bore during Cementing Operations, SPE Annual Technical Conference and Exhibition held in Florence, Italy, 19–22 September 2010, SPE 133033. Jackson, S. A.; Innovation and Human Capital: Energy Security and the Quiet Crisis, American Petroleum Institute, 2005 Jacob M. Berlin, Jie Yu, Wei Lu, Erin E. Walsh, Lunliang Zhang, Ping Zhang, Wei Chen, Amy T. Kan, Michael S. Wong, Mason B. Tomson, and James M. Tour; Engineered Nanoparticles for Hydrocarbon Detection in Oil-Field Rocks, SPE International Symposium on Oilfield Chemistry held in The Woodlands, Texas, USA, 11–13 April 2011, SPE 141528. James B. Crews and Tianping Huang; Performance Enhancements

Petroleum Today

- September 2013

35


14.

15. 16.

17.

18.

19.

20. 21.

22.

of Viscoelastic Surfactant Stimulation Fluids with Nanoparticles, SPE Europec/EAGE Annual Conference and Exhibition held in Rome, Italy, 9–12 June 2008, SPE 113533. Katherine Price Hoelscher, Guido De Stefano, Meghan Riley and Steve Young; Application of Nanotechnology in Drilling Fluids, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 157031. Krishnamoori, Ramanan; Extracting the Benefits of Nanotechnology for the Oil Industry, Journal of Petroleum Technology 58 (11), 2006. Kutbuddin Bhatia, Levin Chacko; Ni-Fe Nanoparticles: An Innovative Approach for Recovery of Hydrates, 2009 SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 4–7 October 2009, SPE 143088. Md. Amanullah and Ashraf M. Al-Tahini; Nano-Technology- Its Significance in Smart Fluid Development for Oil and Gas Field Application, SPE Saudi Arabia Section Technical Symposium and Exhibition held in AlKhobar, Saudi Arabia, 09–11 May 2009, SPE 126102. Md. Amanullah, Mohammad K Al-Arfaj and Ziad Al-Abdullatif; Preliminary Test Results of Nano-based Drilling Fluids for Oil and Gas, the SPE/IADC Drilling Conference and Exhibition held in Amsterdam, The Netherlands, 1–3 March 2011, SPE/IADC 139534. Mohammad Rahimirad and JavadDehghaniBaghbadorani; Properties of Oil Well Cement Reinforced by Carbon Nanotubes, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 156985. Mokhatab, Saeid, Fresky, M.A, and Rafiqul Islam, M.; Applications of Nanotechnology in Oil and Gas E&P, Journal of Petroleum Technology 58 (4), 2006. N. Kazemi, M. Wilson, N. Kapur, N. Fleming and A. Neville; Preventing Adhesion of Scale on Rock by Nanoscale Modification of the Surface, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012. SPE 156955. Ogolo, N. A., O.A. Olafuyi and Onyekonwu, M. O.; Enhanced Oil Recovery Using Nanoparticles, SPE Saudi Arabia Section

23. 24.

25.

26. 27.

28.

29.

30. 31.

Technical Symposium and Exhibition held in Al-Khobar, Saudi Arabia, 811- April 2012, SPE 160847-MS. Pitkethly, M.J. 2004. Nanomaterials-The Driving Force. Matter Today 7: 2029-. ShrutiRavindraJahagirdar; Oil-Microbe Detection Tool Using Nano Optical Fibers, SPE Western Regional and Pacific Section AAPG Joint Meeting held in Bakersfield, California, U.S.A., 31 March–2 April 2008, SPE 113357. Soma Chakraborty, GauravAgrawal, Anthony DiGiovanni and Dan Scott; The Trick Is The Surface – Functionalized Nanodiamond PDC Technology, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 157039. Song, Y.Q, and Marcus, C.; Hyperpolarized Silicon Nanoparticles: Reinventing Oil Exploration? Presentation, 2007 Tianping Huang and James B. Crews; Nanotechnology Applications in Viscoelastic Surfactant Stimulation Fluids, European Formation Damage Conference held in Scheveningen, The Netherlands, 30 May–1 June 2007, SPE 107728. Tiantian Zhang, David A. Espinosa, Ki Youl Yoon, Amir R. Rahmani, Haiyang Yu, Federico M. Caldelas, SeungyupRyoo, Matthew R. Roberts, MasaProdanovic, Keith P. Johnston, Thomas E. Milner, Steven L. Bryant and Chun Huh; Engineered Nanoparticles as Harsh-Condition Emulsion and Foam Stabilizers and as Novel Sensors, Offshore Technology Conference held in Houston, Texas, USA, 2–5 May 2011. Xiangling Kong and Michael M. Ohadi; Applications of Micro and Nano Technologies in the Oil and Gas Industry- An Overview of the Recent Progress, the Abu Dhabi International Petroleum Exhibition & Conference held in Abu Dhabi, UAE, 1–4 November 2010, SPE 138241. Ying, J.Y, and Sun, T.; Research Needs Assessment on Nanostructured Catalysts, Journal of Electroceramics, 1 (3): 219,2381997. Zhihui Zhang ZhiyueXu and Bobby Salinas; High Strength Nanostructured Materials and Their Oil Field Applications, SPE International Oilfield Nanotechnology Conference held in Noordwijk, The Netherlands, 12–14 June 2012, SPE 157092.

Figure 1: The Scale of things referenced to Nanometer (Source: http://inl.int/)

36 Petroleum Today

- September 2013


Figure 2: Increasing the surface area with nanoparticles

(a) (b) Figure (3: a) Single-Walled Carbon Nano Tube, b) Multi-Walled Carbon Nano Tube (Source: nanotech-now.com)

Figure 4: Illustration of Internally Breaking Pseudo-Cross-linked VES Fluid (Crews and Huang, 2008)

Figure 5: Silicate particles being adhered to the nano structures of epoxy resins (Kumar et al., 2012)

Petroleum Today

- September 2013

37


Figure 6: Nanoparticle structuring in the wedge-film resulting in structural disjoining pressure gradient at the wedge vertex (Kirtiprakash et al., 2012).

Figure 7: Nanoparticle structuring in the wedge-film (Kirtiprakash et al., 2012).

Figure 8: Schematic of oil detection by nanoreporters

38 Petroleum Today

- September 2013


Autostrad Road, Mokattam, Cairo P.O.Box 33 El Kalaa

Tel. : +202 25061600/ 1/ 2/ 3 Ext. 181 Dir : +202 25090034 Fax : +202 25065620

Mob. : +2 012 23163266 E-mail: azanaty.cum@eim-eg.com E-mail: manany.cum@eim-eg.com




Novel Design and Implementation of Kuwait’s First Smart Multilateral Well with Inflow Control Device and Inflow Control Valve for Life-cycle Reservoir Management in High Mobility Reservoir, West Kuwait part (01) By

Om Prakash Das, Khalaf AI-Enezi, Muhammad Aslam, Taher EI-Gezeeri, Khalid Ziyab, Kuwait Oil Company; Steven R. Fipke, Steven Ewens, Halliburton

A

bstract Increased hydrocarbon recovery and accelerated production from ultra-high water mobility oil-wet reservoir requires the application of advanced well completion technologies to address premature water breakthrough, reservoir management, production management and extended reservoir contact from a single well location. The Burgan Reservoir of Minagish Field, West Kuwait has active aquifer, very high permeability sands associated with active faults and contain highly viscous reservoir fluid with downhole viscosity of 40cp, enhances water mobility and resulted in premature water breakthrough with increasing water cut trend within few months of production as confirmed from well performance of existing horizontal wells. This has resulted in to nonuniform reservoir depletion, by-passed oil regions and low oil recovery. The Kuwait’s first smart level-4 multilateral well was completed in

42 Petroleum Today

Burgan reservoir by combining the Level-4 junction along with stacked dual lateral completion having customized viscosity independent Inflow Control Device (ICD), customized two Inflow-Control Valves as well as down hole gauges, wide operating range Electrical Submersible Pump (ESP), suitable wellheads, X-MAS tree and Integrated surface panel for real time data monitoring. The smart multilateral well has assisted in addressing premature water breakthrough, enhanced dry oil production and facilitated uniform depletion, which results in improved hydrocarbon recovery. The paper covers the customized design of smart Level-4 multilateral well by taking in to account the reservoir and its fluid characterization, well architecture, implementation and specially designed invert emulsion drilling fluid for effective wellbore cleanup to achieve formation virginity. The improved reservoir management and production management results are also mentioned in this paper.

- September 2013

Introduction The advance smart multilateral well equipped with Inflow Control Device (ICD) and Inflow Control Valve (ICV) along with downhole gauges is identified as the optimum solution to accelerate oil production rate, maximize reservoir contact from a single well location and achieve adequate proactive reservoir management as well as production management to maximize oil recovery in high water mobility Burgan reservoir of Minagish field, West Kuwait. The Minagish field located in the West Kuwait (figure 1) is a north-south trending anticline with hydrocarbon contained in six major reservoirs ranging in age from early Jurassic to late Cretaceous and consists of both sandstone and carbonate reservoirs. The Burgan sandstone reservoir is lying at the crest of Minagish Field. The lower part of reservoir consists of massive channel sand and the upper part of reservoir contains vertically stacked thin laminated sand bodies with extensive lateral facies variation (figure 2). The


lower lower partpart of the of the Burgan Burgan Reservoir Reservoir hashas active active bottom bottom water water drive drive whereas whereas thethe upper upper partpart of of reservoir reservoir hashas edge edge water water drive drive system. system. TheThe reservoir reservoir contains contains high high permeability permeability sands sands in in order order of of fewfew Darcy Darcy associated associated with with active active faults faults andand highly highly viscous viscous reservoir reservoir fluid fluid with with viscosity viscosity of of about about 40cp 40cp at at reservoir reservoir condition. condition.In Inaddition additionthethereservoir reservoir contains containsfriable friablesands sandsandandrequires requires reliable reliablesand sandcontrol controlcompletions. completions. TheTheInflow InflowControl ControlDevice Device(ICD) (ICD) completions completions with with suitable suitable sand sand screen screen areare selected selected forfor sand sand face face completion completion to to combine combine thethe advantage advantage of sand of sand control control andand flow flow control control across across sand sand face. face. TheThe economic economic advantage advantage of drilling of drilling several several laterals laterals from from a single a single wellbore wellbore with with thethe ability ability to control to control andand regulate regulate production production andand inflow inflow by by controlling controlling severe severewater waterconing coningandandpremature premature water water breakthrough breakthrough in Burgan in Burgan reservoir reservoir resulted resultedin into tooptimized optimizedandandcostcost effective effectivefield fieldmanagement. management.Further Further thetheincreased increasedhydrocarbon hydrocarbonreserve reserve recovery recovery andand accelerated accelerated production production with with improved improved reservoir reservoir management management have havebeen beenrecognized recognizedas asthethekeykey business business incentives incentives by by implementing implementing thisthistechnology technologyon on“Well “WellA”A”andand “Well “WellB” B”of ofBurgan Burganreservoir reservoirfirstfirst time time in in Kuwait. Kuwait. Moreover Moreover thethe smart smart multilateral multilateralwells wellswith withcommingled commingled completions completions leveraged leveraged with with intelligent intelligent well well technology technology is the is the keykey technology technology solution solutionto toreduce reducethethenumber numberof of wells wells required required to to develop develop thethe Burgan Burgan structure structureandandthereby therebyto tominimize minimize thethecapital capitalas aswell wellas asoperational operational expenditure. expenditure.

high highpermeability permeabilityandandpresence presenceof of fault fault networks networks (figure (figure 3) 3) connected connected to to aquifer aquifer accelerates accelerates water water movement! movement! (K.Al-Enezi (K.Al-Enezi et.al, et.al, O.P. O.P. DasDas et.al, et.al, 2010) 2010) inside inside reservoir reservoir andand results results in premature in premature water water breakthrough breakthrough in existing in existing vertical vertical as as well well as as horizontal horizontal wells, wells, in spite in spite of of maintaining maintaininghighest higheststand-off stand-offfrom from OWC. OWC.TheThewell wellperformance performanceof ofa a conventional conventional vertical vertical andand a horizontal a horizontal well well is detailed is detailed in figure in figure 4. 4. TheThe combination combination of of non-uniform non-uniform inflow inflow profiles profiles andand premature premature water water breakthrough breakthrough across across horizontal horizontal section section resulted resultedin innon¬uniform non¬uniformreservoir reservoir depletion depletion andand thereby thereby thethe oil oil recovery recovery hashas impacted impacted significantly significantly from from Burgan Burganreservoir. reservoir.In Inaddition additionthethe Burgan Burgan reservoir reservoir lieslies in the in the crest crest partpart of of Minagish Minagish Field Field (figure (figure 1) which 1) which limits limits thethe surface surface locations locations forfor drilling drilling wells wells to effectively to effectively deplete deplete thethe reservoir. reservoir. TheThe upper upper partpart of Burgan of Burgan reservoir reservoir consists consists of ofcomplex complexlaminated laminatedthinthinchannel channel sand sand andand shale shale (figure (figure 2) 2) associated associated with with faults faults networks networks (figure (figure 3) 3) poses poses several severaldrilling drillingandandgeo-steering geo-steering challenges. challenges. Business Business Goals Goals Associated Associated with with Smart Smart Multilateral Multilateral Well Well Based Based upon upon thethe reservoir reservoir challenges challenges andand lessons lessons learned learned from frompreviously previouslyimplemented implementedwell well completion completion techniques, techniques, thethe following following business businessgoals goalswere wereconsidered consideredforfor smart smart multilateral multilateral wells. wells. a. a.Maximize Maximize economic economic performance performance of the of the reservoir. reservoir. b. b.Enhance Enhance sustained sustained drydry oil oil production production by by addressing addressing premature premature water water breakthrough. breakthrough.

Burgan Burgan Reservoir Reservoir Challenges: Challenges: TheThe lower lower section section of of thethe Burgan Burgan Maximize reservoir reservoir contact contact from from a a sandstone sandstonereservoir reservoirconsists consistsof ofa a c. c.Maximize single single well well location location andand minimize minimize braided braidedriver riversystem systemwith withstacked stacked number number of wells. of wells. channel channel sand sand bodies bodies having having very very high high Pro-active reservoir reservoir andand production production horizontal horizontalandandvertical verticalpermeability permeability d. d.Pro-active management management by by increasing increasing in in thethe order order of of fewfew Darcy Darcy associated associated knowledge knowledge of of reservoir reservoir dynamic dynamic with with underlying underlying active active aquifer. aquifer. TheThe characteristics characteristicsfrom fromrealrealtime time combination combination of of high high oil oil viscosity, viscosity, oil oil measurement measurement of of pressure, pressure, wetwet reservoir reservoir characteristics, characteristics, very very high high water water mobility mobility associated associated with with very very temperature temperatureandanddownhole downholeflow flow

raterate of oil, of oil, water water andand gas.gas. e. e.Ability Ability to make to make right right time time decisions decisions to to optimize optimize inflow inflow control control valves valves position position forfor controlling controlling production production from from each each legleg of of multilateral multilateral wells wells to to minimize minimize water water production production andand enhance enhance drydry oil oil production. production. f. f.Achieve Achieve uniform uniform reservoir reservoir depletion, depletion, minimize minimize by-passed by-passed oil oil regions, regions, andand maximize maximize oil oil recovery. recovery. g. g.Maximize MaximizeNetNetPresent PresentValue Value (NPV). (NPV). h. h.Minimize Minimize capital capital andand operational operational expenditure. expenditure. In order In order to achieve to achieve thethe business business goals goals by by mitigating mitigating reservoir reservoir challenges, challenges, thethe technology technologyselection selectionworkflow workflowhashas been been developed developed (figure (figure 5) to 5) select to select thethe most most suitable suitable technology. technology. Smart Smart Multilateral Multilateral Well Well Architecture Architecture andand Design Design TheThe smart smart multilateral multilateral well well design design waswas customized customized to install to install inflow inflow control control device device completion completion at sand at sand face face forfor both both mother mother bore bore as as well well as as upper upper lateral, lateral, intelligent intelligent completion completion including including twotwo inflow inflow control control valve, valve, downhole downhole gauges, gauges, feed feedthrough throughpackers packersandandLevel-4 Level-4 cemented cementedjunction junctionto toprovide providefullfullbore bore access access to mother to mother bore bore andand upper upper lateral. lateral. Further Further thethe ESP ESP completion completion along alongwith withby-passed by-passedtubing tubingwaswas kept keptindependent independentfrom fromintelligent intelligent completion completion by by means means of of installing installing 9 9 5/8” 5/8” tubing tubing to to mount mount hydraulic hydraulic andand electrical electrical control control lines lines of of downhole downhole intelligent intelligent completion completion to ease to ease thethe ESP ESP replacement replacementworkover workoverjobs jobswithout without interfering interfering with with downhole downhole intelligent intelligent completions. completions.Further Furtherthetheprovision provision waswas made made inside inside intelligent intelligent completion completion by byplacing placinghydraulic hydrauliccontrol controlballball valve valve to to have have ability ability forfor conducting conducting production production logs logs or or anyany other other required required surveillance surveillance jobs jobs through through ESP ESP by-pass by-pass tubing tubing to to monitor monitor thethe performance performance of of mother mother bore. bore. TheThe opening opening andand closing closing of of all all thethe hydraulic hydraulic valves valves areare from from surface surface without without well well intervention. intervention. TheThe selected selected well well completion completion design design by by

201320134343 Petroleum Petroleum Today Today - September - September


utilizing the most reliable equipment minimizes the needs of surveillance jobs, workover jobs related to water shut-off and other workover jobs for intelligent completions. In addition the suitable wellheads and X-MAS design was customized to incorporate the intelligent completion and ESP completion separately. The well schematic of smart multilateral “Well A” and “Well B” is shown in figure 6. The selection and design of inflow control device, intelligent completion, level-4 multilateral junction and ESP completion system are detailed in the following sections. Suitable Inflow Control Device (ICD) Selection and Design There are different passive ICD types available in the industry categorized mainly as friction based and restriction based ICD system. The channel and tube type lCD’s are friction based system uses friction to create pressure drop for inflow balancing across sand face and are highly dependent upon viscosity. The restriction type lCD’s are mainly classified as nozzle type and orifice type. The pressure drop through restriction type ICD is a function of density and fluid velocity. Further the restriction type ICD are independent of fluid viscosity for a wide range of viscosity values. The selection of appropriate ICD type is the main success factor for horizontal or multilateral wells and is highly dependent on reservoir fluid properties specifically the viscosity of oil and water at in-situ conditions, reservoir permeability and the mobility of low viscosity fluids such as formation water and gas. The following objectives were considered for ICD completion to complete the horizontal openhole section of mother bore and upper lateral of smart multilateral wells.

entire horizontal production section of both main mother bore and upper lateral. b. Control water production from relatively high permeability layers upon water breakthrough. c. Automatic adjustment capability to compensate changes in well inflow profile over production life of wells. d. Provide uniform sweep efficiency across sand face. e. Minimize annular flow. f. Minimize pressure drop through ICD housing in order to improve flowing bottom hole pressure (FBHP) in both mother bore and upper lateral. g. Minimize by-passed oil regions and maximize oil recovery. h. Maximize production life of wells. Based upon the objectives and by considering the physics and chemistry of fluid flow inside the Burgan reservoir under well operating conditions of smart multilateral well, the most suitable nozzle type Inflow control device completion was selected. Usually the pressure drop through nozzle based ICD system is described by the Bernoulli’s equation, because of the pressure drop through a nozzle is a result of static energy in the fluid being converted to kinetic energy as it is flowing through the restricted nozzle throat area. However, the Bernoulli’s equation applied to the flow through nozzle assumes no friction losses and viscosity effects are negligible, Incompressible fluid flow (density is constant), flow is steady and inviscid (requirement of Euler validity) and also the equation relates to the fluid states at two points along a single stream line. Based upon these assumptions the pressure drop through the nozzle is given by:

a. Facilitate uniform inflow across

44 Petroleum Today

- September 2013

In the case of highly viscous fluid flow through nozzle the flow regime falls mostly in the laminar flow region and the discharge coefficient CD is variable depending upon Reynolds number as detailed by2 (J. Eric Lauritzen et.al and lngvild Berg Matniussen et. al 2011) through three phase flow loop testing. Further the other independent studies by various authors3-7 suggests that the pressure drop through nozzle depends on aspect ratio (ratio of nozzle throat length to the throat diameter), throat Reynolds number, Beta β ratio and nozzle entry shape (Sharp edged entry, smooth entry etc.).The smooth fluid entry nozzles such as long radius nozzle, venturi nozzle, smooth entry orifice etc. has high discharge coefficient as compared to sharp edged entry nozzle / orifice which minimizes the pressure drop through nozzles of ICD completions and maximizes the FBHP. Also the variation of discharge coefficient versus Reynolds number for smooth entry nozzle is low under applicable range of Reynolds number in ICD completion. Moreover the nozzle exit section design plays an important role in pressure recovery as lost during the flow through nozzle throat. The better pressure recovery increases the pressure downstream of the nozzle and thereby increases the FBHP of the well. In addition the proper design of nozzle entry and exit minimizes the erosion of nozzle and ensures long term performance of K’D completion. The properly designed venturi nozzle based ICD module is selected for the Smart Multilateral “Well A” and “Well B” of Minagish Burgan reservoir. The smaller nozzle sizes (1.6 mm and 2.5 mm) were selected to achieve adequate choking of water phase upon breakthrough. Further the variable nozzle housing for ICD module were selected to place required number of nozzles in each compartment based upon the reservoir fluid flow dynamics inside reservoir along with variation in


permeability and water mobility across horizontal production section of the wellbore to meet the objectives of ICD completion. The flow rate versus pressure drop characteristics by considering oil viscosity, water viscosity, oil density and water density at reservoir conditions of Burgan reservoir were analyzed based on the supplier’s provided discharge coefficient at various Reynolds number and the discharge coefficient obtained by independent experiment performed by8 (Jitschineet.al 2004) and as mentioned in figure 7. The flow rate versus pressure drop characteristics for 1.6mm venturi nozzle is shown in figure 8. The graph shown in figure 8, clearly demonstrate that for flow rate more than 45-50 Bbls/day (Reynolds number > 1 700) from a single 1.6mm nozzle provides more pressure drop on water phase as compared to oil phase. Similarly a single 2.5 mm nozzle provides more pressure drop on water phase as compared to oil phase for the flow rate of more than 60 - 70 Bbls/ day with the corresponding Reynolds number of more than 1600. Thus in order to have a phase filtering capability to choke back water production the flow characteristics of nozzles for both oil phase and water phase are considered for ICD completion design. Also the effect of downhole emulsion on viscosity (figure 9) is analyzed for selected ICD completion and found that for any water cut the pressure drop on emulsion phase is more than 40cp oil phase pressure drop, indicating choking of emulsion fluid at particular section of ICD completion. The downhole emulsion viscosity and the nozzle flow characteristics are presented in figure 10. ICD Completion Design: Appropriate ICD completion design is the main key factor for successful ICD completion performance over entire production life of wells. The ICD completion design for smart

multilateral “Well A” and “Well B” of Burgan reservoir was performed by considering the objectives of ICD completion as well as the flow characteristics of nozzles (figure 8). In order to achieve the appropriate design for ICD completion, the adequate reservoir characterization” was made by acquiring permeability from Stonley waves and from log porosity permeability correlation calibrated with core data. Further the appropriate reservoir segmentation to achieve effective zonal isolation utilizing isolation packers is identified as critical factor to minimize annular flow, address premature water breakthrough and minimize water production. The effective well bore segmentation along well trajectory was conducted by plotting the permeability profile, porosity profile, water saturation profile, reservoir pressure profile, reservoir fluid properties, geological settings of reservoir including faults and fractures interpreted from 3D high resolution Seismic as well as image logs recorded during drilling and geosteering. A wellbore segmentation example for main mother bore of “Well A” is shown in figure 11. In addition the near wellbore fluid flow modeling from reservoir to wellbore is conducted by considering required reservoir data, geological data and ICD completion specification to obtain the best fit nozzle sizes to meet the objectives of ICD completion. A well defined workflow for ICD completion design was developed and is shown in figure 12. The results of ICD completion design for mother bore of smart multilateral “Well A” is detailed in figure 13. Also the well trajectory during drilling was optimized by applying real time advanced geosteering technology to avoid high water saturation regions, minimize the exposure of faults / fractures, which could be the potential source for accelerated water breakthrough. The ICD completion design results

indicated in figure 13 are elaborated as follows: •

The obtained Reynolds number from ICD design is greater than 2000 for almost all well bore segments, which more than the threshold Reynolds number i.e. 1700 for 1.6 mm nozzle and 1600 for 2.5 mm nozzle.

The maximization of Reynolds number confirms the phase filtering capability of ICD to restrict water production upon water breakthrough.

The annular velocity is almost zero indicating the adequate well bore compartments.

The oil flux (STB/Day) is almost equalized across sand face indicating inflow equalization to achieve uniform depletion across sand face.

Nomenclature B = Formation Volume Factor, RB / STB CD = Discharge Coefficient CV = Valve coefficient (USgpm/psi-0.5) d = nozzle throat diameter (meter) ESP = electrical submersible pump FBHP = Flowing Bottomhole Pressure HU = True Vertical Distance between upper annulus & tubing gauge to upper tubing gauge (ft) HL = True Vertical Distance between lower annulus & tubing gauge to lower tubing gauge (ft) IPR = Inflow Performance Relationship n = number of open nozzles in one ICD joint N = number of hydraulic control line OWC = oil water contact ΔP = Pressure drop through valve (psi) - Pressure drop between inflow curve (IPR) and out flow curve (TPR) ΔPhl = Difference in hydrostatic pressure (psi) ΔPn = Pressure drop through nozzle (pascal) Q = Flow Rate through nozzle (Cubic meter /Second) ql = production rate (USgpm) qm = production rate Bbls/ day Q = total production rate, STB / day WC = Water cut (in percent) β = Beta Ratio (nozzle throat diameter / nozzle entry diameter) γ = relative density of the liquid (water = 1) γw = specific gravity of formation water γf = specific gravity of mixture = specific gravity of oil γo μ = viscosity, cp ρ = Density of fluid (Kilogram/cubic meter)

Petroleum Today

- September 2013

45


Acknowledgement With kind regards, authors would like to thank West Kuwait Field Development Management for providing the excellent support and cooperation to produce the work described in this paper. Further the authors would like to thank Kuwait Oil Company (KOC) for granting the permission to publish this paper and facilitating all necessary requirements to prepare the paper.

References 1. K. AI-Enezi, O.P.Das, M.Aslam, R. Bahuguna, and A. Latif, Kuwait Oil Company: “Water Coning Model for Horizontal Wells in High Mobility Reservoir, West Kuwait” paper SPE 130302, presented at the CPS/SPE International Oil & Gas Conference and Exhibition held in Beijing, China, 810- June 2010. 2. J. Eric Lauritzen, Saudi Aramco; Ingvild Berg Martiniussen.: “Single and Multi-phase Flow Loop Testing Results for Industry Standard Inflow Control Devices” paper SPE 146347, presented at the SPE Offshore Europe Oil and Gas Conference and Exhibition held in Aberdeen, UK, 68- September 20 II. 3. Minks, L.M. (2002).: “Pressure Drop Characeteristics of Viscous Fluid Flow across Orifices” Mechanical Engineering, Iowa State University, Ames, MS Thesis. 4. Bohra, Lalit Kumar (2004).: “Flow and Pressure Drop of Highly Viscous Fluids in Small Aperture Orifices” Mechanical Engineering, Georgia Institute of Technology, MS Thesis. 5. Stark, Stephen T.: “Measuring High Viscosity Liquids with Flow Meters” Proceedings of the 85th International School of Hydrocarbon Measurement (20 II). 6. C. Bertani, M. De Salve, M. Malandrone, G. Monni, B. Panella.: “State-of-Art and selection of techniques in multiphase flow measurement” report RdS/20 I 0167, Agenzia Nazionale per Ie Nuove Tecnologie. 7. Miller, R. W., (1996), Flow measurement engineering handbook, McGrawHil1. 8. Jitschin W. (2004), Gas flow measurement by the thin orifice and the classical Venturi tube, Vacuum 76 9. Liang-Biao Ouyang, Chevron Energy Technology Company.: “Practical Considerations of an Inflow Control Device Application for Reducing Water Production” paper SPE 124154, presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 47- October 2009. 10. AI-Mubarak, S.M., Sunbul, A.H., Hembling, D.E., Sukkestad,

11.

12.

13.

14.

15.

T. and Jacob, S.: “Improved Performance of Downhole Active Inflow Control Valves through Enhanced Design: Case Study” paper SPE 117634, presented at the Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, UAE, 36- November 2008. Michael Konopczynski and Arashi Ajayi, WellDynamics Inc.: “Design oflntelligent Well Downhole Valves for Adjustable Flow Control” paper SPE 90664, presented at the SPE Annual Technical Conference and Exhibition held in Houston, Texas, USA, 2629September 2004. Marwan Zarea, Saudi Aramco; Ding Zhu, Texas A&M University: “An Integrated Performance Model for Multilateral Wells Equipped with Inflow Control Valves” paper SPE 142373, presented at the SPE EUROPEC/EAGE Annual Technical Conference and Exhibition held in Vienna, Australia, 2326- May 20 II. K. Sun, M.R. Konopczynski and A. Ajayi, WellDynamics Inc.: “Using Downhole Real-Time Data to Estimate Zonal Production in a Commingled-Multiple-Zones Intelligent System” paper SPE 102743, presented at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 2427- September 2006. Ray Brister, SPE, Chevron Petroleum Technology Company.: “Screening Variables for Multilateral Technology” paper SPE 64698, presented at the SPE International Oil & Gas Conference and Exhibition held in Beijing, China, 710- November 2000. Mark Luyster, Arvind Patel, M-I SWACO; Syed Ali, Chevron.: “Development of a Delayed Chelating Cleanup Technique for Openhole Gravel Pack Horizontal Completions Using a Reversible Invert Emulsion Drill-In System” paper SPE 98242, presented at the SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette, L.A., USA, 1517February 2006.

Figure 1 : Location of the Minagish Field and Burgan Reservoir in West Kuwait

46 Petroleum Today

- September 2013

Figure 2 : Sand Bodies in Lower Part and Upper Part of Burgan Reservoir


Figure 3 : Seismic coherency map showing fault networks and the intensity of Faulting and fracturing reduces from red color to blue color

Figure 4 : Well performance of conventional vertical and horizontal wells

Figure 5 : Technology Selection Workflow

Petroleum Today

- September 2013

47


Figure 6 : Smart Multilateral Well Architecture

Figure 7 : Discharge coefficient of Venturi nozzle with given throat diameter vs. Reynolds number8 (Jitschin et.at 2004)

Figure 9 : Emulsion viscosity vs water cut for 40 cp oil at reservoir condition

48 Petroleum Today

- September 2013

Figure 8 : Pressure drop vs flow rate of 1.6mm venturi nozzle

Figure 10 : Pressure drop vs flow rate of 1.6mm Venturi nozzle with emulsion at reservoir condition


Figure 11 : Wellbore segmentation & position of isolation packers for mother bore of smart multilateral “Well A” Figure 12 : Workflow for ICD Completion Design of Smart Level-4 Multilateral “Well A” and “Well B”

Figure 13 : Results of ICD Completion Design for mother bore of Smart Multilateral “Well A”

Petroleum Today

- September 2013

49



Atlas Copco introduces compact compressor technology with breakthrough energy-efficiency For further information please contact : Emad Fawzy, Regional Business Line Manager – Industrial Air Divison Emad.fawzy@eg.atlascopco.com Mob : +2 0122 2408866

April 2013, Cairo, Egypt - On Hannover Messe2013, Atlas Copco surprised the market with a new, very compact oil-injected rotary screw compressor from 7 to 37 kW: the 7 - 37 GA VSD+ offers a leap forward in Free Air Delivery (improvements of up to 12%), and a breakthrough energy-efficiency: it requires on average 50% less energy than a comparable idling compressor. This new type of compressor offering a variable speed (frequency-controlled),will be suitable for most industries and aims to contribute significantly to the green economy needs. Atlas Copco translated the most requested needs of its customers in this new type of compressor: better performances, with less energy consumed, & low noise levels. With the GA VSD+, a variable speed drive compressor achieves better performances even at full load than a comparable idling compressor. This innovation will enable all compressor users to switch over to variable speed drive compressors, an important step towards a more sustainable industry. KoenLauwers, Vice-President Marketing from the Industrial Air Division comments: “In 1994, Atlas

Copco pioneered the Variable Speed Drive compressor and now we have launched an innovation that will once again set the benchmark in the compressor industry. The GA VSD+ has been completely in-house developed and brings together all our expertise and know-how about energyefficient compressor technology”. Small compressor, big ideas Atlas Copco evaluated every part in thiscompressor: a more efficient fan, robust air intake system, eliminating all blow-off losses, and the best electronic components together with the new drive train add up to energy savings of 50% on average compared to a traditional idlingcompressor of the same type. The new GA VSD+ is another 15% more efficient than Atlas Copco’s current Variable Speed Drive compressor (the GA 737- VSD). A full feature version with an integrated dryer is available as option. Several key components like the drive train as well as for the general design of the GA VSD+, are protected by Atlas Copco, with many patents on their way. Available as from today Atlas Copco also adapted its

production environment to the future: the GA VSD+ is currently built in Antwerp, Belgium, on a production line that is more efficient, more standardized and that takes less space. The production of the new compressor is up and running and Atlas Copco is ready to receive customers’ orders.

Atlas Copco Equipment Egypt

Atlas Copco Equipment Egypt P.O. Box 520 El Obour market Cairo, Egypt

Visitors Adress : El Obour city 1st Ind. zone- part 7 block 13024 Cairo, Egypt

Phone: +202 46100337 / 8 - 46101770 /1 +202 46140800 Fax:+202 46100341

Reg. No.: 10411 Reg. Office: Nasr City

www.atlascopco.com.eg

Petroleum Today

- September 2013

51


DEEPWATER ACTIVITIES AND THE NECESSARY OF BEING PREPARED FOR EMERGENCY RESPONSE MECHANISM Ó Deepwater activity in the region has grown over the past few years with the discovery of massive gas fields, to be more specific Since 2002, EGYPT oil and gas started a new era by getting into exploration, production and development in the med. Sea deep waters, as time is passing by EGYPT by 2014 will have enormous number of subsea wells, accordingly proactive thinking is vital to be prepared for any emergency response required to maintain our fortune of the subsea assets laid or will be laid in the near future, also we have to be prepared for the subsea technology required in all disciplines to cover the deepwater requirements

52 Petroleum Today

To cover the above concerns, In the next few lines we will explore simple layout of the following: Ó New subsea well containment technology or Capping Stacks. Ó Custom Engineered subsea equipment. Ó Patent and patent subsea applications. Ó Services related to subsea technology New subsea well containment technology or Capping stacks. A Deepwater emergency response plan including a national response to a subsea blowout is a rational, safe and solid position; in which capping stack can play a pivotal part of that strategy, cap-

- September 2013

ENG. KHALED ABOUD Sahara Petroleum Services Company S.A.E “SAPESCO”

ping stacks is now present and ready to use in the US Gulf (3 systems) and this summer in Alaska (1 system) 4 additional systems for a new consortium of clients for global placement through early 2013 in Europe, S. Africa, Singapore and Australia or perhaps Brazil. North Africa based subsea-capping stack, preferably located in Alexandria. Is to be used in the case of a national or regional subsea blowout. Solutions would comply with local government regulations, EPA guidelines, increase the response safety, and reduce the time, costs, and damage during an offshore crisis. TRENDSETTER ENGINEERING have partnered with SAPESCO and have submitted an offer to EGPC to secure a CAPPING


Intervention andand Workover Workover Control Control stack stack in EGYPT, in EGYPT, which which thethe consortium consortium - -Intervention Systems Systems would would handle handle much much of the of the fabrication, fabrication, Surface Reels Reels testing testing andand maintenance maintenance to take to take place place - -Surface - -Direct/ Direct/ Piloted/ Piloted/ Electro-Hydraulic Electro-Hydraulic in EGYPT. in EGYPT. Control Control System System Umbilical Termination Termination Assemblies Assemblies A capping A capping stack stack costs costs approximately approximately - -Umbilical Hydraulic Flying Flying Leads Leads 10% 10% of of a deep-water a deep-water well well drilled. drilled. O O - -Hydraulic Junction Plates Plates && G G Operators Operators in in different different parts parts of of - -Junction Connection Systems Systems thethe world world have have taken taken options options to share to share - -Connection thethe costcost between between up up to to 23 23 companies companies Specialized ROV ROV Tooling Tooling to either to either purchase purchase or lease or lease – this – this could could Specialized ROV Control Control Panels Panels be be a model a model used used in Egypt in Egypt or N. or N. Africa Africa - -ROV - -Rotary Rotary Torque Torque Tools Tools under under thethe control control of EGPC. of EGPC. - -Linear Linear Override Override / Lockout / Lockout Tools Tools Standard Standard / Patented / Patented Large Large Egypt Egypt is ais mature a mature oil oil producing producing area area - -APIAPI Bore Bore High High Pressure Pressure HotHot Stabs Stabs andand should should have have thethe appropriate appropriate lo-loHub Clean-out Clean-out Tools Tools calcal work work force force to to maintain, maintain, test, test, andand - -Hub Gasket Extractor Extractor Tools Tools keep keep in in a state a state of of readiness readiness a subsea a subsea - -Gasket Stab Stab Extractor Extractor Tools Tools well well blowout blowout containment containment system; system; i.e.,i.e., - -HotHot Hydrate Remediation Remediation Tools Tools a capping a capping stack. stack. Through Through shared shared costcost - -Hydrate Subsea Chemical Chemical Injection Injection Tubing Tubing , shared , shared risk, risk, oneone common common goal goal cancan - -Subsea Repair Repair be be reached, reached, adding adding a formidable a formidable safesafeSubsea Valve Valve Repair Repair guard guard to assist to assist in Egypt in Egypt andand its its neighneigh- - -Subsea - -Subsea Subsea Insulation Insulation Remediation Remediation bor’s bor’s environmental environmental protection. protection. TRENDSETTER TRENDSETTERSUBSEA SUBSEAENGIENGINEERING NEERINGproposed proposedthetheplacement placement of of a capping a capping stack stack in in Egypt Egypt through through partnership partnership with with Sapesco Sapesco andand support support through through EGPC EGPC andand regional regional O&G. O&G. It It cancan be be government government driven. driven.

Rigless/ Rigless/ Riserless Riserless Intervention Intervention - -Interchangeable Interchangeable Riserless Riserless Intervention Intervention System System (IRIS) (IRIS) - -IRIS IRIS Controls Controls - -Grease Grease Injection Injection Systems Systems

Subsea Subsea Blowout Blowout Preventers Preventers - -Subsea Subsea Capping Capping Stacks Stacks - -Acoustic Acoustic Subsea Subsea Accumulator Accumulator Module Module (SAM) (SAM)

Subsea Subsea BOP BOP Controls Controls - -System System forfor Controlling Controlling Functions Functions of aofsubsea a subsea Structure, Structure, such such as A as A

Blowout Blowout Preventer Preventer - -System System andand Process Process forfor Controlling Controlling Functions Functions of aofSubsea a Subsea Structure Structure Subsea Subsea Capping Capping Stack Stack - -Diverter Diverter forfor a Subsea a Subsea Well Well - -Safety Safety Relief Relief Valve Valve forfor Subsea Subsea Piping Piping - -System System andand Method Method forfor Diverting Diverting Fluids Fluids from from a Damaged a Damaged Blowout Blowout Preventer Preventer Rigless/ Rigless/ Riserless Riserless Intervention Intervention - -Automatic Automatic Accumulator Accumulator Switching Switching Apparatus Apparatus andand System System Subsea Subsea Production Production - -Auger Auger PilePile Assembly Assembly andand Method Method of Connection of Connection Anchor Anchor Piles Piles - -Subsea Subsea Pipe Pipe Connection Connection Assembly Assembly andand Method Method - -Subsea Subsea Structure Structure Flowline Flowline Connector Connector Assembly Assembly - -Event Event Recorder Recorder forfor Subsea Subsea Structures Structures - -Junction Junction Plates/ Plates/ Umbilical Umbilical Weaklinks Weaklinks

Subsea Subsea Pipeline Pipeline - -Method Method andand Apparatus Apparatus forfor Ó ÓPatents Patents andand Patent Patent Applications Applications Repairing Repairing a Damaged a Damaged Section Section of aof a Subsea Subsea Pipeline Pipeline Ó ÓCustom Custom Engineered Engineered Equipment Equipment TheThe deep deep water water related related operations/equipoperations/equip- - -System System andand Method Method forfor Repairing Repairing ment cancan be be summarized summarized as follows: as follows: an an Extended Extended Length Length of aofSubsea a Subsea ForFor EGYPT EGYPT to to be be ready ready to to deal deal with with ment Pipeline Pipeline thethe Deep Deep Water Water technology technology challenges challenges Subsea Hydrate Hydrate Remediation Remediation - -Method Method of Forming of Forming a Field a Field in aincost a cost effective effective manner, manner, thethe followfollow- Subsea Chemical Injection Injection Piping Piping Routing Routing Joint Joint forfor a Subsea a Subsea Pipeline Pipeline andand a a inging areare sample sample of what of what is needed is needed to be to be - -Chemical System andand Method Method forfor Method Method of Laying of Laying andand Positioning Positioning on on shelf shelf at all at all times times to to serve serve thethe oilsoils - -System Remediating Remediating Hydrates Hydrates such such Subsea Subsea Pipeline Pipeline andand GasGas fields fields in deep in deep water: water:

Subsea Subsea Production Production Systems Systems - -Manifolds Manifolds andand Foundations Foundations - -Pipeline Pipeline EndEnd Terminations Terminations - -Specialty Specialty Valves Valves - -Subsea Subsea Flushing Flushing Units Units

Subsea Subsea Intervention Intervention - -Connector Connector Assembly Assembly forfor Connecting Connecting a Hot a Hot Stab Stab to atoHydraulic a Hydraulic Hose Hose

SERVICES SERVICES RELATED RELATED TOTO SUB-SEA SUB-SEA -

-Subsea Subsea Connecting Connecting Systems Systems

-

-Subsea Subsea Control Control Equipment Equipment

-

-Field Field Development Development & Front & Front EndEnd

-

-Rigless/ Rigless/ Riserless Riserless Intervention Intervention Equipment Equipment

-

-Manifolds, Manifolds, PLET/ PLET/ FLET FLET Design Design & &

-

-Capping Capping Stack Stack Systems Systems

-

-Special Special ROV ROV Intervention Intervention Tooling Tooling

-

-Subsea Subsea Survey Survey & High & High Tech Tech Equipment Equipment

Engineering Engineering

Fabrication Fabrication

201320135353 Petroleum Petroleum Today Today - September - September


Industry At A Glance by Ali Ibrahim Table (1) World Crude oil Supply. Supply (million barrels per day)

U.S (50states)

OECD(1)

North sea(2)

OPEC(3)

OPEC (4)

world

10.72 10.75 10.76 10.67 10.86 10.83 10.76 10.89 11.17 11.40 11.65 11.63 11.56 11.70 11.60

22.51 22.50 22.28 22.36 22.37 22.18 22.27 22.37 22.09 22.33 22.89 22.99 22.69 22.86 22.74

3.33 3.42 3.33 3.32 3.25 3.12 3.19 2.87 2.85 2.82 2.84 2.82 2.79 2.74 2.72

36.33 36.49 36.65 37.13 36.94 36.50 36.61 36.82 36.56 36.10 36.09 35.87 35.59 35.72 35.68

34.1 34.9 34.95 35.22 34.6 34.75 34.96 35.1 34.9 34.4 34.4 34.17 33.84 34.02 33.93

89.25 89.03 88.99 89.41 89.27 88.58 88.98 89.05 89.04 89.3 89.28 88.88 88.26 88.41 88.38

Jan.2012 February March April May June July August September October November December Jan.2013 February March Source EIA

* «Oil Supply» is defined as the production of crude oil (including lease condensate) Natural gas plant liquids, and other liquids, and refinery processing gain. NA = no data available (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. (2) North Sea includes offshore supply from Denmark, Germany, the Netherlands, Norway, and the United Kingdom (3) OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. (4) OPEC = Organization of Petroleum Exporting Countries doesn’t include Angola.

54 Petroleum Today

- September 2013


Table Table (2) (2) World World Proved Proved Crude Crude OilOil Reserves, Reserves, January January 1, 2007 1, 2007 - January - January 1, 2012 1, 2012 Estimates Estimates (Billion (Billion Barrels) Barrels)

Region Region

2004 2004

2005 2005

2006 2006

2007 2007

2008 2008

2009 2009

212.534 212.534

211.559 211.559

209.910 209.910

NANA

NANA

NANA

102.80 102.80

109.86 109.86

122.69 122.69

124.64 124.64

237.11 237.11

238.82 238.82

15.80 15.80

14.27 14.27

13.66 13.66

13.31 13.31

12.08 12.08

11.88 11.88

98.89 98.89

98.89 98.89

98.89 98.89

98.89 98.89

98.89 98.89

98.89 98.89

739.20 739.20

748.29 748.29

746.00 746.00

753.36 753.36

752.92 752.92

799.61 799.61

114.07 114.07

114.84 114.84

117.06 117.06

119.11 119.11

123.61 123.61

124.21 124.21

33.37 33.37

34.35 34.35

34.01 34.01

40.14 40.14

40.25 40.25

45.36 45.36

1,316.66 1,316.66

1,332.04 1,332.04

1,342.21 1,342.21

NANA

NANA

NANA

North North America America Central Central & South & South Americ Americ Europe Europe Eurasia Eurasia Middle Middle East East Africa Africa Asia Asia & Oceania & Oceania World World Total Total Source Source EIAEIA

Table Table (3) (3) World World crude crude oil oil production. production. ( Million ( Million Barrels Barrels PerPer dayday ) )

Libya Libya Sudan Sudan Jan.2012 Jan.2012 February February March March April April May May June June July July August August September September October October November November December December Jan.2013 Jan.2013 February February March March

1 1 1.21.2 1.35 1.35 1.41.4 1.41.4 1.41.4 1.40 1.40 1.45 1.45 1.50 1.50 1.50 1.50 1.45 1.45 1.40 1.40 1.35 1.35 1.40 1.40 1.35 1.35

0.38 0.38 0.38 0.38 0.11 0.11 0.07 0.07 0.09 0.09 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.36 0.36 0.11 0.11 0.11 0.11

Egypt Egypt OPEC(1) OPEC(1) 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72

31.567 31.567 32.618 32.618 31.348 31.348 31.350 31.350 30.990 30.990 32.868 32.868 31.06 31.06 31.26 31.26 31.01 31.01 30.54 30.54 30.36 30.36 30.13 30.13 30.03 30.03 29.99 29.99 29.93 29.93

Persian Persian Gulf(2) Gulf(2) 22.834 22.834 22.523 22.523 21.326 21.326 20.927 20.927 21.246 21.246 23.09 23.09 23 23 22.99 22.99 23.1 23.1 23.2 23.2 23.1 23.1 23 23 23.02 23.02 22.98 22.98 22.6 22.6

North North Sea(3) Sea(3) 3.700 3.700 3.710 3.710 3.468 3.468 3.456 3.456 3.565 3.565 3.72 3.72 3.88 3.88 3.89 3.89 3.85 3.85 3.73 3.73 3.87 3.87 3.88 3.88 3.75 3.75 3.89 3.89 3.90 3.90

World World 72.893 72.893 73.275 73.275 73.330 73.330 74.450 74.450 74.005 74.005 74.949 74.949 74.882 74.882 74.921 74.921 74.950 74.950 74.893 74.893 74.843 74.843 74.862 74.862 75.01 75.01 74.95 74.95 74.96 74.96

Source Source EIA EIA

1 OPEC: 1 OPEC: Organization Organization of the of the Petroleum Petroleum Exporting Exporting Countries: Countries: Algeria, Algeria, Angola, Angola, Ecuador, Ecuador, Indonesia, Indonesia, Iran, Iran, Iraq, Iraq, Kuwait, Kuwait, Libya, Libya, Nigeria, Nigeria, Qatar, Qatar, Saudi Saudi Arabia, Arabia, the the United United Arab Arab Emirates, Emirates, andand Venezuela. Venezuela. 2 The 2 The Persian Persian Gulf Gulf countries countries are are Bahrain, Bahrain, Iran, Iran, Iraq, Iraq, Kuwait, Kuwait, Qatar, Qatar, Saudi Saudi Arabia, Arabia, andand the the United United Arab Arab Emirates. Emirates. Production Production from from the the Kuwait-Saudi Kuwait-Saudi Arabia Arabia Neutral Neutral Zone Zone is included is included in Persian in Persian Gulf Gulf production. production. 3 North 3 North SeaSea includes includes the the United United Kingdom Kingdom Offshore, Offshore, Norway, Norway, Denmark, Denmark, Netherlands Netherlands Offshore, Offshore, andand Germany Germany Offshore. Offshore.

201320135555 Petroleum Petroleum Today Today - September - September


Table (4) International petroleum consumption Million Barrels Per Day

Jan.2012 February March April May June July August September October November December Jan.2013 February March

U.S (50 OECD(1) States) 44.40 18.27 46.85 18.73 45.02 18.17 43.83 18.28 43.66 18.43 44.45 18.92 44.15 18.60 46.63 19.23 45.12 18.17 46.26 18.72 46.24 18.60 45.76 18.13 45.54 18.65 46.63 18.66 45.52 18.29

Canada 2.10 2.20 2.11 2.12 2.18 2.38 2.43 2.45 2.33 2.32 2.34 2.35 2.23 2.33 2.30

Europe 13.07 14.39 13.62 13.47 13.54 14.07 13.97 14.32 14.41 14.80 14.48 13.67 13.49 14.26 13.89

Japan 5.17 5.56 5.17 4.46 4.03 4.13 4.36 4.63 4.44 4.42 4.64 5.49 5.20 5.25 4.91

NonOECD 42.84 42.86 43.39 43.52 42.86 43.98 44.18 43.04 43.39 43.78 43.93 43.42 43.57 43.66 43.80

China 10.23 10.05 10.08 10.05 10.04 10.18 10.18 9.82 10.08 10.55 10.76 10.46 10.73 10.54 10.58

Other Non -OECD World 16.75 87.15 16.96 89.70 16.98 87.87 17.30 87.21 17.50 87.18 17.70 89.44 17.98 89.24 17.1 89.67 16.83 88.57 18.22 90.04 18.01 90.18 17.93 89.18 17.01 89.11 17.99 90.29 17.32 89.32

Source EIA (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. Table (5)

World Natural Gas Plant Liquid Production , Thousand Barrels Per Day

Algeria

Canada

Mexico

March.13 April May June July August September October November December January.13

355 350 354 352 349 345 345 345 345 345 345

760 712 719 720 714 642 620 690 690 710 730

330 320 318 321 325 373 328 327 322 321 325

Saudi Arabia 1,625 1,620 1,619 1,624 1,626 1,500 1,600 1,600 1,625 1,625 1,625

448 445 444 446 438 435 433 448 434 447 446

United States1 2,388 2,390 2,385 2,385 2,395 2,036 2,145 2,274 23.41.53 2,342 2,351

Persian Gulf 2 2,696 2,690 2,692 2,685 2,680 2,541 2,670 2,695 2,695 2,695 2,696

February

345

700

326

March

350

720

320

1,626

448

2,376

1,624

447

2,379

Russia

OAPEC3

OPEC4

World

3,121 3,014 3,111 3,120 3,125 3,037 3,012 3,442 3,412 3,440 3,244

3,414 3,420 3,415 3,419 3,414 3,280 3,275 3,335 3,355 3,385 3,404

8,395 8,390 8,395 8,380 8,390 8,321 8,509 8,385 8,390 8,294 8,326

2,696

3,212

3,409

8,512

2,689

3,131

3,424

8,396

Source EIA (1) U.S. geographic coverage is the 50 states and the District of Columbia. Excludes fuel ethanol blended into finished motor gasoline. (2) The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. (3) OAPEC: Organization of Arab Petroleum Exporting Countries: Algeria, Bahrain, Egypt, Iraq, Kuwait, Libya, Qatar, Saudi Arabi Syria, Tunisia, and the United Arab Emerates (4) OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela.

56 Petroleum Today

- September 2013


Table ( 6 ) International Rotary Rig Count

August 2010 REGION

July 2010

% Change change from prior from month prior month 12 10 2 4 2 33 -1 12 9 45 1 30 -13 200

Land

Offshore

Total

Land

Offshore

Total

AFRICA ALGERIA ANGOLA LIBYA NIGERIA TUNISIA SUDAN

88 49 0 14 11 2 6

37 0 7 0 11 1 0

125 49 7 14 22 3 6

81 47 0 15 5 2 19

32 0 9 0 8 0 0

113 47 9 15 13 2 19

MIDDLE EAST ABU DHABI DUBAI EGYPT JORDAN KUWAIT OMAN PAKISTAN QATAR SAUDI ARABIA

264 18 0 47 0 72 41 20 3 66

53 9 2 11 0 0 1 0 5 17

317 27 2 58 0 72 42 20 8 83

295 22 0 41 0 65 31 19 2 67

49 6 0 10 0 0 1 0 5 17

344 28 0 51 0 65 32 19 7 84

33 -1 2 7 0 7 10 1 1 -1

10 5 0 13 01 20 5 12 0.12

SYRIA YEMEN

NA 4

NA 2

6

3

0

3

1

15

EUROPE GERMANY ITALY ROMANIA TURKEY UNITED KINGDOM

85 7 4 8 29

51 0 1 0 0

136 7 5 8 29

80 6 2 8 30

53 1 0 0

133 6 3 8 30

3 0 1 0 0

4 0 20 0 0

0

19

19

0

21

21

3

8

LATIN AMERICA ARGENTINA BRAZIL COLOMBIA MEXICO VENEZUELA

340 79 27 48 78 68

89 0 44 0 35 6

429 79 71 48 113 74

352 76 31 43 89 73

85 0 43 0 31 8

437 76 74 43 120 81

-12 3 -3 5 -7 7

2.5 5 5 10 7 10

ASIA PACIFIC AUSTRALIA CHINA OFFSHORE INDIA INDONESIA THAILAND

148 11 0 82 33 5

109 8 20 36 14 14

257 19 20 118 47 19

140 9 0 82 28 4

105 7 17 34 14 15

245 16 17 116 42 19

12 3 3 2 5 0

0.5 15 15 2 10 0

Source Schlumberger Petroleum Today

- September 2013

57


Source EIA

Fig. ( 1 ) World Crude Oil Prices US $ Per BBL

Table (7) Egypt Rig Count per Area Dec-12

Jan-13

Feb.13 Mar.-13 April-13

Gulf of Suez

10

10

10

10

10

Mediterranean Sea

11

8

9

9

9

Western Desert

63

70

74

72

71

Sinai

9

13

11

12

12

Eastern Desert

13

8

9

9

9

Delta

5

5

6

6

6

Total

108

114

119

118

117

Source Petroleum Today

Source EIA

58 Petroleum Today

Fig. ( 3 ) Egypt Suez Blend Price ( Dollars Par Barrel ) based on 33Ëš API

- September 2013



Atlas Copco celebrates 140 years of industry innovation Cairo, Egypt, February 21, 2013: Atlas Copco, recognized as one of the world’s most innovative and sustainable companies, today celebrates 140 years of industrial excellence with a range of activities in the more than 90 countries where it has its own operations. Atlas Copco, which today celebrates 140 years as a leading industrial company, Its presence in Egypt goes back to the early fifties. Now Atlas Copco Equipment Egypt, Atlas Copco Levant, and Atlas Copco Iraq are the direct sales and service operations, responsible to sell, rent, and service reliable and efficient solutions to our customers in Egypt, Libya, Lebanon, Jordan, Syria, and Iraq. The young customer centers, with the regional staff are committed to keep our customers over-satisfied with our products and services. The staff is motivated and strives daily to apply the group values, and deliver innovative solutions to our growing list of satisfied customers. The family culture and the entrepreneurial spirit are aligned with the group culture and beliefs, and form the key local ingredients of our success in delivering sustainable profitable growth in this challenging region. “Celebrating 140 years is a fantastic opportunity to strengthen customer focus and relations further, to translate our values into daily activities, and to capture synergies,” [said John Vanezos, Regional General Manager of Atlas Copco Equipment Egypt ] “It is a great occasion to create pride among employees and to make them enthusiastic about future opportunities. Our history guarantees long-term industrial experience as well as innovative products and solutions to current and new customers, to suppliers as well as to current and future employees.”

Also marking the 140-years since the company’s 1873 foundation, Atlas Copco’s President and CEO Ronnie Leten today is ringing the opening bell at the NASDAQ stock exchange in New York, U.S. The shares of Atlas Copco, the biggest industrial company by market capitalization in Europe’s Nordic region, are listed on NASDAQ OMX in Stockholm, Sweden, where the company is based. Other events around the world today include the inauguration of a new compressor manufacturing plant near Pune, India, a donation of KUSD 60 (KSEK 390) to safe drinking water projects from Atlas Copco’s Water for All organization in the US, and several customer events in Australia. A podcast with an exciting audio history of this industrial icon is available for download on atlascopco.com/history. On the history section there is also a new e-book describing some of Atlas Copco’s many achievements during the past 140 years. Atlas Copco develops and supplies machinery such as rock drills, power tools, construction equipment and compressors to customers in industries spanning from automotive, mining and road construction to aerospace, food and beverages, and pharmaceuticals. Last month, Atlas Copco earned a spot on the Global 100 Most Sustainable Corporations in the world list, the most prestigious corporate sustainability

ranking. The Global 100 recognized Atlas Copco for its commitment to sustainable productivity and its work and achievements of doing more with less: For instance, the development of new innovative, highly energy-efficient products that save customers money and benefit the environment at the same time. Atlas Copco’s long history is filled with cutting-edge product innovations. Highlights include introducing the first light rock drills in 1905, manufacturing the first portable air compressor that same year, introducing the world´s first serial-produced hydraulic breakers in 1966, and launching new error-proof and low-energy tightening tools. The landmark projects that Atlas Copco has been involved in are almost too numerous to mention. One is helping to build the Mont Blanc Tunnel across the France-Italian border, then the world’s longest highway tunnel, in the 1950s and 1960s. In the 1980s Atlas Copco got a dinosaur species named after it – Atlascopcosaurus Lourdsi – in appreciation of the equipment and assistance, the company provided that helped unearth the skeleton in Australia. Atlas Copco has steadily expanded its global presence. It’s established own operations for example in Kenya 1936, in the United States 1950 and in India 1960, and last year added seven countries including Senegal and Tanzania. Atlas Copco now operates in more than 170 countries.

Atlas Copco Equipment Egypt

Atlas Copco Equipment Egypt P.O. Box 520 El Obour market Cairo, Egypt

60 Petroleum Today

Visitors Adress : El Obour city 1st Ind. zone- part 7 block 13024 Cairo, Egypt

- September 2013

Phone: +202 46100337 / 8 - 46101770 /1 +202 46140800 Fax:+202 46100341

Reg. No.: 10411 Reg. Office: Nasr City

www.atlascopco.com.eg


‫الثلث القادمة اأو الثماين �صنوات اإذا اأعيد انتخابه‪.‬‬ ‫يف مقابل ذلك تقدم جارته بريطانيا ت�ص ��هيلت كثرية‬ ‫لل�ص ��ركات العاملة يف اإنتاج الغاز والنفط ال�ص ��خرين‬ ‫حيث ق ��ررت موؤخ ��ر ًا تخفي�ض ال�ص ��رائب عل ��ى اإنتاج‬ ‫الغاز ال�ص ��خري بن�ص ��بة كبرية من ‪ 62‬يف املئة اإىل ‪30‬‬ ‫يف املئة مما يعد واحد ًا من اأقل ن�ص ��ب ال�ص ��رائب على‬ ‫اإنت ��اج الغاز يف الع ��امل‪ ،‬وذلك رغ ��م االحتجاجات من‬ ‫قبل اأن�ص ��ار البيئة والتحذيرات اخلا�ص ��ة باالنبعاثات‬ ‫الغازية ال�صارة‪.‬‬ ‫اأم ��ا يف اأملانيا ف� �اإن الردد واملخ ��اوف البيئية ال زالت‬ ‫ت�صكل هاج�ص ًا ملتخذي القرار‪.‬‬ ‫واحلقيق ��ة اأن له ��ذا اجل ��دل احلام ��ي ما ي ��رره فهذه‬ ‫البلدان بحاجة ما�ص ��ة لتنويع م�صادر احتياجاتها من‬ ‫الطاق ��ة وتقليل اعتمادها على اخل ��ارج وباالأخ�ض من‬ ‫منطق ��ة ال�ص ��رق االأو�ص ��ط امل�ص ��طربة يف الوقت الذي‬ ‫�ص ��يرتب عل ��ى عملية تك�ص ��ري ال�ص ��خور نتائ ��ج بيئية‬ ‫كارثي ��ة تتمثل يف تلوث الهواء ب�ص ��بب ت�ص ��رب الغازات‬ ‫وكذلك ت�صمم م�صادر املياه اجلوفية وت�صكل زالزل قد‬ ‫ت�ص ��ل اإىل ‪ 5‬درجات ب�صبب طريقة االإنتاج التي ترتب‬ ‫عليها فراغات و�صغوط على الطبقات االأر�صية‪.‬‬ ‫اخلليج‬ ‫م ��ع اأن دول اخللي ��ج ق ��د ال ت�ص ��طر اإىل اإنت ��اج النفط‬ ‫والغاز ال�صخرين بف�صل احتياطياتها الكبرية وب�صبب‬ ‫التكلف ��ة العالية للإنتاج ال�ص ��خري اإال اأنها فى الفرة‬ ‫االخ ��رية ب ��داأت اململكة العربي ��ة ال�ص ��عودية تتجه اىل‬ ‫التفكري بقوة فى انتاج النفط ال�ص ��خرى حيث ك�صفت‬ ‫جملة اأجنبية متخ�ص�ص ��ة بال�ص� �وؤون االقت�ص ��ادية اأن‬ ‫اململكة تعتزم البدء قريبا بعمليات تنقيب عن "النفط‬ ‫ال�ص ��خري" فيم ��ا ق ��ال خب ��ري نفطي يف ت�ص ��ريحات‬ ‫�ص ��حفية اإن اأي اكت�ص ��افات جدي ��دة يف ه ��ذا املج ��ال‬ ‫�صت�صكل "خمزون ًا اإ�صراتيجي ًا اإ�صافي ًا للمملكة التي ال‬ ‫تزال حتى االآن تنتج نفط ًا باأقل من طاقتها اال�صتيعابية‬ ‫الق�صوى"‪.‬‬ ‫من جانبها اأوردت جملة "ميد" املتخ�ص�ص ��ة مبراقبة‬ ‫اقت�ص ��ادات منطق ��ة ال�ص ��رق االأو�ص ��ط تقري ��ر ًا قالت‬ ‫فيه اإن �ص ��ركة "اأرامكو" ال�ص ��عودية تعتزم قريب ًا طرح‬ ‫مناق�ص ��ات للتنقيب عن "النفط ال�صخري" الأول مرة‬ ‫يف اململك ��ة عل ��ى اأن اأعمال التنقيب �ص ��تجري يف ثلث‬ ‫مناط ��ق من اململكة م ��ن بينها "الربع اخل ��ايل" الذي‬ ‫ي�ص ��ود اعتقاد باأنه ي�صم خمزون ًا كبري ًا من هذه الرثوة‬ ‫النفطية‪.‬‬ ‫‪12‬‬

‫‪- September 2013‬‬

‫ونقلت املجلة عن م�ص ��در نفطي �صعودي قوله اإن نتائج‬ ‫الدرا�صات التي اأجرتها �صركة "اأرامكو" خلل العامن‬ ‫املا�صين ب�صاأن "النفط ال�صخري" كانت م�صجعة جد ًا‬ ‫م�ص ��ري ًا اإىل اأن ال�ص ��ركات الفائزة باملناق�صات �صيتم‬ ‫االعلن عنها يف الربع االأول من العام املقبل ‪.2014‬‬ ‫وق ��ال اخلب ��ري النفط ��ي الكويت ��ي كام ��ل احلرم ��ي يف‬ ‫ت�صريحات �صحفية ان ال�صعودية لي�صت بحاجة الإنتاج‬ ‫كميات اأكر من النفط يف الوقت الراهن وهو ما يعني‬ ‫اأن "اأية اكت�ص ��افات جديدة يف جمال النفط ال�صخري‬ ‫�صتمثل خمزون ًا ا�صراتيجي ًا ا�صافي ًا للمملكة"‪.‬‬ ‫موقف اوبك‬ ‫بعد عام من التهوين من �صاأن النفط ال�صخري قررت‬ ‫منظم ��ة البلدان امل�ص ��درة للبرول (اوب ��ك) مواجهة‬ ‫الواقع والتحقيق بنف�ص ��ها يف اآثاره املحتملة مع ت�صككها‬ ‫يف املعلومات املتاحة حيث ان�صئت جلنة خا�صة لدرا�صة‬ ‫اآثار النفط ال�صخري على ا�صواق الطاقة‬ ‫وق ��ال عبداهلل البدري االأمن لع ��ام الأوبك "اإنه مورد‬ ‫جديد‪� .‬ص ��ائل جدي ��د‪ .‬والوزراء يري ��دون معرفة حجم‬ ‫ه ��ذا امل ��ورد واإيل مت ��ى �صي�ص ��تمر ومدى ا�ص ��تمراريته‬ ‫وتكلفته لذلك �صنتابع هذا االأمر‪".‬‬ ‫واأ�صاف قائل "�صنتابعه الأن هناك تباينا يف املعلومات‬ ‫الت ��ي نتلقاه ��ا‪ .‬اإننا ال نتلق ��ى معلومات دقيق ��ة وعلينا‬ ‫ان نقوم بذلك بانف�ص ��نا‪ ".‬اإن اإنتاج النفط ال�ص ��خري‬ ‫�صيتجه للراجع بداية من ‪ 2018‬وب�صبب تكلفة االإنتاج‬ ‫فاأي انخفا�ض حاد يف اأ�صعار النفط �صيقيد االإمدادات‬ ‫وقال اي�صا "يعتمد النفط املحكم على التكلفة اإذا نزل‬ ‫ال�ص ��عر اإىل ما بن ‪ 60‬و‪ 70‬دوالر ًا �ص ��يخرج من ال�صوق‬ ‫كليا"‪.‬‬ ‫وتاب ��ع قائل ان ازدهار النفط ال�ص ��خري يف الواليات‬ ‫املتح ��دة يعي ��د بالفع ��ل ر�ص ��م خريطة جت ��ارة النفط‪.‬‬ ‫و�صعرت نيجرييا واجلزائر بالفعل باأثر ازدهار النفط‬ ‫االأمريكي مع انح�ص ��ار ح�ص ��تيهما يف �ص ��وقهما االأكرث‬ ‫ربحية وقيامنهما بتحويل بع�ض ال�صادرات اإىل اآ�صيا‪.‬‬ ‫دور اآ�سيا‬ ‫لن تتمكن اآ�صيا من التحول ال�صتخدام الغاز ال�صخري‬ ‫اأو الطاق ��ة املتج ��ددة خ ��لل الع�ص ��رين عام ��ا املقبلة‬ ‫و�صتعتمد على موارد الطاقة التقليدية يف منوها ومتلك‬ ‫ال�صن اأكر احتياطي للغاز ال�صخري يف العامل ي�صل‬ ‫اىل ‪ % 19‬م ��ن اإجمايل االحتياطي العاملي متفوقة على‬

‫‪Petroleum Today‬‬

‫الوالي ��ات املتحدة التي متلك ‪ % 13‬كما متلك ال�ص ��ن‬ ‫اإطار ًا تنظيمي ًا يدعم تطور تكنولوجيا ا�ص ��تخراج الغاز‬ ‫ال�صخري‪.‬‬ ‫اإال اأن امل�ص ��كلت التقنية مثل �ص ��ح املياه وعمق مكامن‬ ‫الغ ��از والق ��رب م ��ن املناط ��ق الريفي ��ة واالفتق ��ار اإىل‬ ‫املهارات التكنولوجية جتعل ا�صتغلل الغاز مكلفا جد ًا‬ ‫ومتنع اأي تطور يف القطاع م�ص ��ابه ملا �ص ��هدته الواليات‬ ‫املتحدة االأمريكية اأن يحدث يف امل�صتقبل القريب‪.‬‬ ‫البلدان النامية‬ ‫اأم ��ا البل ��دان النامي ��ة االأخرى وم ��ن �ص ��منها البلدان‬ ‫العربية غ ��ري النفطية فاإن ��ه رغم توف ��ر النفط والغاز‬ ‫ال�ص ��خرين يف اأرا�صيها فاإن معظمها ال ميلك االأموال‬ ‫اللزمة لل�ص ��تثمار يف ه ��ذا املجال وذلك رغم ارتفاع‬ ‫الطل ��ب على الطاقة مما يعن ��ي اأن اإنتاج النفط والغاز‬ ‫ال�ص ��خرين �صيقت�صر يف الوقت احلا�ص ��ر على االأقل‬ ‫عل ��ى البل ��دان الغنية الت ��ي متلك ق ��درات متويلية مبا‬ ‫فيها بع�ض البلدان النا�صئة كال�صن والهند والرازيل‬ ‫وكوري ��ا اجلنوبي ��ة والتي ال ي�ص ��كل اأن�ص ��ار البيئة فيها‬ ‫قوة �ص ��غط موؤثرة كما هو احل ��ال يف اأوروبا والواليات‬ ‫املتحدة مما �صي�صهل من عملية التو�صع يف االإنتاج‪.‬‬ ‫اإذن يق ��ف الع ��امل عل ��ى اأعت ��اب تط ��ور مث ��ر يف اإنت ��اج‬ ‫الطاق ��ة وذل ��ك بف�ض ��ل التط ��ور التكنولوج ��ي ف� �اإذا‬ ‫م ��ا متكن ��ت البل ��دان املتقدم ��ة م ��ن ح�ض ��م مواقفه ��ا‬ ‫م ��ع املنظم ��ات املدافعة ع ��ن البيئة ف� �اإن التاأثرات يف‬ ‫�ض ��ناعة الطاقة �ضتكون كبرة اأما يف حالة ما متكنت‬ ‫هذه املنظمات من عرقلة عملية التو�ضعات االإنتاجية‬ ‫فاإن هذه التاأثرات �ضتكون اأقل �ضاأناً‪.‬‬ ‫م ��ن خ ��ال التف ��اوت م ��ا ب ��ن املوقف ��ن الفرن�ض ��ي‬ ‫والربيط ��اين وم ��ا بينهم ��ا م ��ن مواق ��ف اأوروبي ��ة‬ ‫غ ��ر وا�ض ��حة يت�ض ��ح اأن ه ��ذه املعركة ب ��ن املوؤيدين‬ ‫واملعار�ض ��ن الإنتاج النفط والغاز ال�ضخرين �ضتكون‬ ‫معقدة وطويلة خ�ضو�ضاً واأن منظمات اأن�ضار البيئة‬ ‫اأ�ض ��بحت رقماً انتخابياً موؤث ��راً يف البلدان االأوروبية‬ ‫ال ميكن جتاهله وذلك بعد اأن اأ�ضبحت طرفاً رئي�ضياً‬ ‫يف الت�ض ��كيات احلكومي ��ة يف العدي ��د م ��ن البل ��دان‬ ‫االأوروبية حيث �ض ��يتوقف على هذا التفاوت م�ضتقبل‬ ‫اإنت ��اج الغ ��از والنف ��ط ال�ض ��خرين وتاأثراتهم ��ا على‬ ‫االإم ��دادات واالأ�ض ��عار اأو كم ��ا يق ��ول وزي ��ر الطاق ��ة‬ ‫االأمرك ��ي من اأنهما �ض ��يغران �ض ��كل جت ��ارة الطاقة‬ ‫و�ضيولدان تداعيات جيو‪� -‬ضيا�ضية عديدة‬


‫�خري�خري‬ ‫ال�ص �ال�ص �‬ ‫النفط‬ ‫النفط‬ ‫انتاجانتاج‬ ‫فهىفهى‬ ‫�ة‪:‬ي ��ة‪:‬‬ ‫الثان‬ ‫الثاني �‬ ‫الطريق ��ة‬ ‫الطريق ��ة‬ ‫ام ��اام ��ا‬ ‫حفرحفر‬ ‫الطريقة‬ ‫الطريقة‬ ‫هذههذه‬ ‫وتقرح‬ ‫وتقرح‬ ‫الطبقة‬ ‫الطبقة‬ ‫مبا�ص �من�ر من‬ ‫مبا�ص ��ر‬ ‫�كل ��كل‬ ‫ب�ص � ب�ص‬ ‫الل�قح ��ق‬ ‫اللح �‬ ‫الهيدرولي�يك ��ي‬ ‫الهيدروليك �‬ ‫�قيق�قيق‬ ‫الت�ص �الت�ص �‬ ‫أفقيال��ةأفقي�م ��ة�عم ��ع‬ ‫االآب �االآ�اربا�ال�ار ا‬ ‫الغالب‬ ‫الغالب‬ ‫(على�هان �يف�ه يف‬ ‫(على ان �‬ ‫أحيانأحيان‬ ‫�ريث �م ��ري�نما�ال�ن اال‬ ‫ويف ك‬ ‫ويف كث �‬ ‫واملتع �واملت�ددع ��دد‬ ‫باملعاجلة‬ ‫باملعاجلة‬ ‫مناي �الق�امي ��ام‬ ‫منا الق‬ ‫يتطلب‬ ‫يتطلب‬ ‫�ك)�ك)‬ ‫يحدث ذل �‬ ‫يحدث ذل �‬ ‫االع �اال�مع �ال�م ال‬ ‫�راري�راري‬ ‫حل �احل �‬ ‫�خن‬ ‫�خن ا‬ ‫الت�ص �الت�ص �‬ ‫كيميائيا �أو�ة اأو‬ ‫كيميائي ��ة‬ ‫�ادة��ادة‬ ‫�تخدام م‬ ‫�تخدام م �‬ ‫با�ص �با�ص �‬ ‫للطبقة‪.‬‬ ‫للطبقة‪.‬‬ ‫ظروف‬ ‫ظروف‬ ‫يتم يف‬ ‫يتم يف‬ ‫إنتاجإنتاج‬ ‫من اال‬ ‫النوع اال‬ ‫النوع من‬ ‫هذاهذا‬ ‫الوا�صا�أن�ح اأن‬ ‫الوا�ص ��ح‬ ‫ومنومن‬ ‫النفط‬ ‫النفط‬ ‫�اجت ��اج‬ ‫عمليات� ان‬ ‫عمليات انت‬ ‫اكر�نم ��ن‬ ‫اكر م �‬ ‫وكلف ��ة‬ ‫�داف ��ة‬ ‫تعقي �تعق�داي �وكل‬ ‫اأك � اأ�رثك ��رث‬ ‫�تخدمة‬ ‫�تخدمة‬ ‫الطريق �امل��ةص �امل�ص �‬ ‫الطريق ��ة‬ ‫�دي� �بغ�ض� �الن�ضظ �الن�رظ �ع ��ر�نع ��ن‬ ‫�دي� بغ‬ ‫التقلي‬ ‫التقلي �‬ ‫�الف �الن�طف ��ط‬ ‫جم �الن‬ ‫جم ��ال‬ ‫�تثمار يف‬ ‫�تثمار يف‬ ‫اال�ص �اال�ص �‬ ‫�ايل�انف �كل�انف ��ةكلف ��ة‬ ‫�ايل� ف �‬ ‫وبالت �وبالت‬ ‫التقليدية‬ ‫التقليدية‬ ‫بكثري من‬ ‫بكثري من‬ ‫أعلىأعلى‬ ‫�صتكون ا‬ ‫�صتكون ا‬ ‫عامعام‬ ‫ب�صكلب�صكل‬ ‫ال�صخري‬ ‫ال�صخري‬ ‫�اجي �للز�تي ��ت‬ ‫�اجت �للز‬ ‫�ونإنتا�الإن‬ ‫�ركات ي�ونك �اال‬ ‫�ركات يك �‬ ‫�رات �ص �‬ ‫�رات �ص �‬ ‫تقدي �تقدي �‬ ‫�بص ��ب‬ ‫وبح�‬ ‫وبح�ص �‬ ‫�عار��عار‬ ‫تكون� ا�ص‬ ‫تكون ا�ص‬ ‫حال ان‬ ‫حال ان‬ ‫جدوى يف‬ ‫جدوى يف‬ ‫وذو وذو‬ ‫معقول‬ ‫معقول‬ ‫�خري�خري‬ ‫ال�ص �ال�ص �‬ ‫للرميل‬ ‫للرميل‬ ‫دوالرادوالرا‬ ‫‪60-50‬‬ ‫‪60-50‬‬ ‫أدنى من‬ ‫أدنى من‬ ‫كحد ا‬ ‫كحد ا‬ ‫النفط‬ ‫النفط‬ ‫بع�ضبع�ض‬ ‫�اين من‬ ‫�اين من‬ ‫الطريقتن تع �‬ ‫الطريقتن تع �‬ ‫اللف �الل�تف �للن�تظ �للن�رظ �ان�ركلتان��اكلت ��ا‬ ‫ال�صخر‬ ‫ال�صخر‬ ‫انتاجانتاج‬ ‫فتطوير‬ ‫فتطوير‬ ‫�يةص ��ية‬ ‫الرئي�‬ ‫الرئي�ص �‬ ‫والعوائق‬ ‫والعوائق‬ ‫�لبيات�لبيات‬ ‫ال�ص �ال�ص �‬ ‫الحق ��ه‬ ‫الحق ��ه‬ ‫مراحل ��ة‬ ‫مراحل ��ة‬ ‫ومعاجلت �يف�ه يف‬ ‫ومعاجلت ��ه‬ ‫جتهي �جته�زهي ��زه‬ ‫الزيت �م ��ي�عم ��ع‬ ‫الزيت ��ي‬ ‫املحتوى‬ ‫املحتوى‬ ‫التخل�ض� �من�ض من‬ ‫التخل� �‬ ‫�كلة��كلة‬ ‫مب�ص �مب�ص‬ ‫كبريكبري‬ ‫حد حد‬ ‫يواج �يوا�هج ��هاىل اىل‬ ‫الكرب �الكر�ونب �(�ون (‬ ‫�يدص ��يد‬ ‫ثاينصا�أك�‬ ‫ثاين اأك�‬ ‫�ات من‬ ‫�ات �من‬ ‫لكمي �لكمي‬ ‫الكب �الك�ريب ��ري‬ ‫‪)CO‬‬ ‫‪)CO‬‬ ‫‪2 2‬‬ ‫(النفط) من‬ ‫(النفط) من‬ ‫�تخراجق � ال�ارق ��ار‬ ‫�تخراج ال‬ ‫عملية� ا�ص �‬ ‫عملية ا�ص‬ ‫أثناءأثناء‬ ‫املنبع �املنب�ثع �ا�ث ا‬ ‫�يدص ��يد‬ ‫ثاينص �اك�‬ ‫ثاين اك�‬ ‫التخل�ض� �من�ض من‬ ‫التخل� �‬ ‫الزيت �كم�ي��اكم �ان�ا ان‬ ‫الزيت ��ي‬ ‫�خر��خر‬ ‫ال�ص �ال�ص‬ ‫�يدص ��يد‬ ‫(ثاينص �اك�‬ ‫(ثاين اك�‬ ‫إطلقه‬ ‫إطلقه‬ ‫حلها وا‬ ‫حلها وا‬ ‫يتم يتم‬ ‫�كلة مل‬ ‫�كلة� مل‬ ‫الكربونص �م�ص‬ ‫الكربون م�‬

‫علىعلى‬ ‫بيئيةبيئية‬ ‫بكوارث‬ ‫بكوارث‬ ‫يهدديهدد‬ ‫اجلوي‬ ‫اجلوي‬ ‫الغلف‬ ‫الغلف‬ ‫�ون) يف‬ ‫�ون) يف‬ ‫الكرب �الكرب �‬ ‫العلماء‬ ‫العلماء‬ ‫�رح�رح‬ ‫فقد اق �‬ ‫فقد اق �‬ ‫�كلة��كلة‬ ‫هذهص �امل�ص‬ ‫هذه امل�‬ ‫واماموامام‬ ‫�ع‪.‬ص ��ع‪.‬‬ ‫نطاقص �وا�‬ ‫نطاق وا�‬ ‫جديدة‬ ‫جديدة‬ ‫تكنولوجيا‬ ‫تكنولوجيا‬ ‫�تانفورد‬ ‫�تانفورد‬ ‫جامعة �ص �‬ ‫جامعة �ص �‬ ‫يف يف‬ ‫‪ EPICC‬اذ‬ ‫‪ EPICC‬اذ‬ ‫أك�صيدأك�صيد‬ ‫ثاين اثاين ا‬ ‫واحتجاز‬ ‫واحتجاز‬ ‫الكهرباء‬ ‫الكهرباء‬ ‫علىعلى‬ ‫احل�صول‬ ‫احل�صول‬ ‫يتزامن‬ ‫يتزامن‬ ‫الكربون‪.‬‬ ‫الكربون‪.‬‬ ‫الوحيدةانبل ان‬ ‫الوحيدة بل‬ ‫�تص ��ت‬ ‫الكربونص �لي�‬ ‫الكربون لي�‬ ‫�يدص ��يد‬ ‫ثاينص �اك�‬ ‫ثاين اك�‬ ‫�كلة��كلة‬ ‫م�ص �م�ص‬ ‫النفط‬ ‫النفط‬ ‫�تخراج‬ ‫�تخراج‬ ‫عند� ا�ص �‬ ‫عند ا�ص‬ ‫وهي انه‬ ‫وهي انه‬ ‫�رى��رى‬ ‫�كلة� اخ‬ ‫�كلة� اخ‬ ‫هناكص �م�ص‬ ‫هناك م�‬ ‫هناكهناك‬ ‫الطبقة ت�ونك ��ون‬ ‫الطبقة تك �‬ ‫مبا�صم� ��ر�نم ��ن‬ ‫مبا�ص ��ر‬ ‫�كل ��كل‬ ‫�خري� ب�ص‬ ‫�خري ب�ص‬ ‫ال�ص �ال�ص �‬ ‫العالية‬ ‫العالية‬ ‫االنخفا�ض� ��ض‬ ‫االنخفا� �‬ ‫�دل��دل‬ ‫تتمث �يف�لمعيف� مع‬ ‫�رىث ��ل‬ ‫�رى� تتم‬ ‫�كلة� اأخ‬ ‫�كلة� اأخ‬ ‫م�ص �م�ص‬ ‫املرحلة‬ ‫املرحلة‬ ‫الحقف�ف�ة� ف�يف ��ي‬ ‫الحق ��ة‬ ‫مرحل ��ة‬ ‫مرحل ��ة‬ ‫�كل �يف�ك يف‬ ‫آباروذ‬ ‫آباروذل �‬ ‫�اجت �اال�اج اال‬ ‫الإنت �الإن‬ ‫�ريص ��ري‬ ‫والتك�‬ ‫والتك�ص �‬ ‫أفقيةأفقية‬ ‫�تكمال لآبارلاالآبار اال‬ ‫�تكمال لل‬ ‫اال�ص �اال�ص �‬ ‫�بب��بب‬ ‫أوىلص �وب�ص‬ ‫أوىلال وب�‬ ‫اال ا‬ ‫عايلعايل‬ ‫�اجت ��اج‬ ‫مبعدل� ان‬ ‫مبعدل انت‬ ‫تت�ص ��م‬ ‫املرحلةص ��م‬ ‫املرحلة تت�‬ ‫فان�ذهه ��ذه‬ ‫فان ه �‬ ‫املتع �املت�ددع ��دد‬ ‫�غيل)�غيل)‬ ‫الت�ص �الت�ص �‬ ‫يوما من‬ ‫يوما من‬ ‫‪400400‬‬ ‫حوايل‬ ‫حوايل‬ ‫(بعد(بعد‬ ‫�كل ��ك‬ ‫بعد ذ‬ ‫بعد ذل �‬ ‫ج ��داج ��دا‬ ‫االنتاج‬ ‫االنتاج‬ ‫حجمحجم‬ ‫(‪ )%80‬من‬ ‫(‪ )%80‬من‬ ‫بن�صبةبن�صبة‬ ‫حاداحادا‬ ‫انخفا�صا‬ ‫انخفا�صا‬ ‫يحدث‬ ‫يحدث‬ ‫ثباتثبات‬ ‫علىعلى‬ ‫وللحفاظ‬ ‫وللحفاظ‬ ‫هذاهذا‬ ‫احلاداحلاد‬ ‫الراجع‬ ‫الراجع‬ ‫عن عن‬ ‫وللتعوي�ض‬ ‫وللتعوي�ض‬ ‫حفرحفر‬ ‫عمليةعملية‬ ‫فان فان‬ ‫ال�صخري‬ ‫ال�صخري‬ ‫النفط‬ ‫النفط‬ ‫ابارابار‬ ‫انتاجية‬ ‫انتاجية‬ ‫م�صتوى‬ ‫م�صتوى‬ ‫وعلىوعلى‬ ‫تدريجي‬ ‫تدريجي‬ ‫�كل ��كل‬ ‫يحدث� ب�ص‬ ‫يحدث ب�ص‬ ‫االنتاجية‬ ‫االنتاجية‬ ‫االباراالبار‬ ‫وادخ �واد�الخ ��ال‬ ‫حم�صوبة‪.‬‬ ‫حم�صوبة‪.‬‬ ‫مراحل‬ ‫مراحل‬ ‫الواليات‬ ‫الواليات‬ ‫�خري يف‬ ‫�خري يف‬ ‫ال�ص �ال�ص �‬ ‫النفط‬ ‫النفط‬ ‫�اجت ��اج‬ ‫تكنلوجيا� ان‬ ‫تكنلوجيا انت‬ ‫تط � ت�ورط ��ور‬ ‫االمريكية‪:‬‬ ‫االمريكية‪:‬‬ ‫املتحدة‬ ‫املتحدة‬ ‫�ات ��ات‬ ‫للتقني‬ ‫للتقني �‬ ‫النا�حج ��ح‬ ‫الناج �‬ ‫للتطبي ��ق‬ ‫للتطبي ��ق‬ ‫جنا�اح ��ا‬ ‫جناح �‬ ‫�الث �االأ�الك �االأ�رثك ��رث‬ ‫املث � امل‬ ‫حقلحقل‬ ‫�دث يف‬ ‫�دث يف‬ ‫الزيتي ح �‬ ‫الزيتي ح �‬ ‫�جيل�جيل‬ ‫�تخراجص �ال�ص �‬ ‫�تخراج ال�‬ ‫املتعلق �با��ةص �با�ص �‬ ‫املتعلق ��ة‬ ‫باك �با�نك �(�ن (‬ ‫حيثحيث‬ ‫داكوتا‬ ‫داكوتا‬ ‫�وب��وب‬ ‫�مال و�مالجنو� جن‬ ‫‪Bakken‬يف)�ص �يف �ص �‬ ‫‪)Bakken‬‬

‫حدثت يف‬ ‫حدثت يف‬ ‫التيالتي‬ ‫�وةص ��وة‬ ‫الن�ص �الن�‬ ‫عن عن‬ ‫احلقل‬ ‫احلقل‬ ‫�تثمار�ذاه ��ذا‬ ‫�تثمار ه �‬ ‫نتج� ا�ص �‬ ‫نتج ا�ص‬ ‫االعمال‬ ‫االعمال‬ ‫�بص ��ب‬ ‫وبح�‬ ‫وبح�ص �‬ ‫�مالية�مالية‬ ‫أمريكاص �ال�ص �‬ ‫أمريكا ال�‬ ‫�وقف �الن�طف �يف�طا يف ا‬ ‫�وقص �الن‬ ‫�ص � �‬ ‫حقل قد‬ ‫حقل قد‬ ‫هذاهذا‬ ‫النفط يف‬ ‫النفط يف‬ ‫احتياطيات‬ ‫احتياطيات‬ ‫�افيةإن فاإن‬ ‫�افية فا‬ ‫اال�صتك�ص �‬ ‫اال�صتك�ص �‬ ‫النفط‪.‬‬ ‫النفط‪.‬‬ ‫برميل‬ ‫برميل‬ ‫مليونمليون‬ ‫‪150150‬‬ ‫اىل من‬ ‫اىل من‬ ‫من ‪11‬‬ ‫تزايدت ‪11‬‬ ‫تزايدت من‬ ‫يحدث‬ ‫يحدث‬ ‫ال�صجيل‬ ‫ال�صجيل‬ ‫انتاجانتاج‬ ‫فان فان‬ ‫باكنباكن‬ ‫حقلحقل‬ ‫جنب مع‬ ‫جنب مع‬ ‫إىل اإىل‬ ‫جنبا اجنبا‬ ‫‪Ford‬‬ ‫‪Ford‬‬ ‫فوردفورد‬ ‫ايجلايجل‬ ‫حقلحقل‬ ‫من من‬ ‫تك�صا�ض‬ ‫تك�صا�ض‬ ‫واليةوالية‬ ‫‪ Eagle‬يف‬ ‫‪ Eagle‬يف‬ ‫‪Springs‬‬ ‫‪Springs‬‬ ‫�يكو��يكو‬ ‫مك�ص �مك�ص‬ ‫�رجن يف‬ ‫�رجن يف‬ ‫�ون �ص �‬ ‫وب � و�ونب ��ص �‬ ‫ثريثري‬ ‫‪ Bone‬و‬ ‫‪ Bone‬و‬ ‫‪Forks‬‬ ‫‪Forks‬‬ ‫فورك�ض‬ ‫فورك�ض‬ ‫ال�صمالية‪.‬‬ ‫ال�صمالية‪.‬‬ ‫داكوتا‬ ‫داكوتا‬ ‫واليةوالية‬ ‫‪ Three‬يف‬ ‫‪ Three‬يف‬ ‫ال�صخري‬ ‫ال�صخري‬ ‫الغازالغاز‬ ‫انتاجانتاج‬ ‫تكنولوجيا‬ ‫تكنولوجيا‬ ‫تطورتطور‬ ‫القول ان‬ ‫القول ان‬ ‫وميكن‬ ‫وميكن‬ ‫�مح��مح‬ ‫املكثفة �ص‬ ‫املكثفة �ص �‬ ‫املكامن‬ ‫املكامن‬ ‫النفط من‬ ‫النفط من‬ ‫�تخراج‬ ‫�تخراج‬ ‫وتكييفهاص �ال�ص �‬ ‫وتكييفها ال�‬ ‫النفط‪.‬‬ ‫النفط‪.‬‬ ‫�ات ��ات‬ ‫احتياطي‬ ‫احتياطي �‬ ‫تقيي ��م‬ ‫إعادةي ��م‬ ‫إعادة تقي‬ ‫�اتح �املت�دةح �ا�دة ا‬ ‫�ات �املت‬ ‫للوالي �للوالي‬ ‫االعتماد‬ ‫االعتماد‬ ‫وتقليل‬ ‫وتقليل‬ ‫إنتاجف �الن�طف ��ط‬ ‫إنتاج الن‬ ‫زيادة ا‬ ‫زيادة ا‬ ‫�االت�االت‬ ‫احتم �احتم �‬ ‫ومعهاومعها‬ ‫تكنولوجيا‬ ‫تكنولوجيا‬ ‫�اعدة�اعدة‬ ‫ومب�ص �ومب�ص �‬ ‫�تورد‪�.‬تورد‪.‬‬ ‫والغازص �امل�ص �‬ ‫والغاز امل�‬ ‫علىف �الن�طف ��ط‬ ‫على الن‬ ‫الواليات‬ ‫الواليات‬ ‫تخطط‬ ‫تخطط‬ ‫الهيدروليكي‬ ‫الهيدروليكي‬ ‫والت�صقيق‬ ‫والت�صقيق‬ ‫أفقيأفقي‬ ‫احلفر اال‬ ‫احلفر اال‬ ‫ال�صخر‬ ‫ال�صخر‬ ‫النفط من‬ ‫النفط من‬ ‫انتاجانتاج‬ ‫لزيادة‬ ‫لزيادة‬ ‫‪20352035‬‬ ‫عامعام‬ ‫املتحدة يف‬ ‫املتحدة يف‬ ‫مرتن‪.‬‬ ‫مرتن‪.‬‬ ‫الكثيف‬ ‫الكثيف‬ ‫الزيتي‬ ‫الزيتي‬

‫العامل‬ ‫العامل‬ ‫دولدول‬ ‫مواقف‬ ‫مواقف‬

‫أوروبا‬ ‫أوروبا‬ ‫ا ا‬ ‫أوروبية‬ ‫أوروبية‬ ‫البلدان اال‬ ‫البلدان اال‬ ‫املواقف بن‬ ‫املواقف بن‬ ‫التفاوت يف‬ ‫التفاوت يف‬ ‫مدىمدى‬ ‫وملعرفة‬ ‫وملعرفة‬ ‫والذيوالذي‬ ‫الفرن�صي‬ ‫الفرن�صي‬ ‫الرئي�ض‬ ‫الرئي�ض‬ ‫�ريح�ريح‬ ‫إىل ات�إىلص �ت�ص �‬ ‫�ارة� ا�ارة‬ ‫ميكنإ�صا�الإ�ص‬ ‫ميكن اال‬ ‫يتم يف‬ ‫يتم يف‬ ‫�خري لن‬ ‫�خري لن‬ ‫ال�ص �ال�ص �‬ ‫النفط‬ ‫النفط‬ ‫�اجت ��اج‬ ‫إىل اأنإىلاإنات �أن اإن‬ ‫�ارص �في ��ار�هفاي ��ه‬ ‫اأ�ص � اأ�‬ ‫ً‬ ‫ً‬ ‫ال�صنوات‬ ‫ال�صنوات‬ ‫خللخلل‬ ‫البلد اأي‬ ‫البلد اأي‬ ‫لهذالهذا‬ ‫رئي�صارئي�صا‬ ‫دام هو‬ ‫دام هو‬ ‫فرن�ص �ما�ا ما‬ ‫فرن�ص ��ا‬

‫‪20132013‬‬ ‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬ ‫‪- September‬‬ ‫‪- September‬‬ ‫‪1111Petroleum‬‬


‫النفط ال�سخري وم�ستقبل الطاقة العاملى‬ ‫بالرغ ��م من ارتفاع تكاليف االنت ��اج واملحاذير البيئية‬ ‫املحيط ��ة بانت ��اج النف ��ظ ال�ص ��خري اال ان انخفا�ض‬ ‫احتياطيات النف ��ط التقليدي وارتفاع ا�ص ��عاره وزيادة‬ ‫الطل ��ب عليه دف ��ع العديد من ال�ص ��ركات النفطية اىل‬ ‫تكثيف ا�ص ��تثماراتها يف انتاج جمال النفط ال�ص ��خري‬ ‫او م ��ا يع ��رف بال�ص ��جيل بالتزامن مع ا�ص ��تثمار حقول‬ ‫النف ��ط الثقيل والقار يف ظل وج ��ود احتياطيات الباأ�ض‬ ‫بها من هذا النوع من الوقود‪.‬‬ ‫النف ��ط ال�ص ��جيل وه ��و النفط ال�ص ��خري وقد ي�ص ��مى‬ ‫حت ��ى بالب ��رول احلج ��ري عب ��ارة ع ��ن مركب �ص ��لب‬ ‫ذو ن�ص� �اأة ع�ص ��وية ت�ص ��كل يف ظروف مائية كما يعرفه‬ ‫اجليولوجي ��ن عل ��ى ان ��ه عب ��اره عن �ص ��خور ر�ص ��وبية‬ ‫تتكون ا�صا�صا من املواد الع�صوية (احليوانات واالحياء‬ ‫البحري ��ة والنهرية) التي جتعلها مماثلة للنفط وعادة‬ ‫ما تكون بنيته رقيقة‬ ‫وعند ت�ص ��خن النفط ال�ص ��خري يف ظل انعدام الهواء‬ ‫يت�ص ��كل لدينا هيدروكربون ��ات �ص ��ائلة اوغازية ومتثل‬ ‫املادة اجلديدة املت�صكلة ب�صبب الت�صخن يف ظل انعدام‬ ‫االك�صجن ما ن�صبته ‪ %70 - 20‬من احلجم االويل‪.‬‬ ‫كما ان الهيدروكربونات ال�ص ��ائلة الناجتة عن ت�صخن‬ ‫ال�ص ��جيل (ال�ص ��خر الر�ص ��وبي النفطي) ه ��ي الزيت‬ ‫ال�ص ��خري ‪ -‬الراتن ��ج القريب من حي ��ث الركيب من‬ ‫الهيدروكربونات النفطي ��ة والتي ميكن اعتبارها نفط‬ ‫غري تقليدي (�صجيل او زيت �صخري)‪.‬‬ ‫النفط ال�سجيل‬ ‫وفق ��ا للعدي ��د من اخل ��راء تبل ��غ احتياطي ��ات الزيت‬ ‫ال�ص ��خري يف الع ��امل نح ��و ‪ 650‬تريليون ط ��ن وهو ما‬ ‫يكف ��ي للح�ص ��ول عل ��ى ‪ 26‬تريلي ��ون طن م ��ن الزيت‬ ‫ال�صخري‪.‬‬ ‫وه ��و م ��ا يعني ان حج ��م النف ��ط القاب ��ل للإنتاج من‬ ‫ال�ص ��خر الزيتي اكرث من النفط املعروف او التقليدي‬ ‫رمبا ب� ‪ 13‬مرة ويف امل�صتويات احلالية لل�صتهلك فان‬ ‫هذه الطاقة تكفي لفرة زمنية اكرث ‪� 300‬صنة‪.‬‬ ‫‪10‬‬

‫‪- September 2013‬‬

‫جـ(‪)1‬‬

‫لك ��ن االم ��ر لي�ض بال�ص ��هل اذ جت ��در اال�ص ��ارة اىل ان‬ ‫احتياط ��ي النف ��ط ال�ص ��خري املجدي اقت�ص ��اديا اقل‬ ‫بكثري م ��ن ذلك اي ان اغلب االحتياطيات غري جمدي‬ ‫ا�ص ��تثمارها ال�ص ��باب مادي ��ة ذات علق ��ة بالنفق ��ات‬ ‫العالية مقارنة باملردود املادي‪.‬‬ ‫ووفقا ملعطيات �ص ��ركة �ص ��ل فان االنتاج املعقول ميكن‬ ‫ان يك ��ون فق ��ط م ��ن الروا�ص ��ب الغني ��ة ذات املحتوى‬ ‫النفطي يف حدود ‪ 90‬لر لكل طن من ال�ص ��خر الزيتي‬ ‫ع ��دا ذلك يجب ان يكون �ص ��مك الطبق ��ة املنتجة اكر‬ ‫م ��ن ‪ 30‬م ��ر وتركز فق ��ط ثل ��ث احتياطي ��ات الزيت‬ ‫احلج ��ري يف حق ��ول ذات حمت ��وى نفط ��ي ‪ 90‬لرا اأو‬ ‫اأكرث للطن الواحد بينما معظم هذه احلقول تتكون من‬ ‫طبقة ب�صمك اقل من ‪ 30‬مرا‪.‬‬ ‫وت�ص ��ري التقارير اىل تركز احتياطيات ال�صخر الزيتي‬ ‫الرئي�ص ��ية يف الوالي ��ات املتحدة بح ��وايل ‪ 450‬تريليون‬ ‫ط ��ن (‪ 24.7‬تريلي ��ون ط ��ن م ��ن الزي ��ت احلجري)‪.‬‬ ‫ويركز احتياطي كبري من ال�صخر الزيتي يف الرازيل‬ ‫وال�ص ��ن كما انه لدى رو�ص ��يا اأي�صا احتياطيات كبرية‬

‫‪Petroleum Today‬‬

‫م ��ن النف ��ط ال�ص ��جيل (ح ��وايل ‪ %7‬م ��ن االحتياط ��ي‬ ‫العاملي)‪.‬‬ ‫اإنتاج النفط ال�سخري‬ ‫على امل�ص ��توي التقني فان هناك طريقتان رئي�ص ��يتان‬ ‫للح�ص ��ول عل ��ى امل ��واد اخل ��ام اللزمة من ال�ص ��خر‬ ‫الزيتي‪.‬‬ ‫الطريقة االوىل‪ :‬وهى انتاج ال�ص ��خر الزيتي املفتوح‬ ‫او باملناجم ومعاجلته الحقا يف حمطات خا�ص ��ة حيث‬ ‫يت ��م تعري�ض الزي ��ت احلجري (ال�ص ��خري) للحرارة‬ ‫(الت�صخن دون وجود الهواء) ونتيجة لذلك يتحرر من‬ ‫ال�صخر النفط ال�صخري القار احلجري‪.‬‬ ‫وقد مت تطوير هذه الطريقة بفعالية يف رو�صيا و كذلك‬ ‫م�ص ��اريع ا�صتخراج ال�صخر الزيتي يف مقاطعة فو�صون‬ ‫(ال�صن) وحقل ايراتي (الرازيل) وب�صكل عام تعتر‬ ‫طريق ��ة انتاج ال�ص ��جيل معاجلته الحقا و�ص ��يلة مكلفة‬ ‫للغاية ب�صبب ارتفاع كلفة االإنتاج حيث ي�صل �صعر كلفة‬ ‫برميل النفط بحدود ‪ 80-60‬دوالر‬


‫ا�شــتفادة كبرية للم�شــاركني واجلميع ينتظــر الدورة‬ ‫الرابعة ‪ -‬ابريل ‪2015‬‬ ‫واأقيم على هام�س املوؤمتر العديد من الفعاليات‬ ‫منها معر�ص ��ا دوليا �ص ��م اأحدث التكنولوجيات‬ ‫والتقني ��ات خلدم ��ة �ص ��ناعة الب ��رتول والغ ��از‬ ‫و�ص ��ارك باملعر� ��س اأك ��ر من ‪� 30‬ص ��ركة عاملية‬ ‫وحملية وقد قدمت ال�صركات امل�صاركة فى هذا‬ ‫املعر� ��س العدي ��د م ��ن العرو�س التقني ��ة والتى‬ ‫كانت مفتوحة جلمهور احلا�صرين‪.‬‬ ‫وعق ��دت عل ��ى هام� ��س املوؤمت ��ر دورة تدريبي ��ة‬ ‫بعنوان "م�ص ��اكل وحل ��ول متقدم ��ة لتكنولوجيا‬ ‫ط ��رق اال�ص ��تخال�س املع ��زز للنف ��ط " ي�ص ��مل‬ ‫عملي ��ات اال�ص ��تخال�س املعزز للنفط والو�ص ��ع‬

‫احلايل وامل�صتقبلى من التقنيات العاملية ‪EOR‬‬

‫ح�ص ��رها ‪ 19‬متدرب ��ا واأقيمت كذلك م�ص ��ابقة‬ ‫تقنية للدار�ص ��ني على م�ص ��توى منطقة ال�ص ��رق‬ ‫االأو�صط ‪.‬‬ ‫وق ��د اختت ��م املوؤمتر اأعمال ��ه بنج ��اح كبري بعد‬ ‫اأن ح�ص ��ره العديد من امل�ص ��تفيدين وقد اأعرب‬ ‫امل�صاركني عن �صعادتهم باملناق�صات التى دارت‬ ‫وبعقد العديد من االت�صاالت‪.‬‬ ‫"لق ��د قمن ��ا بالتع ��رف عل ��ى الع�ص ��رات م ��ن‬ ‫العم ��الء اجلدد و�ص ��عدنا كثريا مب�ص ��اركتنا فى‬ ‫املعر� ��س وعقدنا اأعم ��اال هامة" ه ��ذا ما اكده‬

‫ال�ص ��يد األك�ص ��ندر مورزيت�ص ��كى املدي ��ر الع ��ام‬ ‫ل�صركة نوفوميت خلدمات البرتول‪.‬‬ ‫وق ��د �ص ��هد ال�ص ��يد بي ��رت ك ��وك " مدي ��ر تنمية‬ ‫االأعمال" فى �صركة كالتك وهى اأحدى �صركات‬ ‫برتوف ��اك بح�ص ��ن تنظي ��م املوؤمت ��ر واملعر� ��س‬ ‫واأعرب عن اأن م�ص ��اركتهم بهذا املعر�س الهام‬ ‫كانت مفي ��دة للغاية لتنمية اأعمال ال�ص ��ركة فى‬ ‫منطقة �صمال اأفريقيا‪.‬‬ ‫هذا ومن املقرر ان يتم عقد الدورة التالية لهذا‬ ‫املوؤمتر فى م�صر فى اأبريل عام ‪.2015‬‬ ‫اأقي ��م املوؤمتر برعاية �ص ��ركة بيكر هيوز "راعى‬ ‫حفل الع�صاء الر�ص ��مى و�صركة "توتال" الراعى‬ ‫الف�ص ��ى و�صركة " �ص ��ل " راعى حقائب املوؤمتر‬ ‫و�ص ��ركة " اأر دبلي ��و اى "راع ��ى برنامج املوؤمتر‬ ‫و�صركة " و�صاملربجر "راعى بطاقات املوؤمتر‪.‬‬

‫‪- September 2013‬‬

‫‪Petroleum Today‬‬

‫‪9‬‬


‫مب�شاركة ‪� 30‬شركة عاملية وحملية و‪ 1200‬باحث‬

‫برتوليـم تـوداي راعى اعالمى ملعر�ض �شمال افريقيا " ‪" NATC‬‬ ‫فيما يعك�س ثقة امل�ص ��تثمرين امل�صريني والعرب‬ ‫واالجانب يف ال�صوق امل�ص ��ري ب�صفة عامة ويف‬ ‫قط ��اع البرتول ب�ص ��فة خا�ص ��ة نظم ��ت جمعية‬ ‫مهند�ص ��ى الب ��رتول العاملي ��ة موؤمت ��ر ومعر� ��س‬ ‫�صمال اأفريقيا التقنى الثالث ‪.‬‬ ‫املوؤمتر يف دورته الثالث رفع �صعار " نقلة نوعية‬ ‫فى �ص ��ناعة النفط والغاز ف ��ى املنطقة" وذلك‬ ‫حت ��ت رعاي ��ة وزارة الب ��رتول وال ��روة املعدنية‬ ‫امل�ص ��رية وح�صره اكر من ‪ 1200‬من الباحثني‬ ‫والتقنيني العاملني فى خمتلف قطاعات �صناعة‬ ‫النفط والغاز‪.‬‬ ‫وف ��ى اط ��ار �ص ��عى جمل ��ة برتولي ��م ت ��وداى اىل‬ ‫امل�ص ��اركة الفعال ��ة ف ��ى املعار� ��س واملوؤمت ��رات‬ ‫املتعلق ��ة بقطاع البرتول �ص ��اركت املجلة كراعى‬ ‫اعالم ��ى للموؤمت ��ر واملعر� ��س التقن ��ى ل�ص ��مال‬ ‫افريقي ��ا لل ��دورة الثالثة على التواىل وت�ص ��ارك‬ ‫املجلة باملعر�س منذ دوراته االوىل مب�صر عام‬ ‫‪ 2010‬حي ��ث تق ��وم املجلة بالتغطيه ال�ص ��حفية‬ ‫الح ��داث املعر�س واملوؤمت ��ر ويتم توزي ��ع املجلة‬ ‫عل ��ى جميع الزائرين وامل�ص ��اركني باملوؤمتر وكل‬ ‫ال�صركات العار�صة جمانا ‪.‬‬ ‫وكان املهند� ��س ولي ��د رفاعى املدي ��ر االإقليمى‬ ‫جلمعي ��ة مهند�ص ��ى البرتول لل�ص ��رق االأو�ص ��ط‬ ‫و�ص ��مال افريقي ��ا قد توج ��ه بال�ص ��كر اىل ادارة‬ ‫املجل ��ة على م�ص ��اركتها باملعر�س وقام بت�ص ��يلم‬

‫‪8‬‬

‫‪- September 2013‬‬

‫املجلة �صهادة تقدير مهداه من جمعية مهند�صى‬ ‫البرتول الدولية‪.‬‬ ‫وم ��ن اجلدي ��ر بالذك ��ر اأن جمعي ��ة مهند�ص ��ى‬ ‫الب ��رتول الدولي ��ة والت ��ى تاأ�ص�ص ��ت ع ��ام ‪1957‬‬ ‫وب ��داأت اعمالها فى �ص ��مال اأفريقيا عام ‪1976‬‬ ‫عندما مت ان�ص ��اء ق�ص ��م للجمعية فى م�ص ��ر قد‬ ‫ب ��داأت تنظيم موؤمتر �ص ��مال اأفريقيا التقنى فى‬ ‫ع ��ام ‪ 2008‬فى املغرب ثم انتقل اىل م�ص ��ر فى‬ ‫اأعوام ‪ 2012 ،2010‬و ‪.2013‬‬ ‫واك ��د العدي ��د م ��ن الزائراي ��ن جلن ��اح املجل ��ة‬ ‫باملعر�س على املو�صوعية التى تتحلى بها املجلة‬

‫‪Petroleum Today‬‬

‫وكذل ��ك التنوع فى املو�ص ��وعات الت ��ى تطرحها‬ ‫من تغطية �ص ��حفية للقطاع ون�ص ��رها للمقاالت‬ ‫العلمية واملو�صوعات االقت�صادية ‪.‬‬ ‫وقد ح�ص ��ر املوؤمتر واملعر� ��س هذا العام حواىل‬ ‫‪� 1200‬صخ�ص ��ا من ‪� 140‬صركة ميثلون ‪ 28‬دولة‬ ‫و ناق�س املوؤمتر مو�ص ��وعات تقني ��ة هامة وثيقة‬ ‫ال�ص ��لة مبنطقة �ص ��مال اأفريقيا منه ��ا‪ :‬املوارد‬ ‫غري التقليدية للغاز والنفط‪ ،‬وا�صتخراج النفط‬ ‫الثقي ��ل وتعزي ��ز انت ��اج النف ��ط‪ ،‬وادارة حق ��ول‬ ‫النف ��ط وتنمي ��ة حقول النف ��ط ومعاجل ��ة املياه‬ ‫الناجتة من احلقول وحتديات املوارد الب�صرية‪.‬‬



‫اأرامكو‪ :‬حقل مدين �شينتج ‪ 75‬مليون قدم مكعبة من الغاز يومي ًا‬ ‫قال �لرئي�س �لتنفيذي الأر�مكو �ل�شعودية �إن من �ملتوقع �أن ينتج م�شروع حقل مدين للغاز يف �لبحر �الأحمر ‪75‬‬ ‫مليون قدم مكعبة من �لغاز يوميا وهو ما �شي�شاعد على تلبية �لطلب �ملحلي �ملتنامي‪.‬‬ ‫وحتاول �ل�شعودية �أكرب بلد م�شدر للنفط يف �لعامل تعزيز �إنتاجها من �لغاز ب�شكل �شريع لتلبية �لطلب �ملحلي على‬ ‫�لكهرباء و�لذي ي�شهد منو� �شريعا وتغذية �شناعة �لبرتوكيماويات �ملزدهرة‪.‬‬ ‫وقال خالد �لفالح يف بيان على �ملوقع �اللكرتوين ل�شركة �لطاقة �لوطنية �لعمالقة �إن تطوير حقل مدين مي�شي‬ ‫قدما كما هو خمطط له‪.‬‬ ‫و�أ�شاف �أن �لغاز �مل�شتخرج من حقل مدين �شي�شخ �إىل حمافظة �شباء لتغذية حمطات توليد كهرباء جديدة‬ ‫تنوي �إقامتها �ل�شركة �ل�شعودية للكهرباء و�أر�مكو‪ .‬وقدر �إنتاج �حلقل مبا يعادل ‪ 2.12‬مليون مرت مكعب يوميا‪.‬‬ ‫ومن �ملتوقع �أن ينتج حقل مدين �لذي �كت�شف يف �لثمانينيات نحو ‪ 4500‬برميل يوميا من �ملكثفات‪.‬‬

‫العراق ير�شي عقودا قيمتها ‪348‬‬ ‫مليون دوالر حلفر اآبار يف حقول مي�شان‬ ‫�أر� ـشــى �ل ـعــر�ق ع ـقــود� على ثــالث �ـشــركــات عاملية‬ ‫للخدمات �لنفطية حلفر ‪ 39‬بئر� �نتاجية يف جممع‬ ‫مي�شان �لــذي تبلغ �حتياطياته ‪ 2.5‬مليار برميل‬ ‫وتطوره �شينوك �ل�شينية وموؤ�ش�شة �لبرتول �لرتكية‪.‬‬ ‫وقــال بيان �إن �شركة �خلدمات �لنفطية �الأمريكية‬ ‫ويــذر فــورد ح�شلت على عقدين حلفر �آبــار بقيمة‬ ‫‪ 94.98‬مليون دوالر و‪ 82.39‬مليون دوالر على‬ ‫�لرتتيب‪ .‬وح�شلت دوهاي �ل�شينية على عقد قيمته‬ ‫‪ 96.66‬مليون دوالر‪.‬‬ ‫وفــازت � ـشــي‪�.‬أو‪�.‬إ�ــس‪�.‬إل وهــي وحــدة متخ�ش�شة يف‬ ‫�خلدمات �لنفطية تابعة ل�شينوك على عقد قيمته‬ ‫‪ 73.82‬مليون دوالر‪ .‬ومل يت�شح من �لبيان عدد �الآبار‬ ‫�لتي �شتحفرها كل �شركة‪.‬‬ ‫ووقــع �لعر�ق يف ‪� 2010‬تفاقا مع �شينوك وموؤ�ش�شة‬ ‫�لبرتول �لرتكية �حلكومية لتطوير جممع مي�شان �لذي‬ ‫ي�شم عدة حقول �شغرية بهدف �لو�شول باالنتاج �إىل‬ ‫‪� 450‬ألف برميل يوميا بحلول ‪.2016‬‬

‫انتاج النفط ال�شعودي يرتفع مل�شتوى قيا�شي‪,‬‬ ‫وي�شل اىل ‪ 10.19‬مليون برميل يوميا‬ ‫�أنتجت �ل�شعودية كميات قيا�شية من �لنفط �خلام‬ ‫يف �أغ�شط�س لتتدخل للمرة �لثانية خــالل �لعامني‬ ‫�ملا�شيني حلماية �أ�شو�ق �لنفط من تعطيالت خطرية‬ ‫لالمد�د�ت‪ ،‬وقال م�شدر �شناعي مطلع لرويرتز �إن‬ ‫�ململكة �أنتجت ‪ 10.19‬مليون برميل يوميا يف �شهر‬ ‫�غ�شط�س �شخت منها ‪ 10.07‬مليون برميل يوميا‬ ‫يف �ل�شوق‪ ،‬و�شاهمت �جلهود �ل�شعودية جزئيا يف‬ ‫تعوي�س �النخفا�س �لكبري يف �النتاج �لليبي ب�شبب‬ ‫�ال�شطر�بات و�لذي ت�شبب يف �نخفا�س �نتاج منظمة‬ ‫�لبلد�ن �مل�شدرة للبرتول (�أوبك) ب�شكل �إجمايل‪.‬‬ ‫‪6‬‬

‫‪- September 2013‬‬

‫اإيران وعُ مان يربمان عقدا لت�شدير الغاز الطبيعي بقيمة ‪ 60‬مليار دوالر‬ ‫وعمان عقد ً� لت�شدير �لغاز بقيمة ‪ 60‬مليار دوالر‪ ،‬كما ذكرت و�شائل �الإعالم‬ ‫�أبرمت �إيــر�ن ُ‬ ‫�الإير�نية وح�شب قول وزير �لنفط �الإير�ين بيجان زجنانه فاإن �إير�ن �شتبد�أ بتوريد �لغاز �لطبيعي‬ ‫خالل �لعامني �لقادمني‪ ،‬وتبلغ مدة �لعقد ‪ 25‬عام ًا‬ ‫كانت عمان �لعط�شى للطاقة �تفقت على �شر�ء �لغاز من �إير�ن يف ‪ 2005‬وت�شمنت م�شودة �تفاق‬ ‫�أبرمت بعد ذلك يف ‪ 2007‬خططا لقيام عمان مبعاجلة �لغاز �الإير�ين للت�شدير يف �شورة غاز‬ ‫طبيعي م�شال‪.‬‬ ‫لكن �لطرفني مل يتفقا على �ل�شروط �لنهائية وتفيد برقيات لل�شفارة �الأمريكية �شربها موقع‬ ‫ويكيليك�س �أن �لواليات �ملتحدة �شغطت على عمان ل�شر�ء �لوقود من م�شادر �أخرى مثل قطر‪.‬‬

‫اإنفاق ال�شني على واردات النفط‬ ‫�شيبلغ ‪ 500‬مليار دوالر يف ‪2020‬‬

‫االأرجنتني حتظر عمل ‪� 4‬شركات‬ ‫نفط بريطانية‬

‫قالت �شركة ��شت�شار�ت �لطاقة وود ماكنزي يف تقرير‬ ‫�إن �ل�شني �شتحتاج الإنفاق ‪ 500‬مليار دوالر �شنويا‬ ‫على و�رد�ت �لنفط �خلام بحلول عام ‪� 2020‬إذ من‬ ‫�ملرجح �أن تتجاوز بكني �لواليات �ملتحدة لت�شبح �أكرب‬ ‫م�شتورد للنفط يف ‪.2017‬‬ ‫وتوقعت �ل�شركة �رتفاع �إجمايل و�رد�ت �ل�شني �إىل‬ ‫‪ 9.2‬مليون برميل يوميا بحلول ‪ 2020‬من ‪ 2.5‬مليون‬ ‫برميل يوميا يف ‪ 2005‬و�نخفا�س و�رد�ت �لواليات‬ ‫�ملتحدة من ‪ 10.1‬مليون برميل يوميا �إىل ‪ 6.8‬مليون‬ ‫برميل يوميا‪.‬‬ ‫وقال وليام دربني رئي�س ق�شم �الأ�شو�ق �لعاملية يف وود‬ ‫ماكنزي "بحلول ‪� 2020‬شتلبي �لــو�رد�ت ‪ 70‬باملئة‬ ‫من �إجمايل �لطلب �ل�شيني على �لنفط‪ .‬ومن ناحية‬ ‫�أخــرى �شتنخف�س �حتياجات �لــواليــات �ملتحدة من‬ ‫�لو�رد�ت ب�شبب �إنتاج �لنفط �ملحكم‪".‬‬ ‫و�أ�ـشــاف دربــني �أن هــذ� �الجتــاه يعني �أن كثري� من‬ ‫�ملــورديــن �لتقليديني للواليات �ملتحدة من منظمة‬ ‫�لـبـلــد�ن �ملـ�ـشــدرة لـلـبــرتول (�أوبـ ــك) �شي�شطرون‬ ‫لتحويل �هتمامهم �إىل �ل�شني‪.‬‬

‫حظرت �الأرجنتني �أربع �شركات نفط بريطانية من‬ ‫�لعمل يف �لبالد‪ ،‬بعد �أن قامت باأعمال تنقيب عن‬ ‫�لنفط بالقرب من جزر فوكالند �ملتنازع عليها بني‬ ‫�لبلدين‪.‬‬ ‫وقالت �حلكومة �الأرجنتينية �إن �ل�شركات �الأربع‬ ‫�شيتم حظرها لع�شرين عاما ب�شبب قيامها بعمليات‬ ‫تنقيب يف �خلفاء بالقرب من جزر فوكالند‪.‬‬ ‫و�ل�شركات �الأربع هي "بوردرز و�شوزرن بيرتوليوم"‬ ‫و "ديز�ير بيرتوليوم" و "�أرجو�س ري�شور�شز"‬ ‫و"فوكالند �أويل"‪.‬‬ ‫هذ� وتطالب �الأرجنتني بريطانيا باإجر�ء مفاو�شات‬ ‫حول ملكية تلك �جلزر‪ ،‬بينما ت�شر بريطانيا على‬ ‫أنف�شهم‬ ‫عدم �لتفاو�س �إال �إذ� رغب �شكان �جلزر � ُ‬ ‫يف ذلك‪.‬‬ ‫وتقع هــذه �الج ــزر �لتي تطلق عليها �الأرجنتني‬ ‫��شم مالفينا�س جنوبي �ملحيط �الأطل�شي على‬ ‫م�شافة ‪ 1،523‬كيلو مرت� من �ل�شو�حل �الأرجنتينية‬ ‫و‪ 12،723‬كيلو مــرت� مــن بريطانيا‪ .‬وقــد �حتل‬ ‫م�شتطونون بريطانيون هذه �جلزر عام ‪.1833‬‬

‫‪Petroleum Today‬‬


‫"بريتي�س جاز " ت�شخ ا�شتثمارات اإ�شافية يف م�شروعاتها مب�شر‬ ‫�أعلن رئي�س �ل�شركة �مل�شرية �لقاب�شة للغاز�ت �لطبيعية "�إيجا�س" طاهر عبد�لرحيم‪� ،‬أن �شركة بريتي�س جاز‬ ‫�لربيطانية وجهت ر�شالتني �إىل �شركة �ألربل�س ملطالبتها بطرح مناق�شة ال�شتئجار حفار جديد لالإ�شر�ع يف �إمتام‬ ‫تنفيذ م�شروع تنمية �آبار �ملرحلة "�لتا�شعة ‪� -‬أ" الإنتاج نحو ‪ 450‬مليون قدم مكعبة من �لغاز يومي ًا خالل �ل�شيف‬ ‫�ملقبل‪.‬‬ ‫و�أ�شاف عبد�لرحيم �أن �ل�شركة طالبت �أي�ش ًا بطرح مناق�شة ل�شر�ء معد�ت طويلة �الأجل للمرحلة "�لتا�شعة ‪-‬‬ ‫ب" بقيمة ‪ 300‬مليون دوالر‪ ،‬لالنتهاء من �مل�شروع �ملقرر بدء �الإنتاج منه بحلول عام ‪ 2015‬الإنتاج ‪ 400‬مليون قدم‬ ‫مكعبة من �لغاز يومي ًا‪.‬‬ ‫ً‬ ‫و�أ�شار �إىل �أنه تلقى تاأكيد� من رئي�س �شركة بريتي�س جاز يف م�شر‪� ،‬أر�شد �شويف‪ ،‬يفيد باأن �ل�شركة م�شتمرة يف‬ ‫�شخ �ال�شتثمار�ت وتنفيذ م�شاريع تنمية �الآبار يف �ملنطقة‪ ،‬و�أن �إنتاج �ل�شركة من �لغاز عند �أعلى م�شتوياته ويبلغ‬ ‫نحو ‪ 1.5‬مليار قدم مكعبة من �لغاز يومي ًا‪ ،‬وميثل ‪ ٪30‬من �إجمايل �إنتاج م�شر من �لغاز �لطبيعي‬

‫قارون للبرتول‬ ‫تتعاقد على جهاز للحفر بقيمة ‪30‬‬ ‫مليون دوالر‬

‫بدء عمل وحدة جديدة لزيادة اإنتاج‬ ‫"البوتاجاز" و"بنزين ‪"92‬‬ ‫�علنت وز�رة �لبرتول �نه مت ت�شغيل وحدة معاجلة "�لنافتا" بالهيدروجني �لتابع ل�شركة �الأ�شكندرية �لوطنية‬ ‫للتكرير و�لبرتوكيماويات (�أنربك) يف �الول من �شبتمرب مما يزيد �نتاج �لبوتاجاز وبنزين ‪.92‬‬ ‫و�فاد بيان للوز�رة بان �مل�شروع يعمل بطاقة ‪� 400‬ألف طن �شنوي ًا من �لنافتا الإنتـاج منتجات عالية �جلودة‬ ‫ت�شمل ‪� 210‬ألف طن �شنوي ًا من �لبنزين ‪ 92‬و‪� 11‬ألف طن بوتاجاز و‪� 175‬ألف طن �شنوي ًا من �لنافتا �لثقيلة‬ ‫با�شتثمار�ت ‪ 407‬مليون جنيه ويتم متويله حملي ًا بالكامل حيث ت�شاهم مع �شركة "�أنربك" عدد من �لبنوك‬ ‫�لوطنية‪.‬‬

‫انكوي�شت الربيطانية ت�شرتي ح�شة �شريك يابانى فى حقل نفط مب�شر‬ ‫قال م�شدر م�شئول فى �لهيئة �مل�شرية �لعامة للبرتول‪� ،‬إن �شركة "�نكوي�شت" �لربيطانية‪� ،‬شت�شرتى ح�شة‬ ‫�شريك يابانى فى حقل نفط فى منطقة خليج �ل�شوي�س �شرق م�شر‪.‬‬ ‫و�أ�شاف �إن �ل�شفقة تتعلق بح�شة �شركة �لزيت �لعربية �ليابانية �لقاب�شة‪ ،‬فى حقل �شمال غرب �أكتوبر فى‬ ‫خليج �ل�شوي�س‪.‬‬ ‫وقال �إن �ل�شركة �لربيطانية �شتدفع لل�شركة �ليابانية ‪ 30‬مليون دوالر (‪ 210‬ماليني جنيه) ملنطقة �المتياز‪،‬‬ ‫وتقدر �حل�شة �لتى متتلكها �شركة �لزيت �لعربية �ليابانية فى �المتياز بنحو ‪ ،٪50‬فيما متتلك هيئة �لبرتول‬ ‫�مل�شرية �حل�شة �لباقية‪.‬‬ ‫ووف ًقا للهيئة �لعامة للبرتول‪ ،‬ت�شل �حتياطيات منطقة �المتياز بنحو ‪ 5‬ماليني برميل‪ ،‬وكان مقرر� بدء‬ ‫�الإنتاج فى ‪ ،2012‬لكن ظروفا �قت�شادية متعلقة ب�شركة �لزيت �لعربية �ليابانية حالت دون تنفيذ �التفاق‪،‬‬ ‫وجترى �شركات عاملية منتجة للنفط فى م�شر مر�جعة وعمليات تقييم الأن�شطتها على خلفية حالة عدم‬ ‫�ال�شتقر�ر �ل�شيا�شى �الأمنى للبالد‪.‬‬ ‫وح�شب معلومات من�شورة على موقع وز�رة �لبرتول و�لرثوة �ملعدنية �مل�شرية‪ ،‬فاإن عدد �تفاقيات �لبرتول‪،‬‬ ‫�لتى مت توقيعها �أو جرى تعديلها منذ ‪ ،1981‬وحتى ‪ 2011‬بلغ ‪� 346‬تفاقية للبحث عن �لبت ــرول و�لغـ ــاز‪،‬‬ ‫فيما بلغ �إجماىل ما �أنفقته �ل�شركات فى جمال �لبحث و�ال�شتك�شاف و�لتنمية حو�ىل ‪ 38.5‬مليار دوالر‪.‬‬

‫بد�أت �شركة قارون للبرتول تنفيذ برنامج مكثف‬ ‫لال�شتك�شاف و�لتنمية مبنطقة �متيازها لتعوي�س‬ ‫�لتناق�س �لطبيعى فــى �الآب ــار �ملنتجة للبرتول‬ ‫مبناطق �متياز �ل�شركة وتعاقدت �ل�شركة على‬ ‫جهاز حفر جديد للبحث عن �لبرتول‪.‬‬ ‫قــال �ملـهـنــد�ــس حمـمــد م ـوؤن ـ�ــس‪ ،‬رئـيـ�ــس �ل�شركة‬ ‫�إن �جلهاز �شوف يبد�أ فى حفر عــدد من �الآبــار‬ ‫�ال�شتك�شافية مبنطقة بنى �شويف �عتبار ً� من �شهر‬ ‫�أكتوبر ‪ ،‬مو�شح ًا �أن �لتعاقد على �جلهاز ميتد حتى‬ ‫�شهر �شبتمرب من �لعام �ملقبل بقيمة ‪ 30‬مليون‬ ‫دوالر‪.‬‬ ‫�أ�شار �إىل �أن �جلهاز �شوف يبد�أ �لعمل بالتو�زى‬ ‫مع جهاز �آخر يعمل حالي ًا مبو�فقة �شركة �آبات�شى‬ ‫�الأمريكية على ��شتئجاره بد�ية �لعام �حلاىل بعقد‬ ‫مماثل للعمل على زيادة �إنتاج �ل�شركة من �لبرتول‬ ‫�إىل معدالته �ل�شابقة �لتى بلغت ‪� 59‬ألـفـ ًا و‪600‬‬ ‫برميل منت�شف �لعام �ملا�شى �نخف�شت حالي ًا‬ ‫�إىل ‪� 46‬ألف برميل يومي ًا نتيجة �لتناق�س �لطبيعى‬ ‫فى �الآبار مع �حلفاظ على �الحتياطى �لبالغ ‪281‬‬ ‫مليون برميل‪.‬‬

‫‪- September 2013‬‬

‫‪Petroleum Today‬‬

‫‪5‬‬


‫"اآر دبليو اأى" االأملانية تبداأ �شخ الغاز من منطقة امتياز د�شوق وت�شتهدف ‪ 4.5‬مليون مرت يوميا‬ ‫بد�أت �شركة «�آر دبليو �إي»‪� ،‬الأملانية يف �شخ �لغاز من منطقة �متياز د�شوق يف دلتا �لنيل‪ ،‬وي�شمل �مل�شروع‬ ‫تطوير ‪ 7‬حقول غاز يف �ملنطقة الإنتاج نحو ‪ 11.4‬مليار مرت مكعب من �لغاز‪.‬‬ ‫وقالت �ل�شركة‪� ،‬إن �مل�شروع يعد �الأول‪� ،‬لذي تدخل فيه �ل�شركة �الأملانية حيز �الإنتاج فى م�شر‪ ،‬وتت�شارك "�أر‬ ‫دبليو �إي" يف منطقة �متياز د�شوق مع �لقاب�شة للغاز�ت �لطبيعية‪.‬‬ ‫وقال «ديرك فارت�شي�شا» �لرئي�س �لتنفيذي للعمليات بال�شركة‪� ،‬إنه من �ملتوقع زيادة �الإنتاج تدريجيا خالل‬ ‫فرتة �لت�شغيل لت�شل معدالته �إىل ‪ 1.4‬مليون مرت مكعب من �لغاز يومي ًا‪ ،‬على �أن يتم �لو�شول �إىل �أعلى‬ ‫م�شتويات �الإنتاج‪ ،‬و�لتي تبلغ نحو ‪� 4‬إىل ‪ 4.5‬مليون مرت مكعب يومي ًا يف منت�شف عام ‪ ،2014‬بعد �إ�شافة‬ ‫�إنتاج حمطة �ملعاجلة �ملركزية �لتي �شتبد�أ �لت�شغيل وقتها‪.‬‬ ‫ويقع �متياز د�شوق يف حمافظة كفر �ل�شيخ‪ ،‬وتبلغ �مل�شاحة �الجمالية ملنطقة �المتياز حاليا ‪ 3.217‬كيلومرت‬ ‫مربع‪ ،‬و مت ��شناد �لعمل بها �إىل �شركة «�آر دبليو �إى» يف يوليو ‪.2004‬‬

‫تران�س جلوبال" الكندية حتفر‬ ‫حقل غاز طبيعي جديد يف ال�شحراء‬ ‫الغربية با�شتثمارات ‪ 6.6‬مليون دوالر‬ ‫بد�أت "تر�ن�س جلوبال" �لكندية �أعمال حفر حقل‬ ‫جديد للغاز �لطبيعي يف منطقة �شمال �ل�شبعة‬ ‫بال�شحر�ء �لغربية با�شتثمار�ت ‪ 6.6‬مليون دوالر‪،‬‬ ‫وذلك طب ًقا خلطة �حلفر �جلديدة للعام �جلاري‬ ‫‪ 2013‬ـ ‪ ،2014‬وذلك بعد �حل�شول على �المتياز‬ ‫من �لهيئة �مل�شرية �لعامة للبرتول‪.‬‬ ‫و�أثبتت �لدر�شات �الأولية لل�شركة �أن متو�شط �إنتاج‬ ‫�حلقل �جلديد يرت�وح بني ‪� 3500‬إىل ‪ 4900‬برميل‬ ‫يوم ًيا‪ ،‬وذلك بعد �ختباره على عملية تدفق ت�شل‬ ‫�إىل ‪ 16.2‬مليون قدم مكعب من �لغاز يوم ًيا‪.‬‬ ‫وكانت �ل�شركة �لكندية فــازت يف نوفمرب ‪2012‬‬ ‫مبــز�يــدة �لهيئة �لعامة للبرتول �لتي ت�شم ‪15‬‬ ‫قطاعا للبحث و�لتنقيب عن �لـبــرتول و�لـغــاز يف‬ ‫ً‬ ‫�ل�شحر�ء �لغربية و�ل�شرقية وخليج �ل�شوي�س‬ ‫بـ‪ 4‬مناطق من بينها ‪ 3‬مناطق يف خليج �ل�شوي�س‬ ‫ومنطقة ر�أ�س غز�الت يف منخف�س �لقطارة‪.‬‬ ‫وتعد منطقة �ل�شحر�ء �لغربية من �أكرب مناطق‬ ‫�جلــذب �ال�شتثماري ل�شركات �لـبــرتول �لعاملية‪،‬‬ ‫حيث ت�شهم بن�شبة ‪ ٪49‬من �إجمايل �إنتاج م�شر‬ ‫من �لبرتول �خلام و�ملتكثفات خالل �لعام �ملايل‬ ‫�ملا�شي‪ ،‬بعد حفر ‪� 58‬كت�شا ًفا للبرتول �خلــام‬ ‫و�ل ـغــاز �لطبيعي مــن خــالل ‪� 23‬شركة �أجنبية‬ ‫وم�شرية وعربية تعمل باملنطقة‪.‬‬

‫‪4‬‬

‫‪- September 2013‬‬

‫دانة ت�شــتثمر ‪ 270‬مليون دوالر حلفر‬ ‫‪ 3‬ابار جديدة‬ ‫�أعلنت �شركة " د�نة غاز " �الإمار�تية �أنها �شت�شخ �إ�شتثمار�ت جديدة يف قطاع �لغاز �مل�شري حلفر ‪� 3‬آبار‬ ‫جديدة بالتعاون مع �لهيئة �لعامة للبرتول باإ�شتثمار�ت تقدر بـ ‪ 270‬مليون دوالر ‪.‬‬ ‫�أ�شافت �ل�شركة �أنها وفقا ً خلطة �حلفر لعام ‪� 2014‬شتقوم بحفر حقل " ح�شنا ‪ " 1‬بدلتا نهر�لنيل للو�شول‬ ‫باالإنتاج �إىل ‪�50‬ألف برميل نفط مكافئ يوميا ‪.‬‬ ‫جدير بالذكر �أن �ل�شركة قامت بتطوير ‪� 3‬آبار منذ مار�س �ملا�شي حيث و�شل �إنتاج �ل�شركة �إىل ‪ 200‬مليون قدم‬ ‫مكعب يوميا ً مبا يو�زي ‪ 41.5‬برميل نفط مكافئ يوميا ً بزيادة قدرها ‪ ٪29‬عن معدل �إنتاج �لعام �ملا�شي ‪.‬‬

‫"اإنبى" تنفذ م�شروعى غاز طبيعى بتكلفة ‪ 450‬مليون دوالر‬ ‫تعكف �شركة "�إنبى" حالي ًا على تنفيذ م�شروعني لتنمية حقول غاز و�إقامة حمطة �شو�غط بتكلفة‬ ‫�إجمالية ‪ 450‬مليون دوالر‪.‬‬ ‫قال �ملهند�س عبد�لنا�شر �شالح‪ ،‬رئي�س جمل�س �إد�رة �شركة �إنبى �إنه جار تنفيذ م�شروع تنمية حقلى «�أ�شيل‬ ‫وكرم» الإنتاج �لغاز ل�شالح �شركة بدر �لدين بقيمة تعاقدية حو�ىل ‪ 200‬مليون دوالر‪.‬‬ ‫و�أ�شاف �أنه �شيتم �النتهاء من تنفيذ �مل�شروع مطلع عام ‪ ،2015‬ويت�شمن �أعمال �لت�شميمات �لهند�شية‬ ‫�لتف�شيلية وتوريد �ملهمات و�الإ�شر�ف على �أعمال �الإن�شاء�ت وجتارب بدء �لت�شغيل‪.‬‬ ‫ويت�شمن �مل�شروع تركيب وحدة �إز�لة غاز ثانى �أك�شيد �لكربون ومر�فق �لوحدة ومد خطوط �أنابيب مب�شافة‬ ‫‪ 29‬كيلو مرت ً�‪ ،‬وتركيب توربينة غازية ومربد هو�ئى وعدد ‪ 2‬وعاء ف�شل ووحدة �ل�شعلة‪.‬‬ ‫من جهة �أخرى‪ ،‬تنفذ �شركة �إنبى حالي ًا م�شروع �إن�شاء حمطة �شو�غط غاز�ت حقل «�لق�شر» بال�شحر�ء‬ ‫�لغربية ل�شالح �شركة «خالدة» بتكلفة ��شتثمارية ‪ 250‬مليون دوالر‪ ،‬وينتظر �النتهاء منه فى فرب�ير ‪.2015‬‬ ‫و�أو�شح �ملهند�س عبد�لنا�شر �شالح �أن �مل�شروع يهدف �إىل تخفي�س �شغط �لغاز �ملنتج من �حلقول من‬ ‫‪ 120‬بار ً� �إيل �أقل من ‪ 30‬بار ً� خالل فرتة �لت�شغيل‪ ،‬و�شتقوم �إنبى برتكيب ‪� 4‬شو�غط للحفاظ على �شغط‬ ‫�لغاز و�ملتكثفات �ملنتجة من �الآبار عند معدل ‪ 123‬بار ً� حتى يتم �شخه �إىل حمطتى �ل�شالم و�الأوبي�س لتتم‬ ‫معاجلتهما‪.‬‬ ‫يذكر �أن حقل �لق�شر مت تقدير �حتياطياته من �لغاز عند �كت�شافه عام ‪ 2003‬بنحو ‪ 2.3‬تريليون قدم‬ ‫مكعب‪� ،‬إ�شافة �إىل ‪ 76‬مليون برميل مكتثفات ونتيجة لالنخفا�س �لطبيعى فى �شغط خز�ن �لغاز فى �حلقل‬ ‫مع ��شتمر�ر �الإنتاج‪ ،‬فاإن �شو�غط �لغاز�ت من �ملتوقع �شرتفع من �الحتياطى مبقد�ر ‪ 300‬مليار قدم مكعب‬ ‫�إ�شافة �إىل ‪ 6‬ماليني برميل متكثفات عرب زيادة �شخ �لغاز من مكامنه فى �حلقل‪ ،‬ويقدر �لعائد من �مل�شروع‬ ‫�لذى �نتهى �إعد�د در��شته �لهند�شية حو�ىل مليار دوالر‪.‬‬

‫‪Petroleum Today‬‬


‫�شنوات‬ ‫�شنوات‬ ‫‪1010‬‬ ‫ملدةملدة‬ ‫الزيت‬ ‫الزيت‬ ‫بخليج‬ ‫بخليج‬ ‫البحري‬ ‫البحري‬ ‫الر�شيف‬ ‫الر�شيف‬ ‫ت�شغيل‬ ‫ت�شغيل‬ ‫بحقبحق‬ ‫تفوز‬ ‫تفوز‬ ‫"برتوجت"‬ ‫"برتوجت"‬ ‫و�ال�ش�شتار�ت‬ ‫و�ال�ش�شتار�ت‬ ‫�لبرتولية‬ ‫�لبرتولية‬ ‫�مل�شروعات‬ ‫�مل�شروعات‬ ‫�شركة�شركة‬ ‫ـازتـازت‬ ‫فـ فـ‬ ‫�لبحرى‬ ‫�لبحرى‬ ‫بالر�شيف‬ ‫بالر�شيف‬ ‫�نتفاع�نتفاع‬ ‫بحقبحق‬ ‫"برتوجت"‬ ‫"برتوجت"‬ ‫�لفنية�لفنية‬ ‫برتوىل‬ ‫برتوىل‬ ‫كميناء‬ ‫كميناء‬ ‫�لزيت�لزيت‬ ‫خليجخليج‬ ‫مبنطقة‬ ‫مبنطقة‬ ‫�لو�قع�لو�قع‬ ‫�لبرتوىل‬ ‫�لبرتوىل‬ ‫أ�شدرت‬ ‫أ�شدرت‬ ‫�الحمر ‪ ،‬و�‬ ‫�الحمر ‪ ،‬و�‬ ‫بالبحر‬ ‫بالبحر‬ ‫�ل�شوي�س‬ ‫�ل�شوي�س‬ ‫بخليجبخليج‬ ‫تخ�ش�شى‬ ‫تخ�ش�شى‬ ‫و�خلا�س‬ ‫و�خلا�س‬ ‫‪20132013‬‬ ‫ل�شنةل�شنة‬ ‫‪301301‬‬ ‫رقمرقم‬ ‫�لقر�ر‬ ‫�لقر�ر‬ ‫�لنقل�لنقل‬ ‫وز�رةوز�رة‬ ‫باميتاز‬ ‫باميتاز‬ ‫�لر�شيف‬ ‫�لر�شيف‬ ‫إد�رةإد�رة‬ ‫بتغ�شيل و�‬ ‫بتغ�شيل و�‬ ‫لل�شركة‬ ‫لل�شركة‬ ‫بالرتخي�س‬ ‫بالرتخي�س‬ ‫للتجديد‪.‬‬ ‫للتجديد‪.‬‬ ‫قابلةقابلة‬ ‫�شنو�ت‬ ‫�شنو�ت‬ ‫مدته ‪10‬‬ ‫مدته ‪10‬‬ ‫أهمها �أن‬ ‫أهمها �أن‬ ‫مو�د� �من �‬ ‫مو�د� من‬ ‫�لقر�ر‬ ‫�لقر�ر‬ ‫وت�شمن‬ ‫وت�شمن‬ ‫أ�شدرأ�شدر‬ ‫�لرتخي�س �‬ ‫�لرتخي�س �‬ ‫وزيادة‬ ‫وزيادة‬ ‫�لبرتول‬ ‫�لبرتول‬ ‫وقطاع‬ ‫وقطاع‬ ‫�ل�شركة‬ ‫�ل�شركة‬ ‫أغر��س‬ ‫أغر��س‬ ‫خدمة �‬ ‫خدمة �‬ ‫بغر�س‬ ‫بغر�س‬

‫وحد�ت‬ ‫وحد�ت‬ ‫��شتقبال‬ ‫��شتقبال‬ ‫إ�شافةإىل �إىل‬ ‫إ�شافة �‬ ‫بال�شركةال باال‬ ‫بال�شركة با‬ ‫�لت�شنيع‬ ‫�لت�شنيع‬ ‫�لغر�س‪.‬‬ ‫�لغر�س‪.‬‬ ‫ذلكذلك‬ ‫لتحقيق‬ ‫لتحقيق‬ ‫متنوعة‬ ‫متنوعة‬ ‫بحرية‬ ‫بحرية‬ ‫‪ 2013‬مـيفـادتـمــهـادتــه‬ ‫‪ 2013‬يف‬ ‫ل�شنةل�شنة‬ ‫‪301301‬‬ ‫ـر�رــمرق ــم‬ ‫ـر�رـ رق‬ ‫�ـشـمـ�ــلشـ �مـلـــلقـ�لــق‬ ‫�لغر�س‬ ‫�لغر�س‬ ‫غريغري‬ ‫�مليناء يف‬ ‫�مليناء يف‬ ‫��شتخد�م‬ ‫��شتخد�م‬ ‫جو�زجو�ز‬ ‫عدمعدم‬ ‫�لثالثة‬ ‫�لثالثة‬ ‫�لرتخي�سأي الأي‬ ‫�لرتخي�س ال‬ ‫عن عن‬ ‫�لتنازل‬ ‫�لتنازل‬ ‫يحظريحظر‬ ‫كما كما‬ ‫�ملخ�ش�س له‪،‬‬ ‫�ملخ�ش�س له‪،‬‬ ‫قطاعقطاع‬ ‫ممثلة يف‬ ‫ممثلة يف‬ ‫�لنقل�لنقل‬ ‫وز�رةوز�رة‬ ‫مو�فقة‬ ‫مو�فقة‬ ‫بعد بعد‬ ‫أخرى �إال‬ ‫أخرى �إال‬ ‫جهة �جهة �‬ ‫�خلا�شة بها‬ ‫�خلا�شة بها‬ ‫�خلدمات‬ ‫�خلدمات‬ ‫وتقدمي‬ ‫وتقدمي‬ ‫�لبرتولية‬ ‫�لبرتولية‬ ‫�ملو�د�ملو�د‬ ‫�شحن�شحن‬ ‫جديد‪.‬‬ ‫جديد‪.‬‬ ‫ترخي�س‬ ‫ترخي�س‬ ‫إ�شد�رإ�شد�ر‬ ‫�لبحري و�‬ ‫�لبحري و�‬ ‫�لنقل�لنقل‬ ‫�شهريا‬ ‫�شهريا‬ ‫ناقالت‬ ‫ناقالت‬ ‫ـو�ىل ‪4‬‬ ‫ـو�ىل ‪4‬‬ ‫��شتقبال حـ‬ ‫��شتقبال حـ‬ ‫ي�شتوعب‬ ‫ي�شتوعب‬ ‫فقط و‬ ‫�لزيت�لزيت فقط و‬ ‫جبلجبل‬ ‫ميناءميناء‬ ‫يتبعيتبع‬ ‫�لر�شيف‬ ‫�لر�شيف‬ ‫بالذكر �ن‬ ‫بالذكر �ن‬ ‫جديرجدير‬ ‫�لبحرى‪.‬‬ ‫�لبحرى‪.‬‬ ‫�لنقل�لنقل‬ ‫قطاعقطاع‬ ‫لبيانات‬ ‫لبيانات‬ ‫وفق ًاوفق ًا‬ ‫وي�شتخدم فى وذلكوذلك‬ ‫وي�شتخدم فى‬ ‫مربعمربع‬ ‫مرت مرت‬ ‫‪40004000‬‬ ‫م�شاحة‬ ‫م�شاحة‬ ‫علىعلى‬ ‫�لبحرى‬ ‫�لبحرى‬

‫االجنبية‬ ‫االجنبية‬ ‫ال�شركات‬ ‫ال�شركات‬ ‫ديون‬ ‫ديون‬ ‫ل�شداد‬ ‫ل�شداد‬ ‫زمنيا‬ ‫زمنيا‬ ‫جدوال‬ ‫جدوال‬ ‫ت�شع‬ ‫ت�شع‬ ‫م�شر‬ ‫م�شر‬ ‫ل�شركات‬ ‫عليهاعليها‬ ‫�مل�شتحقة‬ ‫أخرةأخرة‬ ‫�لديونا�ملتا‬ ‫ل�شد�د‬ ‫زمنيازمنيا‬ ‫جدوال‬ ‫ت�شعت�شع‬ ‫م�شرم�شر‬ ‫�مل�شرية �إن‬ ‫�لبرتول‬ ‫وز�رةوز�رة‬ ‫قالتقالت‬ ‫ل�شركات‬ ‫�مل�شتحقة‬ ‫�لديون �ملت‬ ‫ل�شد�د‬ ‫جدوال‬ ‫�مل�شرية �إن‬ ‫�لبرتول‬ ‫دوالردوالر‬ ‫مليار�ت‬ ‫بخم�شة‬ ‫مدينة‬ ‫وم�شر‬ ‫�لبالد‪.‬‬ ‫�ال�شتثمار يف‬ ‫مو��شلة‬ ‫علىعلى‬ ‫لت�شجيعها‬ ‫وذلكوذلك‬ ‫أجنبية‬ ‫�لنفط �ال‬ ‫مليار�ت‬ ‫بخم�شة‬ ‫مدينة‬ ‫وم�شر‬ ‫�لبالد‪.‬‬ ‫�ال�شتثمار يف‬ ‫مو��شلة‬ ‫لت�شجيعها‬ ‫أجنبية‬ ‫�لنفط �ال‬ ‫تقارير‬ ‫بح�شب‬ ‫�ملبلغ�ملبلغ‬ ‫هذ�هذ�‬ ‫ن�شف‬ ‫أخر�ت‬ ‫وت�شكلا�ملتا‬ ‫أر��شيها‬ ‫و�لغاز�يف �‬ ‫�لنفط‬ ‫تنتجتنتج‬ ‫�لتي�لتي‬ ‫لل�شركات‬ ‫أقلالأقل‬ ‫على �‬ ‫تقارير‬ ‫بح�شب‬ ‫ن�شف‬ ‫أخر�ت‬ ‫وت�شكل �ملت‬ ‫أر��شيها‬ ‫و�لغاز يف‬ ‫�لنفط‬ ‫لل�شركات‬ ‫على �ال‬ ‫أرجاأت‬ ‫��شطر�بات �قد‬ ‫لتحا�شي‬ ‫ت�شعىت�شعى‬ ‫�لتي�لتي‬ ‫�حلكومة‬ ‫كانتكانت‬ ‫�لعام‪.‬‬ ‫هذ�هذ�‬ ‫�شابق�شابق‬ ‫وقتوقت‬ ‫�ل�شركات يف‬ ‫أ�شدرتها‬ ‫� �‬ ‫أرج�اأت‬ ‫��شطر�بات قد‬ ‫لتحا�شي‬ ‫�حلكومة‬ ‫�لعام‪.‬‬ ‫�ل�شركات يف‬ ‫أ�شدرتها‬ ‫بع�سبع�س‬ ‫ويعودويعود‬ ‫�لوقود‪.‬‬ ‫منتجات‬ ‫دعمدعم‬ ‫ب�شبب‬ ‫�ملرتفعة‬ ‫�لطاقة‬ ‫فاتورة‬ ‫ل�شدل�شد‬ ‫تكافح‬ ‫وهيوهي‬ ‫نفطية‬ ‫مدفوعات‬ ‫�شد�د�شد�د‬ ‫�لوقود‪.‬‬ ‫منتجات‬ ‫ب�شبب‬ ‫�ملرتفعة‬ ‫�لطاقة‬ ‫فاتورة‬ ‫تكافح‬ ‫نفطية‬ ‫مدفوعات‬ ‫من من‬ ‫�شيطلب‬ ‫بيان �لهإنه �إنه‬ ‫إ�شماعيل يف‬ ‫�شريف �‬ ‫�لبرتول‬ ‫وزيروزير‬ ‫وقالوقال‬ ‫مببارك‪.‬‬ ‫إطاحةإطاحة‬ ‫قبل �ال‬ ‫�لديونإىل �ماإىل ما‬ ‫�شيطلب‬ ‫بيان له‬ ‫إ�شماعيل يف‬ ‫�شريف �‬ ‫�لبرتول‬ ‫مببارك‪.‬‬ ‫قبل �ال‬ ‫�لديون �‬ ‫ماليةمالية‬ ‫إ�شعار�ت‬ ‫أظهرت �‬ ‫حكومية‪ .‬و�‬ ‫جهات‬ ‫عدةعدة‬ ‫بالتن�شيق مع‬ ‫يو�شعيو�شع‬ ‫�لذي�لذي‬ ‫�ملقرتح‬ ‫علىعلى‬ ‫�ملو�فقة‬ ‫�ل�شركات‬ ‫إ�شعار�ت‬ ‫أظهرت �‬ ‫حكومية‪ .‬و�‬ ‫جهات‬ ‫بالتن�شيق مع‬ ‫�ملقرتح‬ ‫�ملو�فقة‬ ‫�ل�شركات‬ ‫علىعلى‬ ‫يزيديزيد‬ ‫مبا مبا‬ ‫مدينة لها‬ ‫م�شرم�شر‬ ‫إنرجي �أن‬ ‫جلوب �‬ ‫وتر�ن�س‬ ‫إدي�شون‬ ‫أبات�شي و�‬ ‫وبي‪.‬جي و�‬ ‫بي‪.‬بي‬ ‫مثلمثل‬ ‫ل�شركات‬ ‫مدينة لها‬ ‫إنرجي �أن‬ ‫جلوب �‬ ‫وتر�ن�س‬ ‫إدي�شون‬ ‫أبات�شي و�‬ ‫وبي‪.‬جي و�‬ ‫بي‪.‬بي‬ ‫ل�شركات‬ ‫إمد�د�ت‬ ‫مقابل �‬ ‫دوالردوالر‬ ‫مليونمليون‬ ‫‪230230‬‬ ‫قدرها‬ ‫أخر�ت‬ ‫إمار�تيةا متا‬ ‫غاز �ال‬ ‫ولد�نة‬ ‫‪.2012‬‬ ‫نهايةنهاية‬ ‫دوالر يف‬ ‫مليارمليار‬ ‫‪5.25.2‬‬ ‫إمد�د�ت‬ ‫مقابل �‬ ‫قدرها‬ ‫أخر�ت‬ ‫إمار�تية مت‬ ‫غاز �ال‬ ‫ولد�نة‬ ‫‪.2012‬‬ ‫دوالر يف‬ ‫ل�شركة‬ ‫ل�شركة‬ ‫�مل�شتحقة‬ ‫�مل�شتحقة‬ ‫�لديون‬ ‫�لديون‬ ‫وبلغت‬ ‫وبلغت‬ ‫�لديون‪.‬‬ ‫�لديون‪.‬‬ ‫�حلكومةاأنب�شاأن‬ ‫�حلكومة ب�ش‬ ‫حمادثات مع‬ ‫حمادثات مع‬ ‫جتري‬ ‫جتري‬ ‫إنها�إنها‬ ‫�ل�شركة‬ ‫�ل�شركة �‬ ‫وتقولوتقول‬ ‫�لغاز�لغاز‬ ‫من من‬ ‫�مل�شتحقة‬ ‫�مل�شتحقة‬ ‫م�شر‬ ‫م�شر‬ ‫ديونديون‬ ‫وبلغت‬ ‫وبلغت‬ ‫أخر�ت‪.‬‬ ‫أخر�ت‪.‬‬ ‫دوالر متا‬ ‫دوالر متا‬ ‫مليارمليار‬ ‫نحونحو‬ ‫منهامنها‬ ‫‪2012‬‬ ‫‪2012‬‬ ‫نهايةنهاية‬ ‫دوالر يف‬ ‫دوالر يف‬ ‫مليار�ت‬ ‫مليار�ت‬ ‫ثالثةثالثة‬ ‫بي‪.‬بي‬ ‫بي‪.‬بي‬ ‫إدي�شون‬ ‫إدي�شون‬ ‫�مل�شتحقة ال‬ ‫�مل�شتحقة ال‬ ‫أخر�ت‬ ‫أخر�ت‬ ‫وتبلغا�ملتا‬ ‫وتبلغ �ملت‬ ‫أخر�ت‪.‬‬ ‫أخر�ت‪.‬‬ ‫دوالرا متا‬ ‫دوالر مت‬ ‫مليون‬ ‫مليون‬ ‫‪600600‬‬ ‫منهامنها‬ ‫دوالردوالر‬ ‫مليارمليار‬ ‫‪1.31.3‬‬ ‫بي‪.‬جي‬ ‫بي‪.‬جي‬ ‫ل�شركة‬ ‫ل�شركة‬ ‫دوالر‪.‬‬ ‫دوالر‪.‬‬ ‫مليون‬ ‫مليون‬ ‫‪200200‬‬ ‫من من‬ ‫أكرث�أكرث‬ ‫منهما‬ ‫منهما �‬ ‫ولكلولكل‬ ‫ود�نةود�نة‬ ‫جلوب‬ ‫جلوب‬ ‫تر�ن�س‬ ‫تر�ن�س‬ ‫دوالر ثم‬ ‫دوالر ثم‬ ‫مليون‬ ‫مليون‬ ‫‪400400‬‬

‫م�شــر‬ ‫م�شــر‬ ‫فـىفـى‬ ‫�شــيفرون‬ ‫�شــيفرون‬ ‫أعمـال‬ ‫أعمـال‬ ‫�شراء ا‬ ‫�شراء ا‬ ‫علـى‬ ‫علـى‬ ‫تتـفق‬ ‫تتـفق‬ ‫تـوتــال‬ ‫تـوتــال‬ ‫�لفرن�شية‬ ‫�لفرن�شية‬ ‫لتوتال‬ ‫لتوتال‬ ‫�لتابعة‬ ‫�لتابعة‬ ‫إيجيبت‬ ‫إيجيبت‬ ‫توتال �‬ ‫توتال �‬ ‫�شركة�شركة‬ ‫قالتقالت‬ ‫و�شريكتها‬ ‫و�شريكتها‬ ‫ـتـقــت‬ ‫ـازغـ�إن ــازهـ�إـان ـ�هـتــافـ�قـتـف‬ ‫للنفطل ـغـو�ل ـ‬ ‫للنفط و�‬ ‫ـربىـربى‬ ‫�ل ـكـ�ل ـكـ‬ ‫أعمالأعمال‬ ‫�شر�ء �‬ ‫�شر�ء �‬ ‫علىعلى‬ ‫�ملبا�شر‬ ‫�ملبا�شر‬ ‫لال�شتثمار‬ ‫لال�شتثمار‬ ‫بلتونبلتون‬ ‫�مل�شرية‬ ‫�مل�شرية‬ ‫جتارةجتارة‬ ‫جمالجمال‬ ‫�المريكية يف‬ ‫�المريكية يف‬ ‫�لنفطية‬ ‫�لنفطية‬ ‫�شيفرون‬ ‫�شيفرون‬ ‫�شركة�شركة‬ ‫م�شر‪.‬‬ ‫م�شر‪.‬‬ ‫�لوقود يف‬ ‫�لوقود يف‬ ‫�لعالمة‬ ‫�لعالمة‬ ‫حتتحتت‬ ‫�خرى�خرى‬ ‫ودولودول‬ ‫م�شرم�شر‬ ‫�شيفرون يف‬ ‫�شيفرون يف‬ ‫وتعملوتعمل‬ ‫"كالتك�س"‪.‬‬ ‫"كالتك�س"‪.‬‬ ‫�لتجارية‬ ‫�لتجارية‬ ‫بعد بعد‬ ‫�شت�شتحوذ‬ ‫�شت�شتحوذ‬ ‫�شحفيإنها�إنها‬ ‫�شحفي �‬ ‫بيانبيان‬ ‫توتال يف‬ ‫توتال يف‬ ‫وقالت‬ ‫وقالت‬ ‫�مل�شرية‬ ‫�مل�شرية‬ ‫�ل�شلطات‬ ‫�ل�شلطات‬ ‫مو�فقة‬ ‫مو�فقة‬ ‫علىعلى‬ ‫�ل�شفقة‬ ‫�ل�شفقة‬ ‫�متـ �ـاممتــام‬ ‫�لنفط‪.‬‬ ‫�لنفط‪.‬‬ ‫لتخزين‬ ‫لتخزين‬ ‫وم�شتودعني‬ ‫وم�شتودعني‬ ‫وقودوقود‬ ‫حمطة‬ ‫حمطة‬ ‫على ‪66‬‬ ‫على ‪66‬‬ ‫ـودـويـمتــنـويـوتــنـزوويتــدـزويــد‬ ‫ـودقـمتـ‬ ‫علىقـ عـ‬ ‫على عـ‬ ‫�شتح�شلتـتــالـوتــال‬ ‫�شتح�شل تــو‬ ‫كما كما‬ ‫علمعلم‬ ‫ومر�شى‬ ‫ومر�شى‬ ‫�لقاهرة‬ ‫�لقاهرة‬ ‫مطاري‬ ‫مطاري‬ ‫بالوقود يف‬ ‫بالوقود يف‬ ‫�لطائر�ت‬ ‫�لطائر�ت‬ ‫�شنويا�شنويا‬ ‫وقودوقود‬ ‫طن طن‬ ‫مليونمليون‬ ‫‪1.41.4‬‬ ‫تبيعتبيع‬ ‫�لتي�لتي‬ ‫�شيفرون‬ ‫�شيفرون‬ ‫من من‬ ‫�لبالد‪.‬‬ ‫�لبالد‪.‬‬ ‫يف يف‬ ‫�ل�شفقة‪.‬‬ ‫�ل�شفقة‪.‬‬ ‫قيمةقيمة‬ ‫حولحول‬ ‫تفا�شيل‬ ‫تفا�شيل‬ ‫�لبيان يف‬ ‫�لبيان يف‬ ‫يخ�س‬ ‫يخ�س‬ ‫ومل ومل‬

‫بلتونبلتون‬ ‫إد�رةإد�رة‬ ‫جمل�س �‬ ‫جمل�س �‬ ‫رئي�سرئي�س‬ ‫ـاتكــات‬ ‫ـازمـركـبــر‬ ‫ـازم بـ‬ ‫ـال ح ـ‬ ‫وق ـ وـالق ـ ح ـ‬ ‫�ل�شفقة‬ ‫�ل�شفقة‬ ‫�ل�شحفي �إن‬ ‫�ل�شحفي �إن‬ ‫�لبيان‬ ‫�لبيان‬ ‫�ملبا�شر يف‬ ‫�ملبا�شر يف‬ ‫لال�شتثمار‬ ‫لال�شتثمار‬ ‫��شتثمارية‬ ‫��شتثمارية‬ ‫وجهةوجهة‬ ‫ماز�لت‬ ‫ماز�لت‬ ‫م�شرم�شر‬ ‫بان بان‬ ‫و��شحة‬ ‫و��شحة‬ ‫إ�شارةإ�شارة‬ ‫"� "�‬ ‫�القت�شاد‬ ‫�القت�شاد‬ ‫بدعمبدعم‬ ‫ملتزمني‬ ‫ملتزمني‬ ‫مازلنا‬ ‫مازلنا‬ ‫جــذ�بجــةـذ�بوـبــةاأنـونبــااأنـنــا‬ ‫�مل�شري‪.‬‬ ‫�مل�شري‪.‬‬ ‫توتالتوتال‬ ‫�شركة�شركة‬ ‫لرئي�س‬ ‫لرئي�س‬ ‫أولالأول‬ ‫�لنائب �‬ ‫�لنائب �ال‬ ‫نغويرنغوير‬ ‫مومارمومار‬ ‫وقالوقال‬ ‫أو�شط �إن‬ ‫أو�شط �إن‬ ‫و�ل�شرق �ال‬ ‫و�ل�شرق �ال‬ ‫الفريقيا‬ ‫الفريقيا‬ ‫و�خلدمات‬ ‫و�خلدمات‬ ‫للت�شويق‬ ‫للت�شويق‬ ‫م�شر‪.‬‬ ‫م�شر‪.‬‬ ‫بالتو�شع يف‬ ‫بالتو�شع يف‬ ‫توتالتوتال‬ ‫�لتز�م‬ ‫�لتز�م‬ ‫مدىمدى‬ ‫تظهرتظهر‬ ‫�ل�شفقة‬ ‫�ل�شفقة‬ ‫للمنتجات‬ ‫للمنتجات‬ ‫م�شوق‬ ‫م�شوق‬ ‫ـربكــرب‬ ‫ـاين �أ‬ ‫ـاينـ �أكـ‬ ‫"نحنآن� ثالـآن ث‬ ‫"نحن �ال‬ ‫ـافشــاف‬ ‫و��ـشـو��ـ‬ ‫م�شر‪.‬‬ ‫م�شر‪.‬‬ ‫�لنفطية يف‬ ‫�لنفطية يف‬

‫لكويت‬ ‫لكويت‬ ‫جديد‬ ‫جديد‬ ‫نفطي‬ ‫نفطي‬ ‫اكت�شاف‬ ‫اكت�شاف‬ ‫م�شر‬ ‫م�شر‬ ‫إنرجي يف‬ ‫إنرجي يف‬ ‫ا ا‬ ‫يف يف‬ ‫�ملتخ�ش�شة‬ ‫�ملتخ�ش�شة‬ ‫ـرجــي‬ ‫ـرجــي‬ ‫كويت �إن‬ ‫كويت �إنـ‬ ‫قالتقالت‬ ‫حققت‬ ‫حققت‬ ‫إنها�إنها‬ ‫و�لغاز‬ ‫و�لغاز �‬ ‫�لنفط‬ ‫�لنفط‬ ‫عنعن‬ ‫�لتنقيب‬ ‫�لتنقيب‬ ‫�ل�شحر�ء‬ ‫�ل�شحر�ء‬ ‫جديد� يف‬ ‫جديد� يف‬ ‫نفطيا‬ ‫نفطيا‬ ‫�كت�شافا‬ ‫�كت�شافا‬ ‫‪3530‬‬ ‫‪3530‬‬ ‫ي�شخي�شخ‬ ‫ميكن �أن‬ ‫ميكن �أن‬ ‫مب�شر‬ ‫مب�شر‬ ‫�لغربية‬ ‫�لغربية‬ ‫يوميا‪.‬‬ ‫يوميا‪.‬‬ ‫برميال‬ ‫برميال‬ ‫موقعموقع‬ ‫ـانـيـ لــانـهــالــهـ�ـاأن �أن‬ ‫يفـ بـ‬ ‫ـت بــي‬ ‫ـحــشــتـحـيف‬ ‫أو�ـ�ـشـأو�ـ‬ ‫و� و‬ ‫�ل�شاملية‪2-‬‬ ‫�ل�شاملية‪2-‬‬ ‫بئر بئر‬ ‫�جلديد يف‬ ‫�جلديد يف‬ ‫�الكت�شاف‬ ‫�الكت�شاف‬ ‫�المــتــازـيـ�لــازـتــي�لــتــي‬ ‫�المــتــي‬ ‫ـطــقــة‬ ‫ـطــنــقــة‬ ‫ـيـ تـعــقـمبــعـنـمب‬ ‫ـيـتـتــق‬ ‫�لــتـ�لـ‬ ‫�شنان‬ ‫�شنان‬ ‫يفـو �أبــو‬ ‫يف �أبـ‬ ‫�شمنها‬ ‫�شمنها‬ ‫�ل�شركة‬ ‫�ل�شركة‬ ‫تعملتعمل‬ ‫�لغربية‪.‬‬ ‫�لغربية‪.‬‬ ‫بال�شحر�ء‬ ‫بال�شحر�ء‬ ‫�مل�شغل‬ ‫�مل�شغل‬ ‫ب�شفة‬ ‫ب�شفة‬ ‫إنرجي‬ ‫إنرجي‬ ‫كويت �‬ ‫كويت �‬ ‫وحتظى‬ ‫وحتظى‬ ‫حيثحيث‬ ‫�شنان‬ ‫�شنان‬ ‫�متيازـو �أبــو‬ ‫�متياز �أبـ‬ ‫يف يف‬ ‫�لرئي�شي‬ ‫�لرئي�شي‬ ‫ترخي�س‬ ‫ترخي�س‬ ‫من من‬ ‫�لت�شغيلية‬ ‫�لت�شغيلية‬ ‫ح�شتها‬ ‫ح�شتها‬ ‫تبلغتبلغ‬ ‫�لن�شبة‬ ‫�لن�شبة‬ ‫ـودـعــود‬ ‫ـة‪.‬ـعـوتـ‬ ‫ـة‪.‬ــئـوتـ‬ ‫‪ 50‬بـ‪50‬ـاملـبـئــامل‬ ‫ـازـيــاز‬ ‫�المــتـ‬ ‫�المــتــيـ‬ ‫برتوليوم‬ ‫برتوليوم‬ ‫بريت�س‬ ‫بريت�س‬ ‫�شركة‬ ‫�شركة‬ ‫�لباقيةإىل�إىل‬ ‫�لباقية �‬ ‫دوفـــر‬ ‫دوفـــر‬ ‫ـاملــئـو�ـةــشـو�ــركـشــةـركــة‬ ‫‪ 22‬بـ‪22‬ـاملـبــئــة‬ ‫بــنــ�ـبــشــنــبــ�ــةـشــبــة‬ ‫باملئة‪.‬و�لهيئة‬ ‫باملئة‪.‬و�لهيئة‬ ‫‪28 28‬‬ ‫بن�شبة‬ ‫بن�شبة‬ ‫�نف�شتمنت�س‬ ‫�نف�شتمنت�س‬ ‫�ل�شريك‬ ‫�ل�شريك‬ ‫هي هي‬ ‫للبرتول‬ ‫للبرتول‬ ‫�لعامة‬ ‫�لعامة‬ ‫�مل�شرية‬ ‫�مل�شرية‬ ‫�المتياز‪.‬‬ ‫�المتياز‪.‬‬ ‫لرتخي�س‬ ‫لرتخي�س‬ ‫�ملانح‬ ‫�ملانح‬ ‫أ�شا�شي‬ ‫أ�شا�شي‬ ‫�ال �ال‬

‫‪20132013‬‬ ‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬ ‫‪- September‬‬ ‫‪- September‬‬ ‫‪3 3 Petroleum‬‬


‫البرتول‪ :‬زيادة موازنة خطط البحث واال�شتك�شاف لـ‪ 8.5‬مليار دوالر‬ ‫�أكد �ملهند�س �شريف ��شماعيل وزير �لبرتول �أنه على �لرغم من وجود م�شتحقات لل�شركاء �الأجانب �إال �أن‬ ‫�ل�شركات �الأجنبية �لعاملة فى م�شر الز�لت ملتزمة بخطط وبر�مج �لبحث و�ال�شتك�شاف وتنمية �حلقول‬ ‫�ملكت�شفة حيث مت �عتماد زيادة �ال�شتثمار�ت فى �ملو�زنة �ال�شتثمارية للعام ‪ 2014/2013‬لتبلغ �أكرث من ‪5‬ر‪8‬‬ ‫مليار دوالر‬ ‫هذ� باالإ�شافة �إىل م�شاركتها فى �ملز�يد�ت �لعاملية �لتى طرحتها هيئة �لبرتول و�ل�شركة �لقاب�شة للغاز�ت‬ ‫و�شركة جنوب �لو�دى �لقاب�شة للبرتول خا�شة فى ظل �ملناف�شة �حلالية بني دول �ملنطقة على جذب �ل�شركات‬ ‫�لعاملية للبحث و�ال�شتك�شاف و�لتى �أثبتت نتائجها �هتمامها باال�شتمر�ر فى �لعمل فى م�شر ل�شنو�ت طويلة‬ ‫حيث �أ�شفرت مز�يدة هيئة �لبرتول عن تر�شية ‪ 11‬قطاع ًا على ‪� 6‬شركات عاملية با�شتثمار�ت ‪ 282‬مليون‬ ‫دوالر ‪ ،‬باالإ�شافة �إىل نتيجة مز�يدة �ل�شركة �لقاب�شة للغاز�ت �لتى �أ�شفرت عن فوز ‪� 7‬شركات عاملية بـ‬ ‫‪ 8‬قطاعات با�شتثمار�ت حدها �الأدنى ‪2‬ر‪ 1‬مليار دوالر ‪ ،‬هذ� باالإ�شافة �إىل تر�شية ‪ 4‬مناطق على �شركات‬ ‫عاملية با�شتثمار�ت ‪ 60‬مليون دوالر ل�شركة جنوب �لو�دى �لقاب�شة للبرتول ف�ش ًال عن تلقيها ‪ 8‬عرو�س من‬ ‫�شركات عاملية فى �ملز�يدة �لتى طرحتها موؤخر ً� للبحث عن �لبرتول و�لغاز‪.‬‬

‫�شركة "بي بي" تكت�شف الغاز يف بئر "�شالمات" مب�شر‬ ‫�أعلنت �شركة بى بى م�شر عن �كت�شاف هام للغاز‬ ‫فى منطقة �شرق دلتا �لنيل‪� ،‬أن بئر �ملياه �لعميقة‬ ‫"�شالمات" يعترب �أعمق بئر مت حفره حتى �الآن فى‬ ‫منطقة دلتا �لنيل وهو �لبئر �الأول فى نطاق �تفاقية‬ ‫منطقة �شمال دمياط �لبحرية �لتى مت توقيعها‬ ‫فى عــام ‪ ،2010‬و�لتى تقوم �شركة بى بى م�شر‬ ‫بالعمليات فيها‪.‬‬ ‫وقــد مت حفر �لبئر با�شتخد�م �حلفار "مري�شك‬ ‫دي�شكفورر" من �جليل �ل�شاد�س الأجهزة �حلفر‬ ‫�لبحرية �لغاط�شة جزئي ًا فى مياه عمقها ‪ 649‬مرت�‬ ‫وي�شل �لعمق �لكلى للبئر �إىل ‪ 7000‬مرت تقريبا‪،‬‬ ‫وقد �أكدت �لت�شجيالت �لكهربائية وعينات �ل�شو�ئل‬ ‫وبيانات �ل�شغوط وجود جتمعات �لغاز فى ‪ 38‬مرت‬ ‫�شافى فى رمــال �لطبقة �الأوليج�شينية مبنطقة‬ ‫�لبئر "�شالمات"‪ ،‬و�شتقوم �ل�شركة بدر��شات‬ ‫‪2‬‬

‫‪- September 2013‬‬

‫�إ�شافية لتحديد مــو�رد �حلقل بطريقة �أف�شل‬ ‫وتقييم �ختيار�ت تنمية هذ� �الكت�شاف‪.‬‬ ‫وعلق "مايك د�ىل" نائب رئي�س �شركة بــى بى‬ ‫لقطاع �ال�شتك�شاف على ذلك بقوله‪�" :‬إن جناح‬ ‫"�شالمات" يثبت وجود �لهيدروكربونات فى و�شط‬ ‫تكوين جيولوجى طوله ‪ 50‬كيلومرت�‪ ،‬ومــع عمود‬ ‫هيدروكربون �رتفاعه �أكــرث من ‪ 180‬مــرت�‪ ،‬يزيد‬ ‫هذ� �الكت�شاف من ثقتنا فى �جلدوى �القت�شادية‬ ‫للطبقات �الأوليج�شينية �لعميقة فى منطقة �شرق‬ ‫دلتا �لنيل"‪.‬‬ ‫وقال "ه�شام مكاوى"‪� ،‬لرئي�س �الأقليمى ل�شركة‬ ‫بــى بــى م�شر‪�" :‬إن �كت�شاف "�شالمات" يعترب‬ ‫نتيجة مميزة الأول �آبار �ل�شركة فى هذ� �لربنامج‬ ‫�جلــوهــرى لال�شتك�شاف فــى �ـشــرق دلـتــا �لنيل‪.‬‬ ‫ويو�شح مدى �لتز�منا بالوفاء باحتياجات م�شر‬

‫‪Petroleum Today‬‬

‫من �لطاقة با�شتك�شاف �الأعـمــاق �لبحرية لدلتا‬ ‫�لـنـيــل‪ .‬ون ـقــوم حــالـيــا بتقييم �خ ـت ـيــار�ت تنمية‬ ‫�الكت�شاف منف�شال �أو ربطه بالبنية �لتحتية حلقل‬ ‫مت�شاح �لقريب"‪.‬‬ ‫ويقع �كت�شاف "�شالمات" على م�شافة ‪ 75‬كيلومرت�‬ ‫تقريب ًا �شمال مدينة دمياط‪ ،‬وعلى م�شافة ‪ 35‬كيلومرت�‬ ‫فقط �شمال غرب ت�شهيالت مت�شاح �لبحرية‪ .‬ومتتلك‬ ‫�شركة بى بى ن�شبة ‪ ٪100‬من هذ� �الكت�شاف‪.‬‬




System 800xA High Integrity. When you’re this isolated, your safety system shouldn’t be.

Don’t isolate your safety! Demanding applications demand integrated systems. ABB’s state-of-the-art 800xA High Integrity system enables you to integrate process control with SIL3 level safety, saving both time and money. System 800xA’s technology accomplishes both safety and process control with separate, diverse CPUs within the same controller to expedite potential failure identification, improve availability and help you protect your people, process and so much more. For more information, visit www.abb.com/controlsystems.

See us at ABB Automation & Power World Connect. Learn. Succeed.


Millions discover their favorite reads on issuu every month.

Give your content the digital home it deserves. Get it to any device in seconds.