IRJET- On Semigroup and its Connections with Lattices

Page 1

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056

Volume: 05 Issue: 12 | Dec 2018

p-ISSN: 2395-0072

www.irjet.net

ON SEMIGROUP AND ITS CONNECTIONS WITH LATTICES Dr. Pankaj Kumar Chaudhary1, Dr. Jawahar Lal Chaudhary 2 , Gyan Shekhar 3 1Assistant

Professor, Department of Mathematics, Women’s Institute of Technology, L. N. Mithila University, Darbhanga, Bihar, India 2 Associate Professor, University Department of Mathematics, L. N. Mithila University, Darbhanga, Bihar, India 3 Research Scholar, Department of Mathematics, L. N. Mithila University, Darbhanga, Bihar, India - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * * *- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ABS TR AC T : - L. V. Sh i vr i n a n d B. M. Ve r n ik o v d er iv e d pr ope rt ies of s e m i gro u p va r iet ie s w h ic h f or ms a la t t ic e. W e cr it ic a l ly e x a m i ne t he d if fe re nt c la ssi f ica ti o ns o f mo d u lar va r iet i es. I t is k n o w n that th e co ll ect i on S EM o f a ll s e m i gr ou p va r iet ie s f or m s a latt ic e wi th r esp ect to c lass th eo ret i cal i n c l us i o n. A sem i g ro up var i et y mo d ul a r is ca l le d lo w er - m o d ular, d i str i b ut iv e if it is a m o d ul ar l o we r - mo d u lar, d ist r i b ut i ve e le m e nt o f t h e la t t i ce SE M. D i str i b ut iv e va r iet ie s ha ve b ee n dete r m i ne d L. N. S h erv i n we d is cu ss p rop ert i es of a cla ss of l o we r - m o d ul a r va r iet ie s. B. V. Ve r n i ko v d er i ve d it s pr op er tie s, we exa m i n e a c o mp let e cla ssi f ica t i o n o f l o wer - m o d ul ar va r iet ie s. T he ma i n res u lt o f th is art i cl e gi v es a co mp let e clas s ifica t i o n of l o we r -m o d ul a r va ri e tie s. I f B is a s et o f i d e nt it ie s, t he n ∼ B de n ote s th e f ul l y i n va r ia nt c o n gr ue n ce o n t h e f ree s e m ig ro up co rresp o n d i n g t o B. we es tab li sh t he c o n ne ct io ns bet w ee n t he qu as i -or d ers ≤ B a n d ≤. K EY WO R DS : S em ig r ou p, L a t ti c es, S e m il a t tic e , M odul a r , Q ua si- o rd e rs IN TR O D UC T IO N An el em e n t x o f a l a tt ic e  L ,  ,  is c a l l ed mo d ul a r i f (

)

(

)

... (i)

l ow e r- mo dul a r i f (

)

(

)

(

)

…( ii)

dis t ri bu ti v e if (

)

(

) …( ii i)

Up p er- m od ul a r el em e n ts ma y b e d e fi n ed d u a l l y t o l o w er - m odul a r o n es. H e nc e , w e fi n d tha t a dis t ri bu ti v e el em e n t is l o w e r - mo dul a r . A pa i r of id e nt it i es w x = xw = w is k no w n a s a n i d e nt it y w = 0. S i nc e j ust ifi e d b ec a u se a s e mi gr ou p wi th s u ch id e n ti ti es ha s a z e r o el e m e nt a n d a l l va l u es of th e wo r d w in thi s s e m ig ro up a r e e qu a l to z e r o. I d e nt it i es o f th e fo r m w = 0 m or e ov e r a s va ri e ti es g iv e n by such i d e nt it i es a r e c a l l e d 0 - r e duc e d. By T, SL , a nd SE M w e d en o t e th e t ri via l va r i et y, th e va r i et y of a l l s e m il a t tic es , a n d th e va ri e ty o f a l l s e mi gr ou ps , r es p ect iv el y . W e p r ov e h e r e th e f ol l o wi n g th eo r e m. L et us r ep r e se n t by F  th e f r e e s e mi gr ou p a b ov e a cou n ta bl y i n fi n it e a l pha b e t, i. e. th e se mi g ro up o f wo r ds u n d er c o nc a t e na t io n. I f B is a s e t of r e gul a r id e nt it i es a n d v a nd u a r e w or ds , l et us d e fi n e v ≤ B u if a nd o nl y i f va r { v ≈ 0, B } |= u ≈ 0. If t h e s e t B con ta in s o nl y tr iv ia l i d e nt it i es, th e n i ns t ea d o f ≤B L e t us w ri t e ≤ . Th e r el a ti on ‘ ≤ ’ o n th e f r e e s e m ig ro up is k n o w n a nd ma y b e d ef in e d a s f ol l o ws: i f u , v ∈ F ∞ , th e n v ≤ u i f a nd o nl y if u = aΘ( v) b f o r s om e p ossi bl y empty words a a nd b a n d s om e su bs ti t uti o n Θ w e fi n d t ha t th e r el a t io n ‘ ≤’ B is r efl e xiv e a n d tra ns i tiv e , i . e. it is a qua s io r d e r o n th e fr e e se mi g ro up F ∞ . I f u ≤ B v ≤ B u , th e n u⇔ B v . If u is a wo r d, th e n th e cl a ss of a ll wo r ds e q uiva l e n t to u m od ul o ⇔ B is d e no t e d by [ u ]⇔ B . L et F ∞ / ⇔ B d e n ot e t h e s e t of a l l cl a ss es [u ] ⇔ B o r d er e d by ≤ B . t he el e m en ts o f th e o rd e r ed s e t F ∞ / ⇔ B i s ca l l e d w or d patt er ns mo d u lo B. Th e o re m 1 I f u ≤ v, t he n | u | − |Co n t ( u) | ≤ | v | − |C o nt (v ) | .

© 2018, IRJET

|

Impact Factor value: 7.211

|

ISO 9001:2008 Certified Journal

|

Page 873


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.