University of Toronto
Faculty of Applied Science & Engineering
CHE205
PRA0101
ProjectLabAssignment3–FinalReport
Date:Friday,April12,2024
Preparedby: Group2
LukeArcamo,LuciaChen,DylanLam,YoonhaLee,JeslynLorraineWinoto
University of Toronto
Faculty of Applied Science & Engineering
CHE205
PRA0101
ProjectLabAssignment3–FinalReport
Date:Friday,April12,2024
Preparedby: Group2
LukeArcamo,LuciaChen,DylanLam,YoonhaLee,JeslynLorraineWinoto
University of Toronto’s Wallberg Corporation has requested an experimental investigation to determine the optimal conditions touseinaprocedureforthesynthesisofbiodiesel. Inaneffort to be more eco-friendly, the university intends to produce biodiesel from corn oil, which canbe used for educational and commercial purposes. The reaction under investigation was the base-catalyzed transesterification of clean corn oil (triglycerides) and alcohol into methyl and ethyl oleate (biodiesel). The target metrics for this investigation were a yield of ≥80%, a conversionof≥90%,areactiontimeofundertwohours,andmeetinggreen-chemistryprinciples.
This report details the findings of Group 2 using design of experiment (DOE), which investigated four pathways where the alcohol types and oil-to-alcohol molar ratios were varied, while the temperature, catalyst type and loading, and reaction times were kept constant. The investigated alcohols were methanol and ethanol. The investigated oil-to-alcohol molar ratios were 1:3 and 1:6. The temperature of the reaction was maintained at 80-90॰C, the catalyst was NaOHat1mol%,andthereactiontimewasthesameforalltrialsat60minutes.
The procedure consists of four main stages: setup, synthesis, workup, and characterization. During the setup phase, the alcohol was reacted with sodium hydroxide to produce sodium methoxide and ethoxide. Corn oil was then added to the solution and it was then refluxed to undergo transesterification, which synthesized the biodiesel product. The product was isolated through separation in liquid-liquid extraction. In caseswhereseparationdidnotoccur,brinewas added to reduce emulsion. Finally, characterization was performed using six different methods: titration to quantify theunwantedbyproduct,ThinLayerChromatography(TLC)toqualitatively analyze completion, IR Spectroscopy to identify functional groups, Refractive Index and Viscositytesttoanalyzepurity,and GCChromatographytodetermineconversion.
After evaluating all four trials, it was determined that pathway 2, which had methanol as the alcohol and an oil-to-alcohol molar ratio of 1:6 returned the most optimal results. Itproduceda conversion of 98.29%, a yield of 81.37%. Pathway 2 was the only pathway that managed to return the target values for conversion and yield. Pathway2wasalsoqualitativelythemostpure throughout almost all characterization methods. This pathway had the greatest Process Mass Intensity (PMI) and Ultimate Material Cost (UMC) at 2.0928 and 4.18 respectively However, the PMI andUMCvaluesforpathway2werestillonthesameorderofmagnitudeasintheother pathways.Therefore,ahigherPMIandUMCvalueisnotalargeconcern.
Inconclusion,thisinvestigationhasfoundthatpathway2consistedofthemostoptimalvariables to perform the base-catalyzed transesterification reaction to produce biodiesel. Pathway 2 had methanol as the alcohol type, an oil-to-alcohol molar ratio of 1:6, NaOH as the catalyst at 1% mol,areactiontimeof60minutes,andareactiontemperatureof80-90॰C.
1.0Introduction
Intheworldwidepushtocutemissions,cleanrenewablefuelsarethefocusofmuchcurrent research.WallbergCorp.isexploringbiodieselforuseincoursesandcampusbuses,andwould liketoinstallalarge-scaleproductionprocesstoconvertoil(triglycerides)intobiodiesel(three molarequivalentsofalkylesters),asshowninFigure1.
Figure1:Base-catalyzedtransesterificationoftrioleinintoalkyloleate.
Thisoptimizationstudyfocusesoninvestigatingthefollowinginputvariables,alongwiththe followinghypothesizedtrendsinTable1basedonorganicchemistryprinciples.
Table1:Hypothesizedtrendsassociatedwithinputvariablesofbiodieselproduction InputVariable ExpectedTrend
Oil-to-alcohol molarratio
Catalystandoil type:NaOHor H2SO4,with cleanordirty oil
Increasingtheconcentrationofreactantpushestheequilibriumtofavorthe productinaccordancewithLeChâtelier’sprinciple,whichincreases conversion.
Dirtyoilreferstowasteoilthathasbeenusedincooking.Apossible abundantsourceofdirtyoilarethevariousfoodfacilitieswithinthe UniversityofToronto.Ithasahighercontentoffreefattyacids(FFAs), makingitmoresuitableforFischer(acid-catalyzed)esterification,becausea basewouldreactwithFFAsproducingsoapasanunwantedproduct.
Cleanoilhasmoretriglycerides,makingitmoresuitableforbase-catalyzed transesterification.Abase-catalyzedtransesterificationoccursatafasterrate withhigherconversionduetothedeprotonationofthealcohol,whichisin excess.Unlikedirtyoil,cleanoilmustbesourceddirectlyfroma
Alcoholtype: methanolor ethanol
manufacturer
Themorestablethealkoxide,thelessnucleophilicitis.Hence,sinceethanol hasahigherpKa(15.9)[3]thanmethanol(15.3)[4],methoxidewilloffer fasterreactionrates.
Teamcornoilhasdecidedagainstinvestigatingtemperatureandrefluxduration.Thetemperature forthereactionwillbemaintainedbetween80°Cand90°C.Thelowerboundof80°Cisslightly abovetheboilingpointofmethanol/ethanol,whichallowsrefluxtooccur. Theupperboundof 90°Censuresthatthetemperaturedoesnotreachtheflashpointofbiodieselandtheboiling pointofwater(~100°C).Areactiontimeof60minuteswaschosenforthisanalysis. The maximumallowablereactiontimewasdefinedbytheclienttobe2hours[1]. Reactiontimes longerthan60minuteswouldbedifficulttomanageduetolimitedavailablelabtime(given6 hoursforcharacterizationand2hoursforworkupleftonlyfourhoursforfourtrials),and reactionsshorterthan60minutesaremorelikelytoproducelessconversion.
Theclassinvestigationwillaimtooptimizethelarge-scaleproductionofbiodieselinaccordance withthefollowingoutputvariablesandobjectives:
● UltimateMaterialCost(UMC)–Minimizethecostofrequiredreagents.
● Conversion–Achieveaconversionabove90%withareactiontimeofundertwohours.
● Safety–Minimizetheuseofhazardousreagentsorproductionofhazardouswaste.
● ProcessMassIntensity(PMI)–Minimizetheproductionofwaste.
● Scalability–Involvesynthesisandseparationprocessesthatcanbescaledup.
● Yield–Above80%yield.
● Purity–Propertiesqualitativelyclosetoliteraturevalues.
Thisreportdiscussesthefindingsoftheinvestigationofthefollowinginputvariables:cleancorn oil,abasiccatalystat1mol%loading,oiltoalcoholmolarratio(1:3vs1:6),andalcoholtype (methanolvsethanol).Applyingthedesign-of-experiments(DOE)strategytoexploretwo factorsandtwolevelseach,therewillbefourtrials,asshowninTable2,inwhicheitheralcohol typeoroil-alcoholratiowillbemanipulatedwhileothervariablesremainconstant.
Table2:OutlineofDOEtrials.
2.0Methodology
Thefollowingsectionprovidesanoverviewoftheequipmentandchemicalsutilizedinthe laboratory,aswellasdetailsregardingtheprocedure.
2.1EquipmentsandChemicalsList
Table3:Availableequipmentduringlab.
Type Resources
Chemicals
Equipment
1. Organicsolvents:
a. hexanes,THF
2. Base
a. NaOHpellets
b. Standardized0.1000MNaOH(aq)
3. CornOil
4. Alcohols–Methanol,Ethanol
5. Indicator–Phenolphthalein,Iodine
6. TLCstandard Methyl,EthylOleate
1. Standardglasswareset
2. Commonequipment(hotplates,clamps, Pasteurpipettes,droppers)
3. 125mLseparatoryfunnel
4. 100mLRBFandcondenser
5. Burettes–50.00mL
6. Centrifuge&Falcontubes
7. Volumetricpipettes
a. 1mL,5mL,10mL,25mL
8. Toploadingandanalyticalbalances
9. Characterizationequipment
a. FTIRandGC&vials
b. Refractometer
c. TLCplates,capillarytubes
2.2ExperimentalProcedure
The team initially prepared the experiment by weighing the RBF and NaOH. Next, the team was divided into two pairs. Pair 1 conducted trials 1 and 2, adding methanol to their solutions in volumes of 3.2 mL and 6.3 mL, respectively Pair 2addedethanoltotheirsolutions in volumes of 4.5 mL and 9.00 mL. Subsequently, NaOH was mixed withthealcohol,followed byshakingtheflaskandheatingittoformsodium(meth/eth)oxide.Thissolutionwasbroughtup to 50℃ to increase the reaction rate. Clean corn oil was then added to the RBF. Then, the solution was refluxed to the required temperature of 80-90℃, monitoring the temperature and allowing it to react for 60 minutes. The RBF was then removed from the heating source, and allowed to cool to room temperature. The product was then isolated from the solution using a separatory funnel. The solution was allowed to separate for 1 hour During the trials, the solutionsexhibitednopartialseparation,sobrinewasincrementallyaddedin5mLincrementsto enhance the size oftheaqueouslayerandreduceemulsion.Thisallowedfortheextractionofthe organiclayer,followedbycharacterization.
The characterization process consisted of six parts. TLC and GC Analysis provideddata regarding the reaction’s completion and conversion. IR analysis identifiedthepresentfunctional
groups. Purity was determined via RI and viscosity tests, which were then compared with literaturevalues.
Titration was used to determine the amountofFFAbyproductpresentintheproduct.For each trial, 2 grams of thebiodieselproductwereaddedtoa125mLErlenmeyerflaskalongwith 10 mL of isopropyl alcohol and 10 mL of THF solvent, and 5-6 drops of phenolphthalein indicator. TLC analysis was performed by applying the following solutions onto the TLC plate: the oil, the biodiesel product,andastandardforthefinalproduct.Theplatewasimmersedinthe eluent before being placed in the iodine solution. Spot tracing was conducted after visiblespots appeared,andthedistancestraveledbyeachsolutionweremeasuredusingaruler.
IR Spectroscopy involved placing two drops of the sample on the centrallinetoidentify available bonds. Refractometer (RI) analysis compared the biodiesel products with the standard to assess alignment with literature values. For GC analysis, the biodiesel product was diluted with hexane until it reached 1 mg/mL, and the solution was then given to the laboratory TA. Finally, viscosity was determined byusingapasteurpipettetodrawupthebiodieselproductand recordingthetimetakentoempty.
Figure2:Diagramofrefluxequipmentsetup[2].
3.0Results
Table4:Yieldandcharacterizationdatafromalltrials.Seeappendixforsamplecalculations.
IRkeypeaks[3] (cm-1)
NoOH(3550-3200)
Strongsp3C-H(3000-2850)
Strongester(1740)
FaintOH(3550-3200)
Strong
Strong
Qualitative observations Yellow,dark Yellow,slightly Light cloudy
Thefollowing resultsforcharacterization.
4.1QualitativeObservations
Regardingqualitativeobservations,alltrialsresultedinaproductthatwasyellowandcloudyin appearance.Thesearecausedbyinsolublemono-anddiglycerides[4]andFFAscrystallizingas suspendedprecipitate[5].Hence,thisisasignofincompleteconversionandunwantedside products.
Eachbiodieselsolutionwastreatedwithanhydroussodiumsulfatetoremovewater. Onedropof thebiodieselwasthendilutedwithhexanestoproducea1mg/1mLsolution. Regardingyield, trial3producedthehighestmassofproduct.However,ithadthelowestconversion,sotheactual yieldwas56.33%.Intermsofactualyield(yieldaccountingforconversion),theoptimal pathwayistrial2,6:1methanol-oil,withanactualyieldof81.37%.Trial2alsohadthehighest conversionat98.29%.FromthedatapresentedinSection3.0,itcanbeconcludedthatPathway 2wastheonlypathwaythatmettheinitialobjectivesof>80%yieldand>90%conversionin undertwohours.
Theseresultsalignwiththehypothesis:higherconversionscanbeachievedusingmethanol(due tomethoxidebeingmorenucleophilic)andahigher6:1alcohol-oilratio(duetoLeChâtelier's principlepushingthereactionright).
LaneArepresentsthecornoil,LaneBrepresentsthepureproduct,andLaneCrepresentsthe team’sbiodieselproductasseeninFigure3.Regardingtrials1and2,thelowerlargespotin LaneC,whichalignswiththespotinLaneAwasfaint,whichdemonstrateslowamountsof unreactedcornoil.Thisisincontrasttotrial3,whichhasaparticularlylargeanddarklowerspot inlaneC,showingincompletereaction.Trial4isnoteworthyduetoitslackofalowerdot, showingreactioncompletion.
TheseobservationsarefairlyconsistentwiththeGCdataobserved,withhigherconversionin Trial2and4comparedtoTrials1and3respectively.Suggestingthatthehigheroil:alcoholratio providesahighercompletion.
Inalltrials,therewerealsothreefaintdotseachinlanesAandCveryclosetothespottingline. Thisindicatesthepresenceofpolarimpurities,perhapsFFAs,whichisconsistentwiththefact thatcornoilisinrealityamixtureratherthanthe100%trioleinassumptionmadefor stoichiometrycalculations.
4.4InfraredSpectroscopy(IR)
Giventhatthetrioleininthecornoilpossessesthesamecarbonchainintheesterasbothmethyl oleateandethyloleate,itisdifficulttodistinguishfromIRwhetherthereareimpuritiespresent intheproduct.
Theliteraturecarbonylstretchforethyloleateisat1737.72cm-1,1743.43cm-1 forcornoil, 1742.16cm-1 formethyloleate[6].Inthisrespect,theslightdifferencebetweenthecornoiland ethyloleatestretchcouldbeusedtoanalyzeitspurity However,giventhatweproducedboth methylandethylproductsacrossourexperiment,wewillnotuseIRinordertodiscussthepurity achievedinourproducts.
4.5Titration
Theanalyteforalltrialscontained2gofbiodiesel,10mLoftetrahydrofuran(THF)andisopropyl alcohol(IPA),and5-6dropsofphenolphthalein.
Overall,therewaslikelyverylittleFFAinthebiodieselduetothefactthatthetitratewasdiluted by10times,andthetotaltitratevolumedispensedwasstilllessthan4mLpertrial.
THFandIPAareslightlysolubleineachother,henceiftoomuchNaOHisadded,thesolution becomesmilkyorcloudyandseparatesintotwophasessinceNaOHonlydissolvesinIPA.Since theethanoltrialsbecamecloudywhentitratedwhilethemethanoltrialswereclear,moreNaOH wasrequiredintheethanoltrials,hencethereweremoreFFAintheethanoltrials.Thetrialwith thelowestconversionintoFFAwastrial2,with0.186%.
4.6RefractiveIndex(RI)
Allfourvalueswererelativelyclosetotheliteraturevalues,1.4522formethyloleate[7],and 1.448-1.453ethyloleate[8].However,sinceallsampleswerecloudyasdescribedinsection4.1, refractiveindexwasdifficulttomeasureduetoscatteringeffects.Additionally,therefractometer usedhasanupperdetectionlimitof1.4465[9]whichoverlapswiththerangeofthesample. Hence,thedataforthisparticularcharacterizationmethodisunreliable.
4.7Viscosity
Regardingviscosity,onaveragetheethyloleatetrials(pathways3and4)hadhigherviscosity sincetheytooklongertoempty1mLoutofapipette.Comparetheirhighvaluestothetimeto emptythebiodieselstandard,10.03seconds.Thislargerdifferencesuggeststhattrials3and4 arelesspurethantrials1and2.
4.8Scalability&GreenChemistryConsiderations
Toaccommodatetheapproximately200mechanical&industrialengineeringstudentsand30 energysystemsstudentsusingbiodieselinlabs,aswellasthe46-busUTM-UTSGfleet operating30-kmtripsdaily[10],ahigh-throughputproductionsystemmustbeimplemented, likelyacontinuouslystirred-tankreactor(CSTR).Bothofthemainprocessesinvolvedinall pathways(refluxandLLEviaseparationfunnel)canexistaslargescaleunitoperations.All pathwaysinvolvedthesametemperature,pressure,reactiontime,andequipmentsize.Hence, sincemostofthevariablesineachofthisstudy’spathwaysweresettobeidentical,onlythe differencesinthevariableswillbediscussedintermsoftheirrelativeimpactonscalability, whichinturndependsoncostandsafetyofreagentsandwaste.Furtherinvestigationisrequired forfactorsbeyondthescopeofthisstudy,includingtestingapilot-scaleplant.
Thewasteofthischemicalprocessconsistsofwater,alcohol(leftoverfromthereaction),FFA, NaOH,andglycerol.Noneofthesebyproductsaresignificantlyhazardous,howeverthealcohol canbehazardous.Bothalcoholsareflammable,methanol,inpathways1and2,isalsoacutely toxicandcarcinogenic[11][12].
Inthelab,disposalofbyproductscanbedonebypouringthewasteproductsintoacontainer labeledwithorganicwaste,asperUofTstandards.Howeveronalargerscale,chemicalwaste mustberecycledthroughvariousindustrialprocesses.Oftheorganicwasteproduct,100%can berecycled[13].NaOHsimplyneedstobeneutralizedwithacidtoaddressitscausticity.FFAin theformofsoap(sodiumoleate)islessdensethantheotherliquids,soitcanbeskimmedfrom thetopvialiquid-liquidextraction.Crudeglycerolisavaluablebyproductthatcanbeisolated
fromthewasteproductsbydistillingoffwaterandmethanol,tobesoldtoindustrialglycerol refinersatalowcost[14].Themethanolcanalsoberecapturedandreusedinfurtherreactions.
ThePMIproducedfromthischemicalprocessforalltrialswerearound1.5-2;valuesbelow10 areidealforbulkprocesses.Thisindicatesthattheprocessmeetsthegreenchemistryprinciple ofnotproducingsignificantamountsofwaste.
Forcalculationofultimatematerialcost(UMC),anassumptionwasmadeof$10perkilogramof wastedisposed.Itiscalculatedthatpathway2,6:1methanol-oil, isthemostexpensive,which makessensesinceahigheralcohol-oilratiowouldrequirealargeramountofalcohol,thus increasingthePMIandUMC.However,evenifwasteweredisregarded,methanolisstill,asof April2024,inherentlymoreexpensivethanethanol[15],evenwhencomparinghistoricaltrends [16].Inthisaspect,pathways3and4aremoreoptimal.
Anotheraspectofgreenchemistryprinciplesisthesustainabilityofreagentsinvolved.Themain differencebetweenthepathwaysistheuseofeithermethanolorethanol.Methanolproducesa higher-qualityproduct,however,itisproducedfromnon-renewablepetrochemicalsources[17]. Ontheotherhand,ethanolcanbeproducedfrombiologicalsourcessuchassugarcane,whichare renewable[17].Hence,againinthisaspect,pathways3and4aremoreoptimal.
4.9ErrorAnalysis
Intermsoferror,themajorityofthereactiontookplacewithinasinglereactionvessel.Liquid transfers,includingthosefortitration,wereconductedusinggraduatedcylinderswithan uncertaintyof ±0.5mL.Theanalyticalbalancehadanuncertaintyof ±0.001.Consideringthe reactionvolumewasapproximately25mL,thiserrorisexpectedtohaveminimalimpactonthe reactionproductduringsynthesispreparation.Asforthecharacterizationmethods,digital measurementstypicallyhadanerrorofuptothreedecimalplaces,providingsufficientprecision forcomparisonbetweentrials.Theremainingmeasurementswerequalitativeinnature.
5.0Conclusion&Recommendation
5.1Recommendation
Based on our experiments, Pathway 2 emerges as the most optimal for biodiesel production, meeting Wallberg Corp's criteria: yielding over 80% with over 90% conversion in under two hours, as well asexhibitingthelowestconversiontoFFAat0.186%.AlthoughPathways3and4 have slightly lower UMC and PMI values, the differences are negligible and don't significantly affecttherecommendation.
Since only one trial meets basic metrics, further investigation is necessary Employing OVAT methodology is suggested, maintaining methanol as a reagent but adjusting the molar ratio for optimal results. A new goal could be to identify a pathway that not only achieves desired yield and conversion but also minimizes UMC and PMI, enhancing scalability for larger-scale implementation.
5.2Conclusion
Biodiesel has the potential to becomeawidespreadsustainablefuel.Thisstudyhasrevealedthat higher alcohol-oil ratios and morereactivealkoxidesresultinincreasedconversion,apotentially usefulfindingbeyondbiodieselproduction,inotherindustriessuchaspolyestermanufacturing.
Furthermore, this research has provided educational insights into the application of design-of-experiments methodologies for optimizing reactions. It also emphasizes the importance of integrating principles of green chemistry, promoting safety and sustainability. Lastly, this project helped develop effective time management skills within thelab,successfully coordinating multiple reactions and managing the analysis through six differentcharacterization methods.
[1] J.Farmer.“CHE205ProjectLabAssignment#3FinalReportAssignment.”Universityof Toronto.[Online].Available: https://q.utoronto.ca/courses/340676/files/30200008?module_item_id=5512465. [Accessed]:27-Mar-2024
[2] “Reflux|Laboratorytechniques,” Biocyclopedia.com,2019.[Online].Available: https://biocyclopedia.com/index/chem_lab_methods/reflux.php. [Accessed]:10-Apr-2024
[3] “InfraredSpectroscopyAbsorptionTable,” Chemistry LibreTexts,Nov.30,2014. [Online].Available:
https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscop ic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table.[Accessed]: 12-Apr-2024
[4] PubChem,“2-Monoolein,” pubchem.ncbi.nlm.nih.gov [Online].Available: https://pubchem.ncbi.nlm.nih.gov/compound/2-Monoolein. [Accessed]:11-Apr-2024
[5] “BiodieselQuality,” www.springboard biodiesel.com.[Online].Available: https://www.springboardbiodiesel.com/library/biodiesel-quality.[Accessed]:11-Apr-2024
[6] CHE205,“BDDadGCandIRQuercus,” www.q.utoronto.ca. [Online].Available: https://q.utoronto.ca/courses/340676/files/31349746?module_item_id=5630679. [Accessed]:11-Apr-2024
[7] PubChem,“Methyloleate,” pubchem.ncbi.nlm.nih.gov.[Online].Available: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-oleate#section=Refractive-Index. [Accessed]:11-Apr-2024
[8] PubChem,“Ethyloleate,” pubchem.ncbi.nlm.nih.gov.[Online].Available: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-oleate#section=Refractive-Index. [Accessed]:11-Apr-2024
[9] “brix-ri-chek-digital-refractometer,” www.reichertai.com [Online].Available: https://www.reichertai.com/products/brix-ri-chek-digital-refractometer [Accessed]: 11-Apr-2024
[10] “Chapter1:UndergraduateStudies,” Faculty of Applied Science & Engineering. [Online].Available: https://www.engineering.utoronto.ca/about/annual-reports/by-the-numbers-2023/chapter1-undergraduate-studies/.[Accessed]:11-Apr-2024
[11] ThermoFisherScientific,“EthanolSafetyDataSheet,”2009.[Online].Available: https://www.fishersci.com/msdsproxy%3FproductName%3DA405P4%26productDescrip tion%3DETHANOL%2BAHYD%2BHISTO%2B4L%26catNo%3DA405P-4%2B%26ve ndorId%3DVN00033897%26storeId%3D10652.[Accessed]12-Apr-2024
[12] ThermoFisherScientific,“MethanolSafetyDataSheet,”2009.[Online].Available: https://www.fishersci.com/msdsproxy%3FproductName%3DA405P4%26productDescrip tion%3DMETHANOL%2BAHYD%2BHISTO%2B4L%26catNo%3DA405P-4%2B%26 vendorId%3DVN00033897%26storeId%3D10652.[Accessed]12-Apr-2024
[13] UniversityofToronto,“ChemicalWasteDisposal-EnvironmentalHealth&Safety,” Environmental Health & Safety,2014.[Online].Available: https://ehs.utoronto.ca/laboratory-hazardous-waste-management-and-disposal-manual/ch emical-waste-disposal/.[Accessed]12-Apr-2024
[14] “CrudeGlycerol-anoverview|ScienceDirectTopics,” www.sciencedirect.com. [Online].Available:
https://www.sciencedirect.com/topics/engineering/crude-glycerol#:~:text=Glycerol%20is %20obtained%20as%20an.[Accessed]12-Apr-2024
[15] SigmaAldrich,“NMRChemicalShiftsofImpuritiesCharts,” Merck,vol.1,no.1,2024, [Online].Available:
https://www.sigmaaldrich.com/MX/en/technical-documents/technical-article/genomics/cl oning-and-expression/blue-white-screening.[Accessed]11-Apr-2024
[16] “Ethanol|2005-2020Data|2021-2022Forecast|Price|Quote|Chart|Historical,” tradingeconomics.com.[Online].Available:
https://tradingeconomics.com/commodity/ethanol. [Accessed]11-Apr-2024
[17] “Theeffectsofalcoholtooilmolarratiosandthetypeofalcoholonbiodieselproduction usingtransesterificationprocess”, Science Direct March2016[Online].Available:
https://www.sciencedirect.com/science/article/pii/S1110062115000914[Accessed] 11-Apr-2024
7.0Appendices
AppendixA:SampleCalculations
AppendixB:IRspectra
AppendixC:GCdata
AppendixD:Procedure
AppendixA:SampleCalculations
Yieldsamplecalculationfortrial1: 25mL×0.913g/mL÷885.45g/mol×3mol/1mol×310.51g/mol=24.01g
Averagetimetoempty1mLsamplecalculationfortrial1:
t=(14.56+9.78+10.66)÷3=11.67s
PMIsamplecalculationfortrial1:
PMI = Total mass input ÷ Mass of desired product
= (Aqueous waste mass + Biodiesel mass) ÷ Biodiesel mass =(10.781+18.877)÷18.877 =1.5711
Conversionsamplecalculationfortrial1:
Figure4:GCdatafortrial1.
Conversion = Response area of desired product / Total response area of reactants and products = Response area of biodiesel / (Response area of biodiesel + Oil 1 + Oil 2) =878294.15/(878294.15+532165.07+53289.12) =60.00%
TLCretentionfactorssamplecalculationfortrial1:
Solventfrontdistancefromspottingline:4.35cm
LaneA(cornoil):3.35cm÷4.35cm=0.77
LaneB(biodieselstandard):3.70cm÷4.35cm=0.85
LaneClowerspot(unreactedcornoil):3.20cm÷4.35cm=0.74
LaneChigherspot(biodieselproduct):3.80cm÷4.35cm=0.87
Titrationsamplecalculationfortrial1:
Titrationtrial1:
Initialburettevolume: 6.86mL
Finalburettevolume: 8.5mL
Dispensedvolume: 8.5-6.86=1.64mL
NaOHconcentration: 0.01mol/L
Molarmassofoleicacid: 282.46g/mol
Massofoleicacidinsample: 1.64mL÷1000mL/L×0.01mol/L×282.46g/mol =0.00463g
Massofbiodieselsample: 2.010g
Massofbiodieseltotalproduct: 18.877g
Massofoleicacidintotalproduct: 0.00463g÷2.01g×18.877g=0.0435g
Repeatforsecondandthirdtitrationtrial.
Averagemassofoleicacidintotalproduct: (0.0435+0.0463+0.0450)÷3=0.0449g
Massofcornoil: 22.825g
%conversiontoFFA: 0.0449g÷22.825g=0.197%
AppendixB:IRSpectrumforBiodieselTrials
Figure5:IRspectrumfortrial1biodieselproduct.
Figure8:IRspectrumfortrial4biodiesel.
AppendixC:GasChromatographsforBiodieselProducts
Figure4:GasChromatographfortrial1biodiesel.
AppendixD:DetailedProcedure
Part1:Set-up
1. The100mLRBFwasweighedwhilestabilizedinabeaker.0.0103gramsofNaOHwere weighed.Thetruemassdispensedwasrecorded.
2. Fortrials1and2,3.20mLand6.30mLofmethanolrespectivelyweremeasuredand addedtotheRBF.Fortrials3and4,4.50mLand9.00mLofethanolrespectivelywere measuredandaddedtotheRBFusingasyringe.
3. TheNaOHandmethanolweremixedintheRBFflasktoproducesodiummethoxidefor trials1and2,andsodiumethoxidefortrials3and4.Theflaskwasshakeninacircular motion.
4. TheRBFwasheatedbetween50-70 ℃ toincreasereactionrate.
5. 25mlofcornoilwasaddedintotheRBF
Part2:Synthesis
1. Refluxequipmentwassetup:awaterjacketedcondenser,waterbath,andhotplatewere added.AspinbarwasaddedtotheRBF
2. TheRBFwasheatedtotherequiredtemperaturerangeof80-90 ℃ withstirringto preventprematureseparationoflayers.Thetemperaturewasmonitoredfortheentire durationoftherefluxtoensurethatitstayedwithinthetemperaturerange.
3. Afterrefluxingfortheallottedamountoftime,theRBFwascarefullyremovedfromthe heatsourceandallowedtocooltoroomtemperature.
Whenisolatingtheproduct,forbasictransesterification,thebottomphasewillcontainpolar byproducts,sideproducts,andreagentslikeNaOH,FFAs,soap(sodiumcarboxylates),unreacted alcohol,andglycerol.Theorganicphasewillcontainjustthebiodieselester,andanyunreacted triglycerides,ifany.
1. Theproductwasaddedintoa125mLseparatoryfunnelclampedtoastand.Separation tookaroundonehour.
2. Todrawoutthepolarimpurities,11.5mLofbrinewasaddedtocreateanaqueouslayer. BrineratherthanDIwaterwasusedtoreduceemulsion.
3. Thebottomaqueouslayerwasslowlydrippedintoa100mLErlenmeyerflask.
Part4:Characterization
Thefollowingcharacterizationproceduresarelargelyderivedfrom[1]
1. Anempty125mLErlenmeyerflaskwasweighedusingananalyticalbalance.2gof biodieselproductwasaddedtotheflaskandtheweightwasrecorded.
2. Usingagraduatedcylinder,10mLofisopropylalcoholand10mLoftetrahydrofuran (THF)solventwereaddedtotheflaskandswirled.
3. 5-6dropsofphenolphthaleinindicatorwereaddedtotheflask.
4. 0.01MNaOHsolutionwasaddedintheburette.
5. Thesolutionwastitratedtoanendpointwhichwasamixtureofthecolors:biodiesel yellowplusphenolphthaleinpink.
a. SincethetitrationistestingforFFA,evenifthesolutionisovershot,itwould eventuallyturnbackintotheoriginalcolour(frompinktopaleclearliquid).For mosttitrations,thesolutionwasobservedtohavereachedtheendpoint(pink color),butwouldturnbackintoapalecolorafterwaitingforafewminutes.As such,eachtitrationwasconsidered“finished” whenitstayedlightpinkfor around30seconds.
6. Thetitrationwasrepeateduntilthreeconsistentresults(within0.2mLofeachother) wereobtained.
1. 1dropofproductwasdilutedin2mLofhexaneinascintillationvial.
2. ATLCplatewaspreparedwith3lanes.
a. LaneAcontainedreactant(oil)
b. LaneBcontainedbiodieselstandard
c. LaneCcontainedproduct
3. Thefollowingwasrepeatedforeachlane:
a. 1dropofthecorrespondingsamplewasspottedusingacapillarytube.
b. Theplatewaslefttodryforseveralseconds.
c. Anotherdropwasspotted.
d. Thecapillarytubewasrinsedbetweeneachlanebydrawingupacetoneand blottingitonapapertowel.
4. TheTLCplatewasplacedina600mLbeakercontaining0.5cmdepthof90:10 hexanes:ethylacetate,neverreachingabovethespottingline.
5. Thebeakerwascoveredwithawatchglasstopreventvapoursfromescaping.
6. Whenthesolventfrontreached~0.5cmbelowthetopoftheplate,thechromatogram wasremovedandlaidonapapertowel.
7. Thesolventfrontwasmarkedusingapencilimmediatelybeforeitdries.
8. Iodinestaining:
a. Oncetheplatewasdry,itwasplacedintheiodine-developingdish.
b. Thebeakerwascoveredwithafoilcap.
c. Thespotsturnedbrownish-yellow
d. Theplatewasremovedfromtheiodineafter5-10minutesanddried
e. Thespotsweretracedusingpencil.
4.3IdentifyingSide-Products:Infrared(IR)Spectroscopy
1. Foroil,alcohol,biodieselproduct,andbiodieselstandard,thefollowingstepswere repeatedfourtimes:
a. ThecentralcircleoftheIRspectrometermetalplatewaswipedusingaKimwipe andisopropylalcoholbetweeneachuse.
b. Twodropsofsamplewereaddedonthecentralcircle.
c. Anewfilewascreatedonthecomputer.
d. "Scan"wasclickedtwiceuntilagreenprogressbarappeared.
e. "Labels"onpeakswereenabled.
f. Textincludinggroupnumber,workstation,compound,anddatewasaddedby right-clickingthebackground.
g. Thedocumentwasprinted.
1. Foroil,alcohol,biodieselproducts,andbiodieselstandard,thefollowingstepswere repeatedfourtimes:
a. Therefractometerwasusedinafumehood.
b. ThewellwaswipedusingaKimwipeandacetonebetweeneachuse.
c. Usingaplasticdropper,1-2dropsoftheproductwereplacedinthewell.
d. ThesettingRI-TCwasenabled(20°Ctemperaturecorrection).
e. Thegreenbuttonwaspressedtomeasure.
2. TherefractometerwasreturnedtoTA.
1. A100mLbeakerwasweighed.
2. 1dropofbiodieselproductwasaddedintothebeaker.Thebeakerplusproductwere weighed.
3. Thevolumerequiredtodilutethedropto1mg/Lwascalculated.
4. Theappropriatevolumeofhexanesina25mLgraduatedcylinderwasmeasuredand addedtothebeaker.
5. ~1.5mLwastransferredintoaGCvialusingaplasticdropper.
6. AsamplenumberwassignedupforwiththeTAandthevialwaslabeledaccordingly.
4.6Viscosity
1. UsingaPasteurpipettemarkedtohold1mLoffluid,thebiodieselproductwasdrawnup totheline.
2. Thepipettewaslifted,thebulbwasremoved,andtheexacttimetakentoemptywas recorded.
1. Allliquidorganicwastewasdisposedofinthenon-halogenatedorganicwaste.
2. Aqueouswastewasdisposedofintheaqueouswastecontainer
3. ExcessNaOHpelletsweredisposedofinthesolidchemicalwastecontainer
4. Allglasswarewasrinsedfirstwithsoapywater,butnotpoureddownthesink. Afterwards,theywererinsedwithacetone-water-acetone.Disposeoftherinsingliquid intothenon-halogenatedorganicwaste.Allglasswarewasrinsedonemoretimeatthe sinkwithsoapandtapwaterandthendistilledwater.
5. Cleanglasswarewasplacedbackinlockers.Otherborrowedequipmentwasreturned.
6. Theworkstationwascleanedwithacetoneandwipedthoroughly.
7. Glovesweredisposedofinthechemicallycontaminatedsolidwastebin.
8.0ContributionTable
Section Luke Dylan Lorry Yoonha Lucia
Executive Summary
Introduction
Methodology
Results
Discussion: Characterization andAnalysis
Discussion: Scalability& GreenChemistry Considerations
Discussion: ErrorAnalysis
Conclusion& Recommendation
References
Appendix
FinalProofread
RS–Research(givedetailsbelow)
WD–WroteDraft
MR–MajorRevision
ET–Edited
FP–FinalProofread(entiredocument)
OR–Other(givedetailsbelow)
9.0AcademicIntegrityStatement
Course:CHE205
Instructor:Prof.Farmer
Assignment:BiodieselLabFinalReport
TheUniversityofTorontoandtheFacultyofAppliedScienceandEngineeringtakeacademic integrityveryseriously.TheCodeofBehaviouronAcademicMattersprovidesdetailsofwhatis consideredanacademicoffence,andthepossibleconsequencesifyouarefoundtohavecommitted anoffence.Allacademicworkmustbeconductedinfullaccordancewiththerulesandregulationsof theUniversity.Asastudent,youareresponsibleforensuringtheintegrityofyourworkandfor understandingwhatconstitutesanacademicoffence.Resourcesareavailabletostudentstosupport theminunderstandingandpreventingacademicoffenses.
UniversityofTorontoAcademicIntegrity: https://wwwacademicintegrityutorontoca/ EngineeringCommunicationCentreTutoringProgram: https://ecpengineeringutorontoca/ecp-tutoring-centre/
AcademicIntegrityStatement
Completethefollowingdeclaration,andreturnitwithyourassignment
Bysigningthisstatement,IherebystatethatIhavereviewednotonlymywork,buttheworkofmy colleagues,initsentiretyandhavenotcommittedanyofthefollowingacademicoffencesaslaidout inTheCodeofBehaviouronAcademicMatters:
a) Falsifiedorconcoctedanyevidence,data,orsourcesusedtocompletethisassignment,
b) Obtainedunauthorizedassistancetocompletethisassignment,includinghavingsomeone elsecompletethisassignmentonmybehalf,
c) Representedtheworkorideasofothersasmyown,or
d) SubmittedacademicworkwhichIhavepreviouslysubmittedforcreditattheUniversityor elsewhere.
Irecognizethatacademicoffencesareextremelyseriousandconstituteunacceptablebehaviouratthe UniversityofToronto.TheyareabreachofethicalstandardsoftheengineeringprofessionthatI aspiretoenter
Name:JeslynLorraineWinoto Signature: Date:12/04/2024
Name:YoonhaLee Signature: Date:12/04/2024
Name:LukeArcamo Signature: Date:12/04/2024
Name:DylanLam Signature: Date:12/04/2024
Name:LuciaChen Signature: Date:12/04/2024