AN EXPERIMENTAL STUDY AND INVESTIGATION ON STRENGTH PROPERTIES OF CONCRETE WITH FIBRES

Page 1

randomwhichphasehascouldledconcretecompositeoverallcharacteristicsconcrete)thematerialConventionallylimitedpropagationofFurtherexistsformedandlittleresistancetocracking.Microcracksinconcreteareduringitshardeningstage.Adiscontinuoussystemevenbeforetheapplicationofanyexternalload.applicationoftheloadleadstouncontrolledgrowththemicrocracks.Thelowresistancetotensilecrackinturnresultsinalowfracturetoughnessandresistancetoimpactandexplosiveloading.reinforcedconcreteisatruetwophaseonlyaftercrackingwhencrackedmatrixisheldbyreinforcingbars.Existenceofonephase(i.e.,steelordoesnotimprovethebasicstrengthoftheotherphaseandconsequentlytheperformanceofthetraditionalreinforcedconcreteisdictatedbytheindividualperformanceoftheandsteelphaseseparately.Thesedeficiencieshaveresearcherstoinvestigateanddevelopamaterial,whichperformbetterinareaswhereconventionalconcreteseverallimitations.Onesuchdevelopmenthasbeentwocompositematerialsi.e.,FiberReinforcedConcrete,incementbasedmatrix,isreinforcedwithorderedordistributionoffibers.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page137

Thota Gireeshma1, B.Bala Krishna Bharath2

AN EXPERIMENTAL STUDY AND INVESTIGATION ON STRENGTH PROPERTIES OF CONCRETE WITH FIBRES

1.INTRODUCTION : Concrete is the most widely utilized “man made” material globallyforconstructioninmanydevelopingcountriesin all types of civil engineering works. Concrete is a material used in civil engineering constructions, consisting of a hard, chemically inert particulatesubstance,knownas an aggregate(usually made from different types of sand and stone), that is bonded together by cement and water. In this experimental investigation cement used is Portland PozzolanicCement(RAASIGOLD’53grade).Concrete isweak in tension and strong in compression. The low tensile strength is duetothepropagationofinternal microcracks present even before loading. So, concrete exhibits little fracture.Hencesteelfibersareusedtoovercometheabove disadvantage.Themodernuseof fiber reinforced concrete started in the 1960s using after various sorts of fiber materials have been investigated ever since and are utilized for different applications. Steel fibers are the dominatingmaterial, but there are many others, such as polymeric fibers, mineral fibers and naturally occurring fibers.InthisexperimentalinvestigationfibersofPerma FilE GlassFibersand Cold Drawn Carbon WireSteel Fibersare used. Fiber reinforced concrete is a composite material essentially consisting of conventional concrete or mortar reinforced by randomly oriented, short continuous and discrete fibers of specific geometry. The fiber is a piece of reinforcingmaterialusuallydescribedbyaspectratio.

KeyWords: Cement, Aggregate, Concrete, Fiber reinforced Concrete.

Abstract Concrete is the most widely utilized “man made” material globally for construction in many developing countries in all types of civil engineering works. Many of investigationswere attempted by the researchers to improve the quality, strength and durability against adverse exposures, since decades. Concrete that includes imbedded metal (usually steel) is called reinforced concrete or ferroconcrete. Reinforced concrete combines the tensile or bendable strength of metal and the compressional strength of concrete to withstand heavy loads. Reinforced concrete combines the tensile or bendable strength of metal and the compressional strength of concrete to withstand heavy loads .Varying percentages of fibers are 0.5, 0.75, 1.0 percentages of total fiber content for M 25 grade structural concrete with locally availableaggregates.Thedetailsofinvestigation along with the analysis and discussion of the test results are reported here in.

1Student M. Tech, Civil Engineering, Sree Rama Engineering College, Tirupati, Andhra Pradesh, India.

2Head of the Department, Department of Civil Engineering, Sree Rama Engineering College, Tirupati, Andhra Pradesh, India. ***

1.1 Need for Reinforced Concrete: Plainconcreteis weak intensionand has limitedductility

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page138 Objective of the Study: Thepresent work is madetoinvestigateexperimentally and the following tests were carried out namely: Compressive Strength, SplitTensileStrengthandFlexural Strength Tests. This experimental investigation comprises with the replacementofglasswithsteelfiber by0%,25%,50%100% from total content of 0.50, 0.75 and 1.00 percentages by weight have been attempted over the concrete specimens such as cubes, cylinders andbeamsrespectively.Theprogramconsistsofcasting andtestingofspecimensforvariousmixes.Adetailedtest program and results of testing are presented in the subsequentchapters. 2. MIX CALCULATIONS: 2.1 Quantities of fibers for 0.5%total fiber content (steel fibers &glass fibers) for concrete cubes: 2.2Quantities of fibers for 0.5% total fiber content (steel fibers &glass fibers) for concretecylinders: FiberGlass Weight(kgs) FiberSteel Weight(kgs) 0% 0 100% 0.344 25% 0.086 75% 0.258 50% 0.172 50% 0.172 75% 0.258 25% 0.086 100% 0.344 0% 0 2.3. Quantities of fibers for 0.75%total fiber content (steel fibers &glass fibers) for concrete cubes: GlassFiber Weight(Kgs) SteelFiber Weight(Kgs) 0% 0 100% 0.322 25% 0.081 75% 0.241 50% 0.161 50% 0.161 75% 0.241 25% 0.081 100% 0.322 0% 0 2.4 Quantities of fibers for 0.75% total fiber content (steel fibers &glass fibers) for concrete cylinders: GlassFiber Weight(kgs) SteelFiber Weight(kgs) 0% 0 100% 0.515 25% 0.129 75% 0.386 50% 0.2575 50% 0.2575 Glass Fiber Weight(Kgs) Steel Fiber Weight(Kgs) 0% 0.217 0.054 0.163 50% 0.1085 50% 0.1085 0.163 0.054 0.217 0%

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page139 75% 0.386 25% 0.129 100% 0.515 0% 0 2.5 Quantities of fibers for 1.00% total fibers content (steel fibers &glass fibers) for concrete cubes: GlassFiber Weight(Kgs) SteelFiber Weight(Kgs) 0% 0 100% 0.429 25% 0.107 75% 0.322 50% 0.2145 50% 0.2145 75% 0.322 25% 0.107 100% 0.429 0% 0 2.6 Quantities of fibers for 1.00% total fibers content (steel fibers &glass fibers) for concrete cylinders: GlassFiber Weight(kgs) SteelFiber Weight(kgs) 0% 0 100% 0.687 25% 0.172 75% 0.515 50% 0.3435 50% 0.3435 75% 0.515 25% 0.172 100% 0.687 0% 0 2.7 Water Cement Ratio: Water cement ratio has been fixed depending on the compactingfactortesttheworkabilitytestsarecarriedout by tallying different water cement ratios to find out the compactingfactorasmoderate,w/cratioismaintained as 0.5inthisinvestigation. 3.EXPERIMENTAL INVESTIGATION: In the present experimental investigation, the following testswerecarriedoutnamely:CompressiveStrength,Split TensileStrengthandFlexuralStrengthTestsforreplacementof glass with steel fiber by 0%, 25%, 50% 100% from total contentof0.50,0.75and1.00 percentagesbyweighthave strengthwereinvestigation.availablecast.percentagesfibersstructural0.75,withsamplescompressive,concretepresentcastingcylindersbeenattemptedovertheconcretespecimenssuchascubes,andbeamsrespectively.Theprogramconsistsofandtestingofspecimensforvariousmixes.Intheinvestigation,itisintendedtostudythebehaviorofandvariousstrengthparametersthataretensileandflexuralstrengthwithlaboratoryareevaluated.Themixedglassandsteelshortfibersvaryingpercentagesof0%,25%,50%100%from0.5,1.0percentagesoftotalfibercontentareusedforconcrete.Foreachreplacementofglasswithsteelby0%,25%,50%100%fromeach0.5,0.75,1.0oftotalfibercontent,6cubes&6cylinderswereTotally18cubes&18cylinderswerecastwithlocallygoodmaterialsandaretakenfortestinginthisThese18cubes&18cylindersfor28daysusedforfindingcompressivestrength,splittensileandflexuralstrengthtestrespectively. 3.1 TESTING PROGRAMME: In the present investigation, it is intended to study the behaviorofconcreteandvariousstrengthparametersthat are compressive, tensile and flexural strength with tensilefortestingcastcylinders0.75,glassare100%shortlaboratorysamplesareevaluated.Themixedglassandsteelfiberswithvaryingpercentagesof0%,25%,50%from0.5,0.75,1.0percentagesoftotalfibercontentusedforstructuralconcrete.Foreachreplacementofwithsteelfibersby0%,25%,50%100%fromeach0.5,1.0percentagesoftotalfibercontent,6cubes&6werecast.Totally18cubes&18cylinderswerewithlocallyavailablegoodmaterialsandaretakenforinthisinvestigation.These18cubes&18cylinders28dayswereusedforfindingcompressivestrength,splitstrengthandflexuralstrengthtestrespectively. 3.2 PREPARATION OF SPECIMENS: Preparationofspecimensinvolves preparationofsamples (i.e., cubes, cylinders and beams) and the various steps involvedstarting from the materials requiredtothehandling of samples (i.e., cubes, cylinders and beams). The various physicalpropertiesofmaterialsarefoundoutandrecorded.

3.3 MATERIALS: inThepropertiesandspecificationsofvariousmaterialsusedthepreparationoftestspecimensareasfollows.

investigationare:  Typeoffibersused.  Volumepercentoffiber.  Orientationofthefibersinthematrix.  Aspect ratio (the length of a fiber divided by its diameter). (e1) Glass Fibers: The

contains the glass fibers are of alkali resistant glass fibers. Glass fiber is especially resistant to ordinarydeteriorationcausedbyenvironmentalconditions.It is also an ecologically friend kind of fiber reinforced concrete because the glass fibers are made from natural presentlengthPermaaspectfibersforagainstusedtherandomconcretecementtimegenerallyconcrete1.0varyingThematerialsandtakecomparativelylittleenergytoproduce.glassfibersincombinationofsteelshortfiberswithpercentagesof0%,25%,50%100%from0.5,0.75,percentagesoftotalfibercontentareusedfortestingspecimens.TheOrientationoftheglassfibersisrandom,simplybecausetheyarenotplacedoneatainastraightline.Fibersareeitheraddedtothedryorsprayedontoaformandcoveredwiththewetmix.Bothoftheseprocedureswillproduceapatternoffiberreinforcing.Aspectratioissimplylengthofafiberdividedbyitsdiameter.Thispropertyistorepresenttheamountofsurfaceareaofthefibertheconcretemix.Thisaspectratioisanimportantanotherreason.Ithasbeendeterminedthatbailingofinthemixincreasesastheaspectratioincreases.Anratioof100forfiberswasfoundtobeoptimum.FilEGlassFibersofdiameter15µand12mminandanaspectratioofabout800wereusedintheexperimentalinvestigation. 4. Features and Benefits: It improves the strength as glass fiber in concrete and minimize the cracking pattern when loaded the test specimens. Also enhances the thermal properties. The

1)CEMENT: Portlandpozzolanacement(PPC)53gradecement: The cement used in the work was procured in a single consignment and was properly stored. The brand name of the Portland pozzolana cement used for the investigation is ‘RASI GOLD’ cement ( PPC 53 grade ) conforming to IS 12269 1987,IS1489 (Part1&2) 1991, IS3812 1981andIS 1344 1981. The cement is fresh and uniform in colour. The cement is free fromlumps and foreign matter. The fineness ofcementis 9%( as percentageresidueonI.S sieve No.9 ). The Specific gravity is 3.15 and normal consistencyis30%.Theinitialsettingtimeis150minutes andfinalsetting time is 480 minutes. The compressive strength ofcement mortarcubes at3days,7daysand28 N/mm2respectively.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page140 From these properties mix proportions for M25 Grade concreteare workedoutusingthemixdesignprinciples of IS : 10262:1982. Mix proportions are worked out keepingin view the durability requirements. The water cementratiousedis0.5,Sincethemaximumwater cement ratio is 0.5 for moderate environment .The materials required for cubic meter of concrete worked out . The details of formwork, casting procedure and curing of samples (i.e., cubes, cylinders and beams ). are dealt with.

(c) Coarse aggregate: The coarse aggregate i.e., metal used in the present experimentalinvestigationisnaturalaggregateconforming to IS : 383 1970. Coarse aggregate consists of particles ofmaximumsize20mm.Thespecificgravityis2.68.The fineness modulus is 6.15. The

(e) Fibers: The fibers used in the presentconcrete mix are Glass and steel.Thepercentoffibersintheconcretemixarebasedon volumeandisexpressedasapercentofthemix.Themain properties of fibers used in the present experimental concrete mix

42.5daysare31.0N/mm2,N/mm2and56.5

(d) Water: forportablematerialscleanThewaterusedinthepresentexperimentalinvestigationisandfreefromoils,acids,alkalies,sugar,organicandothersubstancesasperIS4562000.Thewaterwasusedforcastingconcretespecimensandcuring.

(b) Fine aggregate: finecompletelymatter,383investigationThefineaggregatei.e.,sandusedinthepresentexperimentalisriversandconformingtozoneIIasperIS:1970.Thesandiscleaninertandfreefromorganicsiltandclay.Itsspecificgravityis2.55.Thesandisdriedbeforeuse.Thefinenessmodulusofaggregateis3.55. aggregate is of uniform angularity.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page141 inchancesimprovementstrengthhigherconcreteattackenvironmeThereducesproductisdurableandlighterinweight,whichsignificantlythecostoffreighttransportationandinstallation.fiberwrappedskinismoreresistanttontaldegradationandcorrosionundertheofchemicals.Easilyadoptstoanyshapeoftheallowingflexibilityindesign.Itdemonstratesresistancetoenvironmentaldeteriorationandretentionthanthelessexpensive.Addingfibersinimpactresistanceandreducetheofspalling.Also,itincreasesthetensilestrengthconcrete. 5.CASTING, CURING AND TESTING OF TEST SPECIMENS: Casting and Curing: This chapter deals with the Casting and Curing of test thedealtspecimens.ThedetailsofprocedureofcastingandcuringarewithasperI.S:5161959.TheworkdetailswithpreparationofM25Gradeofconcreteusing ‘RASI GOLD’ cement(PPC53grade).Thesandpassingthrough 4.75mm sieve and surface dry in condition, the crushed stonesofsurfacedried,andcleanpotablewaterwereused. M25grade ofconcreteisdesignedbytheIS:10262:1982 methodwithwatercementratioof0.50.Thesamemixis prepared by different percentages of fibers by weight and for various fibervolumefractionsof0.50,0.75and specimensusingplacedNos.),mix.weremixingbeuniformlycontinued.balanceparticlesthequantitythoroughlyrequiredaggregatetight/nonabsorbentandRequiredbottomtakenwereThespecificationsworkabilityaftermixingAll1.00percentages.thematerialswereproportionalbyweighbatch.Machinewasadoptedforalltheconcretemixes.Immediatelythoroughmixing,thefreshconcretewastestedforbydeterminingtheslumpasperI.S.:11391959.Theslumpvalueis65mm.mouldsofrequiredsizeconfirmingtoI.S:100861982arrangedonsmoothplatformamideverycarewastoavoidanyirregulardimensions.Theinnersidesandofmouldswerelubricatedusingwasteoil.quantitiesofcement,sand,coarseaggregatespecifiedfibersweretakenonawaterplatform.Firstcementandweremixedthoroughlyindrystate.Theamountoffiberswereaddedmanuallyandmixed.Intheprocessofmixinghalftheofwaterwasaddedtothematerialsplacedinmixer.Thiswasintendedtoavoidstickingoffinertomixer.Asthemixingwasinprogress,thequantityofthewaterisaddedandmixingisCareistobetakensothatfibersaredispersedandtoavoidbalingoffibers.Propercarehastotakentoavoidstickingoffinerparticlestomixer.TheprocesswascontinueduntilalltheingredientsthoroughlymixedtoformauniformlyandcoherentAllthetypesoftestspecimensnamelycubes(12cylindersweresimultaneouslycaste.Themixwasintwoequallayers.Eachlayerwascompactedplatformvibratortoobtaindenseconcrete.Thewereremovedfromthemouldsafteralapse of 24 hours. The identification mark, date of castingand gradeofconcretearewrittenoneachspecimen. After that thespecimensweretransferredtocuringtank.Curingwas doneforaperiodof28daysbysubmergingthespecimenin water. The cubes 18 Nos. are cast in steel mouldsofinner dimension150x150x150mm,theflexural beams18Nos arecastinsteelmouldsofinnerdimension500x100x100 mm and the cylinders 18 Nos. are cast in steel moulds of inner dimension of Height 300mm and Diameter150mm. Totally 54 Nos. test samples are proposed for this experimentalinvestigation. 6. Testing of Test Specimens: Test Setup: The cube and cylindrical specimens were tested in CompressionTestingMachine. 6.1 Compression Testing Machine: The compressive strength of concrete is taken as an important index of its general quality. Since it is a first requisite of the structural engineer, this property is most 2.1.Makefollows:Theneedtestingcomparedapplied10%frequentlyfound.Thetensilestrengthofconcreteisroughlyofitscompressivestrength.Theloadsrequiredtobeincompressiontestsaregenerallyhighwhentothatinothertestsandthenormaluniversalmachinesdonotprovidesuchhighloads.Hencetheforthisparticulartypeofcompressiontestingmachine.salientfuturesofcompressiontestingmachineareas:KillernandCo.,NewDelhi.Year:1987 3.Capacity : 300/150/60Tones. 4.Testing : Compressiontestonconcrete/GaugeCalibration. The 300 / 150 / 60 Tones hydraulic compression testing machine consists of two parts fitted in two different mountings , the pumping unit being separate from the combined mounting of the straining unit and theloading indicatingunit.Sincethemachineisusedforcompression testsonly,nospecialgripsarerequiredandthespecimenis ramquitespecimencardboardplatencompressionthetop.adjustmentadjustedcompressioheldbetweentwosteelsurfacesandcompressed.Theuppernplateisastoutsteelsurface,whichcanbetotouchthespecimenandholditintact.TheisaffectedbymeansofthehandwheelattheAramworksinsidepressurecylinderatthebottomofmachine.Thetopoftheramactsasthebottomplate.Concentriccirclesaremarkedonthistofacilitatethecenteringofthespecimen.Plywoodorsheetsmaybeplacedaboveandbelowtheincasethespecimensurfacesareroughandnotplane.Oilpressureappliedintothecylinder,forcestheupandloadthespecimen.Asmallportionofthisoil

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page142 loadunderpressuretakenintotheloadindicatingunitgivesthedirectly. Procedure: Theidentificationmarks,sizeandweightofthecubeare +15%awaystrengthbeaverageconcreteobserved.finalofLoadTurningmeansassoplacedensurednoted.Themachineisstartedandsufficientlubricationisbeforecommencingthetestthespecimeniscentrallyoverthebottomcompressionplate,andpositionedthattheloadisappliedatrightanglestothecastposition.Theuppercrossheadisloweredbyofthewheeluntilittouchesthetopofthecube.thewheellittlefurtherholdsthespecimentight.isappliedgradually,attheratespecifiedbythecodepractice.Theloadsarenotedafirstcrackandatthecrushingofthespecimen.ThetypeoffailureisThenormalpracticeistotestthreecubesoffromonebatch.Ifanyvaluevariesby15%ofthestrength,threemorecubesofthesamebatchmaytested.Whilecomputingtheaveragecompressivethevaluesthatwhicharefromtheaveragearenotconsidered. 7. TEST PROGRAMME: 7.1 Compressive Strength:Attheendofthecuringperiod,thecubespecimenswere Where,Compresformula.crushingThe/sq.cm/minute140kgloadcompressiveplacedcompressionTheTheplacedforeachcapacity.testedunderthecompressiontestingmachineof3000KNTestingmachinehasdifferentloadingranges(inrange)of600KN,1500KNand3000KN.Theleastcountthesaidloadingrangesis10KN.Thetestspecimenwasinthecorrectpositionandthentheloadwasapplied.rateofloadingwasmaintainedat10MPaperminute.cubesweretestedforcompressivestrengthusingtestingmachine.Inthemachine,thecubeiswithcastfacesatrightanglestothatoffaces.accordingtoI.Sspecification,theonthecubeisappliedatconstantrateofuptofailureandtheultimateloadisnoted.crushingloadisnotedfromthedialgaugeandthestrengthofthecubeisobtainedfromthesiveStrength(fcu)=PuAfcu=UltimatecubestrengthinN/mm2Pu=UltimateloadorloadatwhichthecubeiscrushedA=Contactareaofthespecimeninmm2 7.2 Split Tensile Strength: Forthesplittensilestrength,cylindricalspecimenswere CompressiveStrengthTest: Concrete Specimens Details: Mix:M25 Specimens’designation:C1 1toC1 6 (B)SPLIT TENSILE STRENGTH TEST: No. Ultimate Load in KN StrengthN/mm2in in 100 52.44 C1 2 25 25.87 C1 3 50 50 1060 18.87 C1 4 25 980 43.56 C1 5 100 930 41.33 7.53 C1 6 Concrete 860 38.22 00.00 No. TensileSplit Load in KN TensileSplit in in 100 320 4.53 21.85 S1 2 25 305 4.31 S1 3 50 295 S1 4 25 3.89 9.00 S1 5 260 3.68 3.80 S1 6 Concrete 250 3.54 00.00

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page143 testedincompressiontestingmachine.ThistestwasdevelopedinBrazilin1943.Therefore,thisissometimesreferred toas“BrazilianTest”.Thecylindricalspecimensare placed horizontally the loading surfaces of a comprehension testing machineandtheloadwasapplieduntilthefailureofthecylinder,alongtheverticaldiameter.Thesplittensilestrengthof Splitcylinderisobtainedfromtheformula.2PTensileStrength= ЛDL Where,P=Comprehensiveloadonthecylinder. L=Lengthofthecylinder. D=Diameterofthecylinder. 8.TEST RESULTS AND GRAPHS: (a)Test GRAPHS:I:

9.1 Observations Made: Glassfiberreinforcedconcretecanbeadvantageouslyused for practical applications. The GFRC mix is cohesivewith sufficientworkability.Glassfibercombineswellwiththeotheringredientsoftheconcretetoimpartuniformcolorand texture.Shrinkagecharacteristicsareverymuchimproved.Asglassfiberisnotaffectedbycorrosionassteelfiber.Hence GFRCcanbepreferredforcorrosionresistant structural components. It can be used for chemical resistance and in the case of water tanks etc. Though not tested in the present work, it can be taken that glassfiber improves the shear strength of concrete. Because of its superior crack arresting and ductility characteristics, GFRC performsbetteragainst shockorimpactloadsandblasts.Itsenergyabsorptionqualityisbetter.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page144 9. DISCUSSION ON TEST RESULTS : ThetestsresultsarestudiedwithreferencetotheresultsoftheCompressiveStrength,SplitTensileStrengthandFlexural Strengthat28daysarereported.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page145 9.2 Workability Of Fiber Reinforced Concrete Using Dual Fibers (Steel Fibers and Glass Fibers): In the present experimental investigation total fiber content(steelfibersandglassfibers)of0%,0.5%,0.75%, 1.0%,byvolumehasbeenusedinthepreparationsoffiber reinforced concrete.Withawatercementratioof0.5,M25 plain cement concrete mixes are found to have a compactionfactorofnearly0.90.With100%steelfibers in1.0%totalfibercontent,forthesamecementratio,the workabilityisfound tobenearly0.88.With100%glass fibers and with the same water cement ratio, the workability is found to be 0.89 in terms ofcompaction factor. Hence it can be observed, that the above percentages of fibers used in the present investigation affect the workability marginally. The workability is 01%FiberGlassspecimensconcreteofPercentages0%,0.5%,replacementglassstrengthinplainforthecomparedandcontent0.75%ofThealmostsamewithsteelorglassfibers.cubecompressivestrengthresultsobtainedattheage28daysarepresentedintheabovetablefor0%,0.5%,and1.00%totalfibercontent.Theglassfiberisvariedfrom0%to100%intheabovetabletheresultswiththatofplainconcretespecimens.Likewise,resultsof0.75%totalfibercontentandtheresults1%totalfibercontentarecomparedwiththatofconcretespecimens.Hencetheresultspresentedthebelowtableshowsthevariationofcompressiveattheendof28dayswithvariouspercentagesoffibersof0%,25%,50%,100%byvolumeusedasofsteelfiberintotalfibercontentof0.75%and1.0%byvolume,fibersinFor0.50%totalfibercontentCompressiveStrengthinN/mm2For0.75%totalfibercontentCompressiveStrengthinN/mm2For1.00%totalfibercontentCompressiveStrengthinN/mm2SteelFiber%234510052.4453.7856.44257551.5652.8954.67505047.1149.3351.11752543.5644.4447.11100041.3343.1144.89ConventionalConcrete38.2238.2238.22

strength, the following is observed from the plaincompressivecontentcleardecreasedincreasedpercentagebeSteelfiberforabovetable.Thecompressivestrengthattheendof28days,theconcreteofnominalM25Mixwith1.0%totalsteelcontentandwith0%glassfiberreplacementi.e.100%fiber)isfoundtobemaximumandthesameisfoundtoexcessoverthestrengthofplainconcrete.Astherelativeofglassfiberinthetotalfibercontentis,thecompressivestrength(28days)isgraduallycomparedtothemixwith100%steelfiber.Itisfromtheabovetable,thattheincreaseinglassfiberdecreasesthecompressivestrength.TheStrengthalsoincreasesconsiderablyoverthecementconcrete,byaddingGlassfibers. 10.1 SPLIT TENSILE STRENGTH: Percentages of fibers in specimensconcrete For N/mm2StrengthTensilecontenttotal0.50%fiberSplitin For N/mm2StrengthTensilecontenttotal0.75%fiberSplitin For N/mm2StrengthTensilecontenttotal1.00%fiberSplitin%FiberGlass %SteelFiber 2 3 4 5 6 0 100 4.53 4.81 5.09 25 75 4.31 4.53 4.88 50 50 4.17 4.38 4.67 75 25 3.89 4.17 4.31 100 0 3.68 3.89 3.96 ConventionalConcrete 3.54 3.54 3.54 0%,theincontent.inSimilarly,thesplittensilestrengthtestresultsarepresentedtheabovetablefor0%,0.5%,0.75%,1.0%totalfiberTheglassfibercontentisvariedfrom0%to100%theabovetable.Thevariationofsplittensilestrengthatendof28dayswithvariouspercentageofglassfibersof0.5%,0.75%,1.0%isalsoshownintheabovetable.

10 Discussion: Itisobservedthatasthepercentageoftotalfibercontent (steelfibersandglassfibers)isincreased,thecompressive strengthalsoincreases.Itmayalsobeobservedthatasthe percentage replacement of steel fiber by glass fiber increased and steel fiber percentage is decreased, the compressivestrengthgoesondecreasing. In the present experimental investigation regarding the compressive

1. isThestructuralintegrityofthetestedconcretespecimensfoundtobegoodunderloading.

7. ForthenominalM25mixwithawatercementratioof 0.5usedinthepresentinvestigation,theworkabilityof concrete is only marginally affected even with a total fibercontentof1.0percentbyvolume.

10. As the percentage of steel fiber is reduced and glass fiber is increased, the compressive strength isgetting reduced compared to that of 100% steel fiber in the matrix.

6. The fibrous concrete is stiffer than the conventional concreteinappreciableway.

3. In addition to the fibrous contents, some of the admixtures/plasticizer can bemixedtoenhancesome of thestrengthpropertiesofconcretesatisfactorily.

5. Thefibrous concreteisfoundtohavemaximumultimate loadcarryingcapacityasconventionalconcrete.

2. With the above test results, the concrete mixed with dual fibers can be recommended for earthquake resistancestructures.

14 CONCLUSIONS AND SCOPE FOR FUTURE STUDY: 14.1 Conclusions: On the basis of experimental studies carried out and the analysisoftestresults,thefollowingconclusionsaredrawn.

8. strength%daystoThecompressivestrengthofdualfiberconcreteisfoundbemaximumat1.0%totalfibercontentofsteelat28comparedtoplainconcrete.Also,withatotalof1.0glassfiberbyvolumetheincreaseofcompressiveat28dayscomparedtoplainconcrete.

12. concrete.tensiletotaldaystoThesplittensilestrengthofdualfiberconcreteisfoundbemaximumat1.0%totalsteelfibercontentat28comparedtoplaincementconcrete.Also,withaof1.0%glassfiberbyvolumetheincreaseofsplitstrengthin28Dayscomparedtoplaincement

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page146 11 Discussion: It is observed that as the percentage of total fiber content(steelfiberandglassfiber)isincreased,thesplit tensile strength also increases. It may also be observed thatasthepercentagereplacementofsteelfiberbyglass fiber is increased and steel fiber percentage decrease, the split tensile strength goes on decreasing. In the present experimental investigation regarding the split tensile strength,thefollowingisobservedfromtheabove table.The splittensilestrength,attheendof28days,for the concrete of M25 Mix with 1.0% total steel fiber content and with 0% glassfiberreplacementi.e.(100% steelfiber)isfoundtobemaximumandthesameisexcess over the strength of plain concrete. As the relative percentage of glass fiber in the total fiber content is increased,thesplittensilestrength(28days) isgradually decreasedcomparedtothemixwith100%steelfiber.Itis clear from the above table, that the increase in glass fibercontentdecreasesthesplittensilestrength.Thesplit tensile strength also increases considerably over the plainconcrete,byaddingGlassfibers. 12 Cracking Characteristics: formation.butfiberglassspecimens.havesuddenofsuddencracks.thatTypicalfailedspecimensofcube&cylinder.ItisobservedfailurehastakenplacegraduallywiththeformationofInthecaseofplainconcretespecimens,thefailureisandbrittle.Henceitisestablishedthatthepresencefibersinthematrixhascontributedtowardsarrestingcrackformation.Evenduringfailure,thespecimensnotbeensplinteredasinthecaseofplainconcreteThisistruewiththepresenceofsteelorfiber.Itmayalsobenotedthattheincreaseinglasscontentthoughcausedreductioninthestrengthhascontributedtowardsarrestingthecrack

9. There is substantial increase in the compressive strengthformixedfibercombination.

11. Steel fiber of 1 mm diameter and length of 50 mm havinganaspectratioof50canbesatisfactorilymixed along with glass fiberhaving anaspect ratioofnearly 800toincreasethestrengthandothercharacteristics.

thematrixtheductilityisverymuchincreased.

4. Itcanbeconcludedthattheconcretemixedwithdual fiber would also have much more life in comparison withtheconventionalconcrete.

13 Ductility Characteristics: Beam specimens of Nominal M25 mix with various percentages of fibers have been tested for flexural strength under two point loading as per the standard specifications. The procedure followed and the values obtained have already been discussed. The flexural specimenstestedhaveexhibitedductilitycharacteristics. At the failure load a diagonal crack has appeared in between the loading points and the specimen have not failedsuddenly.Thefailureisnot brittle and is entirely different from that of plain concrete, where failure is brittle. The ductility characteristics exhibited by the specimensareduetotheintroductionoffiberinthemix. This shows that in general introduction of fibers in specimens exhibits the improved ductility. The crack patternofbeamsispresentedinFig.Allthebeamsfailed aboutskewaxisshowingtypicalskewbendingfailure.The increaseinglassfibercontenthascausedreductioninthe strengthcomparedtosteelfibers.Butwiththeglassfiberin

2. IS.516 1959, “Methods of Tests for Strength of Concrete”, Bureau of Indian Standards, Manak Bhavan, 9 BahadurShahZafarMarg,NewDelhi

20.

6. BIS 10269:1987,”Specification for 53 Grade Ordinary Portland Cement”, Bureau of Indian Standard, New Delhi.

10. Furtherinvestigationcanbedoneattheendof45days, 90daysand1yeartolifetime.

8. BIS 383:1970,”Coarse and Fine Aggregate from Natural

4. Sikder,P.K,Gupta,SandKumar,S.(2004),“Application of Fiber as Secondary Reinforcement in Concrete”, NSW & CW,December.

19. The crack widths in the mixed fibrous concrete are less. The mixed fibrous concrete has adequate code prescribesductility.

8. Furtherwork maybecarriedoutonthehighstrength concrete/self compactionconcreteusingdualfibers.

4. This study can also be extended by considering the effect of single and two points loading with effect of shearalso.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page147 13. Asthepercentageofsteelfiberisreducedandglass fiber is increase, the split tensile strength is getting reducedcomparedtothatof100%steelfiberinthe matrix. 14. The ductility characteristics were found to improve byaddingsteelfibers. 15. Theflexuralstrengthofdual fiberconcreteisfound to concrete.strength1.0daysbemaximumat1.0%totalsteelfibercontentat28comparedtoplainconcrete.Also,withatotalof%glassfiberbyvolumetheincreaseofflexuralin28dayscomparedtoplaincement 16. Theductilitycharacteristicshaveimprovedwiththe toadditionofglassfibers.Thefailureisgradualcomparedthatofbrittlefailureofplainconcrete.

18.

3. Present work can bestudiedfurther byusing mineral admixtures, Fly ash & glass fibers with partial replacementofcement.

5. canpercentagesCreep,ImpactandFatiguetestsforbeamswithdifferentoffibersunderdifferentloadingconditionsbestudied.

21. The present experimental investigation has been takenupwithaviewtoopennewpathsandvistasfor the use of dual fiber reinforced concrete for structural applications and the results are encouraging.

2.

5. MORTH Specification for Road and Bridge Works (2001),FourthRevision.

7. Behavior of fiber reinforced concrete with dualfibers underuni axialandbiaxialbendingforcolumnscanbe studied.

9. concretetoTestsonslabsandbeams(prototype)maybeconductedarriveatthedesignstrengthoffiberreinforcedwithdualfibers.

3. Satander Kumar (2005), “Alternate Materials for Civil Engineering Construction”, Central Road Research Institute,NewDelhi.

2.

7. BIS 2386:1963, “Methods of Test for Aggregates for Concrete”,BureauofIndianStandard,NewDelhi.

15. Scope for Future Study: Various research activities on properties of concrete in aggressive media are carried out; there is a wide scope for further research. The advert of various mineral admixtures and chemical admixtures necessities active exploration and experimental investigation. The followingavenuesmaybeinvestigated.

6. Further investigations can be carried out on the permeabilitypropertyofconcretewithfibers.

2. Thecomparativestudycanbemadeonthestrength propertiesofconcretewith variousdual fiberssuch as Carbon fibers and Steel fibers, Glass fibers and Carbonfibersandothercombinationsoffibers.

22. The arguments about cost versus enhanced life, equallyholdshereaswell.

17. Crackscanbecontrolledbyintroducingglassfibers. Cracks have occurred and propagated gradually till the final failure. This phenomenon is true with all the percentages of glass fiber. Glass fiber also helps incontrollingtheshrinkagecracks. Compared to metallic fibers likes’ steel, alkali resistantglassfibergivescorrosionfreeconcrete.

16. REFERENCES: 1. IS.456 2000, “Indian Standard Code of Practice for Plain and Reinforced Concrete”, Indian Standards Institution, ManiacBhavan,9BahadurShahZafarMarg,NewDelhi

1. concrete.withFurtherstudycanbemadeforthesamecaseofloadingdifferentcementsanddifferentgradesof

27. Schmitz,G.K.,AndMetcalfe,A.G.(1965).“CharacterizationOf Flaws on Glass Fibers.” Proc., 20th Anniversary TechnicalConf.,TheSocietyoftheplasticsIndustry,Inc.,1 14.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page148

11.

19.

20.

30. Thesis Work Titled “Fibrous Reinforced Concrete Beams Under Combined Bending and Torsion An ExperimentalInvestigation”BySriV.V.GovindaRao

13.

SourcesofConcrete”,SecondRevision,BureauofIndian Standard,NewDelhi. BIS 9103:1999, “Admixtures for Concrete”, First Revision,BureauofIndianStandard,NewDelhi. BIS 10262:1999’ “Recommended Guidelines for ConcreteMixDesign. BISSP23:1982,“HandBookonConcreteMixes”,Bureau ofIndianStandard,NewDelhi. BIS1786:1985,“HighStrengthDeformedSteelBarsand Wires for Concrete Reinforcement”, Third Revision, BureauofIndianStandard,NewDelhi. “A Case Study FIBER REINFORCED CONCRETE “ BY PawanKumarandSunilKumar PublicationsofICACC 2008,Vol I&II,7 9February 2008,Hyderabad,India. KhaleelAzadMd.&Swami.B.L.P“StudiesonStrength Properties of Glass Fiber Reinforced Concrete with Low Fiber Content” M .Tech thesis, JNTU, Hyderabad, 2005. RaoRaviShekarR.‘StudiesonTheStrengthProperties Of Glass Fiber Reinforced Concrete With High Fiber Content’.M.Techthesissubmitted,J.N.T.U. ACI544,“FiberReinforcedConcrete“. SaintGobainVetrotex,Cem Fil‘WhyAlkalineResistant GlassFibers’. “SpecificationfortheManufacture,CuringandTestingof GRCA Products “,GRCA International 2ndeditionJune 2000. Porter, “Preparation of Concrete from Selection of MaterialstoFinalDepositions”Proceedingofnational AssociationsofCementUsers,A.C.I.,Vlo.6,1910,PP296.

18.

22. Thomas,W.f.(1960).“TheStrengthandPropertiesof GlassFiber.”Phys.Chem.Glasses,1(1)4 8.

21. Graham. G.M, “Suspension Steel Concrete”, U.S Patent No.983,274 Feb.1911,PP.7.

9.

12.

14.

16.

25. Charles,R.J.(1958b).“StaticFatigueofGlass.II.”J.Appl. Phys.,29(11),.1554 1560. 26. Lowenstein, K.L. (1973). “The Manufacturing Technology of Continuous Glass Fibers “Elsevier, London.

28. Surana, M.S., AND Joshi, S.N., “Evaluation of Pozzolanic Materials by Simple Cardometric Technique “,The IndianJournal,Sep 1995.

17.

29. Rehabilitation Of Structural Elements with Fibrous Concrete “ By M. Lakshimipathy, Lecturer and A.R Santhakumar, Professor of Civil Engineering, College of Engineering Per. Anna University of Technology, Gundy, Madras.

15.

10.

23. Ott,W.H.(1965).“TheEffectsoftheMoistureonThe StrengthofGlassFibers ALiteratureReview.”U.S.Naval Research Laboratory, Contract No. 4522 (00) (x), Whittaker,SanDiego.

24. Charles, R.J.(1958a). “Static Fatigue ofGlass. I.”J.Appl. Phys.,29(11),1549 1553.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.