INVESTIGACION 2018. ARQ. JARA ARTICULO 2024

Page 1


buildings

Article

Schoenoplectuscalifornicus(cattail)thermofusionwithrecycled material.LowdensityPolyethyleneandAluminium(LDPE-AL) compositeforDesignandConstruction.

OscarJara-Vinueza1 , 2* ,WilsonPavon 3 ,AbelRemache 4 ,FlavioArroyo 5 andMichaelGutiérrez 5

1 ArchitectureandDesignDepartment,UniversidadUniversidaddeLasAméricas, QuitoEC170125,Ecuador; ojaral@ups.edu.ec

2 ArchitectureDepartment,UniversidadPolitécnicaSalesiana,QuitoEC170146,Ecuador;ojaral@ups.edu.ec

3 ResearchProfessor,EngineeringDepartment,UniversidadPolitécnicaSalesiana,QuitoEC170146,Ecuador; wpavon@ups.edu.ec

4 SchoolofEngineeringandAppliedSciences,MechanicalEngineeringCareer,UniversidadCentraldel Ecuador,QuitoEC170146,Ecuador;apremache@uce.edu.ec

5 SchoolofEngineeringandAppliedSciences,IndustrialDesignCareer,UniversidadCentraldelEcuador, QuitoEC170146,Ecuador;frarroyo@uce.edu.ec,mjgutierrezc@uce.edu.ec

* Correspondence:oscar.jara@udla.edu.ec;Tel.:+593-

Abstract: Thisstudypresentsacomprehensivedocumentaryinvestigation,compilingtechnical informationabouttotora Schoenoplectuscalifornicus andrecycledLow-DensityPolyethyleneand Aluminum(LDPE-Al)composites,focusingontheirmechanicalproperties.Theprimaryobjective istoevaluatetheviabilityofthesematerialsascompositecandidatesforthemanufacturingand constructionsectorsthroughanexploratory,descriptiveinquiry.Theresearchaimstoopenthe possibilityofdesigninganddevelopingnewmaterialsusingtotoraandrecycledLDPE-Al.The findingsrevealthatincorporatingtotorainpercentagesrangingfrom0.5%to35%significantly alterspropertiessuchasflexural,tensile,andcompressivestrength,dependingonthematerial matrix.Similarly,recycledLDPE-Alcompositesexhibitcomparableimprovementsinmechanical performance.ExperimentalprototypescombiningtotoraandrecycledLDPE-Alweredeveloped, demonstratingpotentialasasustainablealternativetowood-basedcomposites.Thesematerialsshow promisingmechanicalproperties,withtheaddedbenefitofreducingenvironmentalimpact.Further materialcharacterizationisrecommendedasthenextsteptovalidatetheirstructuralapplications, particularlyintheconstructionandmanufacturingindustries.Thisworkcontributestoexploring sustainablecompositematerialsandpavesthewayforinnovativesolutionsthatbalancemechanical performancewithenvironmentalsustainability.

Citation: Buildings 2024, 1,0. https://doi.org/

AcademicEditor:

Received:28November2023

Revised:4January2024

Accepted:11January2024

Published:date

Copyright: © 2024bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons

Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

Keywords: Totora;recycledLDPE-Al;compositematerials;mechanicalproperties;panels;sustainable con-struction;naturalfibers;polymercomposites.

1.Introduction

ufacturinghasgarneredsignificantattentionbecauseoftheirenvironmentalbenefitsand

thepotentialforinnovationinmaterialscience.Previousstudieshaveemphasizedthe

advantagesofnaturalfibercompositesinimprovingmechanicalpropertiesandimproving

sustainability[1].However,thespecificcombinationoftotora Schoenoplectuscalifornicus

andtherecycledlowdensitypolyethyleneandaluminumcompound(LDPE-Al)remains

underexplored.

Theenvironmentalimpactcausedbytheuseoftraditionalmaterials(suchascementand

steel)hasdriventhesearchfornewmaterialsthatcanmitigatethedamagethatisinflicted

ontheenvironment.ThisresearchaimstodeterminewhethertotoraandrecycledLDPE-Al

compositecanmeettheseexpectationsbyanalyzingandsynthesizingexistinginformation

integratingtheoreticalinsightswithempiricaldatatoproducerobustandactionableresults

[17,18].

Figure1. Four-PhaseMethodologicalFrameworkforSystematicResearchAnalysis.

TheLiteratureReviewinvolvedathoroughandsystematicsearchacrossestablished

databasessuchasScopusandWebofScience(WoS),formingthefoundationforthestudy.

ThesearchstrategyutilizedcarefullyselectedkeywordsandBooleanoperatorstoensure

comprehensivecoverageofrelevanttopics,including“TotoraAND/ORCompositeMateri-

als,”“NaturalFiberReinforcementAND/ORLDPE-Al,”“RecycledLDPE-AlAND/OR

CompositeMaterials,”and“SustainableConstructionMaterials.”Thisprocesswasde-

signedtoidentifyvarioussourcesrelatedtousingnaturalfibersandrecycledmaterials

incompositeapplications,particularlywithintheconstructionsector.Thereviewencom-

passedpeer-reviewedscientificarticles,technicalreports,conferenceproceedings,andbook

chapters,enablingdiverseandhigh-qualityinformationcollection.Thisphaseensured

arobusttheoreticalfoundationforthestudybyfocusingonthesespecificthemes,high-

lightingexistingresearchgapsandopportunitiesforinnovationinsustainableconstruction

practices.

TheDocumentSelectionandFilteringphasefocusedonidentifyingstudiesthat

providedexperimentaldataonthemechanicalandphysicalpropertiesofcompositesincor-

poratingnaturalfibersliketotoraandrecycledLDPE-Al.Theselectionprocessprioritized

documentswithpracticalapplications,casestudies,ormaterialperformancesimulations,

ensuringrelevancetotheresearchobjectives.Additionalfilterswereappliedtorefinethe

searchtoexcludeworkslackingexperimentalvalidationorclearapplicability.Emphasis

wasplacedonhigh-impactpublicationsthatdemonstratedrobustexperimentalmethodolo-

giesandmeaningfulcontributionstoconstructionormaterialscience.Thiscarefulfiltering

ensuredthatthefinalselectionofdocumentsprovidedreliable,high-qualitydatatoinform

subsequentstagesofthestudy,layingasolidgroundworkforanalysisandexperimentation.

TheProcessandMaterialAnalysisstageinvolvedextractingdetailedinformation

fromtheselecteddocumentstogaininsightsintomanufacturingmethods,materialsused,

andtheperformanceimprovementsoffabricatedparts.Thisphasefocusedonidentify-

ingadvancementsincompositefabricationtechniques,emphasizingtheirenhancements

overconventionalprocesses.Keydataincludedtheefficiencyofthematerials,durability,

andadaptabilityofnaturalfibersliketotoraandrecycledLDPE-Alcomposites,aswell

ascomparisonstostandardindustrialpractices.Bythoroughlyanalyzingtheseaspects,

thisstepestablishedacomprehensiveunderstandingofhowthesematerialsandmethods

contributetoimprovedperformance,providingcriticalinsightsforpracticalapplications

andfurtherexperimentation.

TheExperimentationphasecenteredonfabricatingacompositepanelusingtheLDPE-

Alcompressionmoldingprocessdescribedby[19].AsdepictedinFigure 2,theprocess 106 beganwithrecyclingshreddedTetrapakcontainerstopreparealayerofLDPE-Al.These 107 layerswerethenfedintoacomputer-controlledhotplatepressequippedwithmoldsfor 108 shaping,allowingtheproductionofbothflatpanelsandtile-likeproducts.Thepressing

systemoperatedatupto300°C,withacompressioncapacityof300KNandamaximum

moldopeningof175mm,ensuringprecisecontrolovertheprocessparameters[20,21].

Figure 2 visuallyoutlinesthesteps,startingwithTetrapakrecycling,thencompression

molding,andendingwithstackedcompositepanelsreadyforuse.Thismethodology

demonstratedtheversatilityandeffectivenessofLDPE-Alcompositesinproducinghigh-

qualitymaterials,providingcriticalinsightsintotheirpracticalapplicationsandvalidating

theproposedmanufacturingtechnique.

Algorithm 1 outlinesthestructuredmethodologyforthecompositematerialstudy.

ItbeginswithacomprehensiveLiteratureReviewtoidentifyknowledgegaps,followed

byDocumentSelectionandFilteringtoensurerelevantandhigh-qualitydata.ThePro-

cessandMaterialAnalysisextractsinsightsintomanufacturingtechniquesandmaterial

performance.Finally,Experimentationvalidatesfindingsthroughcompositefabrication

usingLDPE-Alandtotora,demonstratingpracticalapplicationsinsustainableconstruction

materials[22,23]..

3.Bibliographyanalysisincattailcomposite

ThegraphicalanalysispresentedinFigure 3 illustratestheannualdistributionof

publicationsindexedinScopusthatincludetheterms"cattail"and"construction"over

theanalyzedperiod.Thedatarevealsfluctuatingtrendsinresearchoutput,withnotable

peaksin2001and2021,wherethenumberofpublicationsreachedapproximately5and

7,respectively.Thesepeakssuggestheightenedinterestandactivityinintegratingcattail

fibersintoconstructionresearchduringtheseyears,potentiallydrivenbyadvancementsin

materialscienceorincreasedawarenessofsustainableconstructionpractices.Conversely,

severalyearsdisplayminimalornopublications,reflectingintermittentfocusonthis

nichetopic.However,amarkedsurgeinpublicationfrequencywasobservedaround

2017,culminatinginasignificantpeakin2021,indicatingagrowingrecognitionofthe

importanceofcattailasasustainablematerialinconstruction.Theincreasingpublication

activityintheyearsleadingupto2023underscoresasustainedacademicinterestinthis

area,contributingtoabroaderbodyofknowledge.Thisupwardtrajectoryreflectsthis

interdisciplinaryfield’sdynamicandevolvingnature,combiningsustainablematerialsand

constructiontechnologies[24].

ThebibliographicdatasetpresentedinTable 1 highlightsaselectionofthemostpro-

lificauthorsincattailfiberresearch.Thisfieldhasseenasteadyincreaseinscholarly

publications.Thisupwardtrendreflectsgrowingacademicinterestandresearchactiv-

ity,particularlyevidentintheworkofauthorslikeHidalgo-CorderoJ.F.[25],whohas

publishedsevenarticles.Theircontributionscovervarioustopicsrelatedtocattailfiber,

Figure2. ExperimentalMethodwithTotoraandLDPE-Al.

Algorithm1 MethodologyforCompositeMaterialStudy

1: Input: Researchtopicandobjectives

2: Output: Validatedcompositematerialprototypeandperformanceanalysis

3: procedure COMPOSITEMATERIALSTUDY

4: Step1:LiteratureReview

5: PerformacomprehensivesearchinScopusandWoSdatabases

6: Usekeywords:"TotoraAND/ORCompositeMaterials,""NaturalFiberReinforcement,"etc.

7: Collectsources:articles,technicalreports,bookchapters,andconferenceproceedings

8: Identifyknowledgegapsandtrendsinnaturalfibercomposites

9: Step2:DocumentSelectionandFiltering

10: Selectstudieswithexperimentaldataonmechanical/physicalpropertiesofcomposites

11: Applyfilters:practicalapplications,casestudies,materialperformancesimulations

12: Prioritizehigh-impactpublicationswithclearexperimentalvalidation

13: Step3:ProcessandMaterialAnalysis

14: Extractdataonmanufacturingmethodsandmaterialsused

15: Analyzeperformanceimprovementscomparedtoconventionalprocesses

16: Summarizeinsightsondurability,efficiency,andapplicationsinconstruction

17: Step4:Experimentation

18: PrepareLDPE-AllayerrecycledfromshreddedTetrapakcontainers

19: Useahotplatepressat T ≤ 300◦Cand F ≤ 300KN

20: Fabricatecompositepanelsandmoldedtilesusingcompressionmolding

21: Evaluatetheperformanceofthefabricatedproducts

22: End

NumberofPapers

Figure3. NumberofPublishedPapersperYear(Catail/TotoraFiberResearch)

includingcultivationtechniquesandbroaderenvironmentalimplications,showcasingthe

multifacetednatureofthisareaofstudy.

Multiplepublicationsbythesameauthorsindicatedeepeningexpertiseandongoingde-

velopmentwithinthisnichefield.Additionally,thediversetitlesofthepapersreveal

acomprehensiveexplorationofthesubjectmatter,addressingpracticalapplicationsin

agricultureaswellastheoreticalstudiesonenvironmentalimpact.Theconsistentincrease

inpublicationsovertheyearshighlightsthesignificanceofcattailfiberinvariousscientific

andecologicalcontexts.Itsuggestsagrowingcommunityofresearcherscommittedto

advancingourunderstandingofthisarea[23,26].

CitationAuthor(s)Methodology

[2] Hidalgo-CorderoJ.F.,GarcíaNavarroJ.

[27] AstiniR.A.,RapaliniA.E.,AbdEl-Fatah-KhalilS.

[28]AchaD.,PointD.,JimenezC.

[29]Aza-MedinaL.C. Totorapanelsforsustainableconstructionmaterialcharacterization 2

Table1. TopAuthorsandMethodologiesinCattailFiberResearch

ThebarchartinFigure 4 analysesthemostfrequentlyusedkeywordsinScopus-

indexedresearchrelatedtocattailandconstruction.Thekeyword"wetlands"stands

outwiththemostmentions(28),reflectingthesignificantroleofwetlandecosystemsin

studiesinvolvingcattails.Followingthis,"Typha"appears22times,underscoringthe

centralimportanceofthisgenusincattailresearch.Theterms"wetland"and"constructed

wetland"arementioned20and15times,respectively,highlightingafocusonengineered

ecosystemsforenvironmentalapplications.Thekeyword"wastewatertreatment,"with15

mentions,emphasizestheintegrationofcattailresearchinaddressingwaterpurification

andsustainabilitychallenges.Additionally,"Phragmitesaustralis"and"cattail"appear

14and11times,respectively,indicatinginterestinspecificplantspeciesusedinsimilar

ecologicalorconstructioncontexts.Thespecies"Typhalatifolia"andthetopic"water

quality"areeachmentioned11times,furtherpointingtotheecologicalandenvironmental

dimensionsoftheresearch.Finally,termslike"constructedwetlands,""wastewater,"and

"vegetation,"withmentionsrangingfrom10to8,reflectthemultidisciplinarynatureof

cattailresearch,bridgingfieldssuchasenvironmentalengineering,plantsciences,and

construction.Thisdiversekeyworddistributionshowcasesthebreadthofthefieldandits

increasingrelevanceinsustainablepractices[30,31].

ThebargraphillustratedinFigure 5 analyzesthecountrieswiththemostpublications

relatedtocattailfiberresearchbetween1996and2023.ThedatarevealsthattheUnited

Statesistheleadingcontributor,with51publicationsdemonstratingitssignificantrolein

advancingthisresearchfield.Chinafollowswith26publications,indicatingsolidacademic

interestandcontributionsfromAsia. 178

TheNetherlandsranksthirdwith11publications,reflectingnotableengagementin

thisareafromEurope.Othercountries,suchasGermany(4publications),Canada(3

publications),andIndiaandBrazil(2publicationseach),alsocontribute,albeitatlower 181 levels.Thesefigureshighlightthediverseinternationalparticipationincattailfiberresearch. 182 Thisdistributionunderscorestheprominenceofcertaincountries,particularlythe

UnitedStatesandChina,inshapingtheresearchlandscape.Theinvolvementofcoun-

triesfromdifferentregionsfurtheremphasizestheglobalrelevanceofcattailfiberasa

sustainablematerialinvariousapplications,includingconstructionandenvironmental

remediation.Thedifferencesinpublicationoutputsuggestvaryinglevelsoffocusand

investmentinthisfieldglobally[32].

4.AnalysisandResults

Variousstudieshaveevaluatedthemechanicalpropertiesoftotora,thoughthestan-

dardsusedfortestingsometimesneedtobeclearlyspecified.Forinstance,Culcayetal.

[33]reportedthatalaminatedtotorasampleexhibitedaflexuralstrengthof0.81MPawitha

thicknessof50mm.Incontrast,Aza-Medina[29]recorded7.46MPawithatoleranceof1.07

andathicknessof13mm.Forcrushedtotorasamples,Aza-Medina[29]reportedaflexural

strengthof0.48MPawithatoleranceof0.16andathicknessof13mm.Additionally,

NumberofPublications

Figure5. AnalysisoftheCountrieswiththeMostPaperProductionRelatedtoCatailFiber.

Furthermore,sandwichpanelsmadefromshreddedTetrapakdemonstratedsuperior

flexuralstrength(78.18 MPa)comparedtoLDPE-Alpanels(66.76 MPa),evaluatedusing

ASTMC393-00[19].Comparativeanalysesalsoshowthat 20 mm thickLDPE-Alboardsex-

hibitcompressivestrength(104.35 MPa)whilecorrugatedpanelsachieveflexuralstrength

(163.917 MPa)inaccordancewithASTMD143-94.Studiesintegratingtotorawithother

materialshighlightitssignificantinfluenceonmechanicalproperties.Forinstance,[29]

reportedthatadding 10% totoratoconcreteachievedanaveragecompressivestrength

of 13.18 MPa,thoughhigherfibercontentreducedstrength.Similarly,adobespecimens

with 1.5%, 3%,and 4.5% totorashowedreducedcompressivestrengthby 24.69%, 45.42%,

and 43.90%,respectively.Thecompositewith 20% particulatetotorafibershowedoptimal

properties,withflexuralstrengthof4.92MPaandtensilestrengthof23.60MPa[29].

Table2. MechanicalpropertiesofmaterialsincorporatingtotoraandrecycledLDPE-Alcomposites

MaterialDescriptionThickness(mm)FlexuralStrength(N/mm²)CompressiveStrength(N/mm²)TensileStrength(N/mm²)Standard Totoraandorthophthalicunsaturatedpolyesterresin(SINTAPOL 2074) -89.13-70.942ASTMD3039-14

Polyesterresinreinforcedwith 5%totora

Polyesterresinreinforcedwith 20%totora

Polyesterresinreinforcedwith 35%totora

Gypsumandtotorawithcabuya mesh

0.4±0.017.00-23.21ASTMD7264/ASTMD3039

0.4±0.014.92-23.60ASTMD7264/ASTMD3039

0.4±0.014.38-7.27ASTMD7264/ASTMD3039

Adobeblockwith1.50%totora fibers --1.73-R.N.E(E-080)

RecycledLDPE-Alreinforced withcontinuousfiquefibers (90/10) -30--ASTMD790

LDPE-Alcompositepanel(sandwichtype,shreddedcore)

3.8078.18±1.5--ASTMC393-00

Polyethylenealuminumpanel(5 waves) 5163.917--ASTMD143-94

LDPE-Alcompositeboard20-104.35-ASTMD143-94

Table3. CompositionandWeaveTypeofTotoraandLDPE-AlPanels

Regardingthickness,[6]observedflexuralstrengthincreasedasmaterialthickness

decreased,aphenomenonattributedtoweakadhesionbetweengypsumandtotora.This

inadequatebondingcausedflexuralstresstoconcentrateprimarilyonthegypsumstructure,

leadingtorapidcracking.Thestudysuggestedthatenhancingtheinterfacialbondcould

significantlyimprovecompositestrength[29,34].Figure 6 comparestheflexuralstrength

ofvariouscompositematerials,asdetailedinTable 4,whichdescribeseachnumbered

material.Theresultshighlightsubstantialvariationsinbendingproperties,withMaterial11

(TotoraandSINTAPOL2074)demonstratingthehighestflexuralstrength(89.13N/mm

whileMaterials5and6(adobecomposites)showsignificantlylowervalues(0.32 N/mm

and 0.18 N/mm2,respectively).Thesefindingsemphasizetheinfluenceofmaterialcompo-

sitionandstructureonmechanicalperformance.

FlexuralStrength(N/mm²)

Figure6. CompositematerialswithTotoraorPolyethyleneAluminum.

Table4. MaterialsandTheirCorrespondingIDs

IDMaterialDescription

1PolyethyleneAluminumComposite50/50

2PolyethyleneAluminumComposite70/30

3PolyethyleneAluminumComposite90/10

4Adobewith4.50%TotoraFiber

5Adobewith0.0%TotoraFiber

6GypsumandTotorawithSisalMeshSpecimen19mm

7GypsumandTotorawithSisalMeshSpecimen21mm

8PolyesterResinReinforcedwith35%Totora

9PolyesterResinReinforcedwith20%Totora

10PolyesterResinReinforcedwith5%Totora

11TotoraandSINTAPOL2074

5.ExperimentalAnalysis

Thecompositematerialcombiningtotoraandpolyaluminum,asdescribedby[35],

usespolyaluminumsuppliedbyEcuaplasticS.C.andtotorasourcedfromtheParishof

SanJosédelaLagunainOtavalo.Themanufacturingprocess,carriedoutbyMartaGonza

andtheartisangroupTotorawasi,involvesthermocompressionatgraduallyincreasing

temperaturesfrom 60◦ C to 120◦ C throughout35to45minutes.Theresultingcomposite

Figure7. Testspecimensofcompositematerials:(a)cross-woventotoraandpolyaluminum,(b) sandwich-structuredtotoraencapsulatedwithpolyaluminum.

ispresentedintwodistinctvariants.Figure 7 illustratesthesespecimens:(a)thefirst

typefeaturestwojoinedsurfaces,onewithacross-woventotorastructureandtheother

composedofpolyaluminum;(b)thesecondtypeisasandwichcomposite,wheretwopolya-

luminumlayersencapsulateacentraltotorasurface.Theseconfigurationsshowcasethe

versatilityandintegrationofbiodegradableandrecycledmaterials,offeringthepotential

forsustainableconstructionandfunctionalapplications.

(a)
(b)

Testspecimensofthetotoraandpolyaluminumcompositewereproducedfollowing

standardizedprotocolstoevaluatetheirmechanicalproperties.Fortensiletesting,spec-

imenswerepreparedinaccordancewithASTMD3039M-17,whileASTMD790-17was

usedforbendingtests,bothwidelyappliedstandardsforfiber-reinforcedcomposites.Ad-

ditionally,specimenswerepreparedfollowingASTMD6110-18forimpactresistanceand

NTEINEN1162forcompressiontestingtogathercomprehensivedataonthecomposite’s

performance.Toobtainthespecimens,totoraandpolyaluminumboardswerecutusing

aprecisiontablesaw,ensuringadimensionaltoleranceof 2 mm.Figure 8 illustratesthe

dimensionsofthetestspecimensasspecifiedbythecorrespondingstandards.Thetensile

andbendingspecimensmeasure 250 mm inlengthwiththicknessesof 25 mm (ASTM

D3039)and 20 mm (ASTMD790),whilecompressionandimpactspecimensadheretothe

respectivedimensionsdefinedbyNTEINEN1162andASTMD6110.

Dimensionsofthetestpieces.

Thetensiletestresultsforthetotora-polyaluminumcompositesarepresentedin

Table 5.ThetestswereconductedusingaShimadzuAutographAGSX50KNmachine

inaccordancewithASTMD3039M-17standards.Sevenspecimensfromtwocomposite

types—cross-wovenandsandwich—wereevaluatedtodeterminetheirtensileperformance.

Theresultsindicatethepresenceofanelasticzoneuptoanappliedforceofapproximately

200N,withthespecimensreachingtheirbreakinglimitsbetween1100Nand1650N.

Forthecross-wovenspecimens,themaximumtensileforceachievedwas 5.38971 N/mm

withamaximumdisplacementof 10.4163 mm anddeformationof 6.76384%.Incomparison,

thesandwichspecimensexhibitedahighermaximumtensileforceof 5.65622 N/mm2,but

withareduceddisplacementof 6.1959 mm anddeformationof 3.82584%.Theseresultssug-

gestthatwhilethesandwichcompositeprovideshighertensileresistance,thecross-woven

structureoffersgreaterflexibilityunderload.Bothmaterialsdemonstratetheirmechanical

viabilityforstructuralapplications,highlightingtheinfluenceofweavedesignontensile

performance.

Figure8.

evaluated.Thecross-wovenspecimensexhibitedavolumeof 28291.193 mm3 andaweight

of 17.18 g.Incomparison,thesandwich-typespecimensshowedaslightlylowervolumeof

27246.160mm3 andweightof17.304g,indicatingminordifferencesinbulkdensity.

Themechanicalcharacterizationofthematerialsinvolvedcalculatingtheirkeyme-

chanicalproperties,assummarizedinTable 8.TheYoung’smodulus,Poisson’scoefficient,

ultimatetensilestrength,andelastictensilestrengthweredeterminedusingASTMD3039M-

17fortensiletests.ASTMD790-17wasappliedforbendingstrength,whileASTMD6110-18

wasusedtocalculateimpactresistance.Finally,thebulkdensitywasobtainedbasedon

theNTEINEN1162standard.Theseresultscomprehensivelyunderstandthecomposite

materials’mechanicalbehavior,highlightingtheirsuitabilityforstructuralapplications

andensuringcompliancewithinternationaltestingstandards.

Table8. Mechanicalpropertiesofthecompositematerials.

SpecimensTensileProperties(MPa)FlexuralStress(MPa)ImpactResistance(J)Young’sModulus(MPa)Density(×1014 g/cm3) Crosswoven Ultimate:5.823,Yield:0.74011.182232.548481.4706.377 Sandwich Ultimate:5.875,Yield:1.63611.855135.089910.1936.076

Themechanicalpropertiesofthetotora-polyaluminumcompositewerecompared

withvariouscompositematerials,particularlythosereinforcedwithnaturalfibersand

polymermatrices.Significantdifferenceswereobservedincompositesincorporatingtotora

reinforcement.Thetotal-polyaluminumcompositedisplayedlowervaluescompared

totheorthophthalicunsaturatedpolyestercompound(SINTAPOL2074)reinforcedwith

totorafiber[36],whichachievedvaluesupto 65 MPa forultimatetensilestrength, 593 MPa

forthemodulusofelasticity,and 78 MPa forflexuralstrength.Similarly,theepoxyresin

compositewith 60% resinand 40% totorafiber[37]exhibitedsuperiorultimatetensile

strength,withdifferencesofapproximately45MPa.

Comparedtothepolyesterresincompound33000reinforcedwithlongandwoven

totorafibers[38],thetotora-polyaluminummaterialpresentedlowervaluesforultimate

tensileandflexuralstrengths.However,itshowedahighermodulusofelasticityby

219 MPa.Fortheisophthalicpolyesterresincompoundreinforcedwithneopentylglycol

andtotorastems,thetotora-polyaluminumcompositedemonstratedsuperiorbending

resistance,exceedingitby 3 MPa.However,thepolyesterresin-naturalfibercomposite[39]

exhibitedhighervalues,withdifferencesof 9 MPa inultimatetensilestrength, 126 MPa in

modulusofelasticity,and60MPainflexuralstrength. 349

Whencomparedtothepolyesterresincompound33000with 5% totoraparticles[6],

thetotora-polyaluminumcompositedisplayedslightlylowertensilestrength,trailingby

2 MPa,andareducedflexuralstrengthby 10 MPa.Additionally,theepoxyresin-natural

fibercompositewith 90% resinand 10% totorafiber[37]reportedhighertensilestrength,

exceedingthetotora-polyaluminummaterialby12MPa.

Forpolyaluminumcompositesreinforcedwithothernaturalfibers,suchascontinuous

agro-fibers(fique)[40]andshortfiquefibersintwo-dimensionalorientation[41],the

ultimatetensilestrengthreached 63 MPa and 20 MPa,respectively,withsignificantlyhigher

354

modulusofelasticityvaluesof6GPaand3GPa. 358

Incomparisontolow-densitypolyethylene(LDPE)compoundsreinforcedwith 30%

sisal,jute,andpineleaffibers[42],aswellaspolyester102compositeswithfive-layer

fiquefibers[43],thesematerialsexhibitedsuperiortensilestrengthbutlowermodulusof

elasticity.Similarly,biodegradablecompositessuchastapiocastarchwithbamboofiber

[44]showedhighertensilestrength,whilepolylacticacid(PLA)compositesreinforcedwith

jutefiber[45]demonstratedlowertensilestrengthandmodulusofelasticitycomparedto

thetotora-polyaluminumcomposite.

Thecomparativeanalysisrevealsthatthetotora-polyaluminumcompositepossesses

relativelylowerelasticcapacityduetoitslimitedtensilestressperformanceandreduced

ductilityofthetotorareinforcementwithinthepolyaluminummatrix.Thiscombination

resultsinamaterialwithminimaldeformationcapacity,emphasizingtheneedforfurther

optimizationtoenhancemechanicalproperties.

6.PotentialApplications

CompositematerialsderivedfromrecycledLDPE-Alandnaturalfibershavebeen

extensivelystudiedfortheirmechanicalpropertiesandpotentialapplications.Forinstance,

[35]demonstratedthatincreasingthepercentageoffiquefibersinanLDPE-Alcomposite

matrixenhancestensilestrengthandstiffness.Tensiletestsrevealedthathigherfiquefiber

contentimprovedcriticalproperties,suchasflexuralstrengthandmodulus.Thestudy

identifiedanoptimalcompositionofa50/50matrix-to-fiberratio,whichprovidedthebest

balanceofmechanicalperformance,combiningstrengthandflexibility[24].Inourexperi-

mentation,compositepanelsweredeveloped(Table 3)usingavarietyofnaturalmaterials,

includingtotora(Schoenoplectuscalifornicus)indifferentforms:stems,wovenfabrics,

kichwa-stylecords,andpulpforpaperandcardboardproduction.Thebindingsystem

employedastarch-basedgluereinforcedwithtotorafibers,polyvinylacetateadhesives,

andrecycledmaterials,suchasplasticsandTetrapakwaste.Thesebindingagentswere

combinedwithwoventotora,recycledLDPE-Al,andrawtotorafibers,resultinginversatile

composites.Thisapproachintegratessustainablematerialstooptimizethemechanical

propertiesandpromoteeco-friendlyconstructionsolutions.

AsshowninTableAsdetailedinTable 3,twodistinctcompositematerialsweredeveloped

throughpracticalexperimentation,eachincorporatingrecycledLDPE-Alandtotora.The

firststructuralcompositionfeaturesacross-weavepattern,asshowninFigure 9(a),high-

lightingitsuniforminterlacingthatenhancesrigidityandstructuralstability.Thesecond

compositionemploysaninterlacedweavedesign,illustratedinFigure 9(b),characterized

byatighterandmoreintricateweavingpattern,whichimprovesflexibilityandsurface

uniformity.Theseconfigurationsdemonstratetheversatilityoftotoraincombinationwith

recycledLDPE-Al,showcasingtheirpotentialfordiverseconstructionandarchitectural

applicationswheretailoredmechanicalpropertiesarerequired.

Figure9. Totora-basedcompositematerialswithrecycledLDPE-Al:(a)cross-weavepatternand(b) interlacedweaveforstructuralapplications.

(a)
(b)

However,thisinnovativeproposalneedsmorethoroughtestingtofullycharacterize

itsphysicalandmechanicalproperties,presentingasignificantopportunityforfurther

research.Preliminaryfindingssuggestthatthesecompositematerialsofferseveralad-

vantages,includingresistancetoexpansionunderextremeclimaticconditions,enhanced

mechanicalstrengthcomparedtorawtotora,excellentsoundproofingcapabilities,thermo-

formability,andmoistureresistance.Onepromisingapplicationforthesepanelsistheiruse

asroofingmaterials,particularlywhencombinedwithotherbiodegradablecomponents.

AsillustratedinFigure 12,thecorrugatedstructureenhancesitspracticalityforroofing

byimprovingwaterrunoffandstructuralrigidity,makingitasustainableandfunctional

alternativeformodernconstructionprojects.Furtherstudiesareessentialtovalidatethese

propertiesandexpandtheirpotentialapplications.

applications.

Figure 13 showcasesapracticalapplicationofcompositematerialpanelsintegrated

withotherstructuralelements,demonstratingtheirversatilityinmoderninteriordesign.

Figure11. CompositematerialswithTotoraorPolyethyleneAluminum.
Figure12. CorrugatedcompositepanelscombiningtotoraandLDPE-Alforsustainableroofing

Thepanelsareutilizedasceilingelements,contributingtoanaestheticallypleasingand

naturalappearancewhilemaintainingstructuralfunctionality.Thisexamplehighlightsthe

material’sabilitytoblendseamlesslywithvariousarchitecturalstyles.Studiesindicatethat

suchcompositescanmaintaintheirstructuralintegrityandvisualappealformanyyears

duetotheirenhanceddurabilityandresistancetoenvironmentalfactors.Thisdurability

furtherenhancestheirpracticalutilityinresidentialandcommercialsettings,makingthem

asustainableandinnovativechoiceforinteriorapplications.

Figure13. Interiorapplicationofcompositepanelsfordurable,sustainable,andaestheticallypleasing ceilingdesigns.

Totora,asabiodegradablematerial,enhancesthesustainabilityofbothcomposite

compositionscomparedtothosemadeentirelyfromsyntheticmaterials.Thesecondcom-

position,withahighertotoracontent,offersmoreexcellentbiodegradability,whereasthe

firstcomposition,withahigherpolyethylenecontent,compromisesthisproperty.However,

recyclabilityposesachallengeduetothedifficultyinseparatingthematerialsforreuse.

IncludingrecycledLDPE-Alinbothpaneltypesintroducesanenvironmentalconcern,as

plasticwasteremainsasignificantsustainabilityissue.

Nevertheless,incorporatingrecycledpolyethyleneandaluminummitigatestheenviron-

mentalimpactofthesewastematerials,demonstratingacirculareconomyapproach.Itis

essentialtofurtherimprovetheirenvironmentalperformancebyadvancingseparationand

recyclingtechnologiesformixed-materialcomposites.Thenextphaseofthisprojectwill

focusoncomprehensivematerialcharacterizations,includingsustainabilityassessments,

carbonfootprintanalysis,recyclingprocessevaluations,andothercriticalstudiestoopti-

mizetheenvironmentalandfunctionalbenefitsoftheseinnovativecomposites.

UrbanDesign:Opportunities,LimitsandNeeds-TowardsanEnvironmentallyResponsible

Architecture,PLEA2012,2012.

5. EduardoPalomino,C.L.;ZegarraLazo,L.E.TabiqueíaEcológica,EmpleandoTotoracon

RevestimientodeyesooMortero,ComoTécnicadeBioconstrucciónenlaCiudaddePuno

2015

6. GaiborChacha,E.R.Caracterizacióndeunmaterialcompuestoconmatrizderesinade

poliésterreforzadoconpartículadetotora 2017.

7. SilvaTapia,J.D.Diseñodeunprocesoparalaelaboracióndeplacasdepolialuminio 2016

8. Restrepo,S.M.V.;Arroyave,G.J.P.;Vásquez,D.H.G.Usodefibrasvegetalesenmateriales

compuestosdematrizpolimérica:unarevisiónconmirasasuaplicacióneneldiseñode

nuevosproductos. InformadorTécnico 2016, 80,77–86.

9. Madurwar,M.V.;Ralegaonkar,R.V.;Mandavgane,S.A.Applicationofagro-wasteforsustain-

ableconstructionmaterials:Areview. ConstructionandBuildingMaterials 2013, 38,872–878.

doi:https://doi.org/10.1016/j.conbuildmat.2012.09.011

10. deLange,P.J.;Gardner,R.O.;Champion,P.D.;Tanner,C.C.Schoenoplectuscalifor-

nicus(Cyperaceae)inNewZealand. NewZealandJournalofBotany 1998, 36,319–327. 521 doi:10.1080/0028825X.1998.9512573

11. Pratolongo,P.;Kandus,P.;Brinson,M.M.Netabovegroundprimaryproductionandbiomass

dynamicsofSchoenoplectuscalifornicus(Cyperaceae)marshesgrowingunderdifferent

hydrologicalconditions. Darwiniana 2008, 46,258–269.

12. SabahHaseeb,Q.;MuhammedYunus,S.;AttellahAliShoshan,A.;IbrahimAziz,A.A

studyoftheoptimalformandorientationformoreenergyefficiencytomassmodelmulti-

storeybuildingsofKirkukcity,Iraq. AlexandriaEngineeringJournal 2023, 71,731–741.

doi:https://doi.org/10.1016/j.aej.2023.03.020

13. Jara-Vinueza,O.;Pavon,W.;Remache,A.SustainableConstructionwithCattailFibers

inImbabura,Ecuador:PhysicalandMechanicalProperties,Research,andApplications.

Buildings 2024, 14,1703.

14. Calheiros,C.S.C.;Stefanakis,A.I.Greenroofstowardscircularandresilientcities. Circular 533 EconomyandSustainability 2021, 1,395–411. 534

15. H ` ysková,P.;Gaff,M.;Hidalgo-Cordero,J.F.;H ` ysek,Š.Compositematerialsfromtotora 535 (Schoenoplectuscalifornicus.CAMey,Sojak):Isitworthit? CompositeStructures 2020, 536 232,111572. 537

16. Hidalgo-Castro,P.;Hidalgo-Cordero,J.;García-Navarro,J.Estudiodelcomportamiento 538 físico-mecánicoderollosdetotoraamarrados:influenciadelatensióndeamarre,diámetroy 539 longitud. DISEÑOARTEYARQUITECTURA 2019,pp.53–84. 540

17. Zhao,Z.L.;Liu,X.Y.;Liu,H.;Feng,X.Q.;Yang,J.Ductilityimprovementofmetallic 541 barsbybioinspiredchiralmicrostructures. ExtremeMechanicsLetters 2023, 64,102063. 542 doi:https://doi.org/10.1016/j.eml.2023.102063 543

18. Min,J.;Yan,G.;Abed,A.M.;Elattar,S.;AmineKhadimallah,M.;Jan,A.;ElhosinyAli,H.The 544 effectofcarbondioxideemissionsonthebuildingenergyefficiency. Fuel 2022, 326,124842. 545 doi:10.1016/j.fuel.2022.124842 546

19. Hidalgo-Cordero,J.F.;Revilla,E.;García-Navarro,J.ComparativeChemicalAnalysisofthe 547 RindandPithofTotora(Schoenoplectuscalifornicus)Stems. JournalofNaturalFibers 2020, 548 17,954–965.doi:10.1080/15440478.2018.1541773 549

20. González,T.;Puigagut,J.;Vidal,G.Organicmatterremovalandnitrogentransformationbya 550 constructedwetland-microbialfuelcellsystemwithsimultaneousbioelectricitygeneration. 551 ScienceoftheTotalEnvironment 2021, 753,142075. 552

21. Romero,M.;Flores,M.;Bravo-Thais,S.;Guzman,M.SchoenoplectuscalifornicusasPotential 553 RemoverofMetalElementsfromMineEffluents:ALaboratoryAssessment. CLEAN–Soil,Air, 554 Water 2023, 51,2200029.

555

22. Cáceres,S.H.;Quispe,D.K.P.;Maron,R.A.C.Eco-efficientthermoacousticpanelsmadeof 556 totoraandgypsumforsustainableruralhousingceilings. MaterialesdeConstrucción 2023, 557 73,e331–e331. 558

23. Heiser,C.TheTotora(ScirpusCalifornicus)inEcuadorandPeru. EconomicBotany 1978, 559 32,222–236.doi:10.1007/BF02864698.

560

24. JaraVinueza,O.D.Artesyoficios(constructivosentotora)comovinculaciónmaterialal 561 diseñoydetallearquitectónico,2018. 562

45. Fang,C.c.;Zhang,Y.;Qi,S.y.;Liao,Y.c.;Li,Y.y.;Wang,P.Influenceofstructuraldesign

onmechanicalandthermalpropertiesofjutereinforcedpolylacticacid(PLA)laminated

composites. Cellulose 2020, 27,9397–9407.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.