buildings
Article

Schoenoplectuscalifornicus(cattail)thermofusionwithrecycled material.LowdensityPolyethyleneandAluminium(LDPE-AL) compositeforDesignandConstruction.
OscarJara-Vinueza1 , 2* ,WilsonPavon 3 ,AbelRemache 4 ,FlavioArroyo 5 andMichaelGutiérrez 5
1 ArchitectureandDesignDepartment,UniversidadUniversidaddeLasAméricas, QuitoEC170125,Ecuador; ojaral@ups.edu.ec
2 ArchitectureDepartment,UniversidadPolitécnicaSalesiana,QuitoEC170146,Ecuador;ojaral@ups.edu.ec
3 ResearchProfessor,EngineeringDepartment,UniversidadPolitécnicaSalesiana,QuitoEC170146,Ecuador; wpavon@ups.edu.ec
4 SchoolofEngineeringandAppliedSciences,MechanicalEngineeringCareer,UniversidadCentraldel Ecuador,QuitoEC170146,Ecuador;apremache@uce.edu.ec
5 SchoolofEngineeringandAppliedSciences,IndustrialDesignCareer,UniversidadCentraldelEcuador, QuitoEC170146,Ecuador;frarroyo@uce.edu.ec,mjgutierrezc@uce.edu.ec
* Correspondence:oscar.jara@udla.edu.ec;Tel.:+593-
Abstract: Thisstudypresentsacomprehensivedocumentaryinvestigation,compilingtechnical informationabouttotora Schoenoplectuscalifornicus andrecycledLow-DensityPolyethyleneand Aluminum(LDPE-Al)composites,focusingontheirmechanicalproperties.Theprimaryobjective istoevaluatetheviabilityofthesematerialsascompositecandidatesforthemanufacturingand constructionsectorsthroughanexploratory,descriptiveinquiry.Theresearchaimstoopenthe possibilityofdesigninganddevelopingnewmaterialsusingtotoraandrecycledLDPE-Al.The findingsrevealthatincorporatingtotorainpercentagesrangingfrom0.5%to35%significantly alterspropertiessuchasflexural,tensile,andcompressivestrength,dependingonthematerial matrix.Similarly,recycledLDPE-Alcompositesexhibitcomparableimprovementsinmechanical performance.ExperimentalprototypescombiningtotoraandrecycledLDPE-Alweredeveloped, demonstratingpotentialasasustainablealternativetowood-basedcomposites.Thesematerialsshow promisingmechanicalproperties,withtheaddedbenefitofreducingenvironmentalimpact.Further materialcharacterizationisrecommendedasthenextsteptovalidatetheirstructuralapplications, particularlyintheconstructionandmanufacturingindustries.Thisworkcontributestoexploring sustainablecompositematerialsandpavesthewayforinnovativesolutionsthatbalancemechanical performancewithenvironmentalsustainability.
Citation: Buildings 2024, 1,0. https://doi.org/
AcademicEditor:
Received:28November2023
Revised:4January2024
Accepted:11January2024
Published:date

Copyright: © 2024bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons
Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).
Keywords: Totora;recycledLDPE-Al;compositematerials;mechanicalproperties;panels;sustainable con-struction;naturalfibers;polymercomposites.
1.Introduction
ufacturinghasgarneredsignificantattentionbecauseoftheirenvironmentalbenefitsand
thepotentialforinnovationinmaterialscience.Previousstudieshaveemphasizedthe
advantagesofnaturalfibercompositesinimprovingmechanicalpropertiesandimproving
sustainability[1].However,thespecificcombinationoftotora Schoenoplectuscalifornicus
andtherecycledlowdensitypolyethyleneandaluminumcompound(LDPE-Al)remains
underexplored.
Theenvironmentalimpactcausedbytheuseoftraditionalmaterials(suchascementand
steel)hasdriventhesearchfornewmaterialsthatcanmitigatethedamagethatisinflicted
ontheenvironment.ThisresearchaimstodeterminewhethertotoraandrecycledLDPE-Al
compositecanmeettheseexpectationsbyanalyzingandsynthesizingexistinginformation
integratingtheoreticalinsightswithempiricaldatatoproducerobustandactionableresults
[17,18].

Figure1. Four-PhaseMethodologicalFrameworkforSystematicResearchAnalysis.
TheLiteratureReviewinvolvedathoroughandsystematicsearchacrossestablished
databasessuchasScopusandWebofScience(WoS),formingthefoundationforthestudy.
ThesearchstrategyutilizedcarefullyselectedkeywordsandBooleanoperatorstoensure
comprehensivecoverageofrelevanttopics,including“TotoraAND/ORCompositeMateri-
als,”“NaturalFiberReinforcementAND/ORLDPE-Al,”“RecycledLDPE-AlAND/OR
CompositeMaterials,”and“SustainableConstructionMaterials.”Thisprocesswasde-
signedtoidentifyvarioussourcesrelatedtousingnaturalfibersandrecycledmaterials
incompositeapplications,particularlywithintheconstructionsector.Thereviewencom-
passedpeer-reviewedscientificarticles,technicalreports,conferenceproceedings,andbook
chapters,enablingdiverseandhigh-qualityinformationcollection.Thisphaseensured
arobusttheoreticalfoundationforthestudybyfocusingonthesespecificthemes,high-
lightingexistingresearchgapsandopportunitiesforinnovationinsustainableconstruction
practices.
TheDocumentSelectionandFilteringphasefocusedonidentifyingstudiesthat
providedexperimentaldataonthemechanicalandphysicalpropertiesofcompositesincor-
poratingnaturalfibersliketotoraandrecycledLDPE-Al.Theselectionprocessprioritized
documentswithpracticalapplications,casestudies,ormaterialperformancesimulations,
ensuringrelevancetotheresearchobjectives.Additionalfilterswereappliedtorefinethe
searchtoexcludeworkslackingexperimentalvalidationorclearapplicability.Emphasis
wasplacedonhigh-impactpublicationsthatdemonstratedrobustexperimentalmethodolo-
giesandmeaningfulcontributionstoconstructionormaterialscience.Thiscarefulfiltering
ensuredthatthefinalselectionofdocumentsprovidedreliable,high-qualitydatatoinform
subsequentstagesofthestudy,layingasolidgroundworkforanalysisandexperimentation.
TheProcessandMaterialAnalysisstageinvolvedextractingdetailedinformation
fromtheselecteddocumentstogaininsightsintomanufacturingmethods,materialsused,
andtheperformanceimprovementsoffabricatedparts.Thisphasefocusedonidentify-
ingadvancementsincompositefabricationtechniques,emphasizingtheirenhancements
overconventionalprocesses.Keydataincludedtheefficiencyofthematerials,durability,
andadaptabilityofnaturalfibersliketotoraandrecycledLDPE-Alcomposites,aswell
ascomparisonstostandardindustrialpractices.Bythoroughlyanalyzingtheseaspects,
thisstepestablishedacomprehensiveunderstandingofhowthesematerialsandmethods
contributetoimprovedperformance,providingcriticalinsightsforpracticalapplications
andfurtherexperimentation.
TheExperimentationphasecenteredonfabricatingacompositepanelusingtheLDPE-
Alcompressionmoldingprocessdescribedby[19].AsdepictedinFigure 2,theprocess 106 beganwithrecyclingshreddedTetrapakcontainerstopreparealayerofLDPE-Al.These 107 layerswerethenfedintoacomputer-controlledhotplatepressequippedwithmoldsfor 108 shaping,allowingtheproductionofbothflatpanelsandtile-likeproducts.Thepressing
systemoperatedatupto300°C,withacompressioncapacityof300KNandamaximum
moldopeningof175mm,ensuringprecisecontrolovertheprocessparameters[20,21].
Figure 2 visuallyoutlinesthesteps,startingwithTetrapakrecycling,thencompression
molding,andendingwithstackedcompositepanelsreadyforuse.Thismethodology
demonstratedtheversatilityandeffectivenessofLDPE-Alcompositesinproducinghigh-
qualitymaterials,providingcriticalinsightsintotheirpracticalapplicationsandvalidating
theproposedmanufacturingtechnique.

Algorithm 1 outlinesthestructuredmethodologyforthecompositematerialstudy.
ItbeginswithacomprehensiveLiteratureReviewtoidentifyknowledgegaps,followed
byDocumentSelectionandFilteringtoensurerelevantandhigh-qualitydata.ThePro-
cessandMaterialAnalysisextractsinsightsintomanufacturingtechniquesandmaterial
performance.Finally,Experimentationvalidatesfindingsthroughcompositefabrication
usingLDPE-Alandtotora,demonstratingpracticalapplicationsinsustainableconstruction
materials[22,23]..
3.Bibliographyanalysisincattailcomposite
ThegraphicalanalysispresentedinFigure 3 illustratestheannualdistributionof
publicationsindexedinScopusthatincludetheterms"cattail"and"construction"over
theanalyzedperiod.Thedatarevealsfluctuatingtrendsinresearchoutput,withnotable
peaksin2001and2021,wherethenumberofpublicationsreachedapproximately5and
7,respectively.Thesepeakssuggestheightenedinterestandactivityinintegratingcattail
fibersintoconstructionresearchduringtheseyears,potentiallydrivenbyadvancementsin
materialscienceorincreasedawarenessofsustainableconstructionpractices.Conversely,
severalyearsdisplayminimalornopublications,reflectingintermittentfocusonthis
nichetopic.However,amarkedsurgeinpublicationfrequencywasobservedaround
2017,culminatinginasignificantpeakin2021,indicatingagrowingrecognitionofthe
importanceofcattailasasustainablematerialinconstruction.Theincreasingpublication
activityintheyearsleadingupto2023underscoresasustainedacademicinterestinthis
area,contributingtoabroaderbodyofknowledge.Thisupwardtrajectoryreflectsthis
interdisciplinaryfield’sdynamicandevolvingnature,combiningsustainablematerialsand
constructiontechnologies[24].
ThebibliographicdatasetpresentedinTable 1 highlightsaselectionofthemostpro-
lificauthorsincattailfiberresearch.Thisfieldhasseenasteadyincreaseinscholarly
publications.Thisupwardtrendreflectsgrowingacademicinterestandresearchactiv-
ity,particularlyevidentintheworkofauthorslikeHidalgo-CorderoJ.F.[25],whohas
publishedsevenarticles.Theircontributionscovervarioustopicsrelatedtocattailfiber,
Algorithm1 MethodologyforCompositeMaterialStudy
1: Input: Researchtopicandobjectives
2: Output: Validatedcompositematerialprototypeandperformanceanalysis
3: procedure COMPOSITEMATERIALSTUDY
4: Step1:LiteratureReview
5: PerformacomprehensivesearchinScopusandWoSdatabases
6: Usekeywords:"TotoraAND/ORCompositeMaterials,""NaturalFiberReinforcement,"etc.
7: Collectsources:articles,technicalreports,bookchapters,andconferenceproceedings
8: Identifyknowledgegapsandtrendsinnaturalfibercomposites
9: Step2:DocumentSelectionandFiltering
10: Selectstudieswithexperimentaldataonmechanical/physicalpropertiesofcomposites
11: Applyfilters:practicalapplications,casestudies,materialperformancesimulations
12: Prioritizehigh-impactpublicationswithclearexperimentalvalidation
13: Step3:ProcessandMaterialAnalysis
14: Extractdataonmanufacturingmethodsandmaterialsused
15: Analyzeperformanceimprovementscomparedtoconventionalprocesses
16: Summarizeinsightsondurability,efficiency,andapplicationsinconstruction
17: Step4:Experimentation
18: PrepareLDPE-AllayerrecycledfromshreddedTetrapakcontainers
19: Useahotplatepressat T ≤ 300◦Cand F ≤ 300KN
20: Fabricatecompositepanelsandmoldedtilesusingcompressionmolding
21: Evaluatetheperformanceofthefabricatedproducts
22: End
NumberofPapers
Figure3. NumberofPublishedPapersperYear(Catail/TotoraFiberResearch)
includingcultivationtechniquesandbroaderenvironmentalimplications,showcasingthe
multifacetednatureofthisareaofstudy.
Multiplepublicationsbythesameauthorsindicatedeepeningexpertiseandongoingde-
velopmentwithinthisnichefield.Additionally,thediversetitlesofthepapersreveal
acomprehensiveexplorationofthesubjectmatter,addressingpracticalapplicationsin
agricultureaswellastheoreticalstudiesonenvironmentalimpact.Theconsistentincrease
inpublicationsovertheyearshighlightsthesignificanceofcattailfiberinvariousscientific
andecologicalcontexts.Itsuggestsagrowingcommunityofresearcherscommittedto
advancingourunderstandingofthisarea[23,26].
CitationAuthor(s)Methodology
[2] Hidalgo-CorderoJ.F.,GarcíaNavarroJ.
[27] AstiniR.A.,RapaliniA.E.,AbdEl-Fatah-KhalilS.
[28]AchaD.,PointD.,JimenezC.
[29]Aza-MedinaL.C. Totorapanelsforsustainableconstructionmaterialcharacterization 2
Table1. TopAuthorsandMethodologiesinCattailFiberResearch
ThebarchartinFigure 4 analysesthemostfrequentlyusedkeywordsinScopus-
indexedresearchrelatedtocattailandconstruction.Thekeyword"wetlands"stands
outwiththemostmentions(28),reflectingthesignificantroleofwetlandecosystemsin
studiesinvolvingcattails.Followingthis,"Typha"appears22times,underscoringthe
centralimportanceofthisgenusincattailresearch.Theterms"wetland"and"constructed
wetland"arementioned20and15times,respectively,highlightingafocusonengineered
ecosystemsforenvironmentalapplications.Thekeyword"wastewatertreatment,"with15
mentions,emphasizestheintegrationofcattailresearchinaddressingwaterpurification
andsustainabilitychallenges.Additionally,"Phragmitesaustralis"and"cattail"appear
14and11times,respectively,indicatinginterestinspecificplantspeciesusedinsimilar
ecologicalorconstructioncontexts.Thespecies"Typhalatifolia"andthetopic"water
quality"areeachmentioned11times,furtherpointingtotheecologicalandenvironmental
dimensionsoftheresearch.Finally,termslike"constructedwetlands,""wastewater,"and
"vegetation,"withmentionsrangingfrom10to8,reflectthemultidisciplinarynatureof
cattailresearch,bridgingfieldssuchasenvironmentalengineering,plantsciences,and
construction.Thisdiversekeyworddistributionshowcasesthebreadthofthefieldandits
increasingrelevanceinsustainablepractices[30,31].
ThebargraphillustratedinFigure 5 analyzesthecountrieswiththemostpublications
relatedtocattailfiberresearchbetween1996and2023.ThedatarevealsthattheUnited
Statesistheleadingcontributor,with51publicationsdemonstratingitssignificantrolein
advancingthisresearchfield.Chinafollowswith26publications,indicatingsolidacademic
interestandcontributionsfromAsia. 178
TheNetherlandsranksthirdwith11publications,reflectingnotableengagementin
thisareafromEurope.Othercountries,suchasGermany(4publications),Canada(3
publications),andIndiaandBrazil(2publicationseach),alsocontribute,albeitatlower 181 levels.Thesefigureshighlightthediverseinternationalparticipationincattailfiberresearch. 182 Thisdistributionunderscorestheprominenceofcertaincountries,particularlythe
UnitedStatesandChina,inshapingtheresearchlandscape.Theinvolvementofcoun-
triesfromdifferentregionsfurtheremphasizestheglobalrelevanceofcattailfiberasa
sustainablematerialinvariousapplications,includingconstructionandenvironmental
remediation.Thedifferencesinpublicationoutputsuggestvaryinglevelsoffocusand
investmentinthisfieldglobally[32].
4.AnalysisandResults
Variousstudieshaveevaluatedthemechanicalpropertiesoftotora,thoughthestan-
dardsusedfortestingsometimesneedtobeclearlyspecified.Forinstance,Culcayetal.
[33]reportedthatalaminatedtotorasampleexhibitedaflexuralstrengthof0.81MPawitha
thicknessof50mm.Incontrast,Aza-Medina[29]recorded7.46MPawithatoleranceof1.07
andathicknessof13mm.Forcrushedtotorasamples,Aza-Medina[29]reportedaflexural
strengthof0.48MPawithatoleranceof0.16andathicknessof13mm.Additionally,
NumberofPublications
Figure5. AnalysisoftheCountrieswiththeMostPaperProductionRelatedtoCatailFiber.
Furthermore,sandwichpanelsmadefromshreddedTetrapakdemonstratedsuperior
flexuralstrength(78.18 MPa)comparedtoLDPE-Alpanels(66.76 MPa),evaluatedusing
ASTMC393-00[19].Comparativeanalysesalsoshowthat 20 mm thickLDPE-Alboardsex-
hibitcompressivestrength(104.35 MPa)whilecorrugatedpanelsachieveflexuralstrength
(163.917 MPa)inaccordancewithASTMD143-94.Studiesintegratingtotorawithother
materialshighlightitssignificantinfluenceonmechanicalproperties.Forinstance,[29]
reportedthatadding 10% totoratoconcreteachievedanaveragecompressivestrength
of 13.18 MPa,thoughhigherfibercontentreducedstrength.Similarly,adobespecimens
with 1.5%, 3%,and 4.5% totorashowedreducedcompressivestrengthby 24.69%, 45.42%,
and 43.90%,respectively.Thecompositewith 20% particulatetotorafibershowedoptimal
properties,withflexuralstrengthof4.92MPaandtensilestrengthof23.60MPa[29].
Table2. MechanicalpropertiesofmaterialsincorporatingtotoraandrecycledLDPE-Alcomposites
MaterialDescriptionThickness(mm)FlexuralStrength(N/mm²)CompressiveStrength(N/mm²)TensileStrength(N/mm²)Standard Totoraandorthophthalicunsaturatedpolyesterresin(SINTAPOL 2074) -89.13-70.942ASTMD3039-14
Polyesterresinreinforcedwith 5%totora
Polyesterresinreinforcedwith 20%totora
Polyesterresinreinforcedwith 35%totora
Gypsumandtotorawithcabuya mesh
0.4±0.017.00-23.21ASTMD7264/ASTMD3039
0.4±0.014.92-23.60ASTMD7264/ASTMD3039
0.4±0.014.38-7.27ASTMD7264/ASTMD3039
Adobeblockwith1.50%totora fibers --1.73-R.N.E(E-080)
RecycledLDPE-Alreinforced withcontinuousfiquefibers (90/10) -30--ASTMD790
LDPE-Alcompositepanel(sandwichtype,shreddedcore)
3.8078.18±1.5--ASTMC393-00
Polyethylenealuminumpanel(5 waves) 5163.917--ASTMD143-94
LDPE-Alcompositeboard20-104.35-ASTMD143-94
Table3. CompositionandWeaveTypeofTotoraandLDPE-AlPanels
Regardingthickness,[6]observedflexuralstrengthincreasedasmaterialthickness
decreased,aphenomenonattributedtoweakadhesionbetweengypsumandtotora.This
inadequatebondingcausedflexuralstresstoconcentrateprimarilyonthegypsumstructure,
leadingtorapidcracking.Thestudysuggestedthatenhancingtheinterfacialbondcould
significantlyimprovecompositestrength[29,34].Figure 6 comparestheflexuralstrength
ofvariouscompositematerials,asdetailedinTable 4,whichdescribeseachnumbered
material.Theresultshighlightsubstantialvariationsinbendingproperties,withMaterial11
(TotoraandSINTAPOL2074)demonstratingthehighestflexuralstrength(89.13N/mm
whileMaterials5and6(adobecomposites)showsignificantlylowervalues(0.32 N/mm
and 0.18 N/mm2,respectively).Thesefindingsemphasizetheinfluenceofmaterialcompo-
sitionandstructureonmechanicalperformance.
FlexuralStrength(N/mm²)
Figure6. CompositematerialswithTotoraorPolyethyleneAluminum.
Table4. MaterialsandTheirCorrespondingIDs
IDMaterialDescription
1PolyethyleneAluminumComposite50/50
2PolyethyleneAluminumComposite70/30
3PolyethyleneAluminumComposite90/10
4Adobewith4.50%TotoraFiber
5Adobewith0.0%TotoraFiber
6GypsumandTotorawithSisalMeshSpecimen19mm
7GypsumandTotorawithSisalMeshSpecimen21mm
8PolyesterResinReinforcedwith35%Totora
9PolyesterResinReinforcedwith20%Totora
10PolyesterResinReinforcedwith5%Totora
11TotoraandSINTAPOL2074
5.ExperimentalAnalysis
Thecompositematerialcombiningtotoraandpolyaluminum,asdescribedby[35],
usespolyaluminumsuppliedbyEcuaplasticS.C.andtotorasourcedfromtheParishof
SanJosédelaLagunainOtavalo.Themanufacturingprocess,carriedoutbyMartaGonza
andtheartisangroupTotorawasi,involvesthermocompressionatgraduallyincreasing
temperaturesfrom 60◦ C to 120◦ C throughout35to45minutes.Theresultingcomposite


Figure7. Testspecimensofcompositematerials:(a)cross-woventotoraandpolyaluminum,(b) sandwich-structuredtotoraencapsulatedwithpolyaluminum.
ispresentedintwodistinctvariants.Figure 7 illustratesthesespecimens:(a)thefirst
typefeaturestwojoinedsurfaces,onewithacross-woventotorastructureandtheother
composedofpolyaluminum;(b)thesecondtypeisasandwichcomposite,wheretwopolya-
luminumlayersencapsulateacentraltotorasurface.Theseconfigurationsshowcasethe
versatilityandintegrationofbiodegradableandrecycledmaterials,offeringthepotential
forsustainableconstructionandfunctionalapplications.
Testspecimensofthetotoraandpolyaluminumcompositewereproducedfollowing
standardizedprotocolstoevaluatetheirmechanicalproperties.Fortensiletesting,spec-
imenswerepreparedinaccordancewithASTMD3039M-17,whileASTMD790-17was
usedforbendingtests,bothwidelyappliedstandardsforfiber-reinforcedcomposites.Ad-
ditionally,specimenswerepreparedfollowingASTMD6110-18forimpactresistanceand
NTEINEN1162forcompressiontestingtogathercomprehensivedataonthecomposite’s
performance.Toobtainthespecimens,totoraandpolyaluminumboardswerecutusing
aprecisiontablesaw,ensuringadimensionaltoleranceof 2 mm.Figure 8 illustratesthe
dimensionsofthetestspecimensasspecifiedbythecorrespondingstandards.Thetensile
andbendingspecimensmeasure 250 mm inlengthwiththicknessesof 25 mm (ASTM
D3039)and 20 mm (ASTMD790),whilecompressionandimpactspecimensadheretothe
respectivedimensionsdefinedbyNTEINEN1162andASTMD6110.

Dimensionsofthetestpieces.
Thetensiletestresultsforthetotora-polyaluminumcompositesarepresentedin
Table 5.ThetestswereconductedusingaShimadzuAutographAGSX50KNmachine
inaccordancewithASTMD3039M-17standards.Sevenspecimensfromtwocomposite
types—cross-wovenandsandwich—wereevaluatedtodeterminetheirtensileperformance.
Theresultsindicatethepresenceofanelasticzoneuptoanappliedforceofapproximately
200N,withthespecimensreachingtheirbreakinglimitsbetween1100Nand1650N.
Forthecross-wovenspecimens,themaximumtensileforceachievedwas 5.38971 N/mm
withamaximumdisplacementof 10.4163 mm anddeformationof 6.76384%.Incomparison,
thesandwichspecimensexhibitedahighermaximumtensileforceof 5.65622 N/mm2,but
withareduceddisplacementof 6.1959 mm anddeformationof 3.82584%.Theseresultssug-
gestthatwhilethesandwichcompositeprovideshighertensileresistance,thecross-woven
structureoffersgreaterflexibilityunderload.Bothmaterialsdemonstratetheirmechanical
viabilityforstructuralapplications,highlightingtheinfluenceofweavedesignontensile
performance.
evaluated.Thecross-wovenspecimensexhibitedavolumeof 28291.193 mm3 andaweight
of 17.18 g.Incomparison,thesandwich-typespecimensshowedaslightlylowervolumeof
27246.160mm3 andweightof17.304g,indicatingminordifferencesinbulkdensity.
Themechanicalcharacterizationofthematerialsinvolvedcalculatingtheirkeyme-
chanicalproperties,assummarizedinTable 8.TheYoung’smodulus,Poisson’scoefficient,
ultimatetensilestrength,andelastictensilestrengthweredeterminedusingASTMD3039M-
17fortensiletests.ASTMD790-17wasappliedforbendingstrength,whileASTMD6110-18
wasusedtocalculateimpactresistance.Finally,thebulkdensitywasobtainedbasedon
theNTEINEN1162standard.Theseresultscomprehensivelyunderstandthecomposite
materials’mechanicalbehavior,highlightingtheirsuitabilityforstructuralapplications
andensuringcompliancewithinternationaltestingstandards.
Table8. Mechanicalpropertiesofthecompositematerials.
SpecimensTensileProperties(MPa)FlexuralStress(MPa)ImpactResistance(J)Young’sModulus(MPa)Density(×1014 g/cm3) Crosswoven Ultimate:5.823,Yield:0.74011.182232.548481.4706.377 Sandwich Ultimate:5.875,Yield:1.63611.855135.089910.1936.076
Themechanicalpropertiesofthetotora-polyaluminumcompositewerecompared
withvariouscompositematerials,particularlythosereinforcedwithnaturalfibersand
polymermatrices.Significantdifferenceswereobservedincompositesincorporatingtotora
reinforcement.Thetotal-polyaluminumcompositedisplayedlowervaluescompared
totheorthophthalicunsaturatedpolyestercompound(SINTAPOL2074)reinforcedwith
totorafiber[36],whichachievedvaluesupto 65 MPa forultimatetensilestrength, 593 MPa
forthemodulusofelasticity,and 78 MPa forflexuralstrength.Similarly,theepoxyresin
compositewith 60% resinand 40% totorafiber[37]exhibitedsuperiorultimatetensile
strength,withdifferencesofapproximately45MPa.
Comparedtothepolyesterresincompound33000reinforcedwithlongandwoven
totorafibers[38],thetotora-polyaluminummaterialpresentedlowervaluesforultimate
tensileandflexuralstrengths.However,itshowedahighermodulusofelasticityby
219 MPa.Fortheisophthalicpolyesterresincompoundreinforcedwithneopentylglycol
andtotorastems,thetotora-polyaluminumcompositedemonstratedsuperiorbending
resistance,exceedingitby 3 MPa.However,thepolyesterresin-naturalfibercomposite[39]
exhibitedhighervalues,withdifferencesof 9 MPa inultimatetensilestrength, 126 MPa in
modulusofelasticity,and60MPainflexuralstrength. 349
Whencomparedtothepolyesterresincompound33000with 5% totoraparticles[6],
thetotora-polyaluminumcompositedisplayedslightlylowertensilestrength,trailingby
2 MPa,andareducedflexuralstrengthby 10 MPa.Additionally,theepoxyresin-natural
fibercompositewith 90% resinand 10% totorafiber[37]reportedhighertensilestrength,
exceedingthetotora-polyaluminummaterialby12MPa.
Forpolyaluminumcompositesreinforcedwithothernaturalfibers,suchascontinuous
agro-fibers(fique)[40]andshortfiquefibersintwo-dimensionalorientation[41],the
ultimatetensilestrengthreached 63 MPa and 20 MPa,respectively,withsignificantlyhigher
354
modulusofelasticityvaluesof6GPaand3GPa. 358
Incomparisontolow-densitypolyethylene(LDPE)compoundsreinforcedwith 30%
sisal,jute,andpineleaffibers[42],aswellaspolyester102compositeswithfive-layer
fiquefibers[43],thesematerialsexhibitedsuperiortensilestrengthbutlowermodulusof
elasticity.Similarly,biodegradablecompositessuchastapiocastarchwithbamboofiber
[44]showedhighertensilestrength,whilepolylacticacid(PLA)compositesreinforcedwith
jutefiber[45]demonstratedlowertensilestrengthandmodulusofelasticitycomparedto
thetotora-polyaluminumcomposite.
Thecomparativeanalysisrevealsthatthetotora-polyaluminumcompositepossesses
relativelylowerelasticcapacityduetoitslimitedtensilestressperformanceandreduced
ductilityofthetotorareinforcementwithinthepolyaluminummatrix.Thiscombination
resultsinamaterialwithminimaldeformationcapacity,emphasizingtheneedforfurther
optimizationtoenhancemechanicalproperties.
6.PotentialApplications
CompositematerialsderivedfromrecycledLDPE-Alandnaturalfibershavebeen
extensivelystudiedfortheirmechanicalpropertiesandpotentialapplications.Forinstance,
[35]demonstratedthatincreasingthepercentageoffiquefibersinanLDPE-Alcomposite
matrixenhancestensilestrengthandstiffness.Tensiletestsrevealedthathigherfiquefiber
contentimprovedcriticalproperties,suchasflexuralstrengthandmodulus.Thestudy
identifiedanoptimalcompositionofa50/50matrix-to-fiberratio,whichprovidedthebest
balanceofmechanicalperformance,combiningstrengthandflexibility[24].Inourexperi-
mentation,compositepanelsweredeveloped(Table 3)usingavarietyofnaturalmaterials,
includingtotora(Schoenoplectuscalifornicus)indifferentforms:stems,wovenfabrics,
kichwa-stylecords,andpulpforpaperandcardboardproduction.Thebindingsystem
employedastarch-basedgluereinforcedwithtotorafibers,polyvinylacetateadhesives,
andrecycledmaterials,suchasplasticsandTetrapakwaste.Thesebindingagentswere
combinedwithwoventotora,recycledLDPE-Al,andrawtotorafibers,resultinginversatile
composites.Thisapproachintegratessustainablematerialstooptimizethemechanical
propertiesandpromoteeco-friendlyconstructionsolutions.
AsshowninTableAsdetailedinTable 3,twodistinctcompositematerialsweredeveloped
throughpracticalexperimentation,eachincorporatingrecycledLDPE-Alandtotora.The
firststructuralcompositionfeaturesacross-weavepattern,asshowninFigure 9(a),high-
lightingitsuniforminterlacingthatenhancesrigidityandstructuralstability.Thesecond
compositionemploysaninterlacedweavedesign,illustratedinFigure 9(b),characterized
byatighterandmoreintricateweavingpattern,whichimprovesflexibilityandsurface
uniformity.Theseconfigurationsdemonstratetheversatilityoftotoraincombinationwith
recycledLDPE-Al,showcasingtheirpotentialfordiverseconstructionandarchitectural
applicationswheretailoredmechanicalpropertiesarerequired.


Figure9. Totora-basedcompositematerialswithrecycledLDPE-Al:(a)cross-weavepatternand(b) interlacedweaveforstructuralapplications.

However,thisinnovativeproposalneedsmorethoroughtestingtofullycharacterize
itsphysicalandmechanicalproperties,presentingasignificantopportunityforfurther
research.Preliminaryfindingssuggestthatthesecompositematerialsofferseveralad-
vantages,includingresistancetoexpansionunderextremeclimaticconditions,enhanced
mechanicalstrengthcomparedtorawtotora,excellentsoundproofingcapabilities,thermo-
formability,andmoistureresistance.Onepromisingapplicationforthesepanelsistheiruse
asroofingmaterials,particularlywhencombinedwithotherbiodegradablecomponents.
AsillustratedinFigure 12,thecorrugatedstructureenhancesitspracticalityforroofing
byimprovingwaterrunoffandstructuralrigidity,makingitasustainableandfunctional
alternativeformodernconstructionprojects.Furtherstudiesareessentialtovalidatethese
propertiesandexpandtheirpotentialapplications.

applications.
Figure 13 showcasesapracticalapplicationofcompositematerialpanelsintegrated
withotherstructuralelements,demonstratingtheirversatilityinmoderninteriordesign.
Thepanelsareutilizedasceilingelements,contributingtoanaestheticallypleasingand
naturalappearancewhilemaintainingstructuralfunctionality.Thisexamplehighlightsthe
material’sabilitytoblendseamlesslywithvariousarchitecturalstyles.Studiesindicatethat
suchcompositescanmaintaintheirstructuralintegrityandvisualappealformanyyears
duetotheirenhanceddurabilityandresistancetoenvironmentalfactors.Thisdurability
furtherenhancestheirpracticalutilityinresidentialandcommercialsettings,makingthem
asustainableandinnovativechoiceforinteriorapplications.

Figure13. Interiorapplicationofcompositepanelsfordurable,sustainable,andaestheticallypleasing ceilingdesigns.
Totora,asabiodegradablematerial,enhancesthesustainabilityofbothcomposite
compositionscomparedtothosemadeentirelyfromsyntheticmaterials.Thesecondcom-
position,withahighertotoracontent,offersmoreexcellentbiodegradability,whereasthe
firstcomposition,withahigherpolyethylenecontent,compromisesthisproperty.However,
recyclabilityposesachallengeduetothedifficultyinseparatingthematerialsforreuse.
IncludingrecycledLDPE-Alinbothpaneltypesintroducesanenvironmentalconcern,as
plasticwasteremainsasignificantsustainabilityissue.
Nevertheless,incorporatingrecycledpolyethyleneandaluminummitigatestheenviron-
mentalimpactofthesewastematerials,demonstratingacirculareconomyapproach.Itis
essentialtofurtherimprovetheirenvironmentalperformancebyadvancingseparationand
recyclingtechnologiesformixed-materialcomposites.Thenextphaseofthisprojectwill
focusoncomprehensivematerialcharacterizations,includingsustainabilityassessments,
carbonfootprintanalysis,recyclingprocessevaluations,andothercriticalstudiestoopti-
mizetheenvironmentalandfunctionalbenefitsoftheseinnovativecomposites.
UrbanDesign:Opportunities,LimitsandNeeds-TowardsanEnvironmentallyResponsible
Architecture,PLEA2012,2012.
5. EduardoPalomino,C.L.;ZegarraLazo,L.E.TabiqueíaEcológica,EmpleandoTotoracon
RevestimientodeyesooMortero,ComoTécnicadeBioconstrucciónenlaCiudaddePuno
2015
6. GaiborChacha,E.R.Caracterizacióndeunmaterialcompuestoconmatrizderesinade
poliésterreforzadoconpartículadetotora 2017.
7. SilvaTapia,J.D.Diseñodeunprocesoparalaelaboracióndeplacasdepolialuminio 2016
8. Restrepo,S.M.V.;Arroyave,G.J.P.;Vásquez,D.H.G.Usodefibrasvegetalesenmateriales
compuestosdematrizpolimérica:unarevisiónconmirasasuaplicacióneneldiseñode
nuevosproductos. InformadorTécnico 2016, 80,77–86.
9. Madurwar,M.V.;Ralegaonkar,R.V.;Mandavgane,S.A.Applicationofagro-wasteforsustain-
ableconstructionmaterials:Areview. ConstructionandBuildingMaterials 2013, 38,872–878.
doi:https://doi.org/10.1016/j.conbuildmat.2012.09.011
10. deLange,P.J.;Gardner,R.O.;Champion,P.D.;Tanner,C.C.Schoenoplectuscalifor-
nicus(Cyperaceae)inNewZealand. NewZealandJournalofBotany 1998, 36,319–327. 521 doi:10.1080/0028825X.1998.9512573
11. Pratolongo,P.;Kandus,P.;Brinson,M.M.Netabovegroundprimaryproductionandbiomass
dynamicsofSchoenoplectuscalifornicus(Cyperaceae)marshesgrowingunderdifferent
hydrologicalconditions. Darwiniana 2008, 46,258–269.
12. SabahHaseeb,Q.;MuhammedYunus,S.;AttellahAliShoshan,A.;IbrahimAziz,A.A
studyoftheoptimalformandorientationformoreenergyefficiencytomassmodelmulti-
storeybuildingsofKirkukcity,Iraq. AlexandriaEngineeringJournal 2023, 71,731–741.
doi:https://doi.org/10.1016/j.aej.2023.03.020
13. Jara-Vinueza,O.;Pavon,W.;Remache,A.SustainableConstructionwithCattailFibers
inImbabura,Ecuador:PhysicalandMechanicalProperties,Research,andApplications.
Buildings 2024, 14,1703.
14. Calheiros,C.S.C.;Stefanakis,A.I.Greenroofstowardscircularandresilientcities. Circular 533 EconomyandSustainability 2021, 1,395–411. 534
15. H ` ysková,P.;Gaff,M.;Hidalgo-Cordero,J.F.;H ` ysek,Š.Compositematerialsfromtotora 535 (Schoenoplectuscalifornicus.CAMey,Sojak):Isitworthit? CompositeStructures 2020, 536 232,111572. 537
16. Hidalgo-Castro,P.;Hidalgo-Cordero,J.;García-Navarro,J.Estudiodelcomportamiento 538 físico-mecánicoderollosdetotoraamarrados:influenciadelatensióndeamarre,diámetroy 539 longitud. DISEÑOARTEYARQUITECTURA 2019,pp.53–84. 540
17. Zhao,Z.L.;Liu,X.Y.;Liu,H.;Feng,X.Q.;Yang,J.Ductilityimprovementofmetallic 541 barsbybioinspiredchiralmicrostructures. ExtremeMechanicsLetters 2023, 64,102063. 542 doi:https://doi.org/10.1016/j.eml.2023.102063 543
18. Min,J.;Yan,G.;Abed,A.M.;Elattar,S.;AmineKhadimallah,M.;Jan,A.;ElhosinyAli,H.The 544 effectofcarbondioxideemissionsonthebuildingenergyefficiency. Fuel 2022, 326,124842. 545 doi:10.1016/j.fuel.2022.124842 546
19. Hidalgo-Cordero,J.F.;Revilla,E.;García-Navarro,J.ComparativeChemicalAnalysisofthe 547 RindandPithofTotora(Schoenoplectuscalifornicus)Stems. JournalofNaturalFibers 2020, 548 17,954–965.doi:10.1080/15440478.2018.1541773 549
20. González,T.;Puigagut,J.;Vidal,G.Organicmatterremovalandnitrogentransformationbya 550 constructedwetland-microbialfuelcellsystemwithsimultaneousbioelectricitygeneration. 551 ScienceoftheTotalEnvironment 2021, 753,142075. 552
21. Romero,M.;Flores,M.;Bravo-Thais,S.;Guzman,M.SchoenoplectuscalifornicusasPotential 553 RemoverofMetalElementsfromMineEffluents:ALaboratoryAssessment. CLEAN–Soil,Air, 554 Water 2023, 51,2200029.
555
22. Cáceres,S.H.;Quispe,D.K.P.;Maron,R.A.C.Eco-efficientthermoacousticpanelsmadeof 556 totoraandgypsumforsustainableruralhousingceilings. MaterialesdeConstrucción 2023, 557 73,e331–e331. 558
23. Heiser,C.TheTotora(ScirpusCalifornicus)inEcuadorandPeru. EconomicBotany 1978, 559 32,222–236.doi:10.1007/BF02864698.
560
24. JaraVinueza,O.D.Artesyoficios(constructivosentotora)comovinculaciónmaterialal 561 diseñoydetallearquitectónico,2018. 562
45. Fang,C.c.;Zhang,Y.;Qi,S.y.;Liao,Y.c.;Li,Y.y.;Wang,P.Influenceofstructuraldesign
onmechanicalandthermalpropertiesofjutereinforcedpolylacticacid(PLA)laminated
composites. Cellulose 2020, 27,9397–9407.