VISION ISSUE TEN | WINTER 2020
Designing a Safe Electrical System What Is a Short Circuit and What Causes an Arc Flash? Two forms of electrical circuit protection devices are commonly used in electrical systems: the fuse and the circuit breaker. Both fuses and circuit breakers are manufactured to accommodate up to a predetermined electrical current, 20A for example, without opening the circuit. Once electrical current rises above 20A, both devices will open the circuit ceasing the flow of electricity. The scenario described above is of an overload situation; however, the same occurs during a short circuit. A short circuit is the unintentional flow of electricity through a low impedance path. An example of such an event is a phase leg making unintentional contact with a neutral, ground, or other phase leg conductor. Because the impedance on a short circuit is so low, the current is typically hundreds of times higher, or more, than what a circuit breaker experiences during an overload condition. Both the electrical equipment and the circuit breakers or fuses must be rated to withstand short circuit current and to open upon a fault. If a short circuit is allowed to continue without intervention from a circuit breaker or fuse, the energy produced can be large enough to conduct through the air to ground, resulting in a dangerous arc flash explosion. Key Design Considerations The main goal in designing an electrical system to clear short circuit faults is to keep the electrical system safe and avoid dangerous conditions. Improperly sized equipment and devices can lead to costly repairs, or worse, fatalities. Images 1 and 2 illustrate the possible effects of a short circuit condition between two phase legs of a switchboard; the resulting current was enough to melt the metal enclosure.
Image 1
Further, had someone been nearby when the short circuit occurred, the resulting arc flash could have seriously wounded the person. Image 2
By coordinating with the electrical utility company in the design phase of projects, the maximum available fault (short circuit) current from the utility company’s transformer can be determined. This is the largest current that any electrical equipment will see after the transformer. The farther the equipment is away from the transformer, the lower the fault current typically will be; however, it is important to note that any motor will contribute to the fault current, provided it is not controlled by a Variable Frequency Drive (VFD) or similar device. ALL TEXT ©2020 KOHLER RONAN, LLC
From the maximum available fault current, motor sizes, conductor sizes, and conductor lengths, the short circuit current at all the equipment in the electrical distribution system can be calculated. Informed decisions can be made on what the Short Circuit Current Rating (SCCR) of the equipment should be to safely withstand a short circuit condition, and also what the Ampere Interrupting Capacity (AIC) of the fuses or circuit breakers should be in order to clear a fault. Similarly, the required Personal Protective Equipment (PPE) can be determined and a label affixed to the electrical equipment. Necessary Device Coordination Once circuit breakers or fuse ratings are selected, calculations should be performed to know which device will clear a fault first in an electrical system. The goal is for the device nearest a fault to clear before the devices upstream, in order to limit the amount of electrical circuits that are opened as a result of the fault. Often, this is accomplished through the use of electronically adjustable circuit breakers that allow for the intentional delay in opening circuit breakers, so the one farthest downstream can open first. What Role Does Existing Electrical Systems Play? When a project is intended to reuse existing electrical equipment, it is important for the design engineer to consider whether or not continued on page 3
IN THIS ISSUE Fire Pump Basics
2
Benefits of Commisioning Revit® Corner
3
What’s Wrong With This Picture? Project Highlight
4