***
Mehvish Amin1, Zehwa Khan2, Sarish Manzoor3,Er. Tahir Hassan4
2Zehwa Khan, Dept. of Civil Engineering, SSM college of Eng. And Technology, J&K, India
1. INTRODUCTION
ThisConcreteisthemostpopularman madeconstructionmaterialbeingusedintheworldandisthesecondmostutilized substanceintheworld.Concretecanbeprocuredbyblendingofcementingmaterials,waterandaggregatesandsometimes admixtures as well. When we place this mix in forms and allow it to cure, it hardens into a firm solid material known as concrete.Itisthechemicalreactionbetweenwaterandcementthatleadtothehardeningofconcrete.Asthisreactionlastsfor alongtime,henceconcretegrowsstrongerwithage.Thepropertiesoftheingredients,thepropositionsofmixthemethodof compactionandothercontrolsduringplacing,compactionandcuring,arethefactorsonwhichdurability,strengthandother characteristicsofconcreterelies. Makingconcreteisnotjustaboutintermixingthematerialstofabricateaplasticmassbutahighstandardconcretehasto satisfyalltherequirementsinplasticorgreenstateaswellasinhardenedstate.Concreteshouldbeworkableandfreefrom segregationand bleedingwheninplasticstate.Alsoitshouldbeimpervious,enduringanddurableandshould notshow bulgingwheninhardenedstate.Ofallthepropertiesoftheconcrete,itscompressivestrengthbeingthemostimportantoneis takenasthemeasureofitsoverallquality. Mud concreteisafreshapproachanditislikecementconcrete.Itisproducedbyblendingtogethersoil,cementandwater. Thematerialslikethesoilfractionperformthefunctionofaggregateandsmallquantitiesofcementactasastabilizingagent here.Thecompressivestrengthofthemudconcreteisgovernedbytherangeofgravelandthepercentageofsoilused.Forthe hydrationofcementwaterisusedinexcessiveamount.Thehighamountwaterallowsthematerialtoflowandamplifiesits self compactingqualityandalsohelpswiththeself consolidation,providesthematerialabilityofpassing,fillingandstabilizing itselfwithoutanyexternalinfluence.Butforattainingmorestrengthanddurability,operationslikerammingandconsolidation canbedone.Mudconcretewasbasicallyevolvedtoproducesamestrengthanddurabilityasthatofcementconcreteandthe fundamental idea behind mud based construction was to instigate cheap (low cost) and load bearing wall system. The constructionmodeemployedforitwaseasy,simpleandguaranteedindoorcomfortwithleastimpactofenvironmentonthe structure.
Abstract Vegetation and moisture trapping soils that make up the natural surfaces absorb solar energy to aid evapotranspiration. Evapotranspiration makes the surrounding air cooler as water vapours are released during the process. But built surfaces absorb significant amount of solar energy as they are made up of high percentages of non reflective, water resistant materials. Eventually this absorbed solar energy gets reflected as heat to the microclimate. Built environment is made up by replacing the natural environment by artificial one. In reducing the hazards faced by the natural environment the modern concrete technologies are inadequate. Consequently the world should look for more natural and environmentally sound materials that can be employed for construction works. Soil being such a building material that can be used for environment friendly constructions. Heat absorbance by earthen materials is comparatively higher than that in case of concrete and hence they can be used as thermal mass. Also evapotranspiration of water is facilitated in a better way by earth materials than by concrete.
1Mehvish Amin, Dept. of Civil Engineering, SSM college of Eng. And Technology, J&K, India
Key Words: Solarenergy1,Evapotranspiration2,Environment3,Microclimate4,Thermalmass5,etc.
4Er. Tahir Hassan, Associate Prof., Dept. of Civil Engineering, SSM college of Eng. And Technology, J&K, India.
3Sarish Manzoor, Dept. of Civil Engineering, SSM college of Eng. And Technology, J&K, India.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1683 USE OF MUD CONCRETE IN COLD CLIMATIC REGIONS

1.1 Background BeforeIntheancienttimesmudbasedconstructionwasverypopularhoweveritisnotpracticedmuchinthepresentworldas severalnewmethodshavecomeintouse.AsreportedbyCofiremanEtAl(1990),30%oftheworld’spopulationsarestillliving inearthenstructuresandfortheconstructionofvariousstructureswehavebeenusingthematerialsofearthforthousandsof years and are still relying upon it. Another research done be Ren and Kagi (1995) showed earth as inexpensive and environmentfriendlyandreadilyavailablebuildingmaterial.Ithasbeenconsiderablyusedforwallconstructionallaroundthe world,especiallyindevelopingcountries. Dugout,Earthshelteredspacefill incut blocks,compressedearth,directshaping,stackedearth,Mouldedearth,Extruded earth,Pouredearth,strawclayandDaubedeartharethevariousconstructiontechniqueswhichhavelikelyevolvedthrough time and are still used around the world. Due to social beliefs on the strength and durability parameters of earth based techniques,useisbecomingunpopulardaybyday.Althoughtheseproductsgetecomanufacturingprocessbutonthebasisof itsfactorsofdurabilityandstrength,presently“Concrete”isthemostwidelyusedconstructionmaterial
Fig 1:MudConcreteBlocks
Concreteisabuildingmaterialmadefromcement,sand,coarseaggregateandwater,thecoarseaggregateinthecomposition determinesthestrength,the cementactsasabindingagent,whilethe sandreducestheporosityandthewateractsasa reactorforthecement.Inconcretetechnology,sandandcoarseaggregatesfromconcretearereplacedbyfineandcoarse aggregatesfromtheground.Theintendedfunctionsofsandandcoarseaggregatesareachievedbyvaryingtheparticlesizesof the Thesoil.major
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1684
goal of the mud concrete aggregate became to increase a self compacting blend which could be capable to consolidateunderneathitspersonalweight.Thisself compactingblendcouldnownolongerrequireanymechanicalvibration
Fig 2:MudConcreteStructure 2. CONCEPT OF DEVELOPING MUD CONCRETE TECHNOLOGY




Selectionofsoilthatisdesirableforuseinthestabilizationformodernearthconstructioninvolvesvariousstagesthatare givenbelow: Stage1:Inthisstageweidentifytheoriginandattainabilityofsuitablematerial(e.g.naturalsub soils,as raisedballastor gradedquarrywaste).Onthebasisofinitialscreeningfororganicmatter(nominally<2%wt),whichisdeterminedbythe lossesfacedonignition,aswellashighconcentrationofcontaminantssuchaschlorides,sulphates,etc.,thematerialcanbe declinedoraccepted.Ifthematerialisproventobeidealthenitssamplesaretakenforexperimentaltesting.
Fig 3:SimilitudeofConcreteandMudConcrete
3. SELECTION OF SOIL TYPE USED IN MUD CONCRETE
Stage2:Characterizationbasedonthelinearshrinkagecoefficientisasfollows: ShrinkageCoefficient<7% Favourable ShrinkageCoefficient7.1% 13% Satisfactory ShrinkageCoefficient>13% Unfavourable
Stage4:Inthisstage,wedeterminetheparticlesizedistributionofthesoilinordertoassessitstexture(orgrading).The suitabilityandacceptanceofisbasedonthefollowingcriteria
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1685 orcompactionafterpouringandcouldobservetheformandfloortextureofthemould/shapepaintingsassoonasset.To conceivethedustconcreteaggregateasaself compactingblend,itbecamevitaltomanipulateitsfluidityevenaspreservingits energyandsturdinessproperties.Thus,waterwillbecomeakeyconstituentoftheblend
Stage3:Inthisstagewecharacterizethesoilonthebasisofplasticlimit(PL),whichisthemoisturecontentatwhichthesoil showsplasticdeformationunderload(i.e.non elasticstrain)andliquidlimit(LL),whichisthemoisturecontentatwhichthe soilflowsduetogravity.Theacceptanceofthesoilisjudgedonthebasisofplasticityindex(PI),whichistheratiobetweenLL and FavoPL.urable:PI<16%andLL<36%
Satisfactory:PI=15 30%andLL=36 45% Unfavuorable:PI>30%andLL>45%
Favourable:cohesivefraction(silt+clay)21 35%,orsand30 65%,orgravel3 5%.
Satisfactory:silt+clay36 45%,orsand66 75%,orgravel3 12% Unfavourable:silt+clay<21%or>45%,orsand>75%,orgravel<3% 4. MATERIALS AND QUALITY 4.1. Soil Inordertomakesurethatorganicmatterisnotpresentinthesample,weprocuredthesoilfromhomogeneouslayers700mm blowthetopofthesoil.Usinga20mmsieveweremovedtheoversizedsoilparticlesfromthesample.Thecompositionofsoil samplethatwasusedintheexperimentsconfirmedtothesieveanalysis.
Thevariousphysicalpropertiesofthesoilthatwasusedareasfollows:


5.1. Natural Water Content
ItshouldbemadesurethatthewaterthatisbeingusedformixingandcuringofMud Concreteisfreefromharmfulamountsof detrimentalsubstances.Majorityoftheobjectionableconditions,thatcausethedistressofMud Concrete,aretheconsequence ofmixingandcuringwaternotbeingofsuitablequality.Theexistenceofharmfulimpuritiesinthemixingwaterdecreasesthe strengthanddurabilityoftheMud Concrete.Theeffectsofcontaminatedwaterbeingusedformixingandcuringcanchieflybe expressedintermsofdifferenceinthesettingtimeofPortlandcementmixescontainingimpurewaterascomparedtoportable water.
4.4. Soil Classification for Mud Concrete Block Technology
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1686
Plasticlimit=36.89% Liquidlimit=26.02% Naturalwatercontent=26.4% PlasticityIndex=10.87% Linearshrinkage=6.82% Specificgravity=2.42%
4.2. Stabilizer Cementwasthemainstabilizerusedinthisexperiment:industriallyavailablerequiredlabconditionpriortoitsutilizationfor the mix development. Portland cement of 43 grades was employed in this experiment. Various physical and mechanical propertiesofthecementaregivenbelow: Initialsettingtime(min)=25 Finalsettingtime(min)=500 Specificgravity=3.35 Volumeexpansion(mm)=1.2 Compressivestrength(MPa) 7days=40.54 28days=51.9
4.3. Quality of Mixing Water
5. METHODOLOGY IN CONSTRUCTION OF MUD CONCRETE CONDUCTING SOIL TESTS: Thevariouspropertiesofsoiltestedandidentifiedarediscussedbelow.
Onthebasisofsieveanalysis,usingstandardISsieves,soilcanbeclassifiedas: Gravel:Ifparticlespassfrom20mmandretainat4.75mmsieve Sand:Ifparticlespassfrom4.75mmandretainon0.075mmsieve Fine(SiltandClay):ifparticlespassfrom0.075mm 0.002mmand0.002mmdown
Soilisextensivelyaffectedbythewatercontentpresentinit.Particularlythebehaviourofcohesivesoilsisaffectedbythissoil parameter.Therearevariousmethodstodeterminethewatercontentofsoilandtheonewhichisusedmostfrequentlyamong themis“OvenDryingMethod".

The range of moisture content over which the soil displays plasticity is referred to as plasticity index Ip. It can also be expressedasthedifferencebetweenthelimitandtheplasticlimit.Itgivesusinformationaboutthedegreeofplasticityofthe soil.ExpressionforplasticityindexisasIp=Wl Wp.
Thesmallestwatercontentatwhichthesoilissaturatedisknownasshrinkagelimit.Wecanalsodescribeitasthemaximum watercontentatwhichthereisnodecreaseinthevolumeofsoilmassevenifthewatercontentisreduced,i.e.,atthiswater content,theshrinkageceases.
5.5. Plasticity Index
W1=weightofpycnometer+weightofsoil+weightofwater. W2=weightofpycnometer+weightofwater.
5.3. Plastic Limit (Wp)
Plasticlimitisdefinedasthewatercontentbelowwhichthesoilstopsbehavingasaplasticmaterial.Thesoilwhenrolledinto athreadof3mmdiameterbeginstocrumble.Thesoillosesitsplasticityandmovestosemi solidstateatthiswatercontent.
Thismethodisusedbecauseitisasimplemethodthatcanbeadoptedforthedeterminationofwatercontentpresentinthe soilinthelaboratory.Thewatercontentiscalculatedusingformula: Watercontent(w)=(W2 W3)/(W3 W1)×100% Where, W1=weightofcontainer W2=weightofcontainerwithmoistsoilsample W3=weightofcontainerwithdriedsoilsample
5.2. Liquid Limit (Wl)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1687
Thespecificgravityofsoilisdeterminedfortheestimationofvariousquantitieslikevoidratio,degreeofsaturation,unit weightofsolids,andunitweightofsoilsinvariousstates.AdevicecalledPYCNOMETERisusedfordeterminationofspecific gravity.Theexpressionusedtocalculatespecificgravityofsoilmassisasfollows: Specificgravityofsolids[Gs]=[Ws]/[Ws W1+W2] Where, Ws=weightofdrysoil.
Liquid limit is defined as that water content of soil at which the soil is almost in a liquid state. However soil has minute resistanceagainstflowatliquidlimitanditcanbemeasuredbystandardmethods. LiquidlimitofasoilsampleinthelaboratoryisdeterminedbyanapparatusdesignedbyA.Casagrande.
5.6. Specific Gravity
5.4. Shrinkage Limit
Inordertoidentifyandstandardizetheself compactingconsistencyofMud concretemixwefollowasimpletechnique.The researchwasfirstdesignedtodeterminetheslumpheightandslumpdiameterofthemudconcretemixatdifferentmoisture contentswhilekeepingthenumberofblowsconstant(25blows).Asisstatedbythethumbrule,after25blowsthemixissaid tohaveachievedtheworkabilityifitspreadstoabout500mmdiametercircle.
5.7. Workability for Mud Concrete

Intheassessmentofmudconcreteblockscompressivestrengthisconsideredasoneofthedominantparameters.Thevaluesof compressivestrengthweretakenfromthebestparticlepropositionandcementproposition.Weconductedthecompressive strengthtest,after28daysofpropercuring,ontheblocksofsize150mmx150mmx150mm.
Thermal conductivity is a parameter that is used to measure the heat conducting capacity of a material. Under the study temperaturedifferenceTh Tc,thermalconductivitycanbedescribedasthethermalenergy(Q)transmittedthroughthe thicknessorlength(L),inthedirectionnormaltothesurfacearea(A).Therearevariousmethodsformeasuringthermal conductivity.Steady statemethodisgenerallyusedincaseofbulkmaterials. Thermalconductivity,K=QL/A⧍T
6.3. Thermal Conductivity
6.4. Accelerated Erosion
InordertoevaluatethedensityqualitystandardofMCB,weconductcoldwaterabsorptiontest.Thecoldwaterabsorption, percentagebymass,after24hoursofimmersionincoldwaterwasdeterminedusingthefollowingequation. W=[(M2 M1)/M1]x100 Where,M1=weightofdryspecimen. M2=weightofspecimenafter24hoursofwaterimmersion.
TEST
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1688 6. TESTS PERFORMED ON MUD CONCRETE
6.2. Water Absorption
Thetestingmethodusedforacceleratederosionincludesplacingthesampleatadistanceof500mmfromaspraynozzleand thensprayingwateratapressureof50kPahorizontally. RESULTS: Trial A1 (For 10% of cement by weight) Fine 30% Gravel 50% Sand 20% Watercontent 22.2% For Sample Weight 9 kg (Fine+ Gravel+ Sand) Fine 2.8kg Gravel 4.4kg Sand 1.9kg Cement 0.8kg Watercontent 2.2kg DimensionsofMould=(15x15x15)cm.
6.1. Compressive Strength

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1689 RESULTS: SlumpDiameter 305mm SlumpHeight 102mm StrengthCompressiveAfter 28 days. 8.5N/mm2 Erosion.Accelerated No significant holes. Trial A2 (For 6% of cement by weight) Fine 10% Gravel 35% Sand 55% Watercontent 25% For Sample Weight 9 kg (Fine+ Gravel+ Sand) Fine 0.8kg Gravel 3.17kg Sand 4.94kg Cement 0.53kg Watercontent 2.4kg DimensionsofMould=(15x15x15)cm RESULTS: SlumpDiameter 305mm SlumpHeight 102mm StrengthCompressiveAfter 28 days. 5.2N/mm2 Erosion.Accelerated No significant holes. Trial A3 (For 8% of cement by weight) Fine 10% Gravel 35% Sand 55% Watercontent 25%

Theprocessofproductionofthenewblocksismanualandexceptfortheproductionofcementitdoesnotrequireanykindof energy.Hence,incomparisonwiththeothermaterials,especiallycementconcreteblocks,whicharethemostfrequentlyused material,theembodiedenergyismuchless.Alsoitiseasiertofabricatethemudconcreteblockswithoutmuchskilledlabour whilematerialsarereadilyavailable.Sothecostofmaterialtransportationandlabourislessincontrasttoothermaterials.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1690 For Sample Weight 9 kg (Fine+ Gravel+ Sand) Fine 0.8kg Gravel 3.17kg Sand 4.94kg Cement 0.73kg Watercontent 2.5kg DimensionsofMould=(15x15x15)cm RESULTS: SlumpDiameter 305mm SlumpHeight 102mm StrengthCompressiveAfter 28 days. 6.6N/mm2 Erosion.Accelerated No significant holes. 7. CONCLUSIONS
[1] M.J.Alcoforado,PlanningProcedurestowardsHighClimaticQualityCities,(2006),pp.49 64.
[2] F. Pacheco Torgal, S. Jalali, Earth construction: Lessons from the past for future eco Efficient construction Earth construction,lessonsfromthepastforfutureeco efficientConstruction,Constr.Build.Mater.29(2012)512 519.
[4] S.A.Lima,H.Varum,A.Sales,V.F.Neto,AnalysisofthemechanicalpropertiesofCompressedearthblocksmasonryusing thesugarcanebagasseash,Constr.Build.Mater.35(2012)829 837.
Thisresearchstudywasconductedinordertocomeupwithanewmaterial,‘MudConcreteBlocks’forconstructions.The initialstudywasperformedtounderstandthelikelihoodofmanufacturingsoil basedblocks.Thenthepriorstudywascarried outinordertooptimizetheideaofbuildingmudconcreteblocks.Theobjectiveofthepreliminarytestwastooptimizethebest particleproportionforthemudconcreteblocks.Afterthatthestudywasconcentratedonknowingthebestcementproportion tobuildblocks.Fromtheoutcomesthatwereobtainedinthelaboratorytestseriesformixeddesign,itwasdeducedthatthe newblockcanbeproducedusingsoilwith5%offineparticles,55%of65%sandparticles,10%cementbyweighttogether withamoisturecontentof18 20%.Moreover,thistypeofmudconcreteblockdoesnotrequireanycompaction.Incaseof typicalblocks,suchasconcreteblocks,heavymachinerylikecompactionisneededtoproducetheblock.Whereasincaseof thisnewmudconcreteblockproductionnocompactionorvibrationisobligatory.Thisisduetothefactthatthemixtureof mudconcreteisalreadymalleablewithwater.Itwasconcludedthattosecurebetteroutcome,itis appropriatetousemix proportionsofsoilwithsandcontentof60%,fineparticlecontentof5%andstabilizedwith10%cementtogetherwith18%to 22%moisturecontent. Aftertheinitialdiscoveryofmudconcreteblock,inordertoaccessandimprovetheirqualityaseriesofstandardtestswere carriedoutonthemudconcreteblocks.Astheprimaryexperimentwastoupgradethecompressivestrengthofmudconcrete blocks,thecompressivestrengthofMCBwasalreadyuptothestandardforablock.Hencewecanalsodrawtheconclusion thatthenewlyinventedmudconcreteisthereforesuitableforuseintheconstruction.Acold waterabsorptiontest,according toSriLankanStandardsandASTMC936,wasconducted.Thus,inthissoilmaterial,thewaterabsorptionlevelisrelativelyhigh andthestandardtestforwaterabsorptionofaASTMC936wasnotsuccessfulforallblocks.
[3] C.Udawattha,R.Halwatura,ThermalperformanceandstructuralcoolinganalysisofBrick,cementblock,andmudconcrete block,Adv.Build.EnergyRes.(2016).
REFERENCES
[5] C.Udawattha,R.Halwatura,LifecyclecostofdifferentWallingmaterialusedtobuildAffordablehousingintropics,Case Stud.Constr.Mater.(2017)ISSN2214 .

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p ISSN: 2395 0072 © 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page1691
[9] H. Li, J. Harvey, Z. Ge, Experimental investigation on evaporation rate for enhancing Evaporative cooling effect of permeablepavementmaterials,Constr.Build.Mater.65(2014)367 375.
[7] C.Udawattha,R.Halwatura,Embodiedenergyofmudconcreteblock(MCB)versusBrickandcementblocks,EnergyBuild. 126(2016)28 35.
[11]
[10] GalabadaHarsha,B.Thoradeniya,R.Halwatura,PublicperceptionsonurbanoutdoorConstructionsandtheirmaterials, 8thInternationalConf.Fac.Archit.Res.Unit(2015) ImageCredits: Google
[8] K.Rahaman,N.Ohmori,EvaluationoftheRoadsideWalkingEnvironmentinDhakaCity,East.AsiaSoc.
[6] N.H.V.T.N. Nanayakkara, C. Udawattha, R.U. Halwatura, Investigation on elements and Their fraction of housing constructioncost,2017MoratuwaEngineeringResearchConference(MERCon)(2017)277 282.
