Experimental Study of Partial Replacement of Cement by Metakaolin and Flyash

Page 1

Abstract Concrete is extensively habituated construction material. Product of Portland cement releases significant quantumofCo2. One tonne ofPortlandcementclinkerproduct releases roughly one tonne of Co2 and other gases. Environmental issues play essential part in the sustainable development ofconcrete industry. One ofthemajorchallenges now in concrete industry in India is to meet the demand created by massive structures, fast industrialization and urbanization needs early stripping formwork. Moment numerous inquiries are going for thereliefofPortlandcement, using numerous waste materialss like fly ash and GGBS. The use of Mineral Amalgamation to drop the content of Portland cement results not onlyinanenvironmentallyfriendlyproduct but also gives multitudinous gains to the parcels of fresh and toughened concrete similar as enhanced plasticity, better unity, low heat of hydration, lower permeability etc. I'm studying on the strength and continuity by blend design, compressive test and plasticity test of concrete cell by partial relief of cement by metakaolin. Metakaolin is one of the innovativecomplexionproducts developedinrecenttimes.It's produced by controlled thermal treatment of kaolin.

Cocktails Since Portland cement is used substantially in concreteproduct,themostimportantstructurematerialon Earth (10.000 billion tons per time), partial relief by pozzolanic by products and mineral additions will allow necessarycarbondioxideemissionsreductions.Pozzolanic cocktailsreplywithCa (OH) generatingfreshCSHphases, performinginafurthercompactconcretewithincreasein durability.Somesupplementarycementitiousmaterial,like flyashhasveritablyslowhydrationcharacteristicstherefore furnishing veritably little donation to early age strength, while others like metakaolin retain a high reactivity with calciumhydroxidehavingthecapabilitytoacceleratecement

1. INTRODUCTION CementAndits CementForecastdemand increase shows that by the time 2050it'llreach6000milliontons.Portlandcementproduct resultstomajorCO2emissions,resultsfromcalcinationof limestone(CaCO3)andfromcombustionoffossilenergies, includingtheenergiesneededtoinducetheelectricitypower factory, counting for nearly0.7 tons of CO2 per tonne of cement,whichrepresentsnearly7%ofthetotalCO2world emissions. This is particularly very serious in the current environment of climate change caused by carbon dioxide emissions worldwide, which causes a slow rise in ocean positionandwhichbecomesresponsibleforameltdownin theworld Pozzolanic/economy.Mineral

1Nagesh Karajgi Orchid College of Engineering & Technology, Gat No.16,Solapur Tuljapur Road, Tale Hipparaga, near Mashroom Ganapati Temple, Solapur, Maharashtra 413002, INDIA

Flyashorstovepipeash,coalash,andalsoknownas pulverised energy ash in the United Kingdom, or coal combustionresiduals(CCRs),isacoalcombustionproduct that'scomposedoftheparticulates(finepatchesofburned energy) that are driven out of coal fired boilers together withthestovepipefeasts.Ashthatfallstothebottomofthe boiler'scombustionchamber(generallycalledafirebox)is called nethermost ash. In ultramodern coal fired power shops, fly ash is generally captured by electrostatic precipitators or other flyspeck filtration outfit before the stovepipe feasts reach the chimneys. Together with nethermostashremovedfromthebottomoftheboiler,it's known as coal ash. Depending upon the source and compositionofthecoal being burned,thefactorsofcover ashvaryvastly,butallflyashincludessubstantialquantities of silicon dioxide (SiO2) (both unformed and crystalline), aluminiumoxide(Al2O3)andcalciumoxide(CaO),themain mineralcompositesincoal bearinggemstonestrata.

MetakaolinMetakaolin(MK)isproducedbycontrolledthermal treatmentofkaolin.Differentoptimumtemperature(600 850°C)andperiod(1 12h)forheatingkaolintogainMK with a high pozzolanic indicator has been introduced by different experimenters. Thus, MK can replace cement in concretebecauseofitspozzolanicparcelsstillthestrength and continuity of MK concrete is still unknown. The engineering parcels of MK are controlled as it isn't a by product. Thus, by proving the hardened parcels of MK

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page789 Experimental Study of Partial Replacement of Cement by Metakaolin and Flyash Shubham Jadhav1 , Prof. Ravi Maske2

hydration. Since current concrete structures present advanced permeability situations that allows aggressive rudiments to enter, leading erosion problems, using pozzolanic cocktails not only reduce carbon dioxide emissionsbutalsoallowsstructureswithlongerservicelife, thereforeloweringtheirenvironmentalimpact.

Key Words: Metakaolin, Flyash, Portland cement, GGBS.

FlyAsh

2Nagesh Karajgi Orchid College of Engineering & Technology, Gat No.16,Solapur Tuljapur Road, Tale Hipparaga, near Mashroom Ganapati Temple, Solapur, Maharashtra 413002, INDIA ***

•TestingforcompressivestrengthofCubesafter7daysand 28daysofcuring.

2.2 Sieve Analysis

Themainendofthistrialistostudytheeffectofpartialrelief of cement by Metakaolin and Fly ash on the parcels of Concrete. The Experimental programme is divided in four phases. MaterialTestingforConcreteMixproportioning. SieveAnalysisofCoarsetotal. SieveAnalysisofFinetotal. SpecificgravenessofMetakaolin. SpecificGravenessofFlyash. SpecificGravenessofCoarsetotal. SpecificgravenessofFineaggregate ConcreteMixDesignAsperIS10262 2019forM25grade of Concrete with Partial relief of cement with varying probabilitiesofmetakaolinandflyash.

Sieves Sievesofthesizes25mm,20mm,16mm,mm,mm, mm, mm, mm.600 Micron, 300 Micron, Micron, Pan, conformingtoIS460 1962.

Balance The balance or scale readable and accurate to0.1 percentoftheweightofthetestsample.

•CuringofCellsfor7daysand28days.

• The sample was brought to an air dry condition before doing weight and seiving. This may be achieved either by dryingatroomtemperatureorbyhottingatatemperatureof 100”to110°C.Theair drysamplewascountedandsettled consecutively on the applicable sieves starting with the largest.

•Eachsievewasshakenindependentlyoveracleancharger until not further than a trace passes, but in any case, for a periodofnotlowerthantwotwinkles.Theshakingwasdone with a varied stir, backwards and on, left to right, indirect clockwiseandanti clockwise,andwithfrequentjarring,so that the material is kept moving over the sieve face in constantlychangingdirections.Materialwasnowayforced through the sieve by hand pressure, but on sieves coarser than20mm,placingofpatchesispermitted.Lumpsoffine material, if present, was broken by gentle pressure with frittersagainstthesideofthesieve.Lightbrushingwithasoft encounterontheunderpartofthesievewasusedtoclearthe sieveopenings.

Thissystemisusedtodetermineofparticlesizedistribution of fine, coarse and each by summations by seiving or Apparatus:screening.

aggregation

• On completion of sieving,the material retained on each sieve,togetherwithanymaterialguttedfromthemesh,was Coarse (20 Factory

oftotalUsed=KashidPlant Table 1: SieveAnalysisof20mmaggregate NoSr. SizeSieve edRetainWeight retainedePercentagWeight retainedveCumulatiweight ePercentagPassing 1 25mm 0 0 0 100 2 20mm 250 10 10 90 3 16mm 1030 41.2 51.2 48.8 4 12.5m m 1060 42.4 93.6 6.4 5 10mm 160 6.4 100 0 6 4.75m m 0 0 100 0 7 2.36m m 0 0 100 0 8 1.18m 0 0 100 0

total

1.counted.SieveAnalysisof

Procedure

•CastingofCubesandWorkabilityTest(SlumpConeTest)

mm) Source/

2.1 Introduction

•Lightbrushingwithafinecamelhairencounterwasused on the 150 micron and 75 micron IS Sieves to help ofgreasepaintandbedazzlingoforifices.Stiffor worn out skirmishes weren’t used for this purpose and pressureshallnotbeappliedtothefaceofthesievetoforce patchesthroughthemesh.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page790 concrete,it'llhavepromisingadvantagescomparedtoother cementreliefaccoutrements. Objectives of Study To Determine Plasticity of concrete after incompletely addingMetakaolinandFlyAsh. TodetermineCompressivestrengthofConcreteCellsafter7 days and 28 days of Curing by adding metakaolin and Fly ash.Preparing Concrete cubes of M25 grade for checking its Plasticity (Slump cone test) and testing Compressive strengthafter7daysand28daysofcuringofcubes. Comparing Plasticity and Strength parameters of ConventionalConcreteandconcreteafteraddingmetakaolin andflyash. 2. MATERIALS AND METHODS

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page791 m 9 600µ 0 0 100 0 10 300µ 0 0 100 0 11 150µ 0 0 100 0 12 Pan 0 Total ∑=250 0 ∑=854.8 FinenessModulus= FinenessModulus= Fineness Modulus = 8.55 2.SieveAnalysisofCoarseaggregate(10mm) Source/PlantofaggregateUsed=ManthalkarPlant Table -2: SieveAnalysisofCoarseaggregate(10mm) NoSr. SizeSieve edRetaintWeigh retainedWeightgePercenta retainedweightiveCumulat PassinggePercenta 1 m25m 0 0 0 100 2 m20m 0 0 0 100 3 m16m 0 0 0 100 4 mm12.5 110 4.4 4.4 95.6 5 m10m 1000 40 44.4 55.6 6 mm4.75 1390 55.6 100 0 7 mm2.36 0 0 100 0 8 mm1.18 0 0 100 0 9 600µ 0 0 100 0 10 300µ 0 0 100 0 11 150µ 0 0 100 0 12 Pan 0 Total ∑=250 0 ∑=648.8 ModulusFineness= FinenessModulus= FinenessModulus= 6.5 3.SieveAnalysisofFineaggregate Source/PlantofaggregateUsed:KashidPlant Table 3: SieveAnalysisoffineaggregate NoSr. SizeSieve edRetaintWeigh edretaintWeighntagePerce dretaineweighttiveCumula gPassinntagePerce 6383:201aspassingagePercentperIS 1 m25m 0 0 0 100 100 2 m20m 0 0 0 100 100 3 m16m 0 0 0 100 100 4 mm12.5 0 0 0 100 100 5 m10m 0 0 0 100 100 6 mm4.75 20 1.33 1.33 98.67 90 100 7 mm2.36 420 28 29.33 70.67 60 95 8 mm1.18 400 26.67 56 44 30 70 9 600µ 210 14 70 30 15 34 10 300µ 260 17.33 87.33 12.67 5 20 11 150µ 100 6.67 94 6 0 10 12 Pan 90 Total ∑=150 0 ∑=337. 99 AsperIS383:2016Table9FineaggregatefallswithinZone FinenessIModulus= FinenessModulus= FinenessModulus=3.38 SumofCumulativeweightretained 100854.8100 Sum of Cumulative weight retained 100 100648.8 SumofCumulativeweightretained 100337.99100

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page792 SpecificGravityAsperIS2386Part III1963 SpecificGravityisdefinedastherateofWeightofAggregate totheWeightofequalVolumeofwater.Thespecificgravity ofanaggregateiscalledasameasureofstrengthorqualityof the material. Aggregates having low specific gravity are mostly weaker than those with high specific gravity. This propertyhelpsinageneralidentificationofaggregates. Apparatus Pycnometer of 1000 ml for summations finer than6.3 Proceduremm •Aclean,drypycnometeristakenanditsemptyweightis determined(M1) •About1000gofcleansampleistakenintothepycnometer, andit'scounted(M2). •Waterat270Cisfilledupinthepycnometerwithaggregate sample,tojustimmersesample. •Directlyafterabsorptiontheentangledairisremovedfrom thesamplebyshakingpycnometer,placingagaletteonthe holeatthetopofthesealedpycnometer. •Nowthepycnometerisfullyfilledupwithwatertillthehole atthetop,andafterattestingthatthere'snomoreentrapped airinit,it'scounted(M3) • The contents of the pycnometer are discharged, and it's gutted.

•Waterisfilleduptothetopofthepycnometer,withoutany entangledair.It'salsocounted(M4) (M2 M1)/((M4 M1) (M3

•ApparentSpecificGraveness

1.M2))SpecificGravityofmetakaolin Table 4: SpecificGravityofmetakaolin Sr.No Description Trial 1 Trial 2 Trial 3 1. Mass Of Pycnometer(M1) 604 604 604 2. Massof (M2)+MassofPycnometerSample 706 735 744 3. Massof (M3++MassofPycnometerSampleMassofWater) 1564 1581 1588 4. Mass of +PycnometerMassof Water (M4) 1504 1504 1504 5. SpecificGravity 2.428 2.425 2.5 6. Average Specific Gravity 2.45 2.SpecificGravityofFlyash Table 5: SpecificGravityofFlyash Sr.No Description Trial 1 Trial 2 Trial 3 1. Mass Of Pycnometer(M1) 604 604 604 2. Massof (M2)+MassofPycnometerSample 865 768 795 3. Massof (M3)++MassofPycnometerSampleMassofWater 1628 1583 1596 4. Mass of +PycnometerMassof Water (M4) 1504 1504 1504 5. SpecificGravity 1.905 1.929 1.929 6. Average Specific Gravity 1.92 3 SpecificGravityofFineaggregate Table -6: SpecificGravityofFineaggregate Sr.No Description Trial 1 Trial 2 Trial 3 1. Mass Of Pycnometer(M1) 604 604 604 2. Massof (M2)+MassofPycnometerSample 929 875 1023 3. Massof (M3)++MassofPycnometerSampleMassofWater 1716 1679 1777 4. Mass of +PycnometerMassof Water (M4) 1504 1504 1504 5. SpecificGravity 2.88 2.82 2.87 6. Average Specific Gravity 2.86 4.SpecificGravityofCoarseaggregate(AsperIS2386Part III: Specific1963)Gravity=C/(A B) A=WeightofSaturatedaggregateinWater=(A1 A2)

Fig -5: Comparisonof7daysCompressiveStrengthof ConventionalconcretewithConcreteof(15%flyashand varyingpercentageofmetakaolin)

Fig -1: Comparisonof7daysCompressiveStrengthof ConventionalconcretewithConcreteof(5%flyashand varyingpercentageofmetakaolin)

Fig 3: Comparisonof7daysCompressiveStrengthof ConventionalconcretewithConcreteof(10%flyashand varyingpercentageofmetakaolin)

Fig -2: Comparisonof28daysCompressiveStrengthof ConventionalconcretewithConcreteof(5%flyashand varyingpercentageofmetakaolin)

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page793 B=WeightoftheSaturatedsurfacedryaggregateinair. C=WeightofOvendriedaggregateinair. A1=Weightofaggregateandbasketinwater. A2=Weightofemptybasketinwater. 3. RESULTS AND DISCUSSION CompressiveStrengthResultsofCubes Sizeofcube 150X150X150mm

Fig -4: Comparisonof28daysCompressiveStrengthof ConventionalconcretewithConcreteof(10%flyashand varyingpercentageofmetakaolin)

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page794 Fig 6: Comparisonof28daysCompressiveStrengthof ConventionalconcretewithConcreteof(15%flyashand varyingpercentageofmetakaolin) Fig 7: Comparisonof7daysCompressiveStrengthof ConventionalconcretewithConcreteof(20%flyashand varyingpercentageofmetakaolin) Fig 8: Comparisonof28daysCompressiveStrengthof ConventionalconcretewithConcreteof(20%flyashand varyingpercentageofmetakaolin) Table 7: ResultsofWorkability(Slump) Sr. No Trial SlumpWorkability(mm) 1 0%FA+0%MK 120mm 2 5%FA+5%MK 0 3 5%FA+10%MK 0 4 5%FA+15%MK 0 5 5%FA+20%MK 0 6 10%FA+5%MK 0 7 10%FA+10%MK 0 8 10%FA+15%MK 0 9 10%FA+20%MK 0 10 15%FA+5%MK 150mm 11 15%FA+10%MK 100mm 12 15%FA+15%MK 0 13 15%FA+20%MK 0 14 20%FA+5%MK 150mm 15 20%FA+10%MK 100mm 16 20%FA+15%MK 50mm 17 20%FA+20%MK 30mm 4. CONCLUSIONS •InthisStudy,ConcreteMixdesignofM25gradeismade andtrialsareConductedforvariouspercentagesofFlyash and Metakaolin ranging from 5 20 and Compressive strengthandPlasticityhasbeencomparedforvariouscases. • Grounded on over all trials, following Prominent Conclusionsaredrawn •Plasticity(Slump)Decreasesaspercentageofmetakaolinis Increased. • The strength of concrete increases with increase in metakaolin up to 15% replacement of cement and 5% fly ash, and if we farther increase in fly ash and metakaolin CompressiveStrengthofConcreteisreduced. •UseofMetakaolininConcreteasapartialreplacementof cement leads to Compressive strength improvement and Lowerdryinglossandadvanceddurability. •Metakaolinacceleratesthesettingtimeofcementpaste. •UseofflyashandMetakaolininconcretemakesconcrete cohesiveascomparedtoCementconcrete. • Combination of metakaolin and fly ash for concrete, Compressivestrengthincreasedupto10% 15%. • Use of fly ash in concrete can save the coal & thermal assiduitydisposalcostsandproducea‘greener’concretefor construction.

International Research Journal of Engineering and Technology (IRJET) e ISSN: 2395 0056 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page795 •UseofProperChanceofFlyashandMetakaolininConcrete IncreasesCompressivestrengthanddurabilityandReduces theCostofConcrete

[4] IS516:1959MethodsofTestsforStrengthofConcrete.

[9] M. Nazeer, R. Arun Kumar “Strength Studies on Metakaolin Blended High Volume Fly Ash Concrete” IJEAT,Vol3,issue6August2014,pp176 179.

[3] IS 456:2000 Plain and Reinforced Concrete Code of Practice.

International Journal of Civil Engineering and Technology(IJCIET),4(3),2013,pp.73 79.

[1] IS 10262:2019 Guidelines for concrete mix design proportioning.

[11] UmerULNazir,AbhishekJandiyal,SandeepSalhotraand RajuSharma,“IncorporationofMetakaolininConcrete: AReview”.InternationalJournalofCivilEngineeringand Technology(IJCIET),7(5),2016,pp.17 21.

[5] IS 1199:2019 Fresh Concrete Methods of Sampling, TestingandAnalysis.

[6] Dinakar, Pradosh K. Sahoo, and G. Sriram, “Effect of MetakaolinContentonthePropertiesofHighStrength Concrete”IJCSM,Volume7,no3,pp215 223September 2013

[10] VinodBShikhareandL.G.Kalurkar“EffectofDifferent Types of Steel Fibers with Metakaolin & Fly Ash on Mechanical Properties of High Strength Concrete”

[2] IS383:2016CoarseandFineaggregateforConcrete Specifications.

[8] KrishnaRaoB,A.V.S.Sai.Kumar“AStudyonStrength of Concrete with Partial Replacement of Cement with QuarryDustandMetakaolin”,IJIRSET,Vol3issue3mar 2014,pp 14697 14701.

[7] NovaJohn“StrengthPropertiesofMetakaolinAdmixed Concrete”IJSRP,Vol3,Issue6,June2013

•UseofMetakaolinandFlyashasapartialreplacementfor cementdroppedthePlasticviscosityoftheConcrete.

REFERENCES

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.