ENDODONTIC INSIGHT
MTAFlow™ — overcoming the boundaries of MTA clinical applications Dr. Carlos Spironelli Ramos discusses a beneficial advancement in endodontics
C
linicians who use endodontic materials face several challenges.1 Optimally, the materials should be easy to use, visible in radiographs, biocompatible, bioactive, antimicrobial, and resorbable in tissues but should resist resorption within tooth structures. They should also be nonstaining to tooth structures, strengthen the tooth, be dimensionally stable, and provide a permanent, high-quality seal with dental hard tissues yet be easy to replace. They should also have the mechanical strength that is optimal for the site and task for which they are used.2 One of the truly beneficial advancements in dentistry has been the introduction of mineral trioxide aggregate (MTA) repair cements into endodontic treatment. The development of bioceramic-based materials has greatly improved pulp cappings, pulpotomies, the treatment of open apices, apicoectomies (retrograde fillings), accidental perforation, and resorption repairs. Several authors have published studies about the properties of MTA as a repair material in comparison with other materials,3,4 showing very good results concerning the biological and physical aspects of the material. Even though MTA has proven to be an excellent repair material, the biggest weakness of both white and gray MTA cement is that they are not easy to use. Material additives were included in the original powder/ liquid formulation of the first MTA cements, which enhanced some of the material’s properties and improved its mixing, delivering, and functional abilities.5 However, the multipurpose use of MTA necessitated the development of improved formulations that allowed for easier mixing and delivery, as well
Figure 1: MTAFlow™ from Ultradent Products, Inc.
One of the truly beneficial advancements in dentistry has been the introduction of mineral trioxide aggregate (MTA) repair cements into endodontic treatment. as a shorter setting time and better washout resistance. The delivery of MTA to different sites inside the tooth has emerged as a major challenge. The handling of MTA based on powder/pure water mixtures resembles the handling of wet sand in some aspects. The cement loses consistency in the presence of excess liquid, even at the proportions recommended by the manufacturer. MTA is not easy to mix and even harder to
Carlos Spironelli Ramos, DDS, MS, PhD, graduated in dentistry in 1987 in Brazil, then soon after received a scholarship to study in Japan. He finished his residency in endodontics in Brazil in 1990. From 1991 to 1993, he attended the master’s program in endodontics, receiving a Master of Science degree. He then began the PhD program in endodontics, completing it in 1997, the same year he published his first book. From 1995 to 2012, he worked as a professor of endodontics at the State University of Londrina, where he coordinated the endodontics sector. During this same time, he published three books and wrote more than a dozen chapters for various endodontics books. Professor Ramos is currently the R&D Endodontics Manager at Ultradent Products in South Jordan, Utah. He performs many lectures, hands-on workshops, and conferences worldwide each year and has visited over 40 countries.
46 Endodontic practice
Figure 2: Different textures can be achieved with MTAFlow repair cement by varying the ratio of the fine powder and water-based gel during or right after mixing. A thin consistency can be delivered through a delivery tip for different applications that demand more accuracy and control, such as apexification, apical plug, or perforations
deliver to the right spot without making a mess, as it can stick to metal instruments better than it attaches to the cavity walls or to itself. A variety of different tools and guns have appeared on the market to facilitate the placement of MTA without presenting the proposed easy and accurate delivery. A new MTA repair cement, MTAFlow™ from Ultradent Products, Inc., (Figure 1) avoids many of these issues. It presents Volume 9 Number 2