NLP based Text Summarization Techniques for News Articles: Approaches and Challenges

Page 1

news stories, emails,

summaryistheactofcondensingalongtextintoa

Key Words: News Summarization, Abstractive SummarizationSummarization,AutomaticNewsSummary,NLP,Hybrid 1.

INTRODUCTION

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1310 NLP based Text Summarization Techniques for News Articles: Approaches and Challenges Sara Tarannum1, Piyush Sonar2, Aashi Agrawal3 Krishnai Khairnar4 1Student, Dept. of Information Technology, SVKMs Institute of Technology, Dhule, Maharashtra, India 2Student, Dept. of Information Technology, SVKMs Institute of Technology, Dhule, Maharashtra, India 3Student, Dept. of Information Technology, SVKMs Institute of Technology, Dhule, Maharashtra, India 4Student, Dept. of Information Technology, SVKMs Institute of Technology, Dhule, Maharashtra, India *** Abstract

The amount of text data available has increased dramatically in recent years from a variety of sources. This large volume of literature has a wealth of information and knowledge that must beadequatelysummarizedinordertobe useful. Text summarizing is one of the jobs that has received a lot of attention, but there hasn't been any practical application for it aside from tasks based on Extractive summarization, such as news or book summarization. Text summarizationcreates anautomatically generatedsummary that includes all pertinent significant information from the original material. Observing the summary results, extractive and abstractive techniques are one of the most common. Extractivesummarizingis maturing, andresearchiscurrently shifting to abstractive summarization and real time summarization. The results of the analysisprovideanin depth explanationofthe trends that are the focusoftheirresearchin the field of text summarization, pre processing and features that have been used, describes the techniques and methods that are oftenusedby researchers as a comparisonandmeans for developing methods. In this study, various recommendations are made regarding opportunities and problems intextsummarizationresearch,andwhyabstraction and hybrid summarization methods produce the best results

online

first,fromsummarizingsummarizationInmakeautomaticallywebsitesproblemreasoning.withKnowledgedemonstratedalgorithmsForexThemanuscripts.crispsummarizationphrasessummarizationownBothtakenplainmajorfromaccounttext.extractsgeneratedprimarysummarizationneedtosmaller,moreaccurate,andfluentsetofphrasesthatiseasygraspandprovidesthereaderwiththeinformationtheyinalimitedamountofwords.[1]Extractiveandabstractivesummarizationarethetwotextsummarizingapproaches.Thesummaryisusingextractivebasedsummarization,whichtherelevantphrasesandsentencesfromtheoriginalThestatisticalpropertiesofthesentencesaretakenintowhendeterminingthemostimportantsentencesthetext.AbstractivesummarizationrecognizestheideasintheoriginaltextandcreatesasummaryinEnglish.Thelinguisticqualitiesofthesentencesareintoaccounthere.[2]extractiveandabstractivesummarizationhavetheirsetofadvantagesanddisadvantages.Extractiveselectsthemostimportantandcorrectbutsuffersfromincoherency,whereasabstractiveprovidesawordbywordsummarythatisandreadablebutmaylosesignificantdatainlarge[11]majorityofextanttextsummaryapplicationsaretractive,withonlyafewproducingabstractivesummaries.constructingmultidocumentsummaries,graphbasedforabstractivetextsummarizinghavetobesuperiortopreviousmethods.graphsprovideasummarythatismoreinlinehumanreadingpatternsandhasthelogicofhumanAsaresult,wesuggestapossiblesolutiontothisbygatheringcrucialinformationfromnewsandextractingonlythesubstanceintheformofancreatedsummary,allowingnewsreaderstomoreinformeddecisionsinlesstime.[3]thispaper,wedescribeauniqueapproachforextractivewithsentimentanalysisfortwoleveltextfromonlinenewssources.Importantsentencesvariousnewsstoriespertainingtoatopicareextractedandindividualsummariesareprepared.Sentiment

papers,

People have become overwhelmed by the vast amount of informationanddocumentsavailableontheinternetasthe internet and big data have grown in popularity. Many researchersaremotivatedtodevelopatechnologysolution that can automatically summaries texts as a result of this. The task of compressing a piece of text into a shorter version,loweringthesizeoftheoriginaltextwhilekeeping information.theThemotivatorittimeascrucialinformationalaspectsandcontentmeaning,isknownsummarization.Becausemanualtextsummarizingisaconsumingandinherentlytediousactivity,automatingisexpandinginpopularityandsoservesasapowerfulforacademicstudy.purposeofautomatictextsummarizationistoreducelengthofdocumentsorreportswhilepreservingcrucial[5]Textsummarizationcanbeusedinavariety of places, including research and search engines to get a quick summary of the [1]results.Text

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1311 analysisisusedtogofurtherintotheindividualsummaries foreachtopic.[4] 2. Background 2.1 Motivation: Theamountoftextdataavailablefromvarioussourceshas explodedinthebigdataera.Thislargevolumeofliterature has a wealth of information and knowledge that must be newsadvertising,consumptionwebsites.issuesfocushighlightsoftoThethisinformationsubjectautomaticavailabilityvasttremendously,automateorderknowledgeThisalgorithmsandprotectwhileassistaccesscontentbecomestextquickly.forwhichCapturingsummarizationlacksummarycompletelyorderautomatickeepingandsummarizationfieldgrowingadequatelysummarizedinordertobeuseful.Becauseoftheavailabilityofdocuments,extensiveresearchintheofnaturallanguageprocessing(NLP)forautomatictextisrequired.Thejobofproducingasuccinctfluentsummarywithouttheassistanceofapersonwhilethesenseoftheoriginaltextmaterialisknownastextsummarization.[20]It'sdifficultsince,intosummarizeapieceofliterature,wenormallyreadittogainabetterknowledgeofitandthenwriteastressingitsimportantpoints.Becausecomputershumanlanguageandunderstanding,automatictextisacomplexandtimeconsumingoperation.themostrelevantcomponentsofadocument,serveasacondensedhighlightofitscontent,iscriticalsavingtimeandallowingenduserstoconsumematerialTherehasbeenanincreasingdemandforautomaticsummarizingsolutionsasmanualsummarizationunscalableandhenceunfeasibleatsuchalargeinfluxrate.Becausesomuchofthiscontentisedonmobiledevices,ondevicetextsummarizingcancontentprovidersdisplaytheirinformationsuccinctlylimitingcloudinvolvementtosavebandwidthandprivacy.Becauseofthelimitationsofstoragespaceprocessingresources,ondevicesummarizationremainmostlystudied.[12]largevolumeofliteraturecontainsawealthofandfactsthatmustbeeffectivelysummarizedintobeuseful.Thisproblem'smainpurposeistotextsummarizing.AstheInternethasdevelopedpeoplearebecomingoverwhelmedbytheamountofonlineknowledgeanddata.Theincreasedofpapersnecessitatessubstantialresearchintotextsummarizing.Textsummarizationistheofalotofresearchthesedays.Astheamountofavailableontheinternetexpands,incidentslikearebecomingincreasinglytypical.[13]useofanautomaticsummarytechniqueisasmartwaydealwithinformationoverload.Ittakesasingleoragrouppapersasinputandgeneratesabriefsummarythatthemostrelevantdetails.Personalization,theofthisstudy,isbothacauseandareactiontothethatthetraditionalmediafaceinrelationtotheirTheissuessteminlargepartfromonlineaudiencebehaviorsaswellastheeconomicsofwhichisthekeysourceofrevenueforonlinesites.[19] Forthisgoal,variousmachinelearningmethodshavebeen processesSequenceinformation,sentenceasproposed.Themajorityoftheseapproachesmodelthistopicaclassificationproblemthatdetermineswhetherornotashouldbeincludedinthesummary.TopicLatentSemanticAnalysis(LSA),Sequencetomodels,ReinforcementLearning,andAdversarialhaveallbeenappliedinothertechniques. 2.2 Classification of Summarization Techniques: Summarization is based on numerous factors: news extraction methods, input data, and type of output, summary generation methodology, and similar news recommendations. A combined analysis of these factors determinethepriorityofthesummarizationmethodology that will be utilized to create the most optimal news follows:summary.Thesummarizationparametersareclassifiedas Fig 1: SampleTableformat 2.3 Method of Automatic Summarization 2.3.1 Abstractive: Abstractivesummarizationapproaches decoder.textnetworktexttrytosynthesizeanewshortertextbyanalyzingtheoriginalusingadvancednaturallanguagealgorithms.Aneuralreadsthetext,encodesit,andthengeneratestargetinthesemodels,whicharemadeupofanencoderanda[3] 2.3.2 Multi Lingual: NotallavidreadersarenativeEnglish speakers. Hence, apart from English, there is a need for inter translationofeachsummaryforeaseofreading.So, multi lingualtranslationapproachhasbeenchosen. 2.3.3 Recommendation Based: To eliminate the risk of nocollectedsummaryBecausemultirecommendationbroadlosingoutonrelatednewsfromdifferentsources,provideaoverviewinlesstime,andreduceresourcebias,basedsummarizingwaschosenoverdocumentsummarizationasasinglesummary.combiningnewsfromseveralsourcesintoasinglefailstodistinguishwhichnewsparameterwasfromwhichspecificnewssource,thereaderhasideawhereanygivennewssnippetcamefrom.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1312 2.3.4 Hybrid Method: Each of their flaws may be overcome by each of their summarizing breakthroughs, hence the hybrid method with a combination of query based extraction and web based extraction was chosen over the individual methods. This method aids in the narrowing down of news phrases for summation to particular criteria in terms of utility, indicative, and informativedifferentiationforbettersummaryproduction. 2.4 Detailed walkthrough of survey method When the paper article search stage is completed, a large number of articles that meet the requirements will be filtered out during the search adjustment procedure. The inclusion and exclusion process provided the basis for thatMendeley'swillbestaautomaticallyforproducefromdeterminingthearticlecriteriausedinthemainstudy.Asidethat,weneedastrategyliketheoneshowninFig.1tolimitedpaperarticlesthatmeettheresearchtopiclaterreview.Thefirstpaperarticlefoundafterfilteringtitles,abstracts,andkeytermsduringpreliminarysearch.Thenselectthemajorpaperarticlethatsuitstheentiretext'scontents.Thepapers'finalresultsbecompiledandassessedforfurtheranalysis.softwareisusedtoorganizesearchresultssotheycanbegroupedaccordingtospecificsubjects. Fig 2:SurveyProcess 2.4.1 Data abstraction and extraction ExtractiveSummarization:Extractivesummarizationusesa flow:Thestitchingdetectingcombinescoringmechanismtoextractsentencesfromadocumentandthemintoalogicalsummary.Thismethodworksbykeychunksofthetext,cuttingthemout,andthenthembacktogethertocreateashortenedform.followingisatypicalextractivesummarizationsystem  sentenceinformation.textCreatesanintermediaterepresentationoftheinputinordertodiscoverthemostimportantTFmetricsarecomputedforeachintheprovidedmatrixinmostcases.  Scoresthesentencesbasedontherepresentation, assigninganumbertoeachsentencethatindicates thelikelihoodofitbeingincludedinthesummary.  significantutilizedsentences.GeneratesasummaryfromthetopkmostimportantLatentsemanticanalysis(LSA)hasbeeninseveralresearchtoidentifysemanticallysentences.[20] Abstractive Summarization: Abstractiveapproachesmake use of recent deep learning advancements. Abstractive extensiveotherandimportantneuralhybridlearningprojectsToplacesanneuronalNetworkbehavioVinyalssummarizationinformation'sinformationsequencemethod.summariesaabstractiveAlexandermadeandtargetmappingsequencemethodstakeadvantageoftherecentsuccessofsequencetomodelssinceitcanbethoughtofasasequencetaskwherethesourcetextshouldbemappedtothesummary.Aneuralnetworkreadsthetext,encodesit,thengeneratestargettextinthesemodels,whichareupofanencoderandadecoder.[20]etal.[28]suggestedaneuralattentionmodelforsentencesummary(NAMAS),whichinvestigatedfullydatadrivenstrategyforcreatingabstractiveutilisinganattentionbasedencoderdecoderTheattentionmechanismiswidelyemployedintosequencemodels,inwhichthedecoderpullsfromtheencoderdependingonthesourcesideattentionratings.Otherabstractiveapproacheshaveincorporatedconceptsfrometal[29]'spointernetworktosolvetheundesiredurofsequencetosequencemodels.ThePointerisasequencetosequencearchitecturebasedonattentionthatlearnstheconditionalprobabilityofoutputsequencefromdiscretetokenscorrespondingtoinaninputsequence.improvemodelaccuracy,someabstractivesummarizationhavetakenprinciplesfromthereinforcement(RL)field.Chenetal.[30],forexample,suggestedaextractiveabstractivearchitecturethatusestwonetworksinahierarchicalmannertochooselinesfromasourceusinganRLguidedextractorthenrewritesthemabstractlytoprovideasummary.Inwords,themodelmimicshowhumanssummarisedocumentsbyfirstutilisinganextractoragentto

entails steps like

for news summarization

possiblewords.

4:

Summarization: The summarizing process can be described as reducing the size of a so that it contains the most the fewest Theresult beobtainedbyfilteringout then ranking the relevance of the

produceagoodsummary,guaranteeingthatonlythemost importantaspectsstayinthebodyofthetext.

Fig Extraction

3. 3.1METHOD

SystematicLiteratureReviewwasusedtoperformthis reviewresearchontextsummarizing(SLR).SLR(Okoliand Schabram,n.d.)isamethodforidentifying,evaluating,and interpretingresearchresultsthathavebeenconductedasa whole and are relevant to the issue field or research questions that attempt to provide answers to research questions,suchastextsummarizingstudy.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1313 choose salient sentences or highlights, and then rewriting eachoftheseextractedsentencesusinganabstractor an encoder aligner decodermodel network.Toconnectboth the extractor and abstractor networks and learn sentence saliency, the model leverages policy based reinforcement learning(RL)withsentence levelmetricincentivestotrain the extractor on accessible document summary pairings. [20] Fig 3:AbstractiveSummarization

Fig 5:Summarization

ID Questions Solutions R1 Which are the papers related to summarizationnews Categorize the most relevant journal/conference papers for newssummarization R2 summarization?isWhatkindofdatasetusedinnews Identify the commonly used datasets in news summarization R3 summarization?trendWhatistheresearchofnews Identifytheresearchmotiveof newssummarization R4 What are the methodswalkthroughused in summarization?news Identify the process of news summarization R5 What features are included in summarization?news summarizationintoIdentifythetopographiestakenconsiderationfornews R6 What are the approachescommon for summarization?news newsCollectthecommonmethodsofsummarization R7 What are the average drawbacks Identify the drawbacks of the existing news summarization

Extraction: Thismoduleisinchargeoftransforming It as discovering

2.4.2 Processing walkthrough

the data source, extracting relevant entities from the page, transforming andlanguagekeythemthemintousableformsforfurtherprocessing,andarchivinginanindexedformatforfutureuse.Preprocessingisastagethatincludesidentifying,removingstopwords,stemming,permittinginputinthecorrectformat,removingduplicatesentencesorwords.[31]

document

raw data.

words and phrases and

whichremainingelementsbasedonthefilterscores.Thesescores,arebasedonathresholdrankingmethodology,

can

relevant information in

Before the cleaning process begins, articles extracted may contain random and malicious content, as well as various marketing ads or external links, all of which must be trimmed and removed.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1314 of summarization?news methods R8 What are the techniquesevaluation used in summarizanewstion? Identify how the existing systems evaluate the news summarizationmethods Table -1: Researchquestionsandmotivations Data Extraction andsummarization,R7,areR2,R4aretheimportantresearchquestionswhileR1andR3designatedtogetapreciseideaofwheretobegin.R5,R6,R8areusedtoevaluatetheexistingdrawbacksofhighlightavailablefeatures,dataextractionprocessingtechniques. Classification Criteria NumberQuestion Typeofpublication R1 Researchabstractandtrend R3 ExistingFeatures R5 Potential summarization drawbacks R7 DataExtraction R2,R4 DataProcessing R6,R8 Table 2: ClassificationCriteria 3.2 Selection criteria for research papers concerning news summarization: 3.2.1 Include: Topics,challenges,datasets,methodologies, study.particularlyliterature.andmethodsusedareallincludedinstudiesthatsummarizeThearticlesandpapersfromtheconferencethatexploredtextsummarizationwereusedinthisThestudiesthatweretakenwerefrom2015to2021. 3.2.2Exclude: Uncertainty exists in studies that employ a studiesgodatasetbutdonothaveexperimentaloutcomes.StudiesthatbeyondjustsummarisingtextsNonEnglishlanguage 3.3 Search Strategy: 3.3.1 Site Based: ieeexplore.ieee.org, sciencedirect.com, access.somesomeexternalcasestudies,reports,andScopusJournalsareofthedatasourcesusedforreferencedocument 3.3.2 Search String Based: Enterthefollowingkeywordsor synonymsofthekeywordsderivedfromtheresearchtopic Onlyautomaticabstractiveprocess:searchbeingdonetofindpapersthatfitthetopic.Thefollowingisastringthatwasutilisedthroughoutthepapersearchnewssummarization,extractivesummarization,summarization,hybridsummarization,andNLPsummarization(ORtechniqueORmethod).Englishlanguagepapersareincludedinthecollection. 3.3.3 Timeline Based: Themostrecentadvancesintermsof news summarising approaches and algorithms were examinedwhensearchingforpublishingyears2015 2021. Lookforpublicationsinjournalsandatconferences.

4.2 Methods to navigate around summarization of news articles:  Auser friendlyinterfaceforsortingthroughqueries andfilterstoaidintheextractionprocess.Theuse of a web crawler is required to automate the extractionofonline basednewsarticles. Inareal timescenario,awebcrawlerwithparallel vertical search is more efficient and faster than a generalsearchmethodinretrievingdatafromthat source. A mapping mechanism was devised to assess the query'srelevancytothearticles.

A storage solution for indexing and referencing realExtractionspreviouslysortedfilesinpreparationforfutureuse.areupdatedinrealtimetoensurethattimedataisalwaysavailable.

Fig 6: SearchStrategy

4. 4.1RESULTS:Characteristics of improved, efficient summary extraction technique: To obtain news stories, multiple sources must be made available. The system must adapt to each source, learning as it encounters new forms and minimisingprocessingtime. Toensureproperandcomprehensiveextractionof protected data formats on the Internet, special determined.theattentionmustbetaken.Thedegreeofrelevancyofarticlestothequerythatwasfiredmustbe

particularlyencothebuildingblockshere,howeverwithoutattention,derdecoderarchitecturehasn'tbeensuccessfulinthepast.  Without

The bidirectional LSTM reads one word at a time, basedandbecauseit'sanLSTM,itmodifiesitshiddenstateonthecurrentwordandpreviouswords. Aone word at a timeLSTMlayerthat creates summaries. When the decoder LSTM receives the signal that the entire source text has beenread,itbeginstofunction. Itcreatestheprobabilitydistributionoverthenext whatwordusinginformationfromtheencoderaswellasithaswrittenbefore. Mechanism EncoderandDecoderare payingattention,thefinalconcealedstate fromtheencoderistheinputtothedecoder,which

 Attention

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1315 4.3 Characteristics of abstractive news summarization  Include all pertinent information from the unprocessedarticle.Theimportanceofasentence mustbequantifiedintermsoftheinputdatafileas wellasitsrelationtothequerythatwasexecuted.  Theextractionprocessmustbeinsyncinorderfor theprocessortoreceivereal timedata.  Opinions and indirect semantics that affect news must be handled with efficiently while not being fullyeliminated.  articlesIndicativelogicalSentencesandparagraphsmustbeconnected,andaandgrammaticalflowmustbeestablished.summarieswithreferencestosourcearepreferred.  Using the pointer generator network, copying wordsfromthesourcetextissimple.  Thepointer generatorparadigmcanevenreplicate terms from the source text that aren't in the dictionary.Thisisasignificantbenefit,asitallows us to deal with invisible words while simultaneously limiting our vocabulary (which requireslesscomputationandstoragespace).  Thepointer generatormodeliseasiertotrainthan the sequence to sequence attention system, levelrequiringfewertrainingiterationstoreachthesameofperformance. 4.4 Ideal method to approach abstractive news summarization  Encoder Abi directionalLSTMlayerthatextracts datafromthesourcetext.Thisishighlightedinred above. 

 Decoder

information,littlecanbea256or512dimensionvector,andsincethisvectorcan'tpossiblecontainalloftheitbecomesaninformationbottleneck.  comesalltheTheattentionmethodallowsthedecodertoexamineencoder'sintermediateconcealedstatesanduseofthatinformationtodeterminewhichwordnext. 5. ANALYSIS: 5.1 Comparison of data extraction methods: Suleiman et al Adam et al Ziyi et al Algorithm 2TransformerPreGenerativetrained RSS CrawlingFeed ToolBlockingTag Data Source webpagesTopicdatabaseDedicatedwithbased RSS News Feeds on the internet WebPage Method for dataaccessingsource thethewebSemanticbasedonqueriesbyuser Train to add new RSS and detectioninterval updationinmodificationofRSSfor HTML systeorrepositorypageextracttagdetectscannedcodetoblockandcleanfromdetectionm. Data Parsing relationssubgraphqueryWeighted to subgraphpage for scoressematicrelevanceand usingmetadatacreationupdationregularonparsingParallelofRSSthewebforandofcounters pageCleaned is repeated.processdefailedcontent.newsanalyzedforIfthetectionis Storage Page access and usingrankingorderedresultsettoproducesearchlist metadatastoredatabaseserverCentralizedtoURLand The pages metadataandusingaarestoredindatabaseURL Advantage result.fromremovingonNorestrictionpagesthusbiasthe timesavailableupdatedRealtimedataatall use.fordataProcessedreadyfurther Disadvantage The searchesvarietyrestrictingbasedareconstructedgraphsconceptthustheof storedavailablecategorizationNofordata rudimentaryismechanismdetectionBlock 5.2 Comparison of summarization techniques: Mirani and Sasi andRetzaputraKhotra Sabha et al Rawdataformat filesmultiplecorpusdataCategorizedsetsinwith systemfeeddocumentmultipleManualinto DocumentSingle is fed into system

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1316 Data Trimming filesofExpressionRegularnTokenizatioandHTML filestaggingandTokenizationPoSoftxt fuzzifierusingaredataweighttitle,Featureslikelength,andpointsextracted CriteriaFiltering TFISF on words clustersstructssentencesRelationshipbetweenform sentencesinternalprioritizefunctionsmembershipTriangular Ranking Data elements wordsTFbasedsentencesscoringWeightedofonISFof relationMMRscoresimilaritySentenceusingtree Fuzzy sets basedclassifyon 5 veryprioritieslow to veryhigh excessiveEliminatingdetails subjectivitypolarityAnalysisSentimentalonand datairrelevantcopieseliminatesprioritydefinessimilaritySentenceandor structuresentencerebuildgenerativocabularyuseselemabstractiveusedPrioritiesaretofeedentthatonto SummaryConstructing indexpolaritysortedrankedSentencesandwith reachedlimituntilusingtogetherstrungclusterfromSentenceeachisNLPwordis distributionarticlevectorcontextLSTMappliedmechanismsAttentionontoformand PresentationSummary Saved as a text file ragraphsummarywithpa Produces a paragraphsummarytextfilewith Produces an output on consolesystem Advantage bareinsteadperspectiveprovidesAnalysisSentimentaloffacts The relationstreestructuresentencewordsfromdeviatedrelationbasictofor The use of subjectivetheaextractionfeatureasfiltermakessystem Disadvantage No tarrangemensentencerelationlogicalfor accuratenidentificastructureThesentencetioisnot formsmostrelevantisdistributionArticlenotin 6. CONCLUSIONS Automatic text summarization is a fascinating academic topic with a wide range of commercial applications. By reducing huge volumes of information into brief bursts, summarizing can aid with a variety of downstream applications, including news digests, report production, newssummarization,andheadlineconstruction.Themost oftenusedsummarizingalgorithmsareoftwotypes. Extractive summarizing methodsbegin byreorderingand copying passages from the source material. Second, by rephrasingorinsertingtermsnotcontainedintheoriginal text, abstractive summarization approaches generate new toasummary.abstractiveknowledge,paraphrase,fromgrammarTheduephrases.Thegreatmajorityofpastworkhasbeenextractivetothedifficultyofabstractivesummarization.extractiveapproachismoreconvenientsinceitassuresandaccuracybycopyinglargeportionsoftextthesourcedocument.Advancedabilitieslikegeneralization,andassimilationofrealworldontheotherhand,areonlypossibleinanframeworkandarerequiredforhighqualityDespitethefactthatabstractivesummarizationismorechallengingtask,therehasbeensomesuccessthanksrecentadvancesinthedeeplearningsector. 7. REFERENCES: 1. 10.1109/ViTECoN.2019.8899706.NetworkingToApproaches,"TechniquesandS.Singh,A.Singh,S.Majumder,A.Sawhney,D.KrishnanS.Deshmukh,"ExtractiveTextSummarizationofNewsArticles:Issues,Challengesand2019InternationalConferenceonVisionwardsEmergingTrendsinCommunicationand(ViTECoN),2019,pp.17,doi:

2. V.Alwis,"IntelligentE newsSummarization,"201818th International Conference on Advances in ICT for Emerging Regions (ICTer), 2018, pp. 189 195, doi: 10.1109/ICTER.2018.8615590.

5. P.Sethi,S.Sonawane,S.KhanwalkerandR.B.Keskar, "Automatictextsummarizationofnewsarticles,"2017 International Conference on Big Data, IoT and Data

4. T.B.MiraniandS.Sasi,"Two leveltextsummarization from online news sources with sentiment analysis,"2017InternationalConferenceonNetworks& Advances in Computational Technologies (NetACT), 2017,pp.19 24,doi:10.1109/NETACT.2017.8076735.

3. M.V.P.T.Lakshika,H.A.Caldera and W.V. Welgama, "Abstractive Web News Summarization Using Knowledge Graphs,"2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer), 2020, pp. 300 301, doi: 10.1109/ICTer51097.2020.9325453.

23. Opgenhaffen,Michael&d'Haenens,Leen“TheImpactof Online News Features on Learning from News: A KnowledgeExperiment”,2011TheInternationalJournal ofInternetScience.6.8 28. 24. Adhika Pramita Widyassari, Supriadi Rustad, Guruh FajarShidik,EdiNoersasongko,AbdulSyukur,Affandy Affandy, De Rosal Ignatius Moses Setiadi, Review of automatic text summarization techniques & methods, Journal of King Saud University Computer and InformationSciences,2020,ISSN1319 1578.

11. 10.1109/ICCCSP49186.2020.9315203.(ICCCSP)Computer,Prediction,"UsingM.SM,R.MP,A.REandE.S.GSR,"TextSummarizationTextFrequencyRankingSentence20204thInternationalConferenceonCommunicationandSignalProcessing,2020,pp.15,doi:

9. K. Chenet al., "Extractive Broadcast News SummarizationLeveragingRecurrentNeuralNetwork Language Modeling Techniques," inIEEE/ACM Transactions on Audio, Speech, and Language Processing,vol.23,no.8,pp.1322 1334,Aug.2015,doi: 10.1109/TASLP.2015.2432578.

20. T.B.MiraniandS.Sasi,"Two leveltextsummarization from online news sources with sentiment analysis,"2017InternationalConferenceonNetworks& Advances in Computational Technologies (NetACT), 2017,pp.19 24,doi:10.1109/NETACT.2017.8076735.

6. J. Wu, "Web News Summarization via Soft Clustering Algorithm,"2009 Sixth International Conference on 621,FuzzySystemsandKnowledgeDiscovery,2009,pp.618doi:10.1109/FSKD.2009.838.

15. H. Tauseef and M. Asfand E Yar, "Extractive Summarization of Text Using Supervised and Unsupervised Techniques,"2021 3rd International Conference on Natural Language Processing (ICNLP), 2021,pp.37 41,doi:10.1109/ICNLP52887.2021.00012.

16. M.JainandH.Rastogi,"AutomaticTextSummarization using Soft Cosine Similarity and Centrality Measures,"2020 4th International Conference on 10.1109/ICECA49313.2020.9297583.(ICECA)Electronics,CommunicationandAerospaceTechnology,2020,pp.10211028,doi:

7. H. Yu, "Summarization for Internet News Based on ClusteringAlgorithm,"2009InternationalConferenceon Computational Intelligence and Natural Computing, 2009,pp.34 37,doi:10.1109/CINC.2009.194.

12. M. P. Dhaliwal, R. Kumar, M. Rungta, H. Tiwari and V. Vala,"On DeviceExtractiveTextSummarization,"2021 IEEE 15th International Conference on Semantic Computing (ICSC), 2021, pp. 347 354, doi: 10.1109/ICSC50631.2021.00065.

10. M. Steinert, R. Granada, J. P. Aires and F. Meneguzzi, "Automating News Summarization with Sentence Vectors Offset,"2019 8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp. 102 107, doi: 10.1109/BRACIS.2019.00027.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1317 Science (BID), 2017, pp. 23 29, doi: 10.1109/BID.2017.8336568.

8. M.E.İlter, L.Akarun and A. Özgür, "Identifying Image RelatedSentencesinNewsArticles,"201927thSignal Processing and Communications Applications Conference (SIU), 2019, pp. 1 4, doi: 10.1109/SIU.2019.8806258\

13. P. Raundale and H. Shekhar, "Analytical study of Text SummarizationTechniques,"2021AsianConferenceon Innovation in Technology (ASIANCON), 2021, pp. 1 4, doi:10.1109/ASIANCON51346.2021.9544804.

14. R. Rawat, P. Rawat, V. Elahi and A. Elahi, "Abstractive Summarization on Dynamically Changing Text,"2021 5th International Conference on Computing MethodologiesandCommunication(ICCMC),2021,pp. 1158 1163,doi:10.1109/ICCMC51019.2021.9418438.

17. Rahul, S. Adhikari and Monika, "NLP based Machine Learning Approaches for Text Summarization,"2020 Fourth International Conference on Computing MethodologiesandCommunication(ICCMC),2020,pp. 535 538, doi: 10.1109/ICCMC48092.2020.ICCMC 00099.

18. S. R. K. Harinatha, B. T. Tasara and N. N. Qomariyah, "Evaluating Extractive Summarization Techniques on News Articles,"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2021, pp. 88 94, doi: 10.1109/ISITIA52817.2021.9502230.

19. 10.1109/BESC48373.2019.8962979.(BESC)Behavioral,Summarization,"AbstractionS.Huang,R.Wang,Q.Xie,L.LiandY.Liu,"AnExtractionHybridApproachforLongDocument20196thInternationalConferenceonEconomicandSocioCulturalComputing,2019,pp.16,doi:

21. E.ShafieiBavani,M.Ebrahimi,R.WongandF.Chen,"A Query Based Summarization Service from Multiple NewsSources,"2016IEEEInternationalConferenceon Services Computing (SCC), 2016, pp. 42 49, doi: 10.1109/SCC.2016.13. 22. Thurman, N. and Schifferes, S., “The Future of Personalisation at News Websites: Lessons from a Longitudinal Study. Journalism Studies”, 13(5 6), doi: 10.1080/1461670X.2012.664341

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
NLP based Text Summarization Techniques for News Articles: Approaches and Challenges by IRJET Journal - Issuu